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Abstract
Important steps towards the understanding of turbulent transport have been
made with the development of the gyrokinetic framework for describing
turbulence and with the emergence of numerical codes able to solve the set of
gyrokinetic equations. This paper presents some of the main recent advances
in gyrokinetic theory and computing of turbulence. Solving 5D gyrokinetic
equations requires state-of-the-art high performance computing techniques
involving massively parallel computers and parallel scalable algorithms. The
various numerical schemes that have been explored until now, Lagrangian,
Eulerian and semi-Lagrangian, each have their advantages and drawbacks. A
past controversy regarding the finite size effect (finite ρ∗) in ITG turbulence
has now been resolved. It has triggered an intensive benchmarking effort and
careful examination of the convergence properties of the different numerical
approaches. Now, both Eulerian and Lagrangian global codes are shown to
agree and to converge to the flux-tube result in the ρ∗ → 0 limit. It is
found, however, that an appropriate treatment of geometrical terms is necessary:
inconsistent approximations that are sometimes used can lead to important
discrepancies. Turbulent processes are characterized by a chaotic behaviour,
often accompanied by bursts and avalanches. Performing ensemble averages of
statistically independent simulations, starting from different initial conditions,
is presented as a way to assess the intrinsic variability of turbulent fluxes
and obtain reliable estimates of the standard deviation. Further developments
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concerning non-adiabatic electron dynamics around mode-rational surfaces and
electromagnetic effects are discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It is now well established that turbulent behaviour is responsible for the presence of anomalous
transport of heat, particles and momentum in magnetically confined fusion plasmas. The
typical frequency range of turbulence is experimentally observed much lower than the cyclotron
frequency of the plasma species. This is at the basis of the development of gyrokinetic theory,
which is considered as the model of choice for its description. In parallel to these analytical
developments, a tremendous effort has been devoted to the numerical resolution of the pertinent
equations, with the result that nowadays direct numerical simulations of turbulence are feasible.
For a comprehensive review see [1].

This paper focuses on crucial aspects that gyrokinetic simulations of turbulence have faced
in the recent past and how previous controversies have been resolved.

Solving the set of gyrokinetic equations together with the appropriate field (Maxwell)
equations is a rather formidable task. The main difficulties come from the disparate range
of space and time scales of the plasma species (ions and electrons), the extreme anisotropy
created by the background magnetic field and the various nonlinearities in the system. This
has prompted the development of advanced numerical techniques that take advantage of the
massively parallel high performance computing (HPC) platforms that have reached Petaflops
range (i.e. 1015 floating point operations per second). Nevertheless, the full radius direct
numerical simulation of an ITER-size plasma with gyrokinetic codes including all the relevant
physics is still a long way ahead. Moreover, tapping the high-end HPC power requires a
continuing adaptation of the numerical algorithms, which poses a non-trivial challenge.

The paper is structured as follows. First, a brief summary of the gyrokinetic equations and
numerical methods is given in section 2. In section 3, the question of finite size (ρ∗) scaling
of ITG turbulence [2, 3] is revisited, where ρ∗ = ρs/a, ρs is the ion sound Larmor radius
and a is the minor radius. Discrepancies between the results reported in [2, 3] had tentatively
been ascribed to numerical noise inherent to the Lagrange-PIC method and finite aspect ratio
effects. These issues are examined here. An often used geometrical model (s–α), containing
inconsistencies at first order in inverse aspect ratio, is shown to be responsible for most of the
difference. On the other hand, true finite aspect ratio effects, such as the zero β Shafranov
shift, are only responsible for a very small difference in the results. It is also shown that
numerical noise problems have now been solved and that when geometrical inconsistencies
are removed, both Eulerian and Lagrangian-PIC codes are found to agree on the ρ∗ scaling
of ITG turbulence. A by-product of these developments is that another past controversy,
concerning ETG turbulent transport level, has also been resolved: low-noise Lagrange-PIC
simulations agree with Eulerian ones [4].

Another important finding is that ITG turbulence is bursty: a measurable fraction of the
heat flux is carried by large, avalanche-like events [5–8]. There are signatures of chaos in the
sequence of bursts. This poses difficulties as to how long a simulation should be carried out in
order to reach statistical convergence, about the reproducibility of simulations using parallel
algorithms and also implies that, strictly speaking, uniform numerical convergence cannot be
achieved. A correct way to obtain statistically meaningful estimates, presented in section 4,

2



Plasma Phys. Control. Fusion 52 (2010) 124038 L Villard et al

is to perform ensemble averages over a set of independent simulations differing only in their
initial conditions.

The question of non-adiabatic electron response, in particular in the vicinity of mode-
rational surfaces, and its consequence on the mode structure and on the turbulent heat transport
are discussed in section 5.

