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Abstract The bond shear strength between masonry units and mortar is the
weakest link in a masonry wall. Different material tests have been developed in or-
der to characterize this bond behaviour. The objective of this study is to evaluate
three common test setups through non-linear finite element analysis. The simu-
lation method is based on our recent development of cohesive elements, which
allows for the first time to fully capture the force-deformation characteristic of
shear tests in 3D from the onset of loading until the residual shear strength and to
retrieve typical shear failure modes observed in experiments. This study provides
new insights into our understanding and interpretation of such shear tests: (1)
elastic analysis, which has been widely used in the past, does not yield a stress
distribution that is representative of the stress distribution at maximum resis-
tance; (2) while friction coefficient is well estimated (the error is less than 10%),
the local cohesion is underestimated by all three test setups of which the error
lies between 13 and 32%; (3) the randomness of the material properties leads to
a further underestimation of the mean value of the local cohesion; (4) differences
in the material properties of the two joints of the triplet test units do not jeopar-
dize the applicability of this test setup and estimations of the mean properties are
obtained with similar reliability as for couplet tests.
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1 Introduction

Under seismic loading, unreinforced masonry (URM) walls can fail due to in-plane
or out-of-plane loading. For in-plane loading, walls can fail in shear, flexure or a
combination of the two failure modes [5]. While the flexural strength is relatively
independent of material properties and governed by static and kinematic boundary
conditions as well as the geometry of the element, the shear strength is heavily
dependent on material properties. The first shear cracks pass typically through the
joints and form stair-stepped cracks (e.g. [12,22]). To predict the shear behavior
of URM walls by means of analytical or numerical models, information on the
joint shear strength including the cohesion and friction coefficient are required [3].
Different test procedures have been proposed by various researchers, indicating the
difficulty of finding a consensus with regard to the best testing method. Interested
readers can consult [11,21] for a review of the historical development of the various
testing methods. In this paper, we focus on three frequently used test setups: (i)
A test setup applied by Van der Pluijm [14] (Figure 1a). The results of this test
series have been widely used for the calibration of numerical models [7]. (ii) A
test method proposed by Lourenço and his collaborators [9] (couplet test), which
is similar to the classical shear box used in geomechanics (Figure 1b). (iii) The
triplet test (Figure 1c), which has been adopted by the European Committee
for Normalization as the standard test for determining the joint shear properties
[6]. For different experimental setups, cohesion is known to be the most sensitive
parameter, while the friction coefficient is less sensitive to the setup [3].

In order to evaluate the performance of the various setups, previous studies
compared the normal and shear stress distributions at the center line of the mortar
joint that are obtained from elastic analysis. The following quality criteria were
developed by Riddington [17] for the evaluation of the test setups and have been
used since by others [11,15].

(1) The shear and normal stress should be uniform along the joint length.
(2) When failure is initiated at one point, the other parts of the joint should be

close to failure too.
(3) Tensile stresses in the joint should be avoided.
(4) The failure should not be initiated at the edge.
(5) The experiment should be easy to implement.

The objective of these criteria is to ensure that the material properties that are
back-calculated from the test match as well as possible the local ones. To back
calculate the cohesion and coefficient of friction from the experimental results,
the maximum shear resistance needs to be determined at different normal stress
levels. In the ideal case where criteria (1) to (4) are satisfied, the stress state
at damage initiation is close to the stress state at maximum shear resistance and
elastic analysis would lead to a representative shear stress distribution at maximum
shear resistance. The estimated material properties obtained would be close to the
local ones. However, as will be shown later, even the more complex setup by Van
der Pluijm fails to fully meet the criteria (1), (2) and (3).

Early research on these setups, which was conducted in the 90s, concentrated
on elastic analysis until damage initiation [21,17]. To better simulate the failure
process and estimate more accurately the stress distribution for a small scale test
like a shear test, a full representation of the geometry, i.e., representing brick,
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mortar and interfaces in the model, is necessary. This is known as detailed micro-
modeling approach [7,23,11,18,20]. Previous studies that used such modeling ap-
proaches have not been able to reproduce the full force-displacement relation for
simple shear tests (e.g., [10,11,18]).

