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Abstract

ABSTRACT

The Zambezi River Basin (ZRB), in Africa, spreads over some unfathomable 1 370 000 kmZ. In all its
magnificence it is home to approximately 30 million inhabitants , harbors a number of priceless
wildlife sites and has an estimated hydropower production cap acity of 13 000 MW, of which only
about 5 000 MW are currently exploited. The Zambezi River is central to both the culture and the
economy of riparian countries. With a heterogeneous landscape and a semi -arid climate, the
basin faces great challenges broug  ht about by growing populations, soaring economic growth,

and climate change. In the future, increasing pressure on water resources is inescapable.

Hydrological modeling will certainly support decision makers in all levels of decision as they rise to
meet the forthcoming challenges. Whi | e hi st or i c asideyheterogemeityb pokticah 6 s
situation, and constraining lack of hydrological da ta have conditioned the scope and success of
hydrological models of the basin, relatively new technologies such as satellite remote sensing or

machine learning present promising tools with which some of these problems can be addressed.

The present work set out to develop a performing hydraulic -hydrological model of the ZRB at a
daily time scale , envisaging future use in dam operation optimization and synchronization,
environmental impact assessments, evaluation of future scenarios (predicting responses to climate

change and increased demands) and a broad range of other studies related to themes such as
wildlife, water chemistry, sediment transport, and integrated water management.

In order for this to be successful , constraining issues, mostly related to input data, would have to be

addressed before the actual modeling stages; resorting to satellite remote sensed data would be
mandatory and the most had to be made out of the few good quality discharge series available.
Al so, it was early recognized that no single model coul d

of uses and that a large emphasis wo  uld have to be placed on model calibration and validation.

Aiming to extend the time scope of the analysis, the novel Pattern -Oriented Memory (POM)

historical rainfall interpolation methodology was introduced. Based on machine learning models,

POM was show n to be superior to competing methods in data scarce environments and when the

true rainfa Il field shows high variability . Over the ZRB, errors in the POM interpolated rainfall series

were observed to be on par with those of state -of -the -art satellite rain fall estimates. Stil, POM

presents additional advantages worth noticing: it s performance improves as more satellite data

becomes available; and POM interpolated rainfall can be directly combined with satellite

estimates as forcing for hydrological models |l eading to minimal o0change of suppo

The use of machine learning models for discharge forecast was developed in four fronts: the
comparison of alternative models (e.g. Autoregressive Moving -Average (ARMA), Artificial Neural
Networks (ANN) and S upport -Vector Regression (SVR)); the enhancement of rainfall aggregation
techniques; the study of limitations inherent to SVR forecasting models; and the development of a

non -parametric empirical uncertainty post -processor. Going beyond the development of
deterministic forecasting models with promising accuracies, even for long lead times of up to 60

days at Victoria Falls, the conducted research most notably motivated a reevaluation of previous




findings reported in literature by showing that SVR models are particularly hazardous when used for
discharge forecasting purposes; a conclusion based on their underlying theoretical principles and
easily observable in practice.

A novel non -parametric empirical uncertainty post -processor was developed. The proposed

methodology is able to effectively generate probabilistically correct uncertainties of detrended

series given a representative set of training patterns. It is an (informal) technique that, unlike

Bayesian methods (formal), does not require the definition of likelihood functions nor an external
oconceptual 6 model of the phenomenon being model ed. Perfo
straightforward to set up, it can be easily adapted to incorporate new information. The potential

range of applicability of the m  ethodology goes well beyond discharge forecasting and even

hydrology.

The Soil and Water Assessment Tool (SWAT) was used in order to prepare a continuous -time
hydrological model of the whole ZRB. Recognizing the importance of sound calibration and

validati on phases, investments were made on the development of a flexible and computationally

efficient calibration interface. In parallel, an analysis of the Soil and Water Assessment Tool (SWAT)
hydrological model in its application to the ZRB has evidenced inad equacies in the source code
which should be taken into account, particularly in catchments with relatively large waterbodies.

Resorting to millions of simulations, the full calibration of daily hydrological models covering the

whole basin, from the Upper Z ambezi to a few kilometers upstream from the Delta (Marromeu) was

accomplished @it is believed o for the first time. Heterogeneity was shown to play a noticeable role

in the basindés hydrology and it is recommenodeforthe hat t he ca
definition of regional parameters. Among four tested calibration schemes, best results were

obtained using a regional -regularized calibration approach due to its capacity of approximating

contributions, not only of subbasins along the main reac h of the Zambezi, but also along its
tributaries.
The most important outcomes of the research have been , along with original data and works from

fellow (African Dams Project) ADAPT researchers, be conveyed to stakeholders through the
ongoing ADAPT online d atabase project ( http://zambezi.epfl.ch ), initially developed in the scope
of this thesis.

Keywords: artificial neural networks, calibration, discharge forecasting, hydrological modeling,
machine learning, optimization, Pattern -Oriented Memory, rainfall interpolation,  support -vector
machines, SWAT, TRMM, uncertainty, Zambezi.
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Abstract

RESUME

Le bassin du fleuve Zambéze (ZRB), en Afrique, s'étend sur quelques 1 370 000 km2. Dans toute sa

splendeur, il abrite environ 3 0 millions d'habitants, héberge plusieurs sites naturels d'une valeur

inestimable et a une potentiel de production hydroélectrique estimé a 13 000 MW, dont seulement

environ 5000 MW sont actuellement exploités. Le Zambeze est central a la fois pour la culture et

I'économie des pays riverains. Avec un paysage hétérogéne et un climat semi -aride, le bassin fait

face © de grands d®fis pos®s par | a croissance d®mograph
le changement climatique. Dans l'avenir, la pression croissante sur les ressources en eau est

incontournable.