2. Gyrokinetic equations and numerical models

Experimental observations in the core plasmas of magnetic confinement fusion systems suggest
that small scale turbulence, responsible for anomalous transport, obeys the following ordering
in a small parameter εg:

ω

�s

∼ k‖ρs ∼ vE

vts

∼ δns

n0
∼ B1

B0
∼ ρs

Ln

∼ O(εg), (1)

where ω is a characteristic frequency of micro-turbulence, B0 is the equilibrium magnetic field,
B1 is the perturbed magnetic field, b = B0/B0, k‖ = k · b, k is the perturbation wavevector,
vE is the perturbed E × B drift velocity, vts is the thermal velocity, n0 is the equilibrium
density, δns is the perturbed density, ρs = v⊥/�s is the Larmor radius, Ln = |∇ ln n0|−1 is the
characteristic scale length of equilibrium density, and the subscript s indicates the species type.
Another parameter is εB = ρs/LB , where LB = |∇ log B0|−1 is the characteristic scale length
of equilibrium magnetic field. In most cases the gyrokinetic equations are obtained at first
order in εB . It must be noted that while k‖ρs is ordered as a small quantity, the perpendicular
wavenumber is not assumed small, k⊥ρs ∼ O(1). This reflects the very strong anisotropy of
the perturbations, which typically have parallel wavelengths of the order of the system size
whereas perpendicular wavelengths range down to the Larmor radius scale.

The essential steps to obtain the gyrokinetic equations are as follows (for more details
see [1, 9] and references cited therein). The starting point is the Fokker–Planck equation (or
its collisionless version, the Vlasov equation), describing the time evolution of the plasma
species distribution function fs in the 6D phase space, together with Maxwell’s equations.
Non-canonical guiding centre coordinates are used. Then the Lie-type gyro-centre transform
is applied to find coordinates for which the gyro-angle remains a cyclic variable even in the
presence of fluctuating fields, therefore reducing the dimensionality from 6D to 5D.

Three classes of numerical methods have been applied to solve the set of gyrokinetic
equations: Lagrangian, Eulerian and semi-Lagrangian. The Lagrangian approach, often
referred to as ‘PIC’ (particle-in-cell), has a Monte Carlo aspect in that quasi-random positions
in phase space, called markers, are used to obtain moments of the distribution function. The
marker orbits are followed in time according to the characteristic equations. The Eulerian
approach (sometimes referred to as ‘continuum method’) uses fixed grids in phase space
and discretizes the differential operators by means of finite difference, finite element, finite
volume and/or spectral methods. The semi-Lagrangian approach also uses fixed grids in phase
space but integrates the orbits from each mesh point back in time to obtain the value of f at
the previous time step by interpolation. For a more detailed description of these algorithms
and their relative merits, see [1]. Given the high complexity and computational demands
of nonlinear gyrokinetic simulations, numerical convergence is often difficult to achieve and
cross-code comparisons involving these three different approaches are crucial to verify key
results.

Let us give a quantitative estimate of the computing resources required and their scaling
with physical system size, considering the simplest gyrokinetic global model, i.e. gyrokinetic
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Figure 1. Strong scaling speedup achieved with the Lagrange-PIC code ORB5 [10], the Eulerian
codes GT5D [6] and GENE [11], and the semi-Lagrangian code GYSELA [12] on a Cray XT5
(circles) from 1024 to 8192 cores, on an IBM BG/P from 4096 to 32768 cores (squares), on a Fujitsu
BX900 from 1024 to 8192 cores (stars), on an IBM BG/L from 1024 to 8192 cores (plus) and on a
SGI Altix ICE from 1024 to 8192 cores (diamonds). Parameters are for ORB5, 2 × 109 markers,
3D field solver grid 128 × 512 × 256; for GT5D, phase space grid 240 × 240 × 256 × 128 × 32
(6 × 1010 grid points); for GENE, 64 × 32 × 128 × 64 × 32 (5 × 108 grid points); for GYSELA,
phase space grid 512 × 256 × 256 × 47 × 32 (5 × 1010 grid points).

ions and adiabatic electrons. For an ITER-size plasma, we have 1/ρ∗ ≈ 1000. Turbulence
spatial scales extend from the full machine size down to the gyroradius k⊥ρs ∼ 1. Considering
that a minimum of four grid points per wavelength are minimal in each spatial direction for
the field solver, this gives ∼7 × 109 grid cells in configuration space. The minimal velocity
space resolution required is ∼300 per grid cell, per Fourier mode (see next section), resulting
in ∼2 × 1012 phase space cells (or markers). The necessary time to reach statistical steady-
state (see section 4) is of the order of 2 × 103a/cs , corresponding to ∼105–106 time steps
depending on the time integration scheme. The computing cost scales as (1/ρ∗)4 and such a
simulation for an ITER-size plasma would need a prohibitive time even on the world’s best
performing computer (∼2 Petaflops) at the time of writing. Hence, better formulations and
algorithms have been devised: it is for example most efficient to use field-aligned coordinates,
which take advantage of the anisotropy of the perturbations (parallel versus perpendicular to
the background magnetic field). The parallel wavelength scales with system size, thus the grid
requirements are reduced by a factor ∼ρ∗ and moreover the time step can be increased by a
factor ∝ 1/ρ∗: the scaling of computing cost is then ideally ∼(1/ρ∗)2 and a global simulation
of ITG turbulence in the ITER core plasma appears feasible.