This paper has five objectives: (1) We evaluate to which extent conclusions
on the performance of the test setups that were drawn from elastic analysis are
representative when evaluating the maximum shear resistance (Section 3.1 and
3.4). (2) We investigate how well the various setups can estimate the local mate-
rial parameters (Section 3.4). (3) We analyze whether a damage initiation close to
the edge (criterion (4)) has indeed a negative impact on the performance of the
test setup (Section 3.4). This is relevant as damage initiation at the edge is often
observed when performing such shear tests. The intention of criteria (4) was to
avoid adverse effects due to possible stress concentrations and other undesired phe-
nomenon, e.g., tensile stresses due to moments at the height of the joint (Section
3.4). (4) We investigate how material randomness will affect estimation of cohe-
sion (Section 3.3). (5) We evaluate, for triplet test in the presence of differences
in material properties of the two joints and asymmetric boundary conditions, how
well the maximum shear resistance can be estimated (Section 3.5).

2 Numerical formulation

The finite element analysis is conducted with the open source library Akantu [16].
In Section 2.1, we introduce the numerical framework. To fully capture the shear
debonding process, a bilinear descending law is proposed in Section 2.2.

2.1 Explicit integration and extrinsic insertion

Starting with the well-known weak form of the virtual work principle∫
V

P : EdV0 +

∫
V
ρ0b · δudV0 +

∫
Sf

t · δudS0+∫
V
ρ0ü · δudV0 −

∫
Sintf

T · [[δu]] = 0 (1)

in which the V and Sf refer to volume and boundaries of the body, P is the first
Piola-Kirchhoff stress, E is the Green strain, ρ0 is the density of the material,
b is the body force, δu is the virtual displacement, t is the Neumann boundary
conditions applied on Sf , [[·]] indicates the jump of displacement across cohesive
elements and T represents the cohesive traction along the interface Sintf. The
symbol : indicates the inner product between second order tensors. After spatial
discretization, the following well-known relationship is obtained:

Mü+ f int = fext (2)

in which M is the mass matrix, ü is the acceleration vector, f int and fext are
the internal and external force vectors. The classical explicit second order central
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Fig. 1: Different setups for determining shear parameter.

difference method is used here for time integration. The displacement, velocity
and acceleration (um+1, u̇m+1, üm+1) at time step m+ 1 are estimated by

um+1 = um +∆tu̇m +
1

2
∆t2üm (3)

üm+1 = M−1(fext
m+1 − f

int
m+1) (4)

u̇m+1 = u̇m +
1

2
∆t(üm+1 + üm) (5)

A constant time step ∆t is used during simulation, which is confined by

∆t < ∆tstable = α
lmine

cl
(6)
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in which cl represents the longitudinal wave speed, lmine is the characteristic length
of the minimum element, α is a safety factor, chosen to be 0.15 here.

Calculating f int requires a constitutive law for the bulk elements and a traction-
separation law for cohesive element. For bulk elements, an isotropic linear elastic
relation is assumed. Material non-linearity comes from the cohesive elements. Here
the extrinsic approach [4] is used, for which cohesive elements are inserted dynam-
ically during the simulation while the following criteria is met

σeff > σc (7)

in which σc is the critical stress, σeff is the effective stress for the current state
calculated by [4]

σeff =


√
t2n +

t2τ
β2 for tension/shear tn ≥ 0

1
β · (|tτ | − µ|tn|) for compression/shear tn < 0

(8)

in which tn = σ ·n, tτ = σ · τ are the tractions in the normal n and tangential τ
directions of the facets, β is the shear stress factor, µ is the friction coefficient. Two
situations, tension/shear tn ≥ 0 and compression/shear tn < 0, are distinguished.

After insertion, the traction is determined by the following traction-separation
law [19]

T =

(
β2

κ
δtτ + δnn

)
T (9)

in which κ = Gc,II/Gc,I , β indicates the ratio between cohesion and tensile
strength, T is a scalar value determined by the traction-separation law. In [19,
4], a linear descending law is used. While for quasi-brittle material, a bilinear
descending law is preferable [1].

