

High resolution climate data for Europe CHELSA_EUR11 V1.0: Technical specification

Release Date: 18.05.2020

Document version: 1.0

Dirk Nikolaus Karger

Swiss Federal Research Institute WSL Zürcherstrasse 111 CH-8903 Birmendorf Switzerland

CHELSA_EUR11 V1.0: Technical specification

Document maintained by Dirk Nikolaus Karger (WSL, dirk.karger@wsl.ch)

CHELSA data should be cited as:

General citation:

Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, H.P. & Kessler, M. (2017) Climatologies at high resolution for the earth's land surface areas. Scientific Data 4, 170122.

Data citations:

Version 1.0

Karger, Dirk Nikolaus; Dabaghchian, Babek; Lange, Stefan; Thuiller, Wilfried; Zimmermann, Niklaus E.; Graham, Catherine H. (2020). High resolution climate data for Europe. EnviDat. doi:10.16904/envidat.150.

Revision history

Version	Date	Changes
1.0	13.05.2020	Initial document

Introduction

High-resolution information on climatic conditions is essential to many applications in environmental and ecological sciences. The CHELSA-EUR11 (Climatologies at high resolution for the earth's land surface areas) data (Karger et al. 2017) consists of downscaled model output of temperature and precipitation estimates at a horizontal resolution of 30 arc sec. The temperature algorithm is mainly based on statistical downscaling of atmospheric temperatures. The precipitation algorithm incorporates orographic predictors including wind fields, valley exposition, and boundary layer height, with a subsequent bias correction. The resulting data consist of daily temperature and precipitation data and various derived parameters.

As the CHELSA project is continuously expanded, certain new parameters, time scales etc. are not included anymore in the original publication (Karger et al. 2017). We are therefore provide this document as a guideline of the current climatic parameters available and will expand it as new parameters or time periods will become available. Please refer to the version history for changes made in the document.

Some of the parameter descriptions are different from those of the original publication (Karger et al. 2017), as we tried to keep as much of them consistent with CF naming conventions. Not all parameters however have a respective CF name.

Methods

Near-Surface Air Temperatures (tas, tasmax, tasmin)

Temperature data was downscaled based on mean daily temperature from the respective driving model. Temperature lapse Γ_d rates were calculated separately for each grid cell based on mean daily temperature at pressure levels from 850 hPa to 950 hPa using:

We then interpolated 2m air temperature from the low resolution grid cell tas_l using a multilevel B-spline interpolation³ with 14 error levels optimized using B-Spline refinement³ to 2m air temperature tas_h high spatial resolution. The multilevel B-spline approximation (Press et al. 1989) applies a B-spline approximation to tas_l starting with the coarsest lattice ϕ_0 from a set of control lattices $\phi_0, \phi_1, ..., \phi_n$ with n = 14 that have been generated using optimized B-Spine refinement³. The resulting B-spline function $f_0(tas_l)$ gives the first approximation of tas_h . $f_0(tas_l)$ leaves a deviation between $\Delta^1 tas_{l_c} = tas_l - f_0(x_c, y_c)$ at each location (x_c, y_c, tas_{l_c}) . Then the next control lattice ϕ_1 is used to approximate $f_1(\Delta^1 tas_{l_c})$. Approximation is then repeated on the sum of $f_0 + f_1 = tas_l - f_0(x_c, y_c) - f_1(x_c, y_c)$ at each point $(x_c, y_c, tas_{t_c}) n$ times resulting in the high resolution interpolated 2m air temperature surface tas_h . We repeated the procedure for the respective low resolution orography grid e_l . To include the effect of high resolution orography e_h into the high resolution 2m air temperature estimates tas, we then used:

$$tas = tas_h \Gamma_d(e_h - e_l)$$

where *tas* equals the temperature at a given elevation e_h , Γ_d equals the lapse rate. The procedure was similar for Daily Maximum Near-Surface Air Temperature *tasmin* and Daily Maximum Near-Surface Air Temperature *tasmin*.