Still, the gyrokinetic codes must be run on massively parallel platforms in order to get
results in a reasonable amount of time. Thus great efforts have been made to obtain highly
scalable algorithms. Examples in figure 1 show that gyrokinetic codes based on all three
approaches (Lagrange-PIC, Euler and semi-Lagrange) perform very well in that respect.
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3. Finite size effects in ITG turbulence

With the advent of global gyrokinetic codes, an obvious question that has been addressed
concerns finite size effects. The finite size parameter is usually defined as ρ∗ = ρs/a, with
a the minor radius of the configuration. This is an important question, since present day
tokamaks cannot achieve the value of ρ∗ ≈ 10−3 expected in ITER. Flux-tube simulations rely
on an approximation that is valid in the infinite size limit ρ∗ → 0, and the thermal conductivity
naturally scales as

χ ∝ χGB = ρ2
s cs/a = ρ∗χB, (2)

where χGB is known as the gyro-Bohm diffusion and χB is the Bohm diffusion. Global
gyrokinetic simulations [2, 3] found a deviation from gyro-Bohm scaling at large values of ρ∗.
There was, however, discrepancy as to the absolute value of the heat transport obtained
in the limit ρ∗ → 0 in the two above cited works. Various tentative explanations were
put forward to identify the source of the discrepancy: (1) geometrical effects (finite aspect
ratio); (2) the statistical numerical noise problem inherent to the Lagrange-PIC approach.
Differences were also exposed as to the interpretation of the broken gyro-Bohm scaling through
linear (e.g. through profile shearing [3, 13, 14]) or nonlinear effects (e.g. through turbulence
spreading [15]). The gradient profile shape was shown to have an effect on the value of ρ∗ above
which gyro-Bohm scaling is broken, but in all cases the finite ρ∗ heat diffusivity (expressed
in gyro-Bohm units) always converges from below to the flux-tube limit for ρ∗ → 0: no
possible reason was found to have finite ρ∗ effects giving a heat transport above the flux-tube
limit.

Let us first focus on the numerical noise issue in PIC codes. The Lagrange-PIC algorithm
can be viewed as a statistical method to obtain, via Monte Carlo integration, estimates of
the moments of the distribution function [16, 17]. The standard deviation of this estimator
is known to scale as 1/

√
N , with N the number of markers. This statistical error is called

‘numerical noise’. The main problem for time-evolution nonlinear gyrokinetic simulations
is that the noise level can accumulate indefinitely [18] unless special countermeasures are
enforced. Another problem, known as the entropy paradox, is that the numerical fluctuation
entropy can increase indefinitely, even if lower order moments such as the energy or the heat
flux may seem to have converged [19]. In PIC codes, this entropy increase is accompanied by
an increase in noise. The solution to this problem is demonstrated in [20].

The necessary steps to overcome the difficulty are described below.

(i) Numerical convergence of the results with increasing N should be demonstrated. While
this may seem a trivial requirement, there are two main difficulties. First, the convergence
of the error is rather slow (1/N1/2) and the computing cost becomes prohibitive if no other
measures are taken. Second (and this problem is faced by all numerical methods), the
turbulence behaviour is most often accompanied by bursts and avalanches, which are of
chaotic nature. A signature of chaos is found when infinitesimal differences between two
states lead, after a finite time, to markedly different evolutions, in particular a different
sequence of bursts. Strict numerical convergence, i.e. obtaining the same time evolution
in the limit of increasing numerical resolution, is impossible to achieve after a finite time
in chaotic systems. Figure 2 shows such a study performed with the ORB5 code [10] for
Cyclone-base case parameters and without source terms. Clearly, whereas strict numerical
convergence of heat flux can be shown until t ≈ 0.7 × 104�−1

i , it is not the case at later
times. Note that agreement, in a time-average sense, of the results in the last half of
the simulation neither implies strict numerical convergence nor that the noise problem is
solved: this is simply due to the fact that, in the absence of sources, the profiles relax to
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Figure 2. Radial heat flux versus time for different numbers of markers, in global simulations
without sources using the ORB5 code. More details in [10].

their nonlinear marginal state with a decaying turbulence level. We have found that such
‘decaying’ simulations sooner or later always end up noise dominated.

(ii) Reducing the error on estimates can be achieved by variance reduction techniques. For
example, importance sampling consists of finding an appropriate distribution of the marker
positions. This ‘optimized loading’ scheme is exposed in [17]. In particular, it is
shown [21] that it leads to a large improvement over the simple ‘proportional loading’.
Another way is to apply control variate techniques. The idea is to represent as little as
possible of the full distribution function f with markers and integrate the rest analytically.
The δf scheme consists in writing f = f0 +δf , with f0 a time independent given function
of phase space coordinates and δf sampled with markers. The sampling noise error is thus
reduced by the factor |δf |/f , which is usually much smaller than unity for core plasma
turbulence. An improved variation of the δf scheme, called ‘adjustable control variates’,
has been devised and applied to electromagnetic gyrokinetic simulations and resulted in
a reduction of the required number of markers by orders of magnitude [22].

