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Abstract
It is now widely believed that low frequency turbulence developing from small-
scale instabilities is responsible for the phenomenon of anomalous transport
generally observed in magnetic confinement fusion experiments. The micro-
instabilities are driven by gradients of equilibrium density, ion and electron
temperatures and magnetic field strength. Gyrokinetic theory is based on the
Vlasov–Maxwell equations and, consistent with the ordering, averages out the
fast particle gyromotion, reducing the phase space from 6 to 5 dimensions.
Solving the resulting equations is a non-trivial task. Difficulties are associated
with the magnetic confinement geometry, the strong disparities in space and
time scales perpendicular and parallel to B, the different time scales of ion
and electron dynamics, and the complex nonlinear behaviour of the system.
The main numerical methods are briefly presented together with some recent
developments and improvements to the basic algorithms. Recent results are
shown, with emphasis on the roles of zonal E×B flows, of parallel nonlinearity
and of toroidal coupling on the saturation of ion temperature gradient (ITG)
driven turbulence in tokamaks.

1. Introduction

Instabilities and turbulence are ubiquitous phenomena in plasmas. There is great interest in
these phenomena, especially in the context of magnetic confinement fusion research, which has
lasted for several decades and is still growing. The understanding of anomalous transport has
greatly improved over the past years, thanks in large part to the role of large-scale numerical
simulations [1–16]. Predictions used for the design of the next generation of experimental
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fusion reactors have been largely made on extrapolations from a range of existing experiments
worldwide and assumed semi-empirical scaling laws. However, a full comprehension of the
basic physical processes underlying the confinement properties is still missing.

Instabilities can be divided into two types: the macro-instabilities, defined as MHD
instabilities developing on a length scale comparable to the device size, and the micro-
instabilities, which have a typical scale of the same order as the Larmor radius. Computational
tools for MHD problems in tokamak (axisymmetric) geometry were developed more than
20 years ago and have been extremely useful in determining the operational limits in tokamaks.
More sophisticated numerical tools are still being developed to tackle more difficult problems.
Examples of such problems are: the instabilities in the presence of a magnetic separatrix [17];
the role of internal modes as triggers of sawtooth relaxations [18]; stability analysis and
bootstrap current optimization for more exotic shapes (low aspect ratio [19], fully three-
dimensional configurations [20]); and the linear and nonlinear threshold of neoclassical tearing
modes (NTMs) [21]. Also, an important class of modes has been shown to be destabilized
in the presence of a fast (non-thermal) ion population: the Alfvén eigenmodes (AE), and in
particular its toroidicity induced branch [22–25].

This paper focuses on micro-instabilities and their nonlinear evolution. Equilibrium
gradients of temperature, density or magnetic field strength are the driving source of these
instabilities. Unstable modes lead to a nonlinear state with a finite fluctuation amplitude. This
is accompanied by the generation of an anomalous heat and/or particle flux across magnetic field
lines, typically much larger than the transport calculated from collisional behaviour (classical
or neoclassical). Theory has focused in particular on low frequency modes (as compared to
the cyclotron frequency of plasma species). Among the different types of micro-instabilities,
the ion temperature gradient (ITG) mode [26] has received particular attention. The computed
growth rates, γ , and perpendicular wavenumbers, k⊥, are such that a mixing length estimate
of the diffusion coefficient, γ /k2

⊥, typically gives values that are comparable to those needed
to explain various confinement experiments. ITG modes (and other modes such as the trapped
electron mode (TEM) [27], and the electron temperature gradient (ETG) mode [28, 29]) have
a finite temperature gradient length threshold, above which the growth rate is seen to increase
strongly: thus the system tends to react to an increased input power by only a slight increase in
the temperature gradient while the heat flux is strongly increased. This is (at least qualitatively)
in agreement with the degradation of confinement time with input power and the profile stiffness
observed in many experiments. The low frequency character of the fluctuations under study is
at the basis of the gyrokinetic ordering, in which the Vlasov–Maxwell equations are averaged
over the particle gyromotion, thus reducing the phase space of the distribution function from
6 to 5 dimensions.