Precipitation

We used u-wind and v-wind components of the respective model as underlying wind components. As the calculation of a windward leeward index H (hereafter: wind effect) requires a projected coordinate system, both wind components (u-wind, v-wind) were projected to a world Mercator projection and then interpolated to the 3 km grid resolution using a multilevel B-spline interpolation similar to the one used for the bias correction surface. The resolution of 3km was chosen as resolutions of around 1km would over represent orographic terrain effects (Daly et al. 1997). The wind effect H was then calculated using:

$$H_{W,L} = \{ \frac{\sum_{i=1}^{n} \frac{1}{d_{WHi}} tan^{-1} \left(\frac{d_{WZi}}{d_{WHi}^{0.5}} \right)}{\sum_{i=1}^{n} \frac{1}{d_{LHi}}} + \frac{\sum_{i=1}^{n} \frac{1}{d_{LHi}} tan^{-1} \left(\frac{d_{LZi}}{d_{LHi}^{0.5}} \right)}{\sum_{i=1}^{n} \frac{1}{d_{LHi}}}, \\ d_{LHi} < 0 \frac{\sum_{i=1}^{n} \frac{1}{d_{WHi}} tan^{-1} \left(\frac{d_{LZi}}{d_{WHi}^{0.5}} \right)}{\sum_{i=1}^{n} \frac{1}{d_{LHi}}}, \quad otherwise$$

where d_{WHi} and d_{LHi} refer to the horizontal distances between the focal 3km grid cell in windward and leeward direction and d_{WZi} and d_{LZi} are the corresponding vertical distances compared with the focal 3km cell. Distances are summed over a search distance of 75 kilometers as orographic airflows are limited to horizontal extents between 50 – 100 km (Austin and Dirks 2006, Liu et al. 2012). The second summand in the equation for $H_{W,L}$ where $d_{LHi} < 0$ accounts for the leeward impact of previously traversed mountain chains. The horizontal distances in the equation for $H_{W,L}$ where $d_{LHi} \ge 0$ lead to a longer-distance impact of leeward rain shadow. The final wind-effect parameter, which is assumed to be related to the interaction of the large-scale wind field and the local-scale precipitation characteristics, is calculated as $H = H_{W,L} \rightarrow d_{LHi} < 0 * H_{W,L} \rightarrow d_{LHi} \ge 0$ and generally takes values between 0.7 for leeward and 1.3 for windward positions. Both equations were applied to each grid cell at the 30 arc sec. resolution in a World Mercator projection.

We used the boundary layer height *PBL* from the respective model as indicator of the pressure level that has the highest contribution to the wind effect. The boundary layer height has been interpolated to the CHELSA resolution using a B-spline interpolation. To create a boundary layer height corrected wind effect H_B The wind effect grid H containing was then proportionally distributed to all grid cells falling within a respective 0.25° grid cell using:

$$H_B = \frac{H}{1 - \left(\frac{|z - PBL_z| - z_{max}}{h}\right)}$$

With z_{max} being the being the maximum distance between the boundary layer height B_z at elevation z and all grid cells at the a 30 arc sec. resolution falling within a respective 0.25° grid cell, h being a constant of 9000 m, and z being the respective elevation from GMTED2010 with:

$$PBL_z = PBL + z_{ERA} + f$$

B being the height of the daily means of the boundary layer from the respective model, z_{ERA} being the elevation of the model grid cell. The boundary layer height provided by ECMWF, which is used in the observational dataset is based on the Richardson number (Vogelezang and Holtslag 1996) which is usually at the lower end of the elevational spectrum compared to other methods (von Engeln and Teixeira 2013). We therefore tuned our model by adding a constant of 500 m similar to the approach in the original CHELSA algorithm (Karger et al. 2017).