La modélisation hydrologique va certainement aider les parties prenantes a répondre aux défis a

venir . Hi storiquement, la situation politique, la taildl
man que contraignant de données hydrologiques ont conditionné la précision de modeles

hydrologiques du bassin. Les technologies récentes et prometteus es telles que la télédétection par

satellite ou | 6appr e peuvert présener deswaltematiaes i gaurerésoudre certains

de ces problémes.

Le présent travail a entrepris d'élaborer un modele hydrologique du ZRB a un pas de temps

journalier, envisagé pour des utilisations futures telles que des évaluations d'impact
environnemental, l'optimisation de | ediploitation et la synchronisation de s barrages, ai nsiun qu o
large éventail d'autres études portant sur des thémes tels que la faune, de la chimie de l'eau, le

transport des sédiments et de la gestion intégrée des eaux.

Dans ce but, des probléemes, la plupa rt liées aux données d'entrée, devront étre abordées avant

les étapes de modélisation. Le recours aux données de télédétection par satellite est obligatoire et

les séries de débits de bonne qualité disponibles devront étre prises en compte. En outre, il a été

reconnu qudil ndoexi ste pas de ¢meilleure mod | e pour un
accent devrait étre mis sur I'étalonnage du modele et sa validation.

Le Pattern-Oriented Memory  (POM), une méthodologie d'interpolation pour précipitatio ns

historiques, a été introduit pour prolonger la longueur des simulations. Basé sur les modeles

d'apprentissage automatique, le POM est supérieur aux méthodes concurrentes dans des

environnements pauvres en données et surtout quand la distribution spatial e de la pluie montre

une forte variabilit®. Sur | e ZRB, l es erreurs sur |1 06in
avec POM sont comparables a celles des précipitations par satellite. En outre, le POM présente des

avantages supplémentaires intére  ssants: sa performance s'améliore a mesure que davantage de

données satellite sont disponibles et les précipitations interpolées par le POM peuvent étre

directement associées aux estimations par satellite comme données pour des modeles

hydrologiques avec  un effet de « changement de soutien ~ » minimal.

L'utilisation de modeéles d'apprentissage automatique pour la prévision des débits a été développé
sur quatre fronts: (1) la comparaison de modeles alternatifs (par exemple des modeles
autorégressifs et moyenne  mobile (ARMA), des réseaux de neurones artificiels (ANN) et des
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machine s a vecteurs de support pour régression (SVR)); (2) l'amélioration des techniques

d'agrégation des précipitations; (3) I'étude des limites inhérentes aux modeles SVR de prévision et

(4) le développement d'un post -processeur non par am®tri quseaelapde ur I 8i ncer
I'élaboration de modeles de prévision déterministes avec des précisions prometteuses, méme pour

de longs délais (jusqu'a 60 jours a Victoria Falls), les recherches mené es ont notamment motivé une

réévaluation des résultats antérieurs rapportés dans la littérature ont montré que les modeles SVR

sont particulierement dangereux lorsqu'ils sont utilisés a des fins de prévision de débits. Cette

conclusion est fondée sur les p rincipes théoriques sous -jacents et facilement observables dans la

pratique.

Un post-pr ocesseur non param®trique pour Il i ncertitude a ®t @
proposée est capable de générer efficacement des incertitudes autour des séries donnant un

ensemble représentatif de cas historiques. Il s'agit d'une technique informelle qui, contrairement

aux méthodes Bayésiennes (formelles), ne nécessite ni la définition de fonctions de vraisemblance,

ni ddun mod Icenceptuet esdinphéngmene modélis ®. Ddune ex®cution tr s pol
et simple a mettre en place, il peut étre facilement adapté pour incorporer de nouvelles
informations. Le potentiel d'application de la méthodologie va bien au -dela des prévisions des

débits et méme de I'hydrologie.

L 0 til Soil and Water Assessment Tool (SWAT) a été utilisé afin de préparer un modéle hydrologique
continu du ZRB. Reconnaissant I'importance de I'étalonnage et des phases de validation, des
investissements ont été faits sur le développement d'une interface d ‘étalonnage flexible et
efficace. En paralléle, une analyse de SWAT dans son application au ZRB a mis en évidence des
insuffisances dans le code source qui doivent étre prises en compte, en particulier dans les bassins
versants avec des plans d'eau relativ.  ement étendus.

Grace a des millions de simulatio ns, le calage complet de modéles hydrologiques journaliers

couvrant le bassin, du Haut -Zamb ™ ze jusqudé”™ quelques kilom tres ~ | 6amon
a été réalisé 06 vraisemblablement 0 pour la premiere fo is. L'hétérogénéité a démontré jouer un réle

notable dans | ' hydrologie du bassin et il est recommand®
prend en compte la définition de parameétres régionaux. Parmi les quatre types d'étalonnage

testés, les meilleurs résult ats ont été obtenus en utilisant une approche régionale -régularisée en

raison de sa capacité pour simuler non seulement les contributions des sous -bassins le long du

Zambéze, mais aussi de ses affluents.

Les résultats les plus importants de larecherche, avec | es donn®es originales et | es
chercheurs du « African Dams Project » (ADAPT), ont été transmis aux parties prenantes au travers

déune base de donht®/kanbegiepfl.thi g, nndialeme nt développée dans le champ

d'application de cette thése.

Mots-clés: apprentissage automatique , calage , incertitude , interpolation de précipitations
machines a vecteurs de support , modélisation hydrologique , optimisation , Pattern -Oriented
Memory, prévision des débits , réseaux de neurones artificiels , SWAT, TRMM Zamb éze.
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Abstract

RESUMO

A Dbacia do rio Zambeze (ZRB), em Africa, desenvolve -se sobre uma vasta superficie de
1 370 000 km2, Em toda a sua grandeza, ela alberga aproximadamente 30 milhées de habitantes,

inclui vérias zonas de valor ecoldgico impar e tem um potencial hidroeléctrico estimado em

13 000 MW, dos quais apenas 5 000 MW se encontram explorados. O rio Zambeze assume um
papel central tanto na cultura como na economia locais. Com uma paisagem hetero génea e
clima semiarido, a bacia enfrenta desafios significativos motivados pelo crescimento demogréfico,

o rapido desenvolvimento econdémico e alteragcfes climéaticas. No futuro, a pressdo crescente

sobre os recursos hidricos locais seré inevitavel.