2.2 Bilinear descending law

The implemented bilinear descending law is illustrated in Figure 2, which can be
represented by the following equation

T =


σh + δh−δ

δh
(σc − σh) for opening δ = δmax ≤ δh

δc−δ
δc−δh σh for opening δ = δmax > δh
δ

δmax
Tmax for closing/reopening δ < δmax

(10)

where δc represents the effective separation upon which the cohesive element is
totally damaged, δmax is the current maximum effective separation, Tmax is the
traction-separation at δ = δmax, δh and σh indicate the position of the kink point
which is determined by h and Gc,I

h =
σh
δh

(11)

Gc,I =
1

2
(σhδc + σcδh) (12)
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The effective separation is calculated in the same way as in [19]

δ =

√
β2

κ2
δ2
t + δ2

n (13)

For contact, we use the same node-to-node contact and friction algorithm as in
[23] with an extension to 3D, in which the contact and friction forces, fmcont,ij and
fmfric,ij , at time stepm for node pair i, j is calculated by predicting the displacement
and velocity at time step m+ 1.

0

σc

σh

δ

T

δcδh

Gc,I

Fig. 2: Traction-separation law.

3 Results and discussion

In this section, we start with a classical elastic analysis of Van der Pluijm’s test
setup (Section 3.1). In Section 3.2, we set up a non-linear model following the
approach outlined in the previous section and calibrate the material properties
by fitting experimental results from Van der Pluijm’s test [14]. A 3D analysis is
further carried out to validate the 2D simulations. In Section 3.3, the influence of a
random spatial variation of the material properties along the interface is studied. In
Section 3.4, we compare the simulation results for different test setups with regard
to their ability of estimating local strength parameters. We end this section by a
discussion on the triplet test (Section 3.5). To facilitate comparison, we use for
all the test setups the same brick dimensions (200 mm× 100 mm× 50 mm) and
mortar thickness (15 mm) as in Van der Pluijm’s test [14]. To further consider the
fact that the mortar does not occupy the whole space between bricks, we left a
setback distance of half the mortar thickness (7.5 mm) for all mortar layers (Figure
1) in our model.
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3.1 Elastic analysis

As mentioned in the introduction, elastic analysis is only valid until damage initi-
ation. In addition, previous studies evaluated the stress state at the center line of
the mortar joint [21,17]. However, in shear tests, cracks develop commonly along
the interface between unit and mortar, which is weaker than the mortar itself [13].
We will show that, due to the finite thickness of the mortar joint, the stresses
along the interface can differ significantly from the stresses at the center line of
the mortar joint. This holds also for the Van der Pluijm test (Figure 1a), which
was especially designed to minimize the effect of the bending moment on the stress
distribution within the mortar.

The adopted elastic material properties are included in Table 1. As an example,
we compute for a normal stress of 0.5 MPa, the stress distribution at the damage
initiation state, i.e., at the instant when the criteria of Equation 7 is first met at
the boundary between unit and mortar and therefore the first cohesive element is
inserted. For this state, the normal stress and shear stress distributions are shown
in Figure 3a. The distance from the insertion criteria, calculated by σc − σeff

(in this subsection, to concentrate on the difference caused only by position, we
temporarily assume the same insertion criteria σc for mortar and for interface),
is shown in Figure 3b. As can be seen from this figure, the first cohesive element
is inserted in the middle of the specimen. Note that the damage will normally be
initiated only at the interface, because the mortar is generally much stronger than
the interface, i.e., mortar has a higher σc as compared to the interface.

The test setup has been designed in such a way that the moment at the center
line of the mortar joint is zero. This is achieved by applying the horizontal force F
at that height. Since the joint has a certain thickness (15 mm here), the moment at
the two interfaces between unit and mortar will not be zero. As a result, the normal
stress distribution is no longer symmetric with regard to the y-axis (Figure 3a).
Due to the normal stresses that result from the bending moments at the heights
of the interfaces, the left part of the interface 1 and the right part of the interface
2 have a lower shear resistance, as shown in Figure 3b. This suggests that under
uniform material properties, the cracks will propagate from the middle to the left
along interface 1 and from the middle to the right along interface 2 at the same
time.