Although the wind effect algorithm can distinguish between the windward and leeward sites of an orographic barrier, it cannot distinguish extremely isolated valleys in high mountain areas (Frei and Schär 1998). Such dry valleys are situated in areas where the wet air masses flow over an orographic barrier and are prevented from flowing into deep valleys (Frei and Schär 1998). These effects are however mainly confined to large mountain ranges, and are not as prominent in intermediate mountain ranges (Liu et al. 2012). To account for these effects, we used a variant of the windward leeward equations with a linear search distance of 300 km in steps of 5° from 0° to 355° circular for each grid cell. The calculated leeward index was then scaled towards higher elevations using:

$$E = \left(\frac{\sum_{i=1}^{n} \frac{1}{d_{WHi}^{0.5}} tan^{-1} \left(\frac{d_{LZi}}{d_{WHi}^{0.5}}\right)}{\sum_{i=1}^{n} \frac{1}{d_{LHi}}}\right)^{\frac{Z}{h}}$$

which rescales the strength of the exposition index relative to elevation z from GMTED2010, and gives valleys at high elevations larger wind isolations E than valleys located at low elevations. The correction constant h was set to 9000 m to include all possible elevations of the DEM. The constant h has been set to 9000 m as values of z > h could otherwise lead to a reverse relationship between z and E. E * H_B will give the first approximation of precipitation intensity p_I .

Precipitation including orographic effects

To achieve the distribution of daily precipitation rates pr given the approximated precipitation intensity p_{I_c} at each grid location (x_c, y_c) , we used a linear relationship between p_m^{cor} and p_{I_c} using:

$$\mathrm{pr} = \frac{p_{I_c}}{\frac{1}{n} \sum_{i=1}^{n} p_{I_{c_i}}} * p_m^{cor}$$

where *n* equals the number of 30 arc sec. grid cells that fall within a 0.25 grid cell. This equations archives that the data are to scale, e.g. the precipitation at 0.25° resolution exactly matches the mean precipitation of all 30°sec cells within the range of a 0.25° cell.

Observational dataset

As observational dataset we used a downscaled version of the ERA5-Land reanalysis for temperatures. The downscaling uses the same algorithms as described in the methods section. For the precipitation data we used the daily CHELSA V2 precipitation product (Karger et al., in prep).

Regional climate models

T.B.A.

Geographical extent

The geographical extent of the data follows that of the EUR11 CORDEX domain with rotated coordinates (RotPole (198.0; 39.25), TLC (331.79; 21.67), Nx=106, Ny=103). For easier end user use of the data, we changed the projection from the original projected pole to a Geographic Coordinate System [EPSG 4326]: WGS84 [+proj=longlat +datum=WGS84 +no_defs]. The extent of the data is shown in Fig. 1.

Figure 1. Geographical extent of the CHELSA_EUR11 data in a WGS84 geographical coordinate system projection. The boundaries of the extent are indicated in red. Some data, e.g. observational precipitation data is also available for the larger extent limited by the maximum grid boundaries (as indicated by the shown orography grid).

Grid Structure

All global CHELSA_EUR11 products are in a geographic coordinate system referenced to the WGS 84 horizontal datum, with the horizontal coordinates expressed in decimal degrees. The CHELSA layer extents (minimum and maximum latitude and longitude) are a result of the coordinate system inherited from the 1-arc-second GMTED2010 data which itself inherited the grid extent from the 1-arc-second SRTM data.

Grid extent:

Resolution	0.0083333333
West extent (minimum X-coordinate,	-44.6376394303
longitude):	
South extent (minimum Y-coordinate,	21.9623606633
latitude)	
East extent (maximum X-coordinate,	64.9206934648
longitude)	
North extent (maximum Y-coordinate,	72.6040271274
latitude)	
Rows	6078
Columns	13148

Note that because of the pixel center referencing of the input GMTED2010 data the full extent of each CHELSA grid as defined by the outside edges of the pixels differs from an integer value of latitude or longitude by 0.000138888888 degree (or 1/2 arc-second). Users of products based on the legacy GTOPO30 product should note that the coordinate referencing of CHELSA (and GMTED2010) and GTOPO30 are not the same. In GTOPO30, the integer lines of latitude and longitude fall directly on the edges of a 30-arc-second pixel. Thus, when overlaying CHELSA with products based on GTOPO30 a slight shift of 1/2 arc-second will be observed between the edges of corresponding 30-arc-second pixels.