(iii) Knowledge of the underlying physics can inspire other major improvements. For
example, microturbulent modes are characterized by very small parallel wavenumbers,
|k‖|ρs �∼ ρ∗, as a consequence of gyrokinetic ordering. Modes that may be present
in the numerical representation but do not satisfy this ordering can be considered as
unphysical. Thus, it is better to remove them from the numerical representation before
accumulating significant levels of numerical noise. A very efficient way to do so is to apply
a field-aligned Fourier filter: it is shown in [10] that orders of magnitude improvement
can be gained, because the signal to noise ratio depends on the number of markers per
Fourier mode retained in the filter (instead of per grid cell). This distinction between
a priori unphysical modes and modes with physical content is at the basis of a diagnostic
of the signal to noise ratio which is very practical to implement and very instructive
as to the quality of the simulation. It is found empirically (see, e.g. [4]) that a signal
to noise ratio larger than 10 is necessary. It is to be noted that unfiltered (in the
parallel direction), noisy simulations show a larger transport level than filtered, low-noise
simulations.
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Figure 3. Signal to noise ratio (top) and heat diffusivity (bottom) versus time. One simulation with
noise control modified Krook operator, the other with heating operator but without noise control.
The thick red lines in the bottom plot are moving time-averaged values over a time window of
500 a/cs. For more details see [23].

(iv) In order to obtain a turbulent steady-state solution sufficiently long simulations must be
performed. Thus there is the necessity to control the noise level over long time scales.
Moreover, in global simulations profile relaxation occurs and sources are necessary to
maintain the system above its marginal nonlinear gradient. A noise-control algorithm
using modified Krook operators [23] was successfully applied. Figure 3 shows two
simulations with the ORB5 code, one using a Krook-based noise control operator, the other
using a heating operator without noise control. In the latter case, when the signal/noise
ratio drops well below ∼10, i.e. for t �∼ 500 a/cs, the bursty nature of the transport is
lost and the time-averaged heat flux gets lower than for the noise-controlled case.

(v) It has been demonstrated that a finite amount of dissipation is required in order to reach
a statistically converged state [24]. Hence, strictly speaking, collisionless gyrokinetics
cannot reach such a state. In grid-based codes (Eulerian or semi-Lagrangian), numerical
dissipation can be introduced by (1) using dissipative discretization or interpolation
schemes [12, 25–28]; (2) adding hyperdiffusion terms [29]. Finite dissipation can be
introduced in Lagrangian-PIC codes by (1) application of modified Krook operators
[23]; (2) coarse graining techniques where smoothing of the marker weights is applied
in small portions of phase space [30]. It is to be noted, however, that Lagrange-
PIC methods have finite numerical collisionality. Even in a δf model, the system
can be collisionless only in the zero weight limit [31]. A good way to check the
simulation results, besides the monitoring of the signal/noise ratio, is a verification of
the entropy production rate [24, 32, 33], which can be shown to vanish on the long time
scales [20].

Even with all these noise control measures taken, it is empirically found that 100–300
markers per radial cell per Fourier mode are typically required to obtain sufficiently accurate
results. This is comparable in order of magnitude to the requirement in the number of velocity
space grid points for Eulerian and semi-Lagrangian schemes: 8 to 16 µ values and 32 to 128
v‖ values.
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Let us now focus on the geometrical issue. It was recognized early on that the geometry
of the equilibrium magnetic configuration plays an important role to determine the behaviour
of microinstabilities and turbulence. Thus, a tentative explanation for the discrepancy between
the results of [2, 3] was that it was due to finite aspect ratio effects which were accounted for
differently in the different codes. A recent work [34] has examined this issue in detail. The
problem comes from the implementation of a simplified geometry using the so-called ‘s–α’
model which, in the α = 0 limit, reduces to circular concentric magnetic surfaces and in which
the straight-field line coordinate, θ∗, is approximated by the geometrical poloidal angle θ ,
which is true only in the infinite aspect ratio (i.e. cylinder) limit. On the other hand, the
magnetic field variation in the poloidal direction is retained so as to keep the magnetic mirror
effect: B = B0/(1 + ε cos θ). This results in a magnetic configuration that is inconsistent
at first order in the inverse aspect ratio ε = a/R0. For example, the magnetic field strength
computed from the metric coefficients of the s–α model (θ ≈ θ∗) is B = B0. For Cyclone-base
case parameters [35] this results in significative differences between the s–α model (at α = 0)
and a model with circular concentric magnetic surfaces treated with consistent metric: the
maximum ITG growth rate is lower by 30% (figure 4, left). Note that using a true ideal MHD
equilibrium with circular boundary at β ≈ 0 results in only a small difference (about 6%) with
the circular concentric case with consistent metric. Thus, the main source of the difference is
the inconsistency in the metric, and not a true geometrical effect, nor the fact that a circular
concentric configuration is only an approximation to the true ideal MHD equilibrium. (Indeed,
the MHD case does have, even at zero β, a finite Shafranov shift which, for these parameters,
is slightly destabilizing.) These differences persist in the nonlinear regime, and are even
larger: ion heat diffusivities are lower by a factor of 2 when using the inconsistent (s–α) model
(figure 4, right), whereas the differences between a circular concentric model with consistent
metric and an ideal MHD β = 0 equilibrium are not significant.

There is a fundamental problem with inconsistent models such as s–α. We have actually
checked, using the GENE code [36–40] that the results obtained do depend on the detailed
implementation of the coefficients of the gyrokinetic equations. More precisely, we have
performed simulations in which some of the terms were expressed using the consistent metric,
and some other terms used the approximated metric: the results were all different, depending
on the choice of the terms. The largest differences were obtained, however, for terms related
to the parallel direction of the equilibrium magnetic field; more precisely, the straight-field
line coordinate approximation θ∗ ≈ θ appears as being responsible for most of the difference
between s–α and a correct consistent model.