A modela céo hidrolégica ira certamente servir de apoio a decisores de todos os niveis no seu
esforco para enfrentar desafios vindouros. Embora, historicamente, a dimensdo, a
heterogeneidade, a situacédo politica e a escassez de dados hidrologicos tenham limitado a
abrangéncia e o sucesso dos modelos hidrolégicos desenvolvidos para a bacia, tecnologias
relativamente novas tais como a deteccdo remota por satélite ou a aprendizagem maquina
constituem ferramentas cujo potencial podera servir para ultrapassar tais limita coes.

O presente trabalho foi encetado com o objectivo de produzir um modelo hidrolégico da ZRB a

escala diaria e passivel de ser utilizado na optimizagdo e sincronizacdo das operacOes de
barragens, em avaliagbes de impactos ambientais e num vasto leque de outros estudos
relacionados com a vida selvagem, a quimica aquatica, o transporte de sedimentos ou a gestao

integrada de recursos hidricos.

Por forma a cumprir os objectivos propostos, algumas limitacdes, principalmente associadas aos
dados disponiveis, t eriam que ser estudadas antes da fase de modelacdo propriamente dita; o
recurso a dados de satélite seria incontornavel e 0 maximo proveito deveria ser retirado das séries
de caudais observados disponiveis. Adicionalmente, cedo se verificou que ndo seria p ossivel

apontar um model o Ynico como a omel hordé escol ha
que grande énfase teria que ser dada as etapas de calibragédo e validacéo.

Procurando alargar o periodo analisado, o método de interpolacéo Pattern -Oriented Me mory
(POM), orientado para a reproducgédo espacial de séries historicas de precipitacéo, foi introduzido.

Com base em modelos de aprendizagem maquina, o0 POM demonstrou ser superior a métodos
alternativos em situagcfes de escassez de dados e na presenca de var iabilidade elevada do
campo espacial da precipitagdo. Na ZRB, os erros associados a interpolagdo POM sé&o
semelhantes aos apresentados pelas melhores estimativas de precipitagdo por satélite. Para além

do referido, o POM tem vantagens adicionais: o seu dese mpenho melhora & medida que mais e
melhores dados de satélite vao ficando disponiveis e os mapas interpolados podem ser
directamente combinados com observacfes de satélite mais recentes para efeitos de
modelagdo hidroldgica, observando -se apenas efeitos mi ni mos r el aci onados
de suporteéod.
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A aplicacdo de modelos de aprendizagem maquina a previsdo de caudais foi dividida em quatro

frentes: a comparacdo de modelos alternativos (e.g. m odelo s auto -regressivos de médias moéveis
(ARMA), redes neurona is artificiais (ANN) e maquinas de vectores de suporte para regressédo
(SVR)); o melhoramento de técnicas de agregacdo da precipitagdo; o estudo de limitagGes
associadas com a utilizacdo de SVR e o desenvolvimento de um pés -processador de incerteza
ndo para métrico. Indo para além da preparacdo de modelos de previsdo do caudal
deterministicos com desempenhos promissores, mesmo para horizontes temporais alargados de 60

dias nas cataratas Vitoria, a investigagdo motiva a reavaliacdo da literatura publicada sobr ea
utilizagdo de modelos SVR quando utilizados para previsdo de caudais, tendo evidenciado com

base em principios teéricos e demonstrado na pratica perigos a eles associados.

Um novo pos -processador de incerteza ndo paramétrico foi desenvolvido. A metodol ogia
proposta € capaz de gerar distribuicGes de probabilidade correctas associadas a realizagGes de

séries temporais com base num conjunto de observacgdes passadas representativo. Trata -se de
uma técnica informal que, ao contrario de técnicas Bayesianas (fo rmais), ndo requere a definicao

de fun-»es de verosimilhan-a ou de um model o oOconceptua
Evidenciando bons desempenhos, extremamente versatil e de simples utilizagcdo, a metodologia

pode ser facilmente adaptada para incorporar nova informacdo. O seu potencial vai bem para

além da previséo de caudais e mesmo do campo da hidrologia.

O modelo hidrolégico  Soil and Water Assessment Tool (SWAT)foi utilizado com vista a modelagao
da totalidade da ZRB. Reconhecendo a importancia das etapas de calibragdo e validacéo,
investiu-se no desenvolvimento de uma interface de calibragdo flexivel e computacionalmente
eficiente. Em paralelo, uma anélise do SWAT na sua aplicagéo a bacia evidenciou algumas falhas

no codigo -fonte que deveriam ser tidas em conta, particularmente em bacias em que grandes
corpos de 4gua estejam presentes.

Apoiada em milhdes de simulagdes, a calibracdo de modelos hidrolégicos da bacia a escala

diaria, desde o Alto Zambeze praticamente até ao Delta (Marromeu), foi realizada dcré-se 0 pela
primeira vez. Revelou -se que a heterogeneidade desempenha um papel importante na hidrologia

local e recomenda -se que a calibragdo de modelos futuros possibilite a definicdo regional de
parametros. Entre os quatro esquemas de calibragdo testados , 0s melhores resultados foram
obtidos utilizando uma metodologia regional -regularizada devido a sua capacidade de simular,

ndo soO contribuicbes ao longo do trecho principal do Zambeze, como ao nivel dos principais
tributarios.

Os resultados mais important es decorrentes da presente investigacdo, assim como os dados de

base e trabalhos de outros investigadores do African Dams Project (ADAPT), foram transmitidos a
partes interessadas através da base de dados online do ADAPT (http://zambezi.epfl.ch ), um
projecto inicialmente desenvolvido no ambito da presente tese cujo desenvolvimento ira
continuar no A&mbito de um novo projecto de investigacao.