Studying linear behaviour alone is not enough to understand the many physical
mechanisms involved. Research in the past decade has focused on the processes responsible for
the saturation of fluctuations to a finite amplitude. In particular, the observation of ‘transport
barriers’ [30], regions in which the anomalous transport is substantially reduced, has stimulated
the investigations. Three main nonlinear mechanisms have been invoked.

First, the interaction of sheared flows and in particular zonal E ×B flows with turbulence.
Zonal E × B flows are axisymmetric and poloidally symmetric potential peturbations and
their E ×B drift velocity is purely within a magnetic surface. Linearly, they are neither stable
nor unstable (at least in the collisionless limit). In a toroidal geometry they may be partly
damped because of their coupling to m �= 0 poloidal components, but there remains a totally
undamped component. It has been shown in several simulations [1, 3, 5, 6, 9] that turbulence
generates zonal flows nonlinearly, and that, in turn, the zonal flows reduce the unstable mode
amplitudes by shearing the turbulent eddies. Thus, the system appears to be self-regulated,
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with the zonal flows playing the role of ‘organizer’ of the turbulence. The resulting heat flux is
reduced compared with the case when the zonal component is artificially suppressed. Models
based on the coupling of turbulence to sheared flows have been proposed [31] to explain the
transition from low to high confinement regimes (L-mode to H-mode transition) in the edge
region of tokamaks.

Second, intermittency in fluctuations has been observed in some simulations based on
fluid [32–37] or collisional gyrokinetic models [38]. This self-organized bursty transport is
thought to characterize some regimes of non-diffusive turbulent behaviour. In the context of
electron scale instabilities (ETG modes), the estimated linear mixing length for anomalous
diffusion is far too low to explain the measured electron transport, essentially because of the
very large k⊥ of ETG modes. Nonlinear gyrokinetic flux-tube simulations [10] have shown
the appearance of intermittent, radially elongated structures, called streamers, that drive (on a
time average) much larger fluxes than can be inferred from the linear mixing length estimate.
In other simulations, based on a fluid description and a prescribed edge heat flux (as opposed
to flux-tube radial periodic boundary conditions), ETG fluctuations do not create the same
high level of anomalous heat flux [12]. More investigations are needed in order to resolve this
discrepancy. In recent gyrofluid ETG simulations [13] it was shown that zonal flows may be
enhanced in weak magnetic shear regions thus leading to an enhanced electron confinement
regime.

Third, the mechanism of turbulence spreading has been invoked to explain the saturation
of turbulence [39–41]. Already noted in early nonlinear fluid models [42], turbulence is
seen propagating radially beyond the region of linear instability. A model equation has been
proposed [39] that describes how the radial spreading of the turbulence into the linearly stable
zone reduces the intensity of the turbulence in the linearly unstable zone and introduces an
additional dependence on the ρ∗ = ρ/a transport scaling, in broad agreement with toroidal
nonlinear gyrokinetic simulations [40]. Saturation occurs when the radial flux of fluctuation
energy from the linearly unstable region is balanced by local dissipation in the linearly stable
region. In [42], two distinct mechanisms for radial propagation of turbulence are evident:
toroidal coupling, acting through convection and nonlinear effects, inducing diffusion. In [41]
a model is described in which different drift wave couplings are mediated by zonal flows.
In that model, the drift wave radial dispersive properties, which are affected by the toroidal
geometry, are an essential feature: the authors expect that turbulence in a torus is qualitatively
different from that in a cylinder.