Format and File Organization

CHELSA_EUR11 data files are provided in netCDF-4 format. The CF metadata conventions for identifying dimension information are followed, so that CHELSA_EUR11 can be used by many tools that are CF-compliant. Due to the size of the CHELSA_EUR11 archive, most files were compressed using nccopy –d9 with a maximum deflation level, which does not require an additional unpacking procedure before the data can be used. The data can be read by all common CF – compliant programs. In R for example, netCDF-4 files can be read using the 'ncdf4' package and the 'raster' package (e.g. g1 <- raster(path_2_netCDF-4_file). The metadata can be read using e.g. gdal (e.g. gdalinfo path_2_netCDF-4_file) or ncdump –h path_2_netCDF-4_file. In R the metadata can be read using nc_open(path_2_netCDF-4_file).

Dimensions

All files contain variables that define the dimensions of longitude, latitude, and time. Dimension variables have an attribute named "units," set to an appropriate string defined by the CF conventions that can be used by applications to identify the dimension.

Name	Description	type	Attribute
lon	Longitude	double	degrees_east
lat	Latitude	double	degrees_north
time	minutes since starting time	int	minutes

Table 4.1. Dimension Variables Contained in the netCDF-4 Files

File Naming Conventions

The filename of each CHELSA_EUR11 data product follows a similar structure including the respective model used, the variable short name, the respective time variables, and the accumulation (or mean) period in the following basic format:

CHELSA_[model]_[variable]_[temporal_resoluton]_[timeperiod].nc

Variables

All files contain one or more variables of CHELSA_EUR11 below. Files are either 3 dimensional (two horizontal plus one time dimension), or 2 dimensional (e.g. overall means of a time period). Time-averaged files usually indicate the mid point date for the aggregation period (e.g. April 15 for monthly aggregated data). All data follows a proleptic-gregorian calendar. A short description of each variable is provided in the long_name metadata parameter. A glossary with a brief description of each variable is available in the separate GEOS-5 Variable Definition Glossary, available on the GMAO web page. Each variable has several metadata attributes required by the CF conventions. Additional information to many of the climate indicies is available on the CDO (Climate Data Operators) web page.

The list is not conclusive and might be updated with additional sets of parameters.

Some variables (e.g. cdd) are identified by the same varname but differ in their shortname.

Time periods

Variables are available over different time resolutions.

Period	Description
Daily	Data files on a daily resolution. Usually combined to files of one
	year.
Monthly	Data files on a monthly resolution. Usually combined for a
	Normals period or a year.
Annual	Annual aggregations of a variable.
Normals	Long term, climatological, means of a variable over a Normals
	period

List of Variables	(non conclusive)
-------------------	------------------

varname	shortname	Longname	Units	Description
tas	tas	Near-Surface Air	Celsius	near-surface (2
		Temperature		meter) air
				temperature
tasmax	tasmax	Daily Minimum	Celsius	maximum near-
		Near-Surface Air		surface (2 meter)
		Temperature		air temperature
tasmin	tasmin	Daily Maximum	Celsius	minimum near-
		Near-Surface Air		surface (2 meter)
		Temperature		air temperature
pr	pr	Precipitation	kg m-2 day-1	precipitation flux
				(includes both
				liquid and solid
				phases)
cdd	consecutive_dry_	Consecutive dry	No.	From a timeseries
	days_index_per_ti	days is the		of daily
	me_period	greatest number		precipitation
		of consecutive		amount pr, the
		days per time		largest number of
		period with daily		consecutive days

		precipitation		where <i>pr</i> is less
		amount below		than R is counted.
		100 mm. The time		R is set to = 1 kg
		period should be		m-2.
		defined by the		
		bounds of the		
11	1 6 11	time coordinate.	N	
cdd	number_of_cdd_p	Number of cdd	No.	Number of dry
	eriods_with_more	periods in given		periods of more
	_than_5days_per_	time period with		than 5 days
	time_period	more than 5 days.		
		The time period		
		should be defined		
		by the bounds of		
		the time		
- 6.1		Coordinate.	N.	Energy of the second
cia	consecutive_frost	Consecutive frost	INO.	From a time
	_days_index_per_	days index is the		series of the
	time_period	greatest number		daily minimum
		of consecutive		near-surface air
		frost days in a		temperature
		given time period.		tasmin, then the
		Frost days is the		largest number
		number of days		of consecutive
		where minimum		days where
		of temperature is		tasmin<0°C is
		below 0 degree		counted
		ceisius. The time		
		defined has the		
		bounds of the		
		time seed		
afd	www.hog.of.ofd.g	Number of ofd	No	The availant of
cia	number_ol_cld_p	Number of cid	INO.	freet periods of
	than 5 days per	time period with		more than 5 days
	_unan_Juays_per_ time_period	more than 5 days		more than 5 days
	unic_period	The time period		
		should be defined		
		by the bounds of		
		the time		
		coordinate		
CSII	consecutive sum	consecutive	No	From a time
Cou	mer days index	summer days	110.	series of the
	per time period	index is the		daily maximum
	per_me_period	greatest number		temperature
		of consecutive		tasmax. the
		summer days in a		largest number
		given time period.		of consecutive
		Summer days is		days where
		the number of		<i>tasmax>T</i> is
		days where		counted. $T =$
		maximum of		25°C.
		temperature is		
		above 25 degree		
		Celsius. The time		