In order to determine the part of the finite ρ∗ effects due to linear physics, a comparison
of flux-tube results is made with the global code GYGLES [41] using a circular concentric
magnetic equilibrium and consistent metric (figure 4, left). We note that the growth rates
from the global result at ρ∗ = 180 are very close to those of the infinite size case using the
inconsistent (s–α) metric. This relatively good apparent agreement is, however, fortuitous,
and may have led to the wrong conclusion that finite ρ∗ effects are not due to linear dynamics.

We now consider sequences of finite size cases with varying ρ∗. First, we try to identify
linear global effects of profile shearing by studying a series of ion temperature gradient profiles
of varying shape (figure 5, left):

R

a

d log T

dρ
= −

(
R

LT

)
max

cosh−2

(
ρ − ρ0

�

)
, (3)

with ρ = r/a the normalized minor radius of the (circular concentric) magnetic surface,
(R/LT )max is the maximum value of R/LT , ρ0 is the radial position of the maximum R/LT

and � is a normalized width parameter. The linear ITG growth rates are shown in figure 5,
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Figure 5. Left: radial profiles of normalized temperature gradient inverse scale length R/LT for
different values of the width parameter � = 0.05, 0.1, 0.3. Right: growth rates computed with
the global code GYGLES as a function of system size 1/ρ∗ for different values of the temperature
gradient profile parameter �, for kθρs = 0.3. The horizontal line 1/ρ∗ = ∞ was computed with
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right. This confirms that the global linear results converge to the infinite size (flux-tube) limit,
and that the way they do so depends on the temperature gradient profile width. In order to
understand this, we show in figure 6 (left) the characteristic radial mode number kr = 2π/�r ,
where �r is the width of the mode amplitude envelope. Clearly, the finite system size has the
effect of limiting the radial wavelength of the mode. As a matter of fact, this effect depends on
the profile width parameter �. This increase in kr with decreasing system size and profile width
is partly responsible for the decrease in growth rate, see figure 6, right, where we compare
the global results with flux-tube results at finite radial wavenumber. Another explanation is
based on the works of [42, 43] using ballooning representation, which show that the radial
extent of a global mode is a compromise between micro- and macroscopic scales. This leads
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computed with GENE with consistent (dashed, left) and inconsistent (s–α) metric (chain, left). The
flux-tube results from Dimits’ fit, equation (1) of [35], is also indicated. See [3, 40, 44] for more
details. (Part (b) is reprinted with permission from [3]. Copyright 2004 American Institute of
Physics.)

to krρs ∼ C−1/4
√

kθρs ŝ
√

ρ∗/� and γ ∼ γmax[1 − (C1/2/2kθρs ŝ)(ρ∗/�)], where ŝ is the
magnetic shear and C is a parameter describing the quadratic dependence of the growth rate on
the ballooning angle. Analytical estimates for � = 0.05, ŝ = 0.8, C = 4, are presented by the
dashed lines in figures 5 and 6. Note that for small enough � it is equivalent to vary � at fixed
ρ∗ and to vary ρ∗ at fixed �, but for too large � values the plasma and geometrical parameters
vary substantially over the radial extent of the unstable region and global variations play a role.
In summary, finite ρ∗ ‘confines’ the radial extent of the mode, which implies finite kr , which is
stabilizing. Thus, ρ∗ scaling is, at least in part, attributable to radial linear dispersive effects.

Finally, we show in figure 7 the results of nonlinear simulations using both the Eulerian
code GENE [36–40] and the Lagrangian PIC code ORB5 [10, 23]. The initial temperature
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profiles are specified as

R

a

d log T

dρ
= −

(
R

LT

)
max

[
1 − cosh−2

(
ρ − ρ0 − w/2

�

)
− cosh−2

(
ρ − ρ0 + w/2

�

)]
(4)

for |ρ − ρ0| < w/2, and 0 otherwise. The parameters used for this series of runs are
(R/LT )max = 7.1 and 7.5, w = 0.8, � = 0.04, ρ0 = 0.5, Te = Ti, and similar density gradient
profile with (R/Ln)max = 2.2. Source terms are included in these global simulations [23],
allowing for some profile relaxation to occur but maintaining the averaged temperature gradient
above the nonlinear threshold. (The error bar appearing in the figure will be explained later.)
Because of profile relaxation, the time-averaged temperature gradient is different from the
initial temperature gradient given as input. Therefore, for each ρ∗ case, two simulations are
made with slightly different values of initial (R/LT )max, and then the time-averaged heat
diffusivities are interpolated at R/LT = 6.96 between these two runs using the values of the
time-averaged temperature gradients and heat fluxes obtained in the late, quasi-steady phase
of the simulations. A remarkable feature is the excellent agreement between both code results.
Being based on entirely different numerical schemes, and potentially subject to numerical
errors of a totally different nature, this gives confidence in the validity of the results.