This section shows that the additional moment that results from the thickness
of the mortar joint is non negligible. The stress distributions should be evaluated
at the interfaces, instead of at the center line of the mortar joint, when accessing
a shear test setup through criteria (1) to (4).

3.2 Calibration material properties with Van der Pluijm’s test

To retrieve force-deformation characteristics for different compression levels, the
fracture energy is assumed to be determined by the global normal stress using the
following linear relation

Gc,II = aσN + b (14)

in which σN is the normal stress, a and b are constants. The parameters a, b
and other material parameters are chosen by fitting the experimental curve in
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Fig. 3: Comparison of stress distribution for the test setup of Van der Pluijm.

[14]. The calibrated material parameters are listed in Table 1. More specifically:
the brick elastic modulus and density are already given in [14], while the elastic
modulus of mortar is selected to match the stiffness obtained from experiment;
a typical value of 0.15 is selected for the Poisson’s ratio of brick and mortar; the
inelastic parameters of cohesive elements are selected such that force-displacement
characteristic matches experimental results, with the assumption that the mortar
is three times stronger than the interface.

A 2D analysis is firstly carried out. In the mesh, 1564 second order plane strain
elements are used, within which 444 9-node quadrilateral elements form a struc-
tured mesh for the mortar and brick, while 1120 6-node second order triangular
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Table 1: Material properties used from calibrating the experimental results in [14]

Elastic property
Inelastic property

mortar interface

Emortar (MPa) 5500 σc (MPa) 1.2 0.4
νmortar 0.15 a (10−6m) 446.1 148.7
ρmortar (kg/m3) 1800 b (N/m) 198.06 66.02
Ebrick (MPa) 16700 κ 10 10
νbrick 0.15 β 3 3
ρbrick (kg/m3) 1994 µ 0.8 0.8
Esteel (MPa) 200000 h (106N) 1666.7 1666.7
νsteel 0.3 δc (10−3m) 0.15 0.15
ρsteel (kg/m3) 8000

elements form an unstructured mesh for the loading shoe. The comparison with
experimental data is presented in Figure 4, which shows that the simulation results
and experimental data match well.

To further validate our 2D simulation, a full 3D analysis is carried out for
the compression level of 0.5 MPa. In the 3D mesh, 70344 10-node tetrahedron
elements are used. The material parameters are the same as in Table 1. Figure
5 compares the force-displacement relation and the inserted cohesive elements at
maximum shear resistance. The maximum shear resistance obtained by the 2D
analysis is only 2.4% lower than the maximum shear resistance obtained with the
3D simulation. The crack patterns at maximum shear resistance are also similar.
We can therefore conclude that 3D effects are negligible and that the performance
evaluation of the test setups can be based on the results of 2D simulations.
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Fig. 4: Calibration of material properties with Van der Pluijm tests.
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3.3 Discussion on the influence of random parameters

In the previous calibration, the interface properties are assumed to be uniform
along the interface. However, in reality, the material properties will vary along
the interface due to the natural aleatoric variability of material properties. The
variation of the interface properties will affect the initiation and propagation of
the crack, and further more will influence the obtained maximum shear resistance.
The objective of this section is to investigate the influence of random variation of
material properties on the values estimated for cohesion and friction coefficient on
the interface.

The cohesion and the friction coefficient, are calculated by evaluating the max-
imum shear resistances at different normal stress levels [6]. Here we select five
normal stress levels σN,i and obtain the maximum shear resistances τi from simu-
lation. A linear regression is then conducted, with regard to the estimated cohesion
and friction, cest and µest (Figure 6).

τi = cest + µestσN,i (15)

in which τi is the maximum shear resistance corresponding to σN,i, calculated by
the following equation

τi =
Fi,max

A
(16)

where Fi,max is the maximum shear load under normal stress σN,i, A is the nominal
cross-sectional area of a specimen parallel to the bed joints, e.g., for the current
specimen A = 200 mm× 100 mm.

With uniform material properties on the interface, the maximum shear resis-
tances under five normal stress levels are indicated by “w/ mean properties” in
Figure 6. The corresponding linear regression of estimation is noted as “estimation
/ mean”. From the linear regression, we have cest =0.95 MPa and µest = 0.83.
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domness of material properties of the interface.

