Efficient Multi-Word Compare and Swap

Rachid Guerraoui
EPFL, Lausanne, Switzerland
rachid.guerraoui@epfl.ch

Alex Kogan
Oracle Labs, Burlington, MA, USA
alex.kogan@oracle.com

Virendra J. Marathe
Oracle Labs, Burlington, MA, USA
virendra.marathe@oracle.com

Igor Zablotchi
EPFL, Lausanne, Switzerland
igor.zablotchi@epfl.ch

Abstract

Atomic lock-free multi-word compare-and-swap (MCAS) is a powerful tool for designing concurrent algorithms. Yet, its widespread usage has been limited because lock-free implementations of MCAS make heavy use of expensive compare-and-swap (CAS) instructions. Existing MCAS implementations indeed use at least $2k + 1$ CASes per k-CAS. This leads to the natural desire to minimize the number of CASes required to implement MCAS.

We first prove in this paper that it is impossible to “pack” the information required to perform a k-word CAS (k-CAS) in less than k locations to be CASed. Then we present the first algorithm that requires $k + 1$ CASes per call to k-CAS in the common uncontended case. We implement our algorithm and show that it outperforms a state-of-the-art baseline in a variety of benchmarks in most considered workloads. We also present a durably linearizable (persistent memory friendly) version of our MCAS algorithm using only 2 persistence fences per call, while still only requiring $k + 1$ CASes per k-CAS.

2012 ACM Subject Classification Theory of computation → Concurrent algorithms

Keywords and phrases lock-free, multi-word compare-and-swap, persistent memory

Digital Object Identifier 10.4230/LIPIcs.DISC.2020.4

Funding This work has been supported in part by the European Research Council (ERC) Grant 339539 (AOC).

1 Introduction

Compare-and-swap (CAS) is a foundational primitive used pervasively in concurrent algorithms on shared memory systems. In particular, it is used extensively in lock-free algorithms, which avoid the pitfalls of blocking synchronization (e.g., that employs locks) and typically deliver more scalable performance on multicore systems. CAS conditionally updates a memory word such that a new value is written if and only if the old value in that word matches some expected value. CAS has been shown to be universal, and thus can implement any shared object in a non-blocking manner [32]. This primitive (or the similar load-linked/store-conditional (LL/SC)) is nowadays provided by nearly every modern architecture.
CAS does have an inherent limitation: it operates on a single word. However, many concurrent algorithms require atomic modification of multiple words, thus introducing significant complexity (and overheads) to get around the 1-word restriction of CAS [9, 17, 23, 24, 39, 44]. As a way to address the 1-word limitation, the research community suggested a natural extension of CAS to multiple words – an atomic multi-word compare-and-swap (MCAS). MCAS has been extensively investigated over the last two decades [4, 5, 17, 23, 24, 31, 32, 43, 51]. Arguably, this work partly led to the advent of the enormous wave of Transactional Memory (TM) research [29, 30, 34]. In fact, MCAS can be considered a special case of TM. While MCAS is not a silver bullet for concurrent programming [19, 33], the extensive body of literature demonstrates that the task of designing concurrent algorithms becomes much easier with MCAS. Not surprisingly, there has been a resurgence of interest in MCAS in the context of persistent memory, where the persistent variant of MCAS (PMCAS) serves as a building block for highly concurrent data structures, such as skip lists and B+-trees [6, 53], managed in persistent memory.

Existing lock-free MCAS constructions typically make heavy use of CAS instructions [4, 31, 43], requiring between 2 and 4 CASes per word modified by MCAS. That resulting cost is high: CASes may cost up to 3.2× times more cycles than load or store instructions [16]. Naturally, algorithm designers aim to minimize the number of CASes in their MCAS implementations.

Toward this goal, it may be tempting to try to “pack” the information needed to perform the MCAS in fewer than \(k \) memory words and perform CAS only on those words. We show in this paper that this is impossible. While this result might not be surprising, the proof is not trivial, and is done in two steps. First, we show through a bivalency argument that lock-free MCAS calls with non-disjoint sets of arguments must perform CAS on non-disjoint sets of memory locations, or violate linearizability. Building on this first result, we then show that any lock-free, disjoint-access-parallel \(k \)-word MCAS implementation admits an execution in which some call to MCAS must perform CAS on at least \(k \) different locations. (Our impossibility result focuses on disjoint-access-parallel (DAP) algorithms, in which MCAS operations on disjoint sets of words do no interfere with each other. DAP is a desirable property of scalable concurrent algorithms [37].)