While the above-mentioned models are extremely useful in obtaining an insight into the
physics involved in the nonlinear turbulent processes, it is also clear that a more quantitative
and detailed description, based on first principles, is desirable. The task can be formulated,
in the most simple terms, as one of directly solving the Maxwell–Vlasov system of equations
(in the gyrokinetic limit). ‘Direct’ means here that the first principles that the original system of
equations satisfy should be maintained in their numerically discretized version. For example,
the particle and energy conservation principles should be reflected in the solution as accurately
as possible. Clearly, numerical methods are a necessity. The past decade has seen several
major developments in this area [1–16]. Such large-scale simulations have already given
important physical results. To cite only a few: the importance of the zonal flows in determining
the ITG turbulence level and the corresponding anomalous heat flux [9]; the Shafranov shift
stabilization of trapped electron modes in the core of tokamak discharges with internal transport
barriers [43]; the scaling of anomalous heat diffusivity with system size [1]; the importance
of considering equilibrium distribution functions of the true constants of motion in order to
avoid the spurious excitation of geodesic acoustic modes [5, 44]; the importance of retaining
the parallel nonlinearity for a correct zonal flow determination [6]; detailed comparisons with
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specific tokamak experiments have been made, e.g. with DIII-D [45] and Asdex-Upgrade [46];
the inclusion of non-adiabatic electron response and electromagnetic pertubations in linear [47]
and nonlinear [2] global codes; the inclusion of realistic ideal MHD equilibrium geometry and
truly global profiles in tokamak [50, 46, 6], and fully three-dimensional stellarator geometry
[51, 52]—the latter limited to electrostatic, linear perturbations.

The remainder of the paper is organized as follows. In section 2, the basic features of the
gyrokinetic model are introduced, and some of its important variants are mentioned, especially
regarding the model used for the electron response. In section 3, the main approaches to the
problem are described in brief: Lagrangian versus Eulerian or semi-Lagrangian, global versus
local, frozen gradients versus fixed edge flux and free profile evolution. In section 4, we
present global gyrokinetic collisionless simulations that are focused on the analysis of the
roles of zonal E × B flows, toroidal geometry and parallel nonlinearity in the development of
ITG turbulence in tokamak plasmas. Section 5 presents the main conclusions and discusses
possible future work.

2. Gyrokinetic model and its variations

We consider a neutral magnetized plasma in a symmetric configuration consisting of nested
magnetic surfaces labelled by the variable ψ :

B = F(ψ)∇ϕ + ∇ψ × ∇ϕ (1)

in which F(ψ) is the poloidal current flux function, ϕ is the toroidal angle and ψ is the
poloidal magnetic flux divided by 2π , solution of the Grad–Shafranov ideal MHD equilibrium
equation [53]. We define the equilibrium scale length of an equilibrium quantity Q as
LQ = |Q/∇Q|. Equilibrium electric fields normal to the magnetic surfaces, E = −∇�0(ψ),
can be added to the description. Noting the cyclotron frequency of plasma species �s and their
gyroradius ρLs , we consider low frequency perturbations δφ with the following gyro-ordering
in a small parameter εg:

ω

�i
∼ k‖

k⊥
∼ eδφ

kBTe
∼ ρLi

Ln
∼ ρLi

LTi
∼ εg, (2)

where k‖ and k⊥ are the components of the wavevector in the directions parallel and
perpendicular to the magnetic field B. The inhomogeneity of the equilibrium magnetic field is
described by another small parameter εB ∼ ρLi/LB. The gyrokinetic ordering removes the fast
cyclotron time scale and averaging over the gyroangle reduces the phase space dimension from
6 to 5 [54–57]. The gyrocentre distribution function of species s is fs(R, v‖, µ) with R the
gyrocentre spatial coordinates, v‖ the parallel component of the velocity and µ = msv

2
⊥/2B

the magnetic moment. In collisionless systems we have

fs = constant (3)

along the characteristics, which are solutions of the following evolution equations of motion
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Explicit expressions for the terms appearing on the right-hand side can be found in [57]. The
subscripts ‖, ∇B, E and δE denote parallel motion, perpendicular magnetic drifts, equilibrium
E × B drifts and perturbed δE × B drifts, respectively. Due to the gyrokinetic ordering, the
parallel time derivative is larger than the other terms. This is the origin of the strong anisotropy
of the system of perturbations, which tend to form structures aligned with the equilibrium
magnetic field lines. This strong anisotropy, and the associated separation of parallel and
perpendicular time scales, are essential features of micro-instabilities and turbulence in this
frequency range. The system of equations is completed by Poisson’s equation for δφ, which
reduces to the quasi-neutrality equation

δne − δni,pol = 〈δni〉, (7)

where δni,pol is the perturbed ion polarization density, 〈δni〉 is the perturbed gyro-averaged
gyrocentre ion density and δne is the perturbed electron density.

