Rapid melting and revitrification as an approach to microsecond time-resolved cryo-electron microscopy

Jonathan M. Voss, Oliver F. Harder, Pavel K. Olshin, Marcel Drabbels, Ulrich J. Lorenz *

Laboratory of Molecular Nanodynamics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

ARTICLE INFO

Abstract

Proteins typically undergo dynamics on the microsecond to millisecond timescale, which is much faster than the time resolution of cryo-electron microscopy. Here, we propose a novel approach for microsecond time-resolved cryo-electron microscopy that involves melting a cryo specimen in situ with a laser beam. The sample remains liquid for the duration of the laser pulse, offering a tunable time window in which the dynamics of embedded particles can be induced in a liquid environment. After the laser pulse, the sample vitrifies, trapping particles in their transient configurations. As a proof of principle, we study the disassembly of particles after they incur structural damage.

Keywords:
Protein dynamics
Time-resolved cryo-electron microscopy
Single-particle observation
In situ transmission electron microscopy
Graphene liquid cells

1. Introduction

Proteins perform a range of tasks that are quintessential for life. They are involved in harvesting energy, maintaining homeostasis, catalyzing metabolic reactions, reproduction, and sensing stimuli. As nanoscale machines, proteins are dynamic systems whose free energy surface determines their motions and characteristic timescales [1]. Backbone motions and side-chain rotations involve transitions between minima separated by small barriers and typically occur on picosecond to nanosecond timescales, leading to fast, small-amplitude fluctuations of the protein structure [2]. In contrast, the dynamics associated with the activity of a protein frequently involve large-amplitude motions of entire domains that occur on a timescale of microseconds to milliseconds [1,2].

Much of our knowledge about protein function derives from static structures at atomic resolution, which frequently allow one to infer function, particularly if structures of different functional states can be obtained [3–6]. However, in the absence of real-time observations, our understanding of proteins is necessarily incomplete. Directly observing proteins as they perform their tasks, in real time and at atomic resolution, holds the promise of fundamentally advancing our grasp of these nanoscale machines [1].

X-ray crystallography has long been the most important tool in structural biology [7]. Recently, the advent of bright x-ray pulses has also made it possible to carry out time-resolved experiments, even with ultrafast time resolution [8,9]. However, the requirement of a crystalline sample poses a specific challenge for studying the dynamics of proteins, as the crystal packing hinders large-amplitude motions [10–12]. In contrast, single-particle cryo-electron microscopy (cryo-EM) [13–19] enables the observation of biological specimens in their frozen hydrated state [20,21]. The revolution that the field has recently undergone has also created new opportunities for obtaining time-resolved information [22,23]. In time-resolved cryo-EM, dynamics are induced by mixing two reactants [24–26] or exposing the sample to a short light pulse [27,28]. Short-lived intermediates are then trapped in vitreous ice by promptly plunge freezing the sample. However, with a time resolution of several milliseconds [22], which is ultimately limited by the timescales for plunging (~5 ms) [28] and vitrification (~1 ms) [21], this technique is currently too slow to capture many relevant processes.

Here, we propose a novel approach for carrying out time-resolved cryo-EM with microsecond time resolution. The concept (Fig. 1a–e) is based on rapidly melting a vitrified sample in situ with a heating laser (Fig. 1a). Once in their native liquid environment at room temperature (Fig. 1b), the embedded particles are subjected to an external stimulus that induces dynamics (Fig. 1c). For example, a second laser pulse can be used to photoactivate a caged compound and liberate ATP or a small peptide that interacts with the protein [29,30]. In the simplest case, the heating laser itself can be used to create a temperature jump to initiate conformational dynamics. At a well-defined point in time, the heating laser is switched off to induce rapid revitrification and trap the particles in their transient configurations (Fig. 1d), so that they can be subsequently characterized with established cryo-EM techniques (Fig. 1e).

It is not obvious that implementing such a scheme should be possible.