We also show, however, in the paper that MCAS can be “efficient”. We present the first MCAS algorithm that requires \(k + 1 \) CAS instructions per call to \(k \)-CAS (in the common uncontended case). Furthermore, our construction has the desirable property that reads do not perform any writes to shared memory (unless they encounter an ongoing MCAS operation). This is to be contrasted with existing MCAS constructions (in which read operations do not write) that use at least \(3k + 1 \) CASes per \(k \)-CAS. Furthermore, we extend our MCAS construction to work with persistent memory (PM). The extension does not change the number of CASes and requires only 2 persistence fences per call (in the common uncontended case), comparing favorably to the prior work that employs \(5k + 1 \) CASes and \(2k + 1 \) fences [53].

Most previous MCAS constructions follow a multi-phase approach to perform a \(k \)-CAS operation \(op \). In the first (locking) phase, \(op \) “locks” its designated memory locations one by one by replacing the current value in those locations with a pointer to a descriptor object. This descriptor contains all the information necessary to complete \(op \) by the invoking thread or (potentially) by a helper thread. In the second (status-change) phase, \(op \) changes a status flag in the descriptor to indicate successful (or unsuccessful) completion. In the third (unlocking) phase, \(op \) “unlocks” those designated memory locations, replacing pointers to its descriptor with new or old values, depending on whether \(op \) has succeeded or failed.
In order to obtain lower complexity, our algorithm makes two crucial observations concerning this unlocking phase. First, this phase can be deferred off the critical path with no impact on correctness. In our algorithm, once an MCAS operation completes, its descriptor is left in place until a later time. The unlocking is performed later, either by another MCAS operation locking the same memory location (and thus effectively eliminating the cost of unlocking for op) or during the memory reclamation of operation descriptors. (We describe a delayed memory reclamation scheme that employs epochs and amortizes the cost of reclamation across multiple operations.)

Our second, and perhaps more surprising, observation is that deferring the unlocking phase allows the locking phase to be implemented more efficiently. In order to avoid the ABA problem, many existing algorithms require extra complexity in the locking phase. For instance, the well-known Harris et al. [31] algorithm uses the atomic restricted double-compare single-swap (RDCSS) primitive (that requires at least 2 CASes per call) to conditionally lock a word, provided that the current operation was not completed by a helping thread. Naively performing the locking phase using CAS instead of RDCSS would make the Harris et al. algorithm prone to the ABA problem (we provide an example in the full version of our paper [25]). However, in our algorithm, we get ABA prevention “for free” by using a memory reclamation mechanism to perform the unlocking phase, because such mechanisms already need to protect against ABA in order to reclaim memory safely.

Deferring the unlocking phase allows us to come up with an elegant and, arguably, simple MCAS construction. Prior work shows, however, that the correctness of MCAS constructions should not be taken for granted: for instance, Feldman et al. [20] and Cepeda et al. [12] describe correctness pitfalls in MCAS implementations. Thus, we carefully prove the correctness of our construction. We also evaluate our construction empirically by comparing to a state-of-the-art MCAS implementation and showing superior performance in a variety of benchmarks (including a production quality B+-Tree [6]) in most considered scenarios.

We note that the delayed unlocking/cleanup introduces a trade-off between higher MCAS performance (due to fewer CASes per MCAS, which also leads to less slow-down due to less helping) and lower read performance (because of the extra level of indirection reads have to traverse when encountering a descriptor left in place after a completed MCAS). One may argue that it also increases the amount of memory consumed by the MCAS algorithm. Regarding the former, our evaluation shows that the benefits of the lower complexity overcome the drawbacks of indirection in all workloads that experience MCAS contention. Furthermore, we propose a simple optimization to mitigate the impact of indirection in reads. As for the latter, we note that much like any lock-free algorithm, the memory consumption of our construction can be tuned by performing memory reclamation more (or less) often.

The rest of the paper is organized as follows. In Section 2 we describe our model. In Section 3 we present our impossibility result. Sections 4 and 5 detail our MCAS algorithms for volatile and persistent memory. Section 6 elaborates our lazy memory reclamation scheme. Section 7 presents the results of our experimental evaluation. We review related work in Section 8 and conclude in Section 9. Due to space limitations, some content (proofs, additional performance results etc.) has been omitted and appears in the full version of this paper [25].
2 System Model

2.1 Volatile Memory

We assume a standard model of asynchronous shared memory [35], with basic atomic read, write and compare-and-swap (CAS) operations. The latter receives three arguments – an address, an expected value and a new value; it reads the value stored in the given address and if it is equal to the expected value, atomically stores the new value in the given address, returning the indication of success or failure.