The simplest model for electrons, applied to the study of ITG modes, assumes an adiabatic
(or Boltzmann) electron response in the direction parallel to the magnetic field lines. The
justification is that parallel electron motion is so fast that the electron population can establish
a Boltzmann equilibrium at all times. This is equivalent to neglecting the electron inertia
(me → 0) for the parallel electron motion. We obtain then e∇‖φ − (kBTe/ne)∇‖ne = 0,
the solution of which is ne = N (s) exp [eφ/kBTe], where s is a label of the magnetic field
line. The normalization constant N can be fixed in configurations with nested flux surfaces
by noting that the number of electrons should be conserved on flux surfaces. We obtain

δne = en0

kBTe
(δφ − δφ), δφ =

∫
ψ

δφ(s, θ, ϕ)J (s, θ) dθ dϕ
∫
ψ

J (s, θ) dθ dϕ
, (8)

where J = (∇s · ∇θ × ∇ϕ)−1 is the Jacobian. The system of equations is (3)–(8). Note
that the nonlinearity of the system appears in the last terms of equation (5), the perpendicular
nonlinearity, and of equation (6), the parallel nonlinearity.

For the study of TEM, it is appropriate to consider adiabatic passing electrons and drift-
kinetic trapped electrons:

δne = en0

kBTe
(1 − αb)(δφ − δφ) + δne|trapped, (9)

where αb is the fraction of trapped electrons.
For the study of electromagnetic perturbations, passing electrons must also be considered

as non-adiabatic, and the system of equations is to be completed by Ampère’s law. In addition
to the ITG and TEM modes, the model describes another branch of micro-instabilities, named
Alfvénic-ITG [58] or kinetic ballooning mode [59]. For finite but small β, it is sufficient to
consider a two-potential approach (φ, A‖) which neglects the perturbations of the magnetic
field parallel to the equilibrium (δB‖ ≈ 0). A full electromagnetic model in tokamak geometry
taking into account finite δB‖ formulated with a spectral approach can be found in [47].

Collisionality enters mainly in two different mechanisms. Electron–ion pitch angle
collisions cause trapping/detrapping of electrons and therefore affect TEM. Ion–ion collisions
cause damping of zonal flows and this results in an increase of the ITG turbulence level. This
mechanism was studied in [48] with a three-dimensional fluid model; results show an energy
confinement time increase with decreasing collisionality and are interpreted as an increase
in the effective critical temperature gradient due to the increased zonal flow amplitude, the
so-called ‘upshift’ first noticed in [3].

Finally, we should mention the gyro-Landau fluid equations which consist of a set of
moments of the gyrokinetic equations that include models of the kinetic resonances such
as Landau damping [60], linear and nonlinear finite Larmor radius effects [61] and toroidal
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drift [62]. An alternative non-dissipative closure model was introduced in [63]. Nonlinear
gyrofluid simulations showed, for the first time, the importance of zonal flows in the saturation
of ITG turbulence. Zonal flows have a linearly completely undamped component [64] and the
closure of gyrofluid equations should reflect this property.

3. Numerical approaches

Two classes of approach have been used for the numerical resolution of gyrokinetic equations.
The Lagrangian approach consists of a pseudo-random sampling of f over phase space at
points called ‘markers’ or ‘tracers’, an operation called ‘loading’. Then their orbits are followed
according to equations (5) and (6), the so-called ‘pushing’. One could assimilate this procedure
to a completely unstructured, moving grid. At every time step the density in real space is
reconstructed by a projection of the markers, an operation called ‘charge assignment’. The field
equations are then solved on a fixed grid in real space, e.g. with a finite element technique [50].
The advantages of this particle-in-cell (PIC) technique are its conceptual simplicity and the
ability to integrate systems of high dimensionality. The main drawback is the problem of
statistical noise inherent to this approach and the associated slow convergence rate ∼1/