For considering randomness, we assume that the variation of interface prop-
erties follows a Gaussian random distribution. Spectral representation is used for
generating random samples [23]. The critical stress, fracture energy, and friction
coefficient of the cohesive elements are considered to be random variables and are
assumed to be fully correlated. The standard deviation for critical stress and the
fracture energy is assumed to be 0.3, while for the friction coefficient, the standard
deviation is assumed to be 0.2. The correlation length is assumed to be 0.0125 m,
1/16 brick length.

Under each normal stress level, eight samples are generated and the maximum
shear resistances are indicated by “w/ random properties” in Figure 6. The cor-
responding linear regression of estimation is noted as “estimation / mean” from
which we obtain cest

ran =0.85 MPa and µest
ran = 0.73. Therefore, failing to consider

randomness will lead to a 17% overestimation of cohesion.

We then compare the estimated cohesion with the local cohesion. Due to the
set backs of the mortar joint, the effective interface area between mortar and brick
is smaller than the nominal cross section of the brick. The mean value of the local
cohesion is calculated by

c =
Anet

A
βσc (17)

in which A is the nominal cross-sectional area defined in Equation 16, Anet is the
net cross-sectional area of a specimen parallel to the bed joints, e.g., for the current
case Anet = 185 mm× 100 mm, β and σc are from Table 1. Therefore we have c =
1.11 MPa. Since variation of material properties is unavoidable in reality, a larger
correction factor, compared to the assumption with uniform material properties,
should be used when calculating local cohesion value from estimated cohesion. For
example, for Van der Pluijm’s test, which was analyzed here, we obtain c = 1.31cest

with the specified random field and c = 1.17cest with uniform material properties.
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When considering random properties along the interface, we are also able to
retrieve further typical failure modes where the failure plane switches from one
interface to the other (failure mode in Figure 6), which is also often observed in
experiments [14].

3.4 Compare the ability of different test setups to estimate local material
properties

In this subsection, we compare the stress distribution, estimated cohesion and
friction coefficient for the three test setups in Figure 1. To simplify the discussion,
we assume the material properties to be the same as in Table 1 and neglect random
variation. The cohesion and the friction coefficient are estimated by Equation 15
while the maximum shear resistance τi is calculated by the following equation

τi =

{
Fi,max

2A for triplet test
Fi,max

A for Van der Pluijm / Lourenço test
(18)

where the parameters are already defined in Equation 16.
For comparison, we also plot the Mohr-Coulomb law in Figure 7, which is

obtained from the material properties specified in the analysis:

τ(σN ) = c+ µσN (19)

in which σN is the average normal stress, µ is the friction coefficient, and c is the
local value of the cohesion, defined by Equation 17.

Figure 7 shows that: (1) for all three test setups, the local cohesion is underes-
timated. More specifically, the underestimation for the Van der Pluijm setup, the
triplet test setup, and the test setup by Lourenço is 14%, 13%, 32%, respectively;
(2) the error of the friction coefficient is 3%, 4%, 10% for the three test setups
respectively; (3) Figure 7 also shows that the error related to estimating the co-
hesion and friction coefficient is also influenced by the range of the normal stress
considered when conducting a linear regression (Equation 15), which represents
the Mohr-Coulomb law.

The maximum shear resistances obtained from the Van der Pluijm test setup
and the triplet test setup are similar. However, the stress distributions are in
fact quite different. For a normal stress level of 0.5 MPa, Figure 8a shows the
distance from the insertion criteria at damage initiation and also at maximum
shear resistance (indicated by thick lines, for which “From insertion criteria” is
only calculated at positions where cohesive elements are not yet inserted ). For the
triplet test and for the test setup by Lourenço, the damage initiates from the edge
of the interface at a very early stage, 35 to 40% of maximum shear resistance.
All other regions are still far from insertion at this moment. For the Van der
Pluijm test setup, damage initiates quite late, almost at 90% of maximum shear
resistance.