Using those atomic operations, we implement an atomic MCAS operation with the following semantics. The MCAS operation receives an array of tuples, where each tuple contains an address, an expected value and a new value. For ease of presentation, we assume the size of the array is a known constant \(N \). (In practice, the size of the array can be dynamic, and different for every MCAS operation.) The MCAS operation reads values stored in the given addresses, and if they all are equal to respective expected values, atomically writes new values to the corresponding address and returns an indication of success. Otherwise, if at least one read value is different from an expected one, the MCAS operation returns an indication of failure. We also provide a custom implementation of a read operation from a memory location that can be a target of an MCAS operation (which, in the most general case, can be any shared memory location).

Our MCAS implementation is linearizable [35]. This means, informally, that each (read or MCAS) operation appears to take effect instantaneously at some point in time in the interval during which the operation executes. In terms of progress, our MCAS implementation is non-blocking. That is, a lack of progress of any thread (e.g., due to the suspension or failure of that thread) does not prevent other threads from applying their operations. Furthermore, the MCAS implementation guarantees lock-freedom. That is, given a set of threads applying operations, it guarantees that, eventually, at least one of those threads will complete its operation.

Similar to many non-blocking algorithms, our design makes use of operation descriptors, which store information on existing MCAS operations, including the status of the operation and the array of tuples with addresses and values. We assume each word in the shared memory can contain either a regular value or a pointer to such a descriptor. A similar assumption has been made in prior work on MCAS [20, 31, 52, 53]. In practice, a single (e.g., least significant) bit can be used to distinguish between the two.

Initialization of the descriptor is done before invocation of the MCAS operation. We assume that all the addresses in the descriptor are sorted in a monotonic total order. This assumption is crucial for the liveness property of our algorithm, but can be easily lifted by explicitly sorting the array of tuples by corresponding addresses before an MCAS operation is executed.

2.2 Persistent Memory

We extend the model in Section 2.1 with standard assumptions about PM [13, 15, 22, 38]. We assume the system is equipped with persistent shared memory that can be accessed through the same set of atomic primitives (read, write and CAS). The system may also be equipped with DRAM to be used as transient storage. As in previous work [38], we assume that the overall system can crash at any time and possibly recover later. On such a full-system crash, we assume that the contents of persistent memory – but not those of processor caches, registers or volatile memory – are preserved. Moreover, threads that are
active at the time of the crash are assumed to be lost forever and replaced by new threads in case of recovery. After a full-system crash but before the system recovers and resumes normal execution, we assume a recovery routine may be executed, in order to bring persistent memory-resident objects to a consistent state. The recovery routine can be executed in a single thread, and thus it does not have to be thread-safe. Another full-system crash, however, may occur during the recovery routine.

As is standard practice [13, 15, 53], we assume that a-priori there is no guarantee on when and in what order cache lines are written back to persistent memory. We assume the existence of two primitives to enforce such write backs. The first primitive is \texttt{PERSISTENT__FLUSH(addr)}}, which takes as argument a memory location and asynchronously writes the contents of that location to persistent memory. Multiple invocations of this primitive are not ordered with respect to each other and thus several flushes can proceed in parallel. Concrete examples of this primitive are \texttt{clflushopt} and \texttt{clwb} [36]. The second primitive is \texttt{PERSISTENT_FENCE()}, which stalls the CPU until any pending flushes are committed to persistent memory. A concrete example of this primitive is \texttt{sfence} [36]. LOCK-prefixed instructions such as CAS also act as persistent fences [36]. Since persistent flushes do not stall the CPU, whereas persistent fences do, the cost of writing to persistent memory is dominated by the latter instructions and we consider the cost of the former to be negligible.

Regarding initialization, we assume descriptor contents are made persistent before invocation of MCAS.

The safety criterion we use when working with persistent memory is durable linearizability [38]. Informally, an implementation of an object is durably linearizable if it is linearizable and has the following additional properties in case of a full-system crash and recovery: (1) all operations that completed before the crash are reflected in the post-recovery state and (2) if some operation \textit{op} that was ongoing at the time of the crash is reflected in the post-recovery state, then so are all the operations on which \textit{op} depends (i.e., operations whose effects \textit{op} observed and thus need to be linearized before \textit{op}).