√
N

with the number of markers. Noise can build up and accumulate in nonlinear simulations to a
point where the basic physical properties of the system, such as charge and energy conservation,
are violated. A method to reduce this problem was formulated some time ago, the δf approach,
which statistically samples the perturbed part of the distribution function only [65]. A further
improvement consists of choosing an appropriate distribution of the markers in phase space
(‘optimized loading’). It was shown in [4] that the application of this technique leads to
a substantial improvement in the quality of the numerical simulation as measured by the
verification of the energy conservation property. It was shown in [6] that this is crucial in
order to obtain a physically correct level of zonal flows, turbulence and anomalous heat flux.
A further simplification was achieved by showing that the integration of the time evolution
equation for δf along the perturbed characteristics is actually redundant, and it is perfectly
appropriate simply to take δf = f (R, v‖, µ)|t=0 − f0(R, v‖, µ)|t=t , where f0 is a known
distribution function [66]. Moreover, the time evolution equation for δf assumes that f0 is a
constant along the unperturbed orbits (in other words it is an equilibrium distribution function)
therefore it should be a function of the constants of motion of the unperturbed orbits: particle
energy E , magnetic moment µ and conjugate toroidal momentum ψ0 = ψ + (ms/qs)(F/B)v‖.
If a local approximation is chosen for f0, i.e. a function of ψ instead of ψ0, this can lead to a
spurious drive of zonal flows [5].

The Eulerian approach (sometimes called ‘Vlasov’ in the literature) [67] consists of
discretizing the phase space on a fixed grid. The time evolution equations for f are solved
using finite difference or finite element techniques. The time integration can be performed
using explicit or semi-implicit schemes. An advanced code using this approach in the
context of gyrokinetic simulations is described in detail in [2]. An advantage of the Eulerian
approach (compared to the Lagrangian one) is that it is, in principle, easier to control the
phase space gridding. In addition, the numerical properties of convergence with mesh
size should be free of statistical noise. The drawbacks are perhaps that this approach is
technically more difficult to implement, and that the appearance of fine scale structures in
phase space (‘filamentation’) requires very fine grid resolution in certain regions of phase space.
An intermediate approach, called semi-Lagrangian or semi-Eulerian, consists of discretizing
the phase space on a fixed grid, as in the Eulerian scheme, and following orbits in phase space,
as in the Lagrangian scheme, with f interpolated from the previous time step at the foot of the
orbit [68].
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Numerical approaches differ in the level of globality that the schemes can support. From
local to global we find in increasing order: (a) the ballooning approximation, that solves
along a field line and assumes large toroidal mode numbers; (b) the flux-tube geometry that
solves in a finite size domain in the vicinity of a field line and assumes periodic boundary
conditions; (c) the toroidal ring in which a finite size radial slice of the plasma is simulated;
(d) the full radius approach in which the equations are solved from the magnetic axis to the
plasma boundary. The most global approach is of course highly desirable and even necessary
when structures develop with a radial extent comparable to the system size. The flux-tube
and toroidal ring approaches certainly make sense when studying electron scale turbulence for
which a full radius scheme would be prohibitive. The drawback of the flux-tube approach is in
its unphysical radial periodic boundary conditions. The toroidal ring approach allows for more
physical boundary conditions such as fixed edge flux and evolving temperature profiles. There
are more variations in the way the time evolution of plasma profiles is considered. In several
codes a fixed temperature gradient profile is assumed, sources and sinks may be added, or a
dissipative term is introduced that models relaxation to an initial Maxwellian. In other codes
the temperature profiles are defined consistently with the temperature gradient profiles and,
moreover, are left free to evolve in time.

The difficulty associated with the large parallel/perpendicular anisotropy in time and length
scales has prompted the development of field-aligned meshes [1, 2]. Another approach is to
define a magnetic straight-field line coordinate and apply a variable transformation to extract
the fast poloidal phase variation: a gain in code performance of one or two orders of magnitude
can be reached [5, 50].

The validation of numerical simulation codes is extremely important considering the
complexity of the physics involved. This requires not only case comparisons with selected
experiments [45,46] but also a verification of the first principles these codes are based on [4,6].
Another important element is to perform cross benchmarking of the different codes [3].