Palavras -chave : aprendizagem maquina, calibracdo, incerteza, interpolacdo da precipitacéo,
maquinas de vectores de suporte, modelagdo hidrolégica, optimizacdo, Pattern -Oriented
Memory, previsdo de caudal , redes neuronais artificiais, SWAT, TRMM, Zambeze.
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Chapter 1

1.1 Background

It is only fair that the first words of the body of the manuscript acknowledge the Portuguese

Fundacdo paraa Ciénciae a T ecnologia (Foundation for Science and Technology) and the Ecole
Polytechnique Fédérale de Lausanne (Swiss Federal Institute of Technology Lausanne , EPFI for
providing the | i on 9 sandsdsaumrces thaf madetihés rebearchd iposgible.

The research was hosted at the Centro de Estudos de Hidrossistemas (Centre for Hydrosystems
Research , CEHIDRO) of Instituto Superior Técnico (IS7, affiliated to the University of Lisbon (ULisboa),
and the Laboratoire de Constructions Hydrauligue s (Hydraulic Constructions Laboratory , LCH) of
EPFL.Although a mostly individual endeavor, the work here in presented is also a product of the
uniqgue combination of skills and resources achieved by the establishment of the IST -EPFL joint
doctoral initiativ e, of which it makes part.

The African Dams Project (ADAPT) was a multidisciplinary project set on enhancing the scientific

basis for integrated water resources management in the Zambezi River basin (ZRB)(Mertens 2013).
Financed by the Swiss Competence Center Environment and Sustainability (CCES), ADAPT covered
topics as diverse as ecology, economics, biogeochemistry, hydrology and governance. The
present work is closely related to the activities developed under ADAPT and attempted to take
advantage of synergies with the project, resulting that although it was not directly funded by
ADAPT, it greatly benefite d fromits financial, material and , most importantly, human resources.

Finally, the development of the work profited from some
Ph. D. r es ear clifiuence of tdant ¢ epdratian on water resources management under

different scenarios in the Zambezi River Basin considering environmental objectives and

hydropower 6 (Cohen Liechti 2013 ), which was also developed at  the LCH.

1.2 Motivation and objectives

Africa is a truly bewildering Continent. Full of potential, teeming with life, it has for some time hinged
between explosive, all -promising development and economic, political, and humanitarian disaster

As this text is written, investment surges and it seems clear that the Continent is on the right path.
Sadly, even on the right path, populations in this part of the World endure difficulties downright
inconce ivable by European standards and which is crucial to relieve . Given such a background,
research that can contribute to alleviate the situation , wWhether directly or not, is particularly
worthwhile pursuing.

Making for more pragmatic motivation for research related to Africa are the still too long list s of
infrastructure and capacitation needs. In both fields research is needed , either to improve




efficiency, enhance effectiveness, better evaluate environmental impacts and rally public
awareness, or to create, foster and enlarge local scientific communities

From a foreignerds point of view some of Sout hern Africa
GSM? technology, cutting -edge cellphones, dirt roads, and slums appearing more often than not

combined. From a r esear cher és perspecti ve, such an environment
provides unique challenges and opportunities. With so much to be done, one might be led to

believe it is easy to make a difference 0 it is not. Tales of efforts whose fruits have never b  een

reaped abound and objectives should be defined with this in mind.

Africa is still to face remarkable and new challenges in the future. They are related to population
growth, unprecedented migration towards urban centers, higher pressure on natural reso urces,
and climate change. Water resources, in particular, are regarded has a pivotal issue in the stability

of the region.

The Zambezi River and its main tributaries jointly cross several countries and are the basis for
ecological, social and economic sy stems of great value. Notwithstanding, with few improvements

in the management of water resources over the last decades (The World Bank 2010), the Zambezi
River Basin (ZRB still lacks an integrated water resources policy.

The present research focuses on the  hydrology of the ZRB where the riparian countries depend
strongly on the river and main tributaries and, consequently, water resources issues have profound

economic, ecological, social and political impacts .

The ultimate aim of the research was to prepare a hydraulic -hydrological model of the ZRBat a
daily time scale with potential to be applied in parallel and subsequent researches being
developed under ADAPT and directly by stakeholders, envisaging future use in dam operat ion

optimization and synchronization, environmental impact assessments, evaluation of future
scenarios (predicting responses to climate change and increased demands) and a broad range of

other studies related to themes such as wildlife, water chemistry, se diment transport, and
integrated water management. Being these very general aims, it became apparent to the author

at an early stage that:

1 constraining issues, mostly related to input data, would have to be addressed bef ore the

actual modeling stages;
T nosingle model could be a o0bestdé choice for such a wide
1 alarge emphasis would have to be placed on model calibration and validation ;and

1 in order to engage stakeholders 0 responsible for providing data and general knowledge
about the basin 8 the research should produce appealing results.

Besides other features, better discussed in Chapter 2, one of the main characteristics of the ZRB is
hydrological dat a scarcity. As will be described in Chapter 3, past modeling attempts often
downplayed the importance of calibration and validation ; partly, it is believe d, due to the difficult
access to information. One of the ob jectives of the research was, therefore, to study how to best
overcome or alleviate such a constraint, either through the use of appropriate remote sensing
alternatives or by developing new data processing strategies.

It was recognized that no hydrological model could perform adequately tasks as diverse as
streamflow forecasting and environmental impact assessments . Having in mind the limited access
to data and knowledge about t hdecidedatat the @evelopmpedtrofoal o gy , it was
traditional physically based semi  -distributed hydrologic model should be complemented with more
flexible machine learning tools. In fact, while the former should be capable of providing insights
about t he basi nefum reSuitshah seveaal points of interest and be fit for simulating
alternative future scenarios, the latter have the potential to perform better at determinate

1 Global System for Mobile Communications
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locations and the advantage of requiring much less resources to set up, calibrate, validate ,
operate and maintain.