3 Impossibility

In this section we show that any lock-free disjoint-access-parallel (DAP) implementation of MCAS requires at least one CAS per modified word. Consider a call to \texttt{k-CAS(addr\textsubscript{1}, \ldots, addr\textsubscript{k}, \texttt{[old and new values]}}). We call \texttt{addr\textsubscript{1}, \ldots, addr\textsubscript{k}} the \textit{set of targets} of the call. We also define the \textit{range} of the call in an execution \textit{E} to be the set of locations on which CAS (single-word CAS) is performed, successfully or not, during the call in \textit{E}. Intuitively, we say that an MCAS implementation is \textit{DAP} if non-conflicting calls to \texttt{k-CAS} do not access the same memory locations; for the formal definition, see [37].

\textbf{Definition 1 [Star Configuration].} We say that a set \{c\textsubscript{0}, \ldots, c\textsubscript{l}\} of calls to \texttt{k-CAS} are in a star configuration if (1) the sets of targets of \textit{c\textsubscript{0}} and \textit{c\textsubscript{i}} are non-disjoint for all \textsubscript{i} \in \{1, \ldots, l\}, and (2) the sets of targets of \textit{c\textsubscript{i}} and \textit{c\textsubscript{j}} are disjoint for all \textsubscript{i} \neq \textsubscript{j} \in \{1, \ldots, l\}.

An example of a star configuration for \textsubscript{l} = \textsubscript{k} is the following set of calls \textit{C} = \{c\textsubscript{0}, \ldots, c\textsubscript{k}\}, where we omit old and new values for ease of notation and we assume that addresses \textsubscript{a\textsubscript{i}(j)} are all distinct:
- \textit{c\textsubscript{0}}: \texttt{k-CAS(a\textsubscript{0}(0), \ldots, a\textsubscript{k}(0))}
- \textit{c\textsubscript{1}}: \texttt{k-CAS(a\textsubscript{1}(0), a\textsubscript{2}(1), \ldots, a\textsubscript{k}(1))}. Call c\textsubscript{1}’s set of targets intersects that of \textit{c\textsubscript{0}} in \textsubscript{a\textsubscript{0}(0)}.
- \textit{c\textsubscript{i}}: 1 \leq i \leq k: \texttt{k-CAS(a\textsubscript{1}(i), \ldots, a\textsubscript{i}(i), \ldots, a\textsubscript{k}(i))}. Call c\textsubscript{i}’s set of targets intersects that of \textit{c\textsubscript{0}} in \textsubscript{a\textsubscript{i}(0)} and is disjoint from the set of targets of \textit{c\textsubscript{j}} for all \textsubscript{j} \neq \textsubscript{i}, \textsubscript{j} \neq 0.
In this section, we assume without loss of generality that all calls in C have the correct old values for their target addresses and that each new value is distinct from its respective old value. Under these assumptions, in every execution it must be that either c_0 succeeds and all c_1, \ldots, c_k fail, or that c_0 fails and all c_1, \ldots, c_k succeed.

We say that a state S of an implementation A is c_0-valent with respect to (wrt) some subset $C \subseteq C$ if, for any call $c_i \in C$, in any execution starting from S in which only c_0 and c_i take steps, c_0 succeeds. Similarly, we say that a state S is C-valent wrt c_0 if, for any call $c_i \in C$, in any execution starting from S in which only c_0 and c_i take steps, c_0 fails. We say that a state is univalent wrt c_0 and C if it is c_0-valent or C-valent; otherwise it is bivalent wrt c_0 and C. A state is critical wrt c_0 and C when (1) it is bivalent wrt c_0 and C and (2) if any process in $\{c_0\} \cup C$ takes a step, the state becomes univalent wrt c_0 and C.

Note that the initial state of A must be bivalent wrt c_0 and any non-empty subset of S.

\textbf{Lemma 2.} Consider a lock-free implementation A of k-CAS and let $C = \{c_0, \ldots, c_k\}$ be a star configuration of calls to k-CAS. Then there exists an execution E of A such that, for all $i \geq 1$, the ranges of c_0 and c_i in E are non-disjoint.

\textbf{Proof.} We follow a bivalency proof structure. We construct an execution in which process p_i performs call c_i, $i \geq 0$. For ease of notation, we say that “call c_i takes a step” to mean “process p_i takes a step in its execution of c_i.”