4. Toroidal coupling, zonal flows and parallel nonlinearity

Toroidal coupling enters at three different points in the gyrokinetic equations. First, the particle
motion grad-B drifts have the effects of (a) driving a toroidally coupled mode (e.g. the toroidal-
ITG) more unstable than its ‘slab’ counterpart and (b) creating a trapped particle population
in the minimum B regions which can cause other modes to become unstable (TEM and TIM).
Second, the geometry appears explicitly in the field equations through the expressions of
differential operators. Third, in the adiabatic electron response, the zonal component, δφ,
contains a Jacobian of the toroidal magnetic coordinates, see equation (8).

We consider a tokamak configuration given by an ideal MHD equilibrium with the
following parameters: aspect ratio R/a = 2.2, minor radius a = 96ρs , q0 = 1.7, qa = 4.7, Ti

profile with max(R/LT ) = 7.9 (which is about twice as high as the linear instability threshold
for toroidal ITG modes), uniform density and Te profiles. We solve the nonlinear electrostatic
gyrokinetic equations (3)–(8) with the full radius code ORB5 [69] using N = 33×106 markers,
and cubic spline finite elements in (s, θ, ϕ) on a 32 × 256 × 128 grid. All profiles are global
and free to evolve. The model includes parallel nonlinearity and toroidal coupling in the zonal
component, equation (8). The initial distribution function f is a canonical Maxwellian, i.e.
function of the constants of motion of the unperturbed orbits. Figure 1 shows the time traces
of field energy and heat flux and figure 2 radial profiles of the zonal E × B velocity and
effective temperature at different time slices. While in the early stages of the nonlinear process
small-scale zonal flows appear, at a later stage the radial structure of zonal flows expands
radially to form finally two very broad radial zones. Global simulations in a cylinder [6,70,71]
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Figure 1. Time evolution of field energy (left) and averaged heat flux (right) in a tokamak of
aspect ratio 2.2. The simulation includes the toroidal coupling of zonal flows coming through the
adiabatic electron response, equation (8).
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Figure 2. Radial profiles of magnetic surface averaged zonal E × B velocity (left) and effective
temperature profiles taken in the early (- - - -, t = t1) and late (——, t = t2) nonlinear phases, for
the simulation of figure1.

had shown a persistent radial structure of zonal flows with a much finer radial structure. The
explanation for this different behaviour may lie in the evolution of the effective temperature
profile (figure 2): for the toroidal case the instability drive is much stronger and consequently
the profile evolution occurs on a much shorter time scale compared to the cylindrical case:
the effective temperature profile evolves quickly to a profile which is closer to the marginal
stability of the toroidal-ITG mode.

The above results have been obtained with the parallel nonlinearity retained (last term in
equation (6)). A comparison between two simulations, with and without parallel nonlinearity,
is shown in figure 3, for the same toroidal case as in figures 1 and 2, and in which the optimized
loading scheme [4] has been applied in order to reduce the statistical noise accumulation at
long simulation times. There is a visible effect on the zonal E × B flow pattern. Note that
an effect of the parallel nonlinearity on zonal E × B flow structures was already found in
cylindrical simulations [6, 70, 71].

The evolution of zonal flows towards broad radial structures is confirmed in computations
using the nonlinear global gyrokinetic code GT3D [5] that includes, as for the ORB5 code,



Simulations of instabilities and turbulence B59

0 0.2 0.4 0.6 0.8 1
s

<
v E

xB
>

/v
ti

without
with

–0.03

–0.02

–0.01

0

0.01

0.02

0.03

Figure 3. Radial profiles of magnetic surface averaged zonal E × B velocity in the late nonlinear
phase, for simulations with (——) and without (- - - -) parallel nonlinearity. Same physical
parameters as for figures 1 and 2, optimized loading applied.