Another goal was to endeavor, likely for the first time, the calibration and validation of a basin -wide

daily model from the upper catchment down to the delta. In order to achieve this, several 01 e®ser
objectives were addressed, su ch as the development of a calibration strategy capable of coping

with  multi -site  performance evaluation and parameter heterogeneity, maximizing the

computational performance of the model, and preparing it to simulate features and processes

that, while not particular to the ZRB, have there an  unusual weight (e.g. relatively large wetlands

and large reservoirs).

Finally, acknowledging the importance of organizing findings and publishing results, an online
platform for data storage and sharing was developed. This platform, which can be visited at
http://zambezi.epfl.ch __, is likely to harbor real -time streamflow forecasts based on the findings of this
and other ADAPT researches, as well as to enable the online modification and operation of the

developed hydrological models in the near future . Going further than the present research, this
effort was supported by the ADAPT project and plans are in place to boost its development and
expansion.

1.3 General description of and s tructure of the document

By virtue of the broad -scope d objectives the research set out to attain, the contents o f the
document cover a wide range of subjects, going from the choice and pre -processing of
appropriate remote sensing datasets to the development of an efficient calibration strategy for a
basin-wide hydrological model ; passing still in between by advances in machine learning
streamflow forecasting tools.

Due to the vast size of the ZRB and the little existing knowledge about its hydrolo gy O particularly at
smaller scales & modeling was more often interpreted from a mathematical point of view than from
a process -focused perspective . In practice, this led to a document that mostly drifts away from the
description and exploration of physica | hydrological processes. Albeit an arguable choice, this was
the only way of keeping the research tractable and goal oriented. Indeed, it is believed that by

placing too much emphasis on physical processes, the sheer scale of the problem, combined with
the insurmountable lack of detailed data, would unavoidably lead to an undesired detachment

between theory and practical results.

The statement of goals having been made and being given the justification for the nature of the

developed research, the document is structured as follows:
1 Chapter 2 provides details about the ZRB, including a physical description of its main
subbasins and main features. Challenges and opport unities related to water resources
where hydrological modeling is likely to play a pivotal role are also briefly laid out.

1 Chapter 3 is devoted to literature review and focuses on four main themes: past
hydrological modeling efforts on the ZRB; the Soil and Water Assessment Tool (SWAT d the
chosen classic hydrological modeling tool); calibration and validation of hydrological
models; a nd machine learning algorithms for regression.

1 Chapter 4 provides a thorough introduction to data sources, with emphasis on Digital
BHevation Models (DEM) and satel lite rainfall estimates. The diversity among datasets, as
well as their applicability to the ZRB  isdiscussed.

1 Chapter 5 describes a novel rainfall interpolation me  thodology, named  Pattern -Oriented
Memory (POM), which makes use of modern satellite rainfall estimates in order to
interpolate historical rainfall areal maps, a crucial step in order to make the best use of the
discharge series available for the calibratio n of the hydrological models.

1 Chapter 6 focuses on the application of data -driven machine learning models for daily
streamflow forecast. The chapter covers three r  elated, but distinct topics. Firstly, different
data -driven models are compared for several forecast lead times and input sets. In order



http://zambezi.epfl.ch/

to convey rainfall information to the models, a novel approach to pre -process areal rainfall
maps is introduced. Second ly, behaviors specifically associated to support vector
regression models are shown to potentially lead to a substantial underestimation of
extreme discharges. Finally, a new , flexible approach to produce empiric probabilistic
forecast ensembles is develop ed.

1 In Chapter 7 the preparation of the SWAT hydrological model of the ZRB, as well as
changes made to its source code are discussed. Additionally, the develop ment of the
model calibration framework is described.

1 Chapter 8 returns to the POM interpolation methodology by exploring one of its

advantages beyond the good comparative performance with state -of -the -art techniques.
In this chapter it is shown that mode Is calibrated directly with satellite rainfall estimates can
assimilate POM interpolated rainfall maps seamlessly or, at least, much better than maps

interpolated resorting to other  techniques such as Kriging.

1 Chapter 9 dwells on the calibration of basin  -wide daily SWAT models. Limitations of global
calibration approaches are discussed, a cascading single -objective calibration  process is
analyzed, and multi -objectiv e global and regional calibration schemes are introduced
and debated. Issues such as model detail vs. computation time trade  -off and the influence
of the number of free model parameters on training performance and reliability are also
focused.

1  Finally, conclusions and prospect sfor future work are summarized in Chapter 10.

Appendix | contains information supporting the main text. Not comprising scientific work  per se, put
also a relevant part of t bAppendiklhigededicatéd toa c & lwief ddsdrigtidtnme nt s,
of the ADAPT online database for data sharing and publication of results.




Chapter 2

2.1 The Zambezi River basin

The ZRBis located in Southern Africa, being bounded by the 20°30'S and 9°S latitudes and 18°20'E

and 36°25'E longitudes 1. The Zambezi River, stretching over nearly 2 600 km, is the fourth longest river

in Africa, after the Nile, the Congo and the Niger. The basin covers approximately 1 370 000 km?

(The World Bank 2010 ), which is roughly the equivalent of 15 times the area of Portugal, 3 0 times the

area of Switzerl and, or 30% of the area of the 28 membe
approximately 30 million inhabitants (The World Bank 2010 ) and its area is shared among 9 riparian

countries: Angola (18.3%), Botswana (1.2%), Democratic Republic of the Congo (0.1%), Malawi

(8.3%), Mozambique (11.8%), Namibia (1.2%), United Republic of Tanzania (2.0%), Zambia (41.7%)

and Zimbabwe (15.5%) 2. The basin is positioned in Figure 2.1.