The execution proceeds in stages. In the first stage, as long as some call in C can take a step without making the state univalent wrt c_0 and any non-empty subset of C, let that call take a step. If the execution runs forever, the implementation is not lock-free. Otherwise, the execution enters a state S where no such step is possible, which must be a critical state wrt c_0 and some subset $C_1 \subseteq C \setminus \{c_0\}$. We choose C_1 to be maximal, i.e., state S is not critical wrt c_0 and any subset of $C \setminus C_1$ (otherwise, add that subset to C_1).

We prove in Lemma 3 below that c_0 and all calls in C_1 are about to perform CAS on some common location l_1. We let c_0 perform that CAS step, bringing the protocol to state S'. By our choice of C_1 as maximal, S' must be bivalent wrt c_0 and any subset of $C \setminus C_1$. The execution now enters the second stage, in which we let calls in $C \setminus C_1$ take steps until they reach a critical state wrt c_0 and some subset $C_2 \subseteq C \setminus C_1$. By induction, we can show that eventually c_0 will have reached critical points wrt all calls in C. At the end of the execution, we resume each process in $C \setminus c_0$ for one step; they were each about to perform a CAS step on some location on which c_0 has already performed a CAS step. Thus, in this execution, all calls in $C \setminus c_0$ have performed a CAS on a common location with c_0.

\textbf{Lemma 3.} Consider a lock-free implementation A of k-CAS and let $C = \{c_0, \ldots, c_k\}$ be a star configuration of calls to k-CAS. If S is a critical state of A wrt c_0 and some subset $C \subseteq C$, then in S, c_0 and all calls C are about to perform a CAS step on a common location l.

\textbf{Proof.} From S, we consider the next steps of c_0 and any $c_i \in C$:

\textbf{Case 1} One of the calls is about to read; assume wlog it is c_0. Consider two possible scenarios.

First scenario: c_i moves first and runs solo until it returns (c_i must succeed because c_i took the first step). Second scenario: c_0 moves first and reads, then c_i runs solo until it returns (c_i must fail because c_0 took the first step). But the two scenarios are indistinguishable to c_i, thus c_i must either succeed in both or fail in both, a contradiction.

\textbf{Case 2} Both calls are about to write. In this case, they must be about to write to the same register r, otherwise their writes commute. First scenario: c_0 writes r, then c_i writes r, then c_i runs solo until it returns (c_i must fail since c_0 took the first step). Second
scenario: \(c_i \) writes \(r \) and then runs solo until it returns (\(c_i \) must succeed since \(c_i \) took the first step). But the two scenarios are indistinguishable to \(c_i \), since its write to \(r \) obliterated any potential write by \(c_0 \) to \(r \), so \(c_i \) must either succeed in both scenarios or fail in both; a contradiction.

Case 3 \(c_0 \) is about to CAS and \(c_i \) is about to write (or vice-versa). In this case, their operations must be to the same memory location \(r \) (otherwise they commute). First scenario: \(c_0 \) CASes \(r \), then \(c_i \) writes to \(r \) and then runs solo until \(c_i \) returns (\(c_i \) must fail since \(c_0 \) took the first step). Second scenario: \(c_i \) writes to \(r \) and then runs solo until it returns (\(c_i \) must succeed since \(c_i \) took the first step). But the two scenarios are indistinguishable to \(c_i \), since its write to \(r \) obliterated any preceding CAS by \(c_0 \) to \(r \); thus \(c_i \) must either succeed in both scenarios or fail in both; a contradiction.

Case 4 Both calls are about to CAS. In this case, they must be about to CAS the same location, otherwise their CASes commute.

Theorem 4. Consider a lock-free disjoint-access-parallel implementation \(A \) of \(k \)-CAS in a system with \(n > k \) processes. Then there exists some execution \(E \) of \(A \) such that in \(E \) some call to \(k \)-CAS performs CAS on at least \(k \) locations.

Proof. We prove the theorem by contradiction. We first assume that calls to \(k \)-CAS perform CAS on exactly \(k - 1 \) locations and derive a contradiction; we later show how assuming that \(k \)-CAS performs CAS on at most \(k - 1 \) locations also leads to a contradiction.

We construct an execution \(E \) in which two concurrent but non-contending \(k \)-CAS calls (i.e., two \(k \)-CAS calls with disjoint sets of targets) perform CAS on the same location, thus contradicting the disjoint-access-parallelism (DAP) property and proving the theorem.