However, at maximum shear resistance, a large part of the interfaces has been
damaged in all three setups; the damaged parts are indicated by the thin line in
Figure 8 and by the colored region in Figure 8a. The normal and shear stresses
along the interface corresponding to the maximum strength for different test setups
are shown in Figure 8b, in which thick lines indicate again the positions where
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cohesive elements have not yet been inserted. As shown in Figure 8b, the criteria
(3), which says that tensile stresses should be avoided, is violated even for the
Van der Pluijm test setup, and the advantage of Van der Pluijm’s test setup over
the other test setups is less obvious at maximum shear resistance than at the
point of damage initiation (Figure 8). Thus, even if the stresses are evaluated
at the interface level, elastic analysis does not yield stress distributions that are
representative of the stress distribution at maximum shear resistance and non-
linear analysis is required to fully evaluate the validity of a test setup. At maximum
strength, for the test setup proposed by Lourenço, cohesive elements have not yet
been inserted over a large part of the interface, which explains why the estimated
cohesion is smaller compared to other two test setups.

3.5 Discussion on triplet test

Despite serving as a standard test method and been widely used [2,24,18], the
interpretation of triplet tests is difficult because the two joints do not fail at
the same time [8]. In reality, the mortar properties of the two joints are not the
same. An absolutely symmetrical force boundary condition, as shown in Figure
1c, is also often difficult to realize due to constraints in the test setup. Sometimes
a displacement boundary condition is used on one side and a force boundary
condition on the other [24]. The effects of the different material properties of the
two joints and different boundary conditions with regard to the x-axis in Figure
1c have not been well understood. To examine the validity of the triplet test
and to deepen our understanding, the influence of three factors on the maximum
shear resistance obtained are studied here, i.e., the influence of (1) the boundary
conditions, (2) a difference in the elastic modulus of mortar of the two joints
and (3) a difference in the interface properties of the two joints. To simplify the
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discussion, we only analyze the setup for the intermediate compression level with
a normal stress of 0.5 MPa.

In Figure 9, two different boundary conditions are considered: With the term
“force boundary”, we refer to two Neumann boundary conditions, fixed to 0.5 MPa,
applied on either side of the triplet (Figure 1c). For the “displacement boundary”
case, which was used in the previous sections, a force boundary is applied only
on one side (right side) of the specimen while the y displacement is fixed on
the left side. Hence the rotation is restraint. With constant and equal material
properties along both joints (Table 1), the maximum strength obtained for the
force boundary condition is 5% lower than the one obtained for the displacement
boundary condition.

The influence of differences in the interface properties of the two joints is
studied next. We lower the strength, i.e., critical stress, fracture energy and friction
coefficient, for the two interfaces of the right joint. The average of the two interface
strengths, indicated by “predicted strength” in Figure 9a, is expected to be

τ(α) =
fintf1 + fintf2

2
=
fintf + αfintf

2
(20)

in which τ(α) is the mean maximum shear resistance, and fintf1 and fintf2 are the
two weakest interface maximum resistance on each side. In Equation 20, we assume
fintf1 = fintf , fintf2 = αfintf . α indicates the reduction of the interface strength on
the right side, and fintf is the maximum strength obtained with constant and equal
material properties, e.g., under normal stress 0.5 MPa, for “displacement bound-
ary” fintf = 1.41 MPa (Figure 7), while for “force boundary” fintf = 1.34 MPa. The
maximum shear resistance is normalized by τ(α)/fintf . The maximum resistance
obtained from simulation is shown in Figure 9a.

While interface strength of the right joint is reduced to 60% of the initial value
(α is equal to 0.6), the estimated strength reduces from fintf to τ(0.6) = 0.8fintf

(Equation 20), i.e., from 1.41 MPa to 1.13 MPa for “displacement boundary” and
from 1.34 MPa to 1.07 MPa for “force boundary”. For the displacement bound-
ary condition, the strength is generally overestimated, with the maximum error
7% reached at α = 0.1 (Figure 9a). While for the force boundary condition, the
strength is generally underestimated. The error increases with the decrease of α
and reaches the maximum 18% for α = 0.6 (Figure 9a). With small difference
between the two mortar joints, i.e., 0.8 < α < 1.0, “force boundary” exhibits a
higher accuracy. While with large difference between the two mortar joints, i.e.,
0.6 < α < 0.7, “displacement boundary” is preferable (Figure 9a). It is expected
that in real setups the boundary conditions will often fall in between the displace-
ment and force boundary condition; for this reason, the error of estimation is likely
to be acceptable.