* Corresponding author.
E-mail address: ulrich.lorenz@epfl.ch (U.J. Lorenz).

https://doi.org/10.1016/j.cplett.2021.138812

Received 26 March 2021; Received in revised form 21 May 2021; Accepted 3 June 2021

Available online 11 June 2021

0009-2614/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

https://creativecommons.org/licenses/by-nc-nd/4.0/
Usually, warming up a cryo sample is scrupulously avoided in order to prevent devitrification. Here, we demonstrate that this obstacle can be overcome. We employ cryo samples with a holey gold film [31] supported by a gold mesh. For some experiments, we additionally sandwich the sample between two sheets of few layer graphene, as illustrated in Fig. 1f (Note S1 and Fig. S1), so as to reduce evaporation of the liquid water in the vacuum of the microscope [32]. The sample is heated \textit{in situ} with a laser pulse of tens of microseconds duration (532 nm, 24 μm FWHM spot size), which we obtain by chopping the output of a continuous laser with an acousto-optic modulator [33] (Note S3 and Fig. S2). The gold film and graphene sheets strongly absorb at the laser wavelength and serve as the heat source to melt the ice. In contrast, neither the proteins nor the ice absorb the laser radiation, which prevents photodamage to the specimen. In all experiments, we have centered the heating laser onto the area under observation.

2. Results and discussion

2.1. Rapid \textit{in situ} melting and vitrification

We first demonstrate that it is indeed possible to melt a cryo sample \textit{in situ} and subsequently achieve rapid vitrification. To this end, we intentionally prepare crystalline ice samples, which allows us to directly verify the success of the experiment. Fig. 2a shows a thin ice sheet held at 100 K that is suspended over a hole of the gold film and enclosed between graphene layers. Bend contours are visible, indicating that the ice sheet is crystalline. This is confirmed by the diffraction pattern, which exhibits the signature of hexagonal ice [21] (Fig. 2b). When we irradiate the sample with an individual 20 μs laser pulse with a power of 25 mW, the diffraction pattern remains largely unchanged (Fig. 2c), indicating that the sample has not melted. Laser pulses of up to 63 mW yield the same result (Fig. 2d–g). However, a single pulse with a power of 75 mW provides sufficient heat to induce melting (Fig. 2h). Most of the ice sheet now exhibits homogeneous contrast, with the diffraction pattern revealing the signature of vitreous ice [21] (Fig. 2i, selected area marked by the green circle in Fig. 2h). In the top left of the sample, a small void has formed. We observe such voids if defects in the graphene sheets allow liquid water to evaporate. The lighter contrast on the right side of the sample indicates an area where some ice has remained crystalline, as a selected area diffraction pattern reveals (Fig. 2i inset, selected area indicated with a grey circle in Fig. 2h). Evidently, at this laser power, the ice sheet barely reaches the melting point and remains partially crystalline. Incrementally increasing the laser power thus provides an \textit{in situ} calibration of the power required for melting.

For the experiment illustrated in Fig. 3a–d, the threshold laser power for melting and vitrification was first calibrated in a different area of the sample.
sample. When we use this power to heat the crystalline sample in Fig. 3a, b, melting and vitrification is achieved with a single laser pulse (Fig. 3c, d). The uniform contrast suggests that here, the ice film suspended across the hole has completely vitrified. We note that the laser power needed to induce melting is lower than in Fig. 2, where the sample is in close proximity to the bars of the TEM grid. Heat transfer simulations agree with this observation, showing that the required power increases closer to the bars (Note S4 and Fig. S3).

2.2. Characterization of the temperature evolution and time resolution

For the purpose of time-resolved cryo-EM experiments, it is crucial to have a detailed understanding of the temperature evolution of the sample, which ultimately determines the attainable time resolution. We therefore characterize the heating and cooling dynamics in situ with time-resolved electron microscopy [34–38] (Note S5 and Fig. S2). We heat the sample in Fig. 4a, which is held at 100 K, with a 20 μs laser pulse (13 mW). To probe its temperature at a specific point in time, we record a time-resolved diffraction pattern of a selected area of the gold film with a 1 ns electron pulse (~10⁶ electrons). The diffraction intensity of the gold film decreases exponentially with temperature (Debye-Waller behavior [39]) and therefore provides a suitable probe of the sample temperature. We then repeat the experiment stroboscopically (1 kHz repetition rate) to probe the temperature at different points in time. Since a thin layer of ice would not be stable under illumination with thousands of laser pulses, we perform the experiment in the area shown in Fig. 4a, which is not covered by ice. Nevertheless, the temperature evolution of the bare gold film provides a good approximation of the heating and cooling dynamics of a cryo sample. As discussed in detail below, simulations confirm that the presence of a thin ice film barely alters the temperature evolution. Moreover, the ice and the underlying gold film have near-identical temperatures.