Let \(c_0, \ldots, c_k \) be \(k + 1 \) calls to \(k \)-CAS in a star configuration. By Lemma 2, there exists an execution \(E \) of \(A \) such that, for all \(i \geq 1 \), the ranges of \(c_0 \) and \(c_i \) in \(E \) are non-disjoint.

Let \(l_1, \ldots, l_{k-1} \) be the range of \(c_0 \). By Lemma 2, in \(E \) the range of \(c_1 \) must intersect that of \(c_0 \) in at least one location; assume wlog it is \(l_1 \). Furthermore, the range of \(c_2 \) must also intersect that of \(c_0 \) in at least one location; moreover, due to the DAP property, the intersection must contain some location other than \(l_1 \), since \(c_1 \) and \(c_2 \) have disjoint sets of targets. By induction, we can show that the range of each call \(c_i, i \in \{1, 2, \ldots, k-1\} \) intersects the range of \(c_0 \) in \(l_i \). However, the range of \(c_k \) must also intersect the range of \(c_0 \) in some location other than \(l_1, \ldots, l_{k-1} \), due to the DAP property. We have reached a contradiction.

If we now assume that calls to \(k \)-CAS perform CAS on \(k - 1 \) or fewer locations, then we also reach a similar contradiction as above. In fact, if some call \(c_i \) performs CAS on strictly fewer than \(k - 1 \) locations, this may cause the contradiction to occur before call \(c_k \), as \(c_i \) now has fewer locations to choose from in order intersect with the range of \(c_0 \) in some location that is not in the ranges of \(c_1, \ldots, c_{i-1} \).

4 Volatile MCAS with \(k + 1 \) CAS

In this section we describe our MCAS construction for volatile memory. Our algorithm uses \(k + 1 \) CAS operations in the common uncontended case, and does not involve cleaning up after completed MCAS operations. In Section 6 we describe a memory management scheme that can be used to clean up after completed MCAS operations as well as for reclaiming or reusing operation descriptors employed by the algorithm.
4.1 High-level Description

As is standard practice [28, 31, 52], our MCAS construction supports two operations: MCAS and read. Similarly to most MCAS algorithms [28, 31, 52], the MCAS operation uses operation descriptors that contain a set of addresses (the target addresses or words), and old and new values for each target address. In addition, each operation descriptor contains a status word indicating the status of the corresponding MCAS operation.

The MCAS operation proceeds in two stages. In the first stage, we attempt to install a pointer to the operator descriptor in each memory word targeted by the MCAS operation. If we succeed to install the pointer, we say that the target address is owned (or locked) by the descriptor. The first stage ends when all target addresses are owned by the descriptor, or if we find a target address with a value different from the expected one. In the second stage, we finalize the MCAS operation by atomically changing its status to indicate its success or failure, depending on whether the first stage was successful (i.e., all target addresses have been locked). The read operation returns the current value at an address, either by reading it directly from the target address or by reading the appropriate value from a descriptor of a completed MCAS operation installed in that address. If either MCAS or read encounter another MCAS in progress (e.g., when they attempt to read the current value in the target address), they first help that MCAS operation to complete.

4.2 Technical Details

Structures and Terminology. We describe the structures used by our algorithm and explain the terminology. Pseudocode for the structures is shown in Listing 1. An MCASDescriptor describes an MCAS operation. It contains a status field, which can be ACTIVE, SUCCESSFUL, or FAILED, the number N of words targeted by the MCAS and an array of WordDescriptors for those words. These WordDescriptors are the children of the MCASDescriptor, who is their parent. We say that an MCASDescriptor (and the MCAS it describes) is active if its status is ACTIVE and finalized otherwise.

The WordDescriptor contains information related to a given word as target of an MCAS operation: the word’s address in memory, its expected value and the new intended value. The WordDescriptor also contains a pointer to the descriptor of its parent MCAS operation. As described later, the pointer is used as an optimization for fast lookup of the status field in the MCASDescriptor, and can be eliminated.