-10°

Legend

Main lakes

-20°

I~ Main rivers
9 Zambezi River basin
International borders

-25° 0° 25° 50° 75° 100° 125°
Figure 2.1. Location of the Zambezi River basin.

The ZRB encompasses humid, semi -arid and arid regions dominated by seasonal rainfall patterns
associated with the Inter-Tropical Convergence Zone. The dominant rainfalls over the  basin occur

LIn the remainder of the text and contained figures coordinates are referenced in the WGS84 datum.

2 Other area distributions have been estimated. An example is Angola (18.3%), Botswana (2.8%), Democratic
Republic of the Congo (negligible), Malawi (7.7%), Mozambique (11.4%), Namibia (1.2%), Tanzania (2.0%),
Zambia (40.7%) and Zimbabwe (15.9%) (Voérdsmarty and Moore 1991 ).




during the Southern hemisphere summer (from October to April) and the winter months are
generally dry (Cohen Liechti 2013 ).

Three distinct seasons can be identified in the Zambezi. A cold dry season with temperatures from
15 to 27°C lasts from May to September. From October to November a dry hot season where
temperatures reach up to 32°C can be identified. Finally, a hot rainy season from December to

April is characterized by high temp  erature and high humidity ~ (Meier 2012).

The average yearly rainfall over the basin displays a high spatial variability and is of about
1000 mml/yr, being the potential evapo transpiration close to 2000 mm/yr (Meier 2012, Cohen
Liechti 2013). The hydrology is not uniform, generally prone to higher rainfall rates in the northern
regions. In some areas such of the Upper Zambezi and the Malawi Lake (see Section 2.2 for their
location) rainfall can amountto as much as 1400 mm/yr, while in the southern part of Zimbabwe it
can be as little as 500 mm/yr (The World Bank 2010 ).

Climate variati ons are particularly strong in the basin, although difficult to assess. An extensive
analysis of Southern African climate by Tyson et al. (2002) revealed variability patterns with main
components of 80 and 18 years (Cohen Liechti 2013 ).

The runoff is also affected by long cycles which have been reported to depend mainly on the

rainfall cy cles (Cohen Liechti 2013 ). Referring to the period from 1924 to 2004 , Mazvimavi and Wolski
(2006) estimated the period of the main runoff cycle to be of 40 years. Values for the mean annual
discharge at the Delta vary appreciably. Examples are The World Bank (2010), which gives a
precise figure of 4134 m 3/s, Tilmant et al. (2010), which point towards 3800 m 3/s, and Matondo and
Mortensen (1998), that estimate 3251 m 3/s.

The river and its main tributaries are vital to the riparian populations from cultural and economic
standpoints. They are sources of hydropower, havens of ecological diversity and essential for the
regi onds f odheé ZRBésaichiinindtuyal resources. The main economic activities are fisheries,
mining, agriculture, tourism, and manufacturing  (The World Bank 2010).

The ZRB is one of the mo st valuable natur al resources in Afri

most heavily dammed river systems. Dam -induced ecological changes have already had
consequences on wildlife and ecosystem -based liv elihood of downstream residents  (Meie r 2012).
The largest consumptive water user besides dams (evaporation through impoundment, approx. 13
km3/yr) is irrigated agriculture (approx. 2 ~ km?3/yr). Domestic water use amounts to approx. 1 km3/yr
and industrial water to  about 0.2 km3/yr. In total, consumptive water use is presently around 15  -20%
of total annual runoff ~ (Beck 2010).

In the second half of the 20 t century the political situation within the basin became highly unstable.
Zambia and Malawi gained th  eir independence from the British Empire in 1964. Following
independence, both countries instated single -party systems which rul ed
declared its own independence in 1965 under a white minority rule. Independence however, was

not t o be granted until 1980, being Zimbabwe targeted by international sanctions in the midterm. In

parallel, guerilla actions against the white minority rule were conducted eventually escalating into

a civil war, between 1964 and 1979, until an agreement leadi ng to majority rule was achieved.
From 1982 to 1985 internal opposition led to further conflicts. In Angola, guerilla actions t owards
independence from Portugal started in 1961. Shortly after independence, in 1975, civil war broke

out, ravaging the country from 1976 to 2002. Mozambique followed an identical path. Armed
action against the Portuguese started in 1964, lasting until the independence, granted also in 1975.

The political instability that followed degenerated into a civil war which took place from 1977 to
1992.
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2.2  Physical description of the Zambezi River  basin

221 Overview
A brief climatologic al, hydrologic al, economic and political introduction to the ZRB has already
been made in Section  2.1. Here, a description of its main physical features is made.

As illustrated in Figure 2.2 the ZRB can b e split into three main regions: the Upper Zambezi, the
Middle Zambezi , and the Low Zambezi . Additionally, there are 13 main subbasins identified in Figure
2.3.

Legend
Zambezi River basin " \‘
C3 Official subbasins . :‘2
Lower Zambezi .
Middle Zambezi
Upper Zambezi
g Main lakes
’ Wetlands /
~"\r~= Main reaches : 2 '{:\‘.‘ ] (
A Dams o m
B Wetlands or lakes § - N mﬁiﬁﬂ;ﬁiﬁ :‘
e e A i corge
w
@ Marromeu Corr;plex
]

20° 30°
Figure 2.2. Main regions and features of the ZRB

The Upper Zambezi is marked by steep slopes in the northern area and , going south , large wetland s
such as the Barotse Plains. A dis tinctive feature of this part of the basin is also the Chobe -Zambezi
confluence, where water  can flow both ways dependingon  water levels.

The Middle Zambezi develops between the World -renowned Victoria Falls and the Cahora Bassa
reservoir. To major affluents of the Zambezi (the Kafue and Luangwa rivers) join the main reach in

this area. The Kariba dam and the Kafue hydropower system (ltezhi -Tezhi and Kafue Gorge dams),
as well as the Kafue Flat s, are its most noticeable features.