The way the gyro-Bohm scaling is broken by finite size effects depends on the width of
the temperature profile gradient. In a recent work [44], it was found that the finite size scaling
is best expressed in terms of an ‘effective ρ∗’ defined as ρeff

∗ = ρs/w, where w is the width
of the temperature gradient profile. Thus, finite size effects may well be important even in
ITER-size plasmas, for example in internal transport barriers.

To conclude this section, it is shown that Lagrangian-PIC and Eulerian global numerical
schemes are both giving the same results, including for finite ρ∗ effects, when both numerical
(in particular the noise problem) and geometrical aspects are correctly treated. In particular,
finite size simulations (both linear growth rates and nonlinear heat diffusivities) converge to
the flux-tube result always from below (in gyro-Bohm units) in the limit ρ∗ → 0. Another
consequence of this study is that code benchmark comparisons should not be made using
models that have inconsistencies, in particular on the geometrical aspects. Note that our
results (ORB5 and GENE) compare well with GTC results published in [2]: agreement is
within 15%, which is the uncertainty we estimate due to the chaotic nature of the system (see
next section). On the other hand, while there is quantitative disagreement with the GYRO
results, which we attribute to the inconsistency in the (s–α) model used, qualitative agreement
is obtained in that finite size heat transport reaches the infinite system size (flux-tube) result
from below in the appropriate 1/ρ∗ → ∞ limit. Thus, earlier controversies have been solved.

4. Bursty nature of turbulent transport

It is now well established that turbulent transport (at least in the ITG regime) is characterized by
bursts and avalanches [5–8]. The presence of these is visible on time traces of heat diffusivity
(see e.g. figure 3). As previously mentioned, a fundamental problem arises due to the chaotic
nature of the sequence of bursts, which poses practical problems for the demonstration of
numerical convergence (see figure 2). The exponential divergence, after a finite time, of
any pair of simulations with infinitesimally small differences in the initial condition [45] has
drastic consequences. It is sometimes observed that even tiny round-off errors are sufficient
to cause problems: moreover, the parallelization of the algorithms implies that the order of the
operations (e.g. for a global sum) is run-time dependent and thus produces different round-off
errors that in some cases may lead to different results after a finite simulation time. Due to
the intrinsic chaotic nature of the processes the reproducibility of the numerical simulations
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Figure 8. Heat diffusivities versus time, radially averaged over r = 0.5±0.1a, time averaged over
t ± 250a/cs , for a set of 10 ITG Cyclone ORB5 global simulations differing only in their initial
condition. The thick line is the ensemble average and the thick dashed lines are the average ±2σ

with σ the standard deviation of the ensemble.

cannot be guaranteed. The equivalence of two simulations can thus only be understood in a
statistical sense.

This immediately raises the following questions: (i) How long a numerical simulation
must be in order to obtain a reliable estimate of transport coefficients? (ii) How reliable are
the results of a given simulation, i.e. how to estimate a confidence interval? (iii) Given two
different simulations (e.g. obtained by different codes based on the same physics, or obtained
by the same code but including different physics), are the observed differences significant?

A systematic way to answer these questions is to perform an ensemble of independent
simulations with the same code, the same physics, but starting from different initial conditions.
Ensemble averages of these simulations and statistical analysis of this set of results should
produce unbiased estimates of the average, standard deviation, etc. In particular, it is expected
that the standard deviation thus obtained will give information on the intrinsic variability of the
turbulent processes. In principle, a large number of such independent simulations should be
performed. In practice, this is almost never done, due to the prohibitive computing resources
required.

We have performed a set of ten ITG Cyclone-base case [35] simulations with the ORB5
code with the same parameters as for figure 7 at ρ∗ = 1/180. All these simulations are noise
controlled and run up to t = 1700a/cs . The simulations differ only in the initialization: a
small amplitude perturbation is applied at t = 0 consisting in a sum over a set of Fourier
modes. The difference between these simulations is only in the values of the individual
Fourier initial amplitudes. Figure 8 shows the time traces of heat diffusivity radially averaged
at r/a = 0.5 ± 0.1 and time window averaged over 500a/cs . The bold line is the time trace
of the ensemble average heat diffusivity and the dashed lines are the average ±2σ , with σ the
standard deviation over the ensemble. Clearly, while individual simulation results do differ
from each other, the differences should not be significant. Thus ±2σ is a reasonable estimate
(i.e. 95% confidence interval if the distribution were Gaussian) of an ‘error bar’ due to the
intrinsic variability caused by the underlying chaotic behaviour. Performing time averages
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Figure 9. Standard deviation (normalized to the average heat diffusivity) versus time span �tw of
the averaging window. Simulation data taken in the time interval tcs/a ∈ [600, 1700]. The dashed
line is the fit 1.8/

√
�twcs/a.

over the last half of the simulation gives an average diffusivity 〈χ〉/χGB = 1.88, an average
standard deviation 〈σ 〉/χGB = 0.14 (thus a relative error bar at 95% confidence of ±15%).