Algorithm. Both MCAS and read operations rely on the auxiliary readInternal function shown in Listing 2. The readInternal function takes an address addr and an MCASDescriptor self (called the current descriptor) and returns a tuple. The tuple contains
Listing 2 The readInternal auxiliary function, used by our algorithm.

```c
readInternal (void* addr, MCASDescriptor *self) {
    retry_read:
    val = *addr;
    if (!isDescriptor (val)) then return <val,val>;
    else { // found a descriptor
        MCASDescriptor* parent = val->parent;
        if (parent != self && parent->status == ACTIVE) {
            MCAS(parent);
            goto retry_read;
        } else {
            return parent->status == SUCCESSFUL ?
                <val,val->new> : <val,val->old>; }
    }
}
```

Listing 3 Our main algorithm. Commands in italic are related to memory reclamation (discussed in a later section).

```c
read (void* address) {
    epochStart();
    <content, value> = readInternal(address, NULL);
    epochEnd();
    return value;
}

MCAS (MCASDescriptor* desc) {
    epochStart();
    success = true;
    for wordDesc in desc->words {
        retry_word:
        <content, value> = readInternal(wordDesc.address, desc);
        // if this word already points to the right place, move on
        if (content == &wordDesc) continue;
        // if the expected value is different, the MCAS fails
        if (value != wordDesc.old) { success = false; break; }
        if (desc->status != ACTIVE) break;
        // try to install the pointer to my descriptor; if failed, retry
        if (!CAS(wordDesc.address, content, &wordDesc)) goto retry_word; }
        // if I finalized this descriptor, mark it for reclamation
        retireForCleanup(desc); }
    returnValue = (desc.status == SUCCESSFUL);
    epochEnd();
    return returnValue;
}
```

two values (which might be identical), and, intuitively, represent the contents in the given (target) address and the actual value the former represents. More specifically, readInternal reads the content of the given addr (Line 3). If addr does not point to a descriptor (this is determined by the isDescriptor function; see below), the returned tuple contains two copies of the contents of addr (Line 4). If addr points to an active WordDescriptor whose parent is not the same as self, then readInternal helps the other (MCAS) operation to complete (Line 8) and then restarts (Line 9). Therefore, the role of the self pointer is to avoid an (MCAS) operation to help itself recursively. If addr points to a finalized descriptor, the tuple returned by readInternal contains the pointer to the descriptor and the final value, corresponding to the status of the descriptor (Line 12). Finally, if addr points to a descriptor whose parent is equal to self, then readInternal returns the pointer to that descriptor (Line 12; a value is also returned in the tuple in this case, but is disregarded; see below).

Listing 3 provides the pseudo-code for the read and MCAS operations. The pseudo-code includes extensions relevant to memory management (in italic), whose discussion is deferred to Section 6.
The read operation is simply a call to readInternal with a self equal to null as the current operation descriptor (Line 15).

The MCAS operation takes as argument an MCASDescriptor and returns a boolean indicating success or failure. As mentioned above, the operation proceeds in two stages. In the first stage, MCAS attempts to take ownership of (or acquire) each target word (Lines 22–31). To this end, for each WordDescriptor w in its words array, we start by calling readInternal on w’s target address addr (Line 24; as described above, this handles any helping required in case another active operation owns addr). If addr is already owned by the current MCAS, we move on to the next word (Line 26). Otherwise, if the current value at addr does not match the expected value of w, the MCAS cannot succeed and thus we can skip the next WordDescriptor and go to the second stage (Line 28). If the values do match, we re-check if the operation is still active (line 29); otherwise we go to the second stage – this prevents a memory location from being re-acquired by the current operation op in case op was already finalized by a helping thread. Finally, we attempt to take ownership of addr through a CAS (Line 31). Note that the failure of this CAS might mean that another thread has concurrently helped this MCAS to lock the target word. Therefore, we simply retry taking ownership on this target word, rather than failing the MCAS operation (Line 31).

In the second stage (Lines 32–34), MCAS finalizes the descriptor by atomically changing its status from ACTIVE to SUCCESSFUL (if all word acquisitions were successful in stage one) or to FAILED (otherwise).

Our pseudocode assumes the existence of the isDescriptor function, which takes a value and returns true if and only if the value is a pointer to a WordDescriptor. This function can be implemented, for instance, by designating a low-order mark bit in a word to indicate whether it contains a pointer to a descriptor or not [31, 53].

We give a proof of correctness for our algorithm in the full version of our paper [25].

5 Persistent MCAS with \(k + 1 \) CAS and 2 Persistent Fences

We discuss the modifications required to make our volatile MCAS algorithm work with persistent memory. In the full version of our paper [25], we give the complete pseudocode for these modifications.

In the MCAS function, after all target locations have been successfully acquired, we add one persistent flush per target word and one persistent fence overall. The persistent fence ensures that all target locations persistently point to their respective WordDescriptors before attempting to modify the status.