Fig. 4b shows a diffraction pattern of the holey gold film collected from the area marked with a red dot in Fig. 4a, onto which we have also aligned the heating laser. As the laser warms the sample, the diffraction intensity decreases quickly, as shown for the (3 1 3), (4 2 0), and (4 2 2) reflections in Fig. 4c. After only a few microseconds, the temperature in the selected area stabilizes, increasing only slightly over time. When the heating laser is switched off at 20 μs, the sample promptly recools as it dissipates heat towards its surroundings, which have remained at cryogenic temperature. From exponential fits (solid red curve, Note S6,7), we obtain heating and cooling times of 1.2 μs and 3.6 μs, respectively. Similar timescales are obtained in different areas of the sample (orange and yellow dots in Fig. 4a and Fig. S4e,f).

Heat transfer simulations (Note S4 and Fig. S3) reproduce these timescales reasonably well, yielding 1.0 μs heating and cooling times (Fig. 4d, solid red curve). If we add a thin layer of vitreous ice, its temperature (blue curves) closely follows that of the underlying gold film, with which it is in close contact. With increasing ice thickness, the heating and cooling times become longer. However, the temperature at which the sample stabilizes during the laser pulse barely changes. We find that the sample temperature plateaus at 300 K for a laser power of 35 mW (Fig. 4d), which is in reasonable agreement with the experimentally determined power that induces melting.

It may appear counterintuitive that melting a cryo sample in situ should result in vitrification, since heating up a vitreous sample ordinarily causes irreversible crystallization [40]. The characterization of the temperature evolution reveals that this is made possible by the high heating and cooling rates of nearly 10⁸ K/s, which is more than two orders of magnitude faster than what is required to outrun crystallization and achieve vitrification [41,42]. Several factors enable such fast cooling. The tightly focused laser beam heats the sample only locally, so that after the laser pulse, the heat can be rapidly dissipated to adjacent areas that have remained at cryogenic temperature. Our simulations also reveal that the bars of the specimen grid play an important role in this respect. Due to their large heat capacity, they barely warm up and therefore act as an effective heat sink. Crucially, the cooling rate also determines how fast the dynamics of embedded particles can be arrested, which occurs when the sample is cooled below the glass transition temperature of water at 137 K [43,44]. We conclude that for ice thicknesses suitable for cryo-EM, our approach yields a time resolution of 5 μs or better, three orders of magnitude faster than what is currently possible with time-resolved cryo-EM [22]. Importantly, this matches the time resolution of cryo-EM to the characteristic timescale on which the relevant dynamics of most proteins occurs [1,2]. Snapshots of the dynamics at different points in time can then be acquired by simply changing the duration of the heating laser pulse.

2.3. Proof of principle experiment

As a proof of principle, we study the rapid disassembly of the GroEL protein complex [45] in response to structural damage that we induce through electron beam irradiation. It is well-known that proteins are heavily damaged during cryo-imaging with typical electron doses [46,47]. However, the cryogenic matrix traps fragments in place and thus limits structural degradation, which would otherwise render high-resolution imaging impossible [46,47]. In a liquid environment, however, structural changes can freely occur. Melting a cryo sample in situ after it has been exposed to a significant electron dose should therefore allow the damaged proteins to unravel.

Fig. 5a shows a cryo sample of GroEL on a holey gold film, imaged with a dose of 14 electrons/Å². Here, we have illuminated only the top part, so that particles in the unexposed area do not incur any beam damage and can serve as a control. For simplicity, the sample is not enclosed between graphene sheets. Even though this allows some water to evaporate during laser heating, it is still possible to carry out experiments with laser pulse durations of tens of microseconds without evaporating the entire sample. In order to allow dynamics of the beam-
damaged GroEL to occur, we melt the sample with a 10 μs laser pulse, after which it revitrifies, arresting the particles in their transient configurations (Fig. 5b). The irradiated area (dashed line) appears lighter than the remainder of the sample, a phenomenon that we consistently observe, but that is absent without electron beam exposure. This suggests that this area has thinned as volatile radiolysis products trapped in the ice [47] were liberated during the melting process (see also Fig. S5). The proteins are no longer visible in this area, indicating that they have disintegrated, leaving only fragments that offer little contrast. A few larger fragments are visible near the edge of the irradiated area (red arrows). The proteins in the bottom part of the image, which had not been exposed to the electron beam, have remained intact. This demonstrates that the disintegration of GroEL particles we observe is caused by electron beam irradiation and not the melting and revitrification process.