0

0.05

0.1

0.15

30 35 40 45 50 55 60 65 70 75

E
/n–

V
T

i0
×1

03

time /Ωi
−1×10−3

Etotal
En=0
En≠0

0

0.05

0.1

0.15

30 35 40 45 50 55 60 65 70 75

E
/n–

V
T

i0
×1

03

time /Ωi
−1×10−3

Etotal
En=0
En≠0

Figure 4. Time evolution of perturbed field energy, total (circles), in axisymmetric (triangles) and
non-axisymmetric (squares) modes; without (left) and with (right) toroidal coupling in the surface
averaged zonal component δφ, equation (8). Cyclone base case parameters.

parallel nonlinearity and a canonical Maxwellian. The perturbed field is represented on two-
dimensional quadratic spline finite elements with 76 non-uniform radial intervals, 32 poloidal
intervals with a quasi-ballooning representation [50] and 32 toroidal Fourier components.
We use parameters of the Cyclone base case [3]: R/a = 2.7, a = 150ρLi, R/LT = 6.9.
Two series of simulations are performed, one using the cylindrical approximation for the zonal
component, δφ ≈ δφm=0,n=0, the other with the true toroidal Jacobian, equation (8). The
optimized loading technique [4] is applied in order to reduce numerical noise and 160 million
tracers are used. Energy conservation is better than 30% of the perturbed field energy for
the cases shown in figures 4 and 5. The time evolution of the field energy, figure 4, shows
remarkable differences: in the simulation with approximated zonal flows (left), the peak in
field energy is about 30% lower. After the peak, the decay time is much longer, resulting
in a twice higher field energy in non-axisymmetric modes at the end of the simulation, as
compared to the case with true toroidal zonal flows (right). The remaining slow decay is due
to a slow temperature gradient flattening (note that there are no sources in our simulations).
We show in figure 5 (left) a contour plot of the zonal E × B velocity versus minor radius
and time, for the case with toroidal zonal flows. The appearance of broad zones (three in this
case) at later stages is very clear. The small amplitude oscillations near the plasma edge are
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Figure 5. Left: contours of flux averaged E ×B drift velocity versus r/a and t . Colour scale: blue
for negative, red for positive, min/max: 〈vE × B〉 = ±0.018vti. Right: contours of effective ion
temperature gradient inverse scale length. Colour scale: max R/LT = 7.

(This figure is in colour only in the electronic version)

geodesic acoustic modes (GAM) [44]. In the earlier stages, a series of peaks in the E × B

velocity appears at increasing radial positions. These peaks immediately follow bursts in heat
flux which in turn cause local and temporary flattenings of the temperature gradient (figure 5,
right) at the corresponding locations. The fast time scale radial turbulence spreading is thus
caused by avalanche processes, with changes in temperature gradient due to bursts in heat flux
and excitation of ITG fluctuations followed by zonal flow bursts. The temperature gradient
long time evolution shows a visible flattening, bringing it closer to the linear marginal stability
threshold of R/LT ≈ 5 (computed in the absence of E × B flows).

5. Conclusions and future developments

In both cylindrical [6, 70, 71] and toroidal simulations presented here, radial turbulence
spreading is observed. For both cases zonal flows organize the turbulence and the system
evolves to a quasi-steady state with a regular pattern of zonal E × B flows. For both cases
it is important to retain the parallel nonlinearity in order to obtain a correct zonal E × B

flow structure. In a torus, the stronger instability drive is such that the nonlinearity due
to profile evolution becomes important. Toroidal coupling of zonal flows is affecting their
interaction with ITG driven perturbations. This has a measurable effect on their development
and saturation. In a torus, fast radial turbulence spreading is caused by sequences of avalanches
in which bursts of ITG turbulence are accompanied by temperature gradient local flattening and
followed by zonal E×B bursts. The system evolves in the long term to a state characterized by
quasi-steady zonal structures of a much larger width (30–50ρLi) than in a cylinder (∼ 10ρLi).
This difference may be related to the radially more extended structures of the toroidal ITG
mode compared to the ‘slab’ ITG mode, although more extensive studies are needed to
confirm this.

There are still challenges for future numerical simulations. Generally speaking, electron
transport and density transport are much less well understood. Another feature observed in
experiments, namely the relation of rational qmin values in reversed shear discharges with the
appearance of internal transport barriers, has not been fully understood as yet. Another open
question is the finite β dependence of anomalous transport. All these questions will require
consideration of non-adiabatic electron response and even electromagnetic perturbations.
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While numerical tools have recently been developed for these purposes, there remains
considerable work in order to answer these questions with sufficiently accurate first principles
based simulations.
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