Finally, the Lower Zambezi is dominated by the Malawi Lake and the Cahora Bassa dam. In the
lowlands near the outlet into the Indian Ocean, the Marromeu Complex wetlands and the Delta
can be found

The approxi mate areas and mean annual r ai nAigaré 23aever the
shown in Table 2.1 and Table 2.2.

222 Main subbasins
Following, a brief description of the main subbasins is presented. In Appendix |.A detailed maps of
the different subbasins along with the identification of their most relevant features are presented.

Upper Zambezi, Lungue Bungo and Kabompo
The Upper Zambezi, Lungue Bungo and Kabompo subbasins are the most upstream catchments of
the ZRB. Due to highrainfalls ,a gr eat share of the Zambezi s runoff is
major impoundments or wetland areas, streamflows are mostly unregu lated. Two main discharge




gauging stations could be identified: Chavuma falls, in the Upper Zambezi (

Pontoon, in the Kabompo.

Legend

Figure 2.4) and Watopa

. Zambezi River basin
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Figure 2.3. Elevation and

Table 2.1. Approximate area so f
main subb asins.

Subbasin Area [knf]
Barotse 116 000
Cuando / Chobe 155 000
Kabompo 72000
Kafue 155 000
Kariba 165 000
Luanginga 33000
Luangwa 153 000
Lungue Bungo 47 000
Mupata 25000
Shire River 169 000
Tete 204 000

Upper Zambezi 94 000
Zambezi Delta 12 000

Barotse and Luanginga

Moving downstream, the Zambezi passes through the

from the Luanginga

due to the presence of large wetlands (the

Chobe/Zambezi confluenc

Senanga, close to the outlet of the Plains,

Cho be/Zambezi confluence.

30°
main subbasins of the ZRB.

t he

Z a Table 2.2. Estimated mean annual rainfall over
Z a mimanz sulibasins (The World Bank

2010).
Subbasin Mgan annual
rainfall [mm]
Barotse 820
Cuando / Chobe 800
Kabompo 1220
Kafue 1040
Kariba 700
Luanginga 960
Luangwa 1020
Lungue Bungo 1100
Mupata 820
Shire River 1120
Tete 880
Upper Zambezi 1220
Zambezi Delta 1060

most notable

Barotse subbasin and receives contributions
River. Here, the characteristics of the main reaches are substantially different

being the Barotse Plains and the

e). The main discharge gauging stations assessed for the region were
Lukulu, immediately upstream of the Barotse Plains, Kalabo, near the outlet of the Luanginga River,

and Sesheke, between the Plains and the
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Figure 2.4. Chavuma Falls (' Arthur Taute , from Panoramio:
http://www.panoramio.com/photo/53299941 ).

Cuando/Chobe
The Chobe (also named Cuando or Kwando) is a very particular subbasin. Despite its large area, its
contribution to the Zambezi is negative on average and highly dependent on water levels

(Matondo and Mortensen 1998 , The World Bank 2010). This happens due to the lo w slopes of t he
main stem of the Chobe River,  which make most of its flow disperse into an inland delta. The delta
itself is only linked to the Zambezi trough a narrow strip with  another sizeable wetland at the
confluence

Kariba and Mupata
The Kariba and Mupata subbasins are mostly dominated by the Kariba reservoir 0 the largest in the
World by volume & which heavily regulates the flows from upstream. The Kariba subbasin also marks
the transition into the Middle Zambezi at Victoria Falls ( Figure 2.5).

Most of the Zimbabwean share of the ZRB lies s outh of the Kariba reservoir.  Although average
annual rainfall is relatively low in the region, the diffic ult access to discharge series and the
presence of numerous small impoundments renders the evaluation of actual runoff extremely
difficult.

The Mupata subbasin, where the Kafue and Zambezi rivers meet, is largely ungauged area of
reduce d slopes where the r iver branches and widens.

Figure 2.5. Vict oria Falls (on the background)



http://www.panoramio.com/photo/53299941

Kafue
The Kafue subbasin, in Zambia, is perhaps the most  well-known part of the ZRB due to a large
hydropower scheme and the Kafue Flats ecosystem. The Kafue river basin roughly divides into two
major sections: the headwaters upstream of the Itezhi -Tezhi reservoir and the lower Kafue basin
downstream of Itezhi -Tezhi. While at its headwaters the flow is still mostly unregulated, in the lower
basin the hydrology is strongly influenced by the Itezhi -Tezhi and Kafue Gorge dams  (Meier 2012 ).

The hydrological processes in the Kafue Basin are particularly complex with t he influence of
massive floodplains (the Lukanga and the Kafue flats) and the aforementioned dams (Cohen
Liechti 2013). The subbasin is relatively well monitored, with long discharge series at key locations
such as the Kafue Hook Bridge , upstream of the Itezhi -Tezhi reservoir.

Luangwa
The Luangwa River flows into the Zambezi just upstream of the Cahora Bassa reservoir. Its subbasin
presents a relevant hydrologic modeling challenge due to being mostly ungauged 3, having a small
storage volume and displaying quick response times to rainfall events (Meier et al. 2011 ). Despite
having a |imited contribution to the Zm3lfTheWoddsBarkv er age
2010)), its quick hydrological response often leads to relevant high peak s. Consequently, the

subbasin is of crucial importance to the operation of the Cahora Bassa dam.

Shire River
The Shire River 8s subbagamment $eatureathekMaldwi bale. Despie aimghs t
average annual rainf all in the subbasin, the Shire River contributes only with a relatively small flow to

the Zambezi River. This is mainly dueto the | ar ge | akeds surface, wthreughe gr eat
evaporation take place (averaging almost 290 m 3/s according to The Wor Id Bank (2010)).
Several gauging stations along the Shire exist, although the effects of mobile beds and backwater

curves are hard to assess.