The effect of exposure to the electron beam appears to extend beyond the irradiated area. In its immediate vicinity, the particle density is lower, and partially disassembled proteins as well as fragments are visible (red arrows). A possible explanation is that melting liberates highly reactive radiolysis products trapped in the ice, such as OH and H radicals, protons, and solvated electrons [47]. The diffusion lengths of these species within the laser pulse duration of 10 μs are hundreds of nanometers [48], suggesting that they will reach intact GroEL particles and damage them. It is also possible that convective flow of the water film occurs as areas of different thickness equilibrate. With increasing duration of the heating laser pulse, convection seems to play a larger role since the spatial distributions of intact particles and fragments are increasingly reshuffled, as shown for a 30 μs laser pulse in Fig. S5. After irradiation with a 50 μs laser pulse (Fig. 5e,d), the ice thickness is almost homogeneous across the hole in the gold film, with intact particles and fragments visible in both the exposed and unexposed areas (Fig. 5d, insets).

We note that the disintegration of the proteins observed in Fig. 5d does not result from the laser irradiation, but is only present if the sample has first been exposed to the electron beam. This is evidenced by Fig. S6, which shows a neighboring hole of the gold film that had not been irradiated by the electron beam. The particles in this hole are intact, even though they were exposed to a near-identical laser intensity and reached a similar temperature (the FWHM of the Gaussian laser spot, which is centered on the sample, is more than an order of magnitude larger than the distance separating the holes).

Lowering the electron dose reduces the damage inflicted on the GroEL particles, so that their disintegration proceeds more slowly, allowing us to take snapshots of different stages. If we irradiate the sample with only 1.4 electrons/Å² (Fig. S7), the particles do not disintegrate entirely when the sample is melted with a 10 μs laser pulse (Fig. 5e). Instead, a large number of damaged proteins and fragments remain visible in the exposed area. Increasing the laser pulse duration to 20 μs allows the disassembly to proceed further (Fig. 5f). Few particles remain that resemble intact GroEL, while the size of the fragments has further decreased. We note that we have adjusted the laser power with the procedure described in Fig. 2, so that we can be certain that the plateau temperature of the sample exceeds the melting point of ice. Moreover, heat transfer simulations show that for the particular sample
geometry used here, evaporative cooling limits the plateau temperature, so that it should not exceed room temperature for the laser powers employed (Fig. S8).

3. Conclusions and outlook

We have demonstrated that it is possible to rapidly laser melt and revitrify a cryo sample \textit{in situ}, so that particle dynamics can occur in
liquid for a well-defined amount of time. This opens up the perspective about cryo-imaging. Even at a dose as low as 1.4 electrons/Å², we have observed the disassembly of GroEL experiments. Supplementary data to this article can be found online at https://doi.org/10.1016/j.cplett.2021.138812. The authors acknowledge Christoph Schillai for his input on sample preparation and for critically reading the manuscript. We kindly thank J.M. Voss et al. online at https://doi.org/10.1016/j.cplett.2021.138812.

Declarations of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors acknowledge Christoph Schillai for his input on sample preparation and for critically reading the manuscript. We kindly thank the Centre Interdisciplinaire de Microscopie Electronique and the Plateforme Technologique de la Production et Structure des Proteines at EPFL for use of equipment. We thank D. Demurtas and K. Lau for their support and helpful discussions. This work was supported by the ERC Starting Grant 759145 and by the Swiss National Science Foundation Grant PP00P2_163681.

Appendix A. Supplementary material

Notes for sample preparation, in situ melting and vitrification, heat transfer simulations, characterization of the temperature evolution and time resolution with time-resolved EM, analysis of the time-resolved diffraction patterns, and fitting procedure for the heating and cooling times; figures for sample preparation for graphene-enclosed cryo samples, sketch of modified transmission electron microscope, heat transfer simulations, time-resolved diffraction data, time-resolved cryo-EM GroEL experiments. Supplementary data to this article can be found online at https://doi.org/10.1016/j.cplett.2021.138812.

References