		period should be defined by the bounds of the time c		
csu	number_of_csu_p eriods_with_more _than_5days_per_ time_period	Number of csu periods in given time period with more than 5 days. The time period should be defined by the bounds of the time coordinate.	No.	The number of summer periods of more than 5 days.
cwd	consecutive_wet_ days_index_per_ti me_period	Consecutive wet days is the greatest number of consecutive days per time period with daily precipitation above 1 mm. The time period should be defined by the bounds of the time coordinate.	No.	From a time series of the daily precipitation pr , then the largest number of consecutive days where pr is at least R is counted. R = 1 mm.
cwd	number_of_cwd_ periods_with_mor e_than_5days_per _time_period	Number of cwd periods in given time period with more than 5 days. The time period should be defined by the bounds of the time coordinate	No.	The number of wet periods of more than 5 days
tasmin_timmin	tasmin	Daily Minimum Near-Surface Air Temperature	Celsius	Minimum temperature of all timesteps of a given timeperiod
tasmax_timmax	tasmax	Daily Maximum Near-Surface Air Temperature	Celsius	Maximum temperature of all timesteps of a given timeperiod
npp	NPP	Net primary Productivity	g m-2 year-1	Net primary productivity derived using the Miami model. g is given with respect to 'dry matter'.
tas_timstd	air_temperature	Near-surface Air Temperature	Celsius	Standard deviation of Near- surface Air Temperature over a given period

tasmax_timstd	air_temperature	Daily Maximum	Celsius	Standard
		Near-Surface Air		deviation of Daily
		Temperature		Maximum Near-
		-		Surface Air
				Temperature over
				a given period
tasmin_timstd	air_temperature	Daily Minimum	Celsius	Standard
		Near-Surface Air		deviation of Daily
		Temperature		Minimum Near-
		_		Surface Air
				Temperature over
				a given period
pr_timstd	pr	Precipitation	kg m-2 day-1	Standard
-		_		deviation of
				Precipitation over
				a given period

References

- Austin, G. L. and Dirks, K. N. 2006. Topographic Effects on Precipitation. In: Encyclopedia of Hydrological Sciences. American Cancer Society, in press.
- Daly, C. et al. 1997. The PRISM approach to mapping precipitation and temperature. Proc 10th AMS Conf Appl. Climatol.: 20–23.
- Frei, C. and Schär, C. 1998. A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int. J. Climatol. 18: 873–900.
- Karger, D. N. et al. 2017. Climatologies at high resolution for the earth's land surface areas. Sci. Data 4: 170122.
- Liu, M. et al. 2012. Interaction of valleys and circulation patterns (CPs) on small-scale spatial precipitation distribution in the complex terrain of southern Germany. Hydrol. Earth Syst. Sci. Discuss. in press.
- Press, W. H. et al. 1989. Numerical recipes. Cambridge University Press Cambridge.
- Vogelezang, D. H. P. and Holtslag, A. A. M. 1996. Evaluation and model impacts of alternative boundary-layer height formulations. Bound.-Layer Meteorol. 81: 245–269.
- von Engeln, A. and Teixeira, J. 2013. A Planetary Boundary Layer Height Climatology Derived from ECMWF Reanalysis Data. J. Clim. 26: 6575–6590.