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Pulse No: 69585 SENSITIVITY TO ICCD TUNING
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» Hydrogen minority fundamental ICRF: central resonance = 42.2 MHz (+90° phasing); off-axis Figure 6. Comparison of three discharges differing by a variation of the toroidal magnetic field of
(HFS) resonance = 46.2 MHz (-90° phasing); B+~2.8 T, |p~2_2 MA, gg5~4.1, ne~2_4x1019 m3, less than 1%: the optimum for sawtooth stabilisation is the blue curve (B+=2.83 T); the green curve
H concentration 3-5% corresponds to By=2.85 T and the red curve to By=2.81 T. (In (b) the solid curves represent the

Inversion radius, the dashed curves the resonance radius.)

BT sweeps can help in determining optimum tuning

 However, in a dynamic situation the effect can be extremely subtle since the relative positions of
the resonance and of the inversion radius can vary as plasma conditions drift (Fig. 7)

« Complex combination of effects: Fisch (asymmetric resistivity) mechanism (Fig. 2), finite-orbit * Optimum value drifts with 3 as expected from Shafranov shift (Fig. 8)
trapped-ion current (Fig. 3) plus current from radial fast-ion drifts Pulse No: 69534 Pulse No: 69530 .
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