The influence of mountain-ridge scale snow precipitation processes on the local snow distribution

Franziska Gerber (gerberf@slf.ch), Rebecca Mott, Michael Lehning

IUGG, July 12, 2019
The influence of mountain-ridge scale snow precipitation processes on the local snow distribution

Franziska Gerber (gerberf@slf.ch), Rebecca Mott, Michael Lehning

IUGG, July 12, 2019
The influence of mountain-ridge scale snow precipitation processes on the local snow distribution
The influence of mountain-ridge scale snow precipitation processes on the local snow distribution

Franziska Gerber (gerberf@slf.ch), Rebecca Mott, Michael Lehning

IUGG, July 12, 2019
Mountain ridge-scale snow precipitation processes

- Small-scale/Local orographic enhancement

 e.g. Seeder-Feeder mechanism
Mountain ridge-scale snow precipitation processes

- Small-scale/Local orographic enhancement
- Preferential deposition

- e.g. Seeder-Feeder mechanism
- e.g. Preferential deposition

Mountain Ridge

Small-scale/Local orographic enhancement

- Reduced fall velocity
- Increased fall velocity

Preferential deposition

Mountain Ridge
Mountain ridge-scale snow precipitation processes

- Small-scale/Local orographic enhancement
- Preferential deposition

Combined effect – Asymmetric snow distribution across mountain ridge

Franziska Gerber (gerberf@slf.ch)
Motivation

Tourism
Avalanches
Ecology
Hydropower
Drinking water
Motivation

Tourism
Avalanches
Ecology
Hydropower
Drinking water

Model validation

Climate Change → Modified atmospheric circulation? → Modified snow accumulation?
Simulation setup

- WRF at very high resolution
- Large eddy simulation (LES) mode
- Driven by COSMO-2 (2 km resolution)
- 2 case studies
 - January 31/March 5, 2016

WRF: Weather Research and Forecasting model
COSMO: Consortium for Small-Scale Modeling
Process distinction

Assumption:
• Cloud dynamics → negligible in the lowest 90 m ag
• Preferential deposition → dominant in lowest 90 m ag
Process distinction

Assumption:
- Cloud dynamics → negligible in the lowest 90 m ag
- Preferential deposition → dominant in lowest 90 m ag

Franziska Gerber (gerberf@slf.ch)
Resolution dependency

Franziska Gerber (gerberf@slf.ch)
Resolution dependency

"Cloud dynamics + mean advection"

"All effects"

"Near-surface Preferential deposition"

Vertical velocity (m/s)
Resolution dependency

450 m

150 m

50 m

“Cloud dynamics + mean advection”

“All effects”

“Near-surface Preferential deposition”

Franziska Gerber (gerberf@slf.ch)
Resolution dependency

“Cloud dynamics + mean advection”

“All effects”

“Near-surface Preferential deposition”

Vertical velocity (m/s)
Snow precipitation anomalies

31 January 2016

“Cloud dynamics + mean advection”

“All effects”

“Near-surface Preferential deposition”

Vertical velocity (m/s)

Comola et al., 2019: Preferential deposition of snow and dust over hills: governing processes and relevant scales, JGR Atmospheres, accepted.
31 January 2016

“Cloud dynamics + mean advection”

“All effects”

“Near-surface Preferential deposition”

31 January 2016

14-21 %

26-28 %

8-12 %
Processes

Snow precipitation anomalies

31 January 2016
- Snow: 1.35 mm
- Snow: 1.34 mm
- Snow: 2.24 mm

5 March 2016
- Snow: 2.26 mm

“Cloud dynamics + mean advection”
14-21 % 0.5-7 %

“All effects”
26-28 % -2.2-6 %

“Near-surface Preferential deposition”
8-12 % 3 %

Vertical velocity (m/s)

Franziska Gerber (gerberf@slf.ch)
Processes

Snow precipitation anomalies

31 January 2016

5 March 2016

“Cloud dynamics + mean advection”

“All effects”

“Near-surface Preferential deposition”

This case study
Drier atmosphere = weaker effect

Franziska Gerber (gerberf@slf.ch)
Processes

Snow precipitation anomalies

31 January 2016

5 March 2016

“Cloud dynamics + mean advection”

“All effects”

“Near-surface Preferential deposition”

31 January 2016

5 March 2016

14-21 %

0.5-7 %

26-28 %

-2.2-6 %

8-12 %

3%

This case study
Drier atmosphere = weaker effect

• Model validation with measurements
• Passive tracer experiment

Franziska Gerber (gerberf@slf.ch)
Conclusion

- Mountain-ridge scale precipitation: \(\leq 50 \text{ m res.} \)

Franziska Gerber (gerberf@slf.ch), Rebecca Mott, Michael Lehning

IUGG, July 12, 2019
Conclusion

- Mountain-ridge scale precipitation: \(\leq 50 \text{ m res.} \)
- Cloud dynamics and mean advection: \(O(20 \%) \)
- Near-surface preferential deposition: \(O(5-10 \%) \)

26-28 % enhanced precipitation on leeward side

(depending on the event)

Franziska Gerber (gerberf@slf.ch), Rebecca Mott, Michael Lehning

IUGG, July 12, 2019
Questions?

- Mountain-ridge scale precipitation: ≤ 50 m res.
- Cloud dynamics and mean advection: $O(20\%)$
- Near-surface preferential deposition: $O(5\text{-}10\%)$

26-28% enhanced precipitation on leeward side
(depending on the event)

Franziska Gerber (gerberf@slf.ch), Rebecca Mott, Michael Lehning

IUGG, July 12, 2019