Tete and Zambezi Delta
The Tete subbasin, including the Cahora Bassa dam and reservoir, witnesses the fast descent of the
river to low altitude and mostly flat regions. Discharges within the main reach of the Zambezi are
hard to assess downstream of the dam due to mobile river beds and increased branching as the
river approaches the Ocean ( Figure 2.6).

Figure 2.6. Zambezi River near Tete (photo by Théodora Cohen Liechti).

223 Main dams

The main dams within the ZRB are briefly described below. In Table 2.3 their key characteristics are
presented and, in Appendix |.B, their height -volume, volume -surface, and maximum discharge
curves are presented.

3 Records of two discharge gauging stations were used in this work. Notwithstanding, recent r ecords are scares,
conditioning most validation efforts.

10



Chapter 2

Table 2.3. Characteristics of th e main dams within the ZRB and associate d reservoirs. Adapted from
Cohen Liechti (2013).

Spillway capacity

Reservoir Commissionin¢Operation Op. Reservoit Turbine .
. and associated
name year level volume area capacity
water level
[mas.l] [km¥ [10°m? [m¥%s] [MW] [m¥%s] [mas.l]
ltezhi-Tezhi ng. 1977 1030.5 6 380 160 i 4425 1030.5
Min. 1006.0 0.78 90 402  1020.0
Extension 2013 312 120
Kafue Gorge Max. 1972 976.6 0.90 750 252 900 3600 978.0
Min. 975.4 0.13 180 780 972.3
Kariba ng. 1961 489.0 191 5627 1800 1470 9402 488.6
Min. 475.5 116 5300 8502 484.0
North bank 2012-2014 430 360
extension
Max. 329.0 63.0 2974 15683 331.0
CahoraBassa \ ;| 1974 2050 122 s 20 P gmy 2950
Kariba
The Kariba dam was completed in 1959. With a storage capacity of 180 km?3 (of which about
65 km? are active storage) and having a surface area of approximately 5500 km?2, it is among the

great artificial reservoirs in the  World, being the largest one by volume (Figure 2.7). The dam is
managed by the Zambezi River Authority (ZRA) a binational company owned by the states of
Zambia and Zimbabwe.

Figure 2.7. Kariba dam and reservoir (left  photo by Sean Ross, from Panoramio:
http://www.panoramio.com/photo/65334783 ; right image from Google Earth 8 approx. 210 km

across).

The mean annual runoff in the section of the dam is of about 1300 m3/s (Meier 2012 ). The dam has
a considerable installed capacity of 14 50 MW, which equates to a discharge of 1800 m?3/s. Its
spillway capacity isclose to 9500 m?3/s. Due to the development of a scour hole which threatened
the damdés stability, however, the reservoir has
some time 4. Consequently, since the 198008s operations
the spillways (Cohen Liechti 2013 ). The reservoir has large impacts on the flows downstream, greatly
reducing seasonal variability  (Beilfuss and Dos Santos 2001, Matos et al. 2010 )

4The devel opment of this scour hole, as well as measures

not

beer

have mc

recently subject to an indepth study by EPFH)6s Laboratody
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Cahora Bassa
The Cahora Bassa dam (Figure 2.8) was completed in 1974 with the primary objective of export ing
power to South Africa. Itis managed by the Moza mbican state -owned company Hidroeléctrica de
Cahora Bassa (Cahora Bassa Hydroelectric , HCB). However, due to the civil war, the transmission
line was destroyed and for 20 years, nearly no electricity was produced . This continued until the
hydropower statio n was reactivated in 2000 (The World Bank, 2010) .

Figure 2.8. Cahora Bassa dam and reservoir (left photo by Théodora Cohen Liechti ; right image from
Google Earth dtop facing East, approx. 150 km across).

Having a 60 km3 reservoir, with 51 km? of net storage capacity , the dam can presently produce up
to 2075 MW of electricity , which corresponds to a flow of roughly 2250 m?3/s & very close to the
average di schar g ecapaciyhieof abquilli | @0 ynIss

Plans to safely riset h e r e s eperatingilevelss through additional spillways are being developed.
In parallel, the development of an additional power house iis expected to increase
installed capacity to appr oximately 3000 MW.

Itezhi-Tezhi and Kafue Gorge
The Kafue hydropower scheme, comprised by the Itezhi -Tezhi and Kafue Gorge dams, is quite
singular. The Kafue Gorge dam, downstream, takes advantage of a large hydraulic head but has
no substantial storage ca pacity. This storage is provid ed by the Itezhi -Te z h i r e sken# which, r 6 s 6
in spite of comprising a considerable volume in absolute terms , pale in comparison to  the volume
of the Kariba or Cahora Bassa reservoirs . Amidst Itezhi-Tezhi and Kafue Gorge lay the Kafue Flats, a
wetland area of enormous ecological value that stretches for approximately 200  km.

The Itezhi-Tezhi dam ( Figure 2.9) was completed in 1978 and, being mainly built in order to provide
extended storage capacity for the Kafue Gorge dam, did not have turbines for electricity
produ ction installed until 2010. Itezhi-Tezhi is especially designed to allow managed flood release S
to maintain a certain flooding in the floodplain downstream. However, the operation rules of the

dam are very strict and usually the benefits of increased power production were chosen in
detriment of a distinct flood release for the floodplain. The Kafue Gorge reservoir was built in 1972
immediately downstream of  the Kafue Flats. It has an installed capacity of 900 MW and plans exist
to extended itto 990 MW (Meier 2012).

224 Malawi Lake and the main wetlands

Malawi Lake
The Malawi Lake ( Figure 2.10), also known as Nyasa or Niassa Lake, is by far the largest  water body
in the ZRB. It lies at 474 m above sea level in the African rift valley, with a surface area of 28 000 km?2,

a volume of 8000 kms3, and a length of 550 km (Jury and Gwazantini 2002 ). Its bottom goes well
below sea level with depths reaching 706 m. The lake is remarkable for the unusually high ratio
between its surface and that of the contributing catchments , which is close to 1/3.
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