The question of whether or not the simulations are long enough is delicate. The problem
is that turbulent time scales extend from the frequencies of the highest mode number involved
down to the zero frequency, meaning there is no upper limit on the time scale, and moreover
the chaotic nature is reflected in an aperiodic behaviour: it is thus not easy, from first
principles, to establish without any ambiguity a way of finding an appropriate time-averaging
procedure. Thus in practice one still relies on an empirical approach. The last half of the
simulations of figure 8 can be in a certain sense considered as having reached a steady-
state: all curves lie within the range 〈χ〉 ± 2〈σ 〉. Another way is to perform statistical
tests: considering two separate time windows centred at tcs/a = 950 and tcs/a = 1450,
regression analysis gives a relative drop in flux of 4% with a standard deviation of 8%: thus
the drop is not significant. The averaged ensemble standard deviation 〈σ 〉 does depend on
the time span �tw of the moving time-average window. Figure 9 shows this quantity, using
data over the interval tcs/a ∈ [600, 1700], versus �tw. An asymptotic dependence is found
as 〈σ 〉/〈χ〉 ≈ 1.8/

√
�tw cs/a. This gives information as to the simulation time required to

reach a given accuracy (to which a time of roughly tcs/a ≈ 600 must be added to pass the
initial transient phase). Note that performing a single, 10 times longer simulation (instead of
the ensemble of 10 simulations) would not have given this information. Moreover, this poses
questions about the ergodicity assumption: a priori, it is not guaranteed that a single simulation
would span enough of the possible states of the system.

More realistic global gyrokinetic simulations are performed in which a specified input
power is given to the system. In contrast to fixed-gradient simulations, the heat flux is expected
to reach a constant time-averaged value determined by the input power, while the plasma
profiles are freely evolving. Ideally, all simulations with the same input power but starting
from different initial conditions should reach a steady state with the same heat flux and a similar
temperature profile. Also, the closer the system is to marginal state, the longer it takes to reach
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Figure 10. Time traces of the ion heat flux (top), normalized ion temperature gradient (middle)
and ion heat diffusivity (bottom) for a pair of simulations using the GT5D code run at fixed input
power. Quantities are time averaged between t = 500cs/a and time t and radially averaged between
r/a = 0.5 and r/a = 0.8, which is in the source-free region.

such a steady-state. Examples of power-driven simulations using the GT5D code [6] are shown
in figure 10 where time traces of the ion heat flux, ion temperature gradient scale length and ion
heat diffusivity are represented. The quantities are time averaged between time t0 = 500 a/cs

and time t , and radially averaged between r/a = 0.5 and r/a = 0.8, which is in the source-free
region of the simulation. The parameters are standard Cyclone-base case except the system
size ρ∗ = 1/135. The input power is 2 MW and the initial temperature gradient is R/LT = 10.
The normalization for the heat flux is QGB = mini0v

3
t i/ρ

2
∗ . These simulations show that, in

spite of differences of the order of 20% on the time-averaged heat diffusivity, the system is
very close to having reached steady state. Note that the temperature gradient settles around
R/LT = 6.35, which is much closer to the marginal point R/LT ≈ 6.0 than the simulations
of figure 8 at R/LT = 6.96. The differences between the two simulations, obtained with
two different initializations, are due to the intrinsic variability due to the presence of chaos in
the system. Of course with only two simulations it does not make sense to make ensemble
averages. On the other hand, we can perform a statistical analysis of these simulations, for
example looking at the probability distribution functions (PDFs) of the local heat flux.

These PDFs of the local instantaneous heat flux (figure 11) show a clear non-Gaussian
behaviour with exponential tails, which reflects the presence of large, rare events. (Note that this
does not mean that the density and temperature fluctuations themselves are non-Gaussian: large
tails in the flux PDF can occur when these are cross-correlated [46].) The ORB5 PDF has been
obtained using data from all 10 simulations of the ensemble in the time interval tcs/a = 500–
1700. The GT5D PDFs of two separate simulations are shown using data in the time interval
tcs/a = 1000–3400. In figure 11, the ORB5 simulations at R/LT ≈ 6.96 (shown in figure 8)
and the GT5D simulations at R/LT ≈ 6.35 (shown in figure 10) show a similar behaviour but
with some differences: we note that the GT5D simulations are closer to the critical gradient
and have higher exponential tails compared with the ORB5 simulations at a higher temperature
gradient. This indicates that the relative importance of large events is increasing as the critical
gradient is approached. The two GT5D simulations, obtained with different initializations,
exhibit almost the same PDF: this is a good indication that the simulations have converged in
the statistical sense. Using the semi-Lagrangian code GYSELA, non-Gaussian PDFs of the
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Figure 11. Probability distribution functions of the local heat flux for the simulations shown in
figures 8–10 using ORB5 (r/a = 0.5, R/LT = 6.96) and GT5D (r/a = 0.7, R/LT = 6.35). The
two GT5D curves are obtained with two different initializations. Exponential tails due to large
events are clearly visible.

heat flux were also found, although the results seem to indicate a lower non-Gaussian content.
The different regimes considered by these three codes so far prevent us to make a quantitative
meaningful comparison.

5. Non-adiabatic electrons

Global gyrokinetic simulations of turbulence have now progressed to include more physical
effects, such as non-adiabatic electron response and electromagnetic effects. For the ETG
case, it is usually assumed that the ion response is treated adiabatically, although recent works
have shown that this assumption has limitations: different results are obtained when both ions
and electrons are treated kinetically [47–49].