Another factor that may influence the result is a different elastic modulus of
the mortar in the two joints. To investigate this factor, we reduce the mortar
elastic modulus on the right side by up to 40% of the initial value. The maximum
strengths obtained for the two boundary conditions are plotted in Figure 9b. It
can be seen that its influence on the maximum shear resistance is negligible (error
within 2%) for both boundary conditions.

The typical failure modes for the two boundary conditions (with reduced mor-
tar elastic modulus for the right joint) are shown in Figure 9b. For force boundary
conditions, the failure surface is along the left mortar layer where the mortar layer
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Fig. 9: Influence of one side interface strength and mortar stiffness on maximum
shear resistance w.r.t perturbation of material properties on one side.

is stiffer (the failure mode on the right). For the displacement boundary condition
(the failure mode on the left), the failure mode is different because the rotation is
restrained. Despite different failure modes, it is interesting to notice that the two
specimens have almost the same maximum shear resistance (Figure 9b).

4 Conclusion

The purpose of the current study is to re-evaluate three common setups for shear
tests. Based on our recent development on cohesive elements, for the first time, the
force-deformation characteristic can be fully captured in 3D (up until the residual
shear resistance) and typical failure modes are retrieved for shear tests on couplet
or triplet samples. This study has shown that: (1) when assessing different shear
test setups, due to the non-negligible bending moment caused by the mortar joint
thickness, the stresses should be directly evaluated at the interfaces between mor-
tar and unit instead of at the center line of the mortar joint; (2) elastic analysis,
commonly conducted in previous studies, does not provide a realistic stress distri-
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bution at maximum resistance; it is only representative up to damage initiation,
which starts at a force around 35 to 40% of the maximum resistance for the triplet
and Lourenço’s test setup; for Van der Pluijm’s test, although the damage initiates
at 90% of the maximum resistance, the stress distribution at damage initiation is
still significantly different from the stress distribution at maximum resistance. (3)
contrary to the common belief, initiation of damage at the extremity of the in-
terface does not significantly influence the maximum shear resistance; (4) for the
shear tests analyzed here, 3D effects are negligible and the performance evaluation
of the test setups can be based on the results of 2D simulations; (5) the random
variation of the material properties has a non-negligible effect on the estimation of
mean material properties, e.g., for Van der Pluijm’s test setup, we found, for the
material distribution assumed here, a 17% difference in the estimated mean values
of the cohesion using constant material properties and using random properties;
(6) while the accuracy of estimation for friction coefficient is rather good (error
less than 10%), the local cohesion is underestimated by all three test setups. The
error obtained for the case studies analyzed here were between 13 and 32% with
the smallest error obtained for Van der Pluijm’s test setup and a similar error for
the triplet test; (7) the maximum shear resistance obtained from triplet tests is
influenced by the boundary condition and difference of the interface properties in
the two mortar joints; however, the error introduced by these effects is limited.

This paper justifies the use of triplet tests for determining the cohesion and
friction coefficient of mortar-unit interfaces. However, as with other test setups
that have been proposed for this purpose, the estimated cohesion from the triplet
test is lower compared to the local cohesion. Therefore, a correction needs to be
introduced, if the estimated cohesion is to be used in a detailed micro-modeling
approach. The correction factor of the estimated cohesion for the case studies
analyzed here is around 1.15, with constant material properties. Note that the
correction factor depends on parameters such as specimen dimensions, material
parameters, and material randomness. Further studies are required to generalize
such factors. In addition, the proposed traction-separation law (Section 2.2) is
based on the classical one proposed by Camacho and Ortiz [4], which is only valid
for monotonic loading conditions. Another limitation of the traction-separation law
is the fixed dependency on normal stress which can affect the simulation accuracy.
Further work needs to include a dynamic dependence of the traction-separation
law on the normal stress.
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