The simultaneous kinetic treatment of both ion and electron species poses great challenges
to the numerical simulations. The characteristic timesteps must be reduced by a factor of the
order of the square root of the mass ratio if constrained by the parallel dynamics (though in
practice the required factor is often less than that). Moreover, it has been found that, even in
ITG-dominated cases, another radial space scale is involved: the electron response is strongly
non-adiabatic in narrow regions centred around mode-rational q = m/n surfaces. This is due
to passing electron dynamics. The width of the non-adiabatic regions can be estimated from
the regions for which |ω/k‖vte| is larger than unity for the corresponding (m, n) mode. This
results in a width �r ≈ 2Rq |ω|/(|ŝ kθ |vte) which depends on the magnetic shear ŝ and can
be smaller than the ion Larmor radius. For ω ≈ ω∗,T = (cs/R)(R/LT )kθρs we can obtain an
approximate expression for the width in units of the Larmor radius:

�r

ρs

≈ 2
R

LT

√
me

mi

q

ŝ
(5)

which gives e.g. for Cyclone parameters �r/ρs ≈ 0.4 in deuterium. Consequently, the radial
grid resolution has to be increased typically by up to one order of magnitude as compared with
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Figure 12. Contours of the perturbed electrostatic potential for global linear simulations with the
GENE code including non-adiabatic electron response. The sharp radial features are numerically
resolved and correspond to mode-rational surfaces. An artificially enhanced electron mass has
been used, mi/me = 400. The mode on the left has kθρs = 0.345 and is ITG-driven. The mode
on the right has kθρs = 0.776 and is a TEM.

the adiabatic electron case. In order to save computational resources, simulations are often run
using an artificially decreased mass ratio. An example of linear global calculation using the
GENE code is shown in figure 12 for Cyclone parameters (R/LTe)max = (R/LTi)max = 6.96,
(R/Ln)max = 2.23, profiles given by equation (3) with� = 0.3 andρ0 = 0.5, q = 0.85+2.2ρ2,
βe = 10−3, mi/me = 400. Both in ITG (left) and TEM (right) regimes, a resonant behaviour
is observed at mode-rational surfaces. The width �r is within 30% of the analytical estimate,
equation (5).

It is not yet clear how far the sharp mode-rational behaviour of the electron non-adiabatic
response affects the nonlinear turbulence results. Nonlinear electromagnetic global simulations
with gyrokinetic ions and non-adiabatic (drift-kinetic) electrons with mi/me = 1000 have
been performed using the ORB5 code [50]. The parameters are 1/ρ∗ = 160, R0/a = 4,
(R/LTe)max = (R/LTi)max = 10, ρ0 = 0.6, βe = 3 × 10−3, Ni = Ne = 512 × 106 markers.
A timestep 20 times smaller than for the adiabatic electron case had to be taken and the radial
resolution was increased from 128 to 512 grid points in order to avoid numerical instability.
Figure 13 shows the comparison of three simulations using three different models: electrostatic
with all adiabatic electrons, electrostatic with drift-kinetic trapped electrons and adiabatic
passing electrons and electromagnetic with gyrokinetic ions and drift-kinetic electrons. For
these parameters the dominant underlying instability is ITG driven. We can observe that
the largest effect of the non-adiabatic electron response is due to trapped electrons, and that
the effect of non-adiabatic passing electrons on the turbulent heat flux does not appear to be
significant in this case. However, this conclusion is not necessarily applicable to all situations,
e.g. at higher β. Also, the role of collisions should not be forgotten. Clearly, more work is
required in this area.

6. Conclusion

Gyrokinetic simulations have progressed to the stage where detailed quantitative comparisons
between different physical models and different numerical approaches can be made. We have
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Figure 13. Time traces of heat diffusivity computed with the ORB5 code using three different
models: electrostatic with all adiabatic electrons (chain line), electrostatic with drift-kinetic trapped
electrons and adiabatic passing electrons (dashed line) and electromagnetic with gyrokinetic ions
and drift-kinetic electrons (solid line). See [50]. (Reprinted with permission from [50]. Copyright
©2010 IEEE.)

shown in particular how the numerical noise problem in Lagrange-PIC simulations could be
cured, and how important it is to use consistent geometric approximations. System size (ρ∗)
scaling studies have confirmed that the heat diffusivity at finite size converges (always from
below) towards the flux-tube limit, which is gyro-Bohm. A global linear analysis has shown
that part of the finite ρ∗ scaling can be attributed to linear dispersive effects.

The chaotic nature of turbulence underlying anomalous transport and its implication for
numerical simulations have been studied. An ensemble of independent simulations has allowed
us to obtain information on the intrinsic variability due to chaos and thus to obtain confidence
intervals on the estimates of the average quantities. Global simulations at fixed input power
require longer simulations than fixed-gradient simulations, especially close to the marginal
stability, where it was shown that the transport is increasingly due to the presence of large
events (bursts and avalanches), leading to PDFs with long exponential tails.

Issues related to non-adiabatic electrons, in particular in the vicinity of mode-rational
surfaces, have also been addressed. The short, shear-dependent radial scale involved implies
an increase in computational cost by at least an order of magnitude compared with the adiabatic
electron case. More work is required, in particular concerning finite β cases.
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