When finalizing the status, we mark the status with a special DirtyFlag. This flag indicates that the status is not yet persistent. We then perform a persistent flush and fence after the status has been finalized. This ensures that the finalized status of the descriptor is persistent before returning from the MCAS. Finally, we unset the DirtyFlag with a simple store; this store cannot create a race with the CAS that finalizes the status because that CAS must fail (the status must be already finalized if some thread is already attempting to unset the dirty flag).

We also modify the readInternal function such that, when an operation op encounters another operation op’ whose status is finalized but still has the DirtyFlag set, op helps op’ persist its status and unsets the DirtyFlag on op’ status.

Our modifications enforce the following invariants. First, at the time when a descriptor becomes finalized, its acquisitions of target locations are persistent. Second, at the time when an MCAS operation returns, its finalized status is persistent. Third, when a read
or MCAS operation op returns, all operations on which op depends are finalized and their statuses are persistent. With these invariants, we can argue that our persistent MCAS is correct. By correctness we refer to lock-freedom (liveness) and durable linearizability (safety). Lock-freedom is clearly preserved by our additions, thus we focus on durable linearizability. We examine the point in time when a full-system crash may occur during the execution of an MCAS operation op. There are two possibilities to consider:

1. If the crash occurs before op’s status was finalized and made persistent, then we know that no operation $op’$ which observed the effects of op could have returned before the crash; otherwise, $op’$ would have helped op and persisted its status. In this case, neither op nor any such $op’$ will be linearized before the crash; during recovery, their effects will be rolled back by reverting any acquired locations to their old values.

2. If the crash occurs after op’s status was finalized and made persistent, then op is linearized before the crash. During recovery, any locations still acquired by op will be detached and given either their new or old values (depending on op’s success or failure status), as specified in op’s descriptor.

In sum, the recovery procedure of our algorithm is as follows. The recovery goes through each operation descriptor D. If D’s status is not finalized, then we roll D back by going through each target location ℓ of D; if ℓ is acquired by D (i.e., points to D), then we write into ℓ its old value, as specified in D. If D’s status is finalized, then we detach D and install final values; we go through each target location ℓ of D; if ℓ is acquired by D and D was successful (resp. failed), then we write into ℓ the new (resp. old) value as specified in D.

6 Memory Management

The MCAS algorithm has been presented so far under the assumption that no memory is ever reclaimed. For practical considerations, however, one should to be able to reclaim and/or reuse MCAS operation descriptors. While efficient memory management of concurrent data structures remains an active area of research (see, e.g., [3, 10, 18, 50, 54]), here we describe one possible mechanism suitable for an MCAS implementation. Due to space limitations, we briefly outline the mechanism here and defer its full description, as well as optimizations for persistent memory and efficient reads, to the extended version of our paper [25].

We note that the life cycle of an operation descriptor comprises several phases. Once its status is no longer ACTIVE, the (finalized) descriptor cannot be recycled just yet as certain memory locations can point to it. Therefore, we need first to detach such a descriptor by replacing the pointers to the descriptor (using CAS) with actual values (respective to whether the corresponding MCAS has succeeded or failed) in affected memory locations. Only after that, a detached descriptor can be recycled, provided no concurrently running thread holds a reference to it. Note that CASes in the detachment phase are necessary only for those affected memory locations that still point to the to-be-detached descriptor, which, as our evaluation shows, is rare in practice.

Our scheme keeps track of two categories of descriptors: (1) those that have been finalized but not yet detached and (2) those that have been detached but to which other threads might still hold references. Similar to RCU approaches [41, 42], we use thread-local epoch counters to track threads’ progress and infer when a descriptor can be moved from category (1) to category (2), and when a descriptor from category (2) can be reclaimed.
7 Evaluation

7.1 Experimental Setup

We evaluate our algorithm on a 2-socket Intel Xeon machine with two E5-2630 v4 processors operating at 3.1 GHz. Each processor has 10 cores, each core has 2 hardware threads (40 hardware threads total). Each experimental run lasts 5 seconds; shown values are the average of 5 runs. We base our evaluation on the framework available from the authors of PMwCAS [49, 53].

The baseline of our evaluation is the volatile version of PMwCAS [49, 53], a state-of-the-art implementation of the Harris et al. [31] algorithm. Like the Harris et al. algorithm, volatile PMwCAS requires $3k + 1$ CASes per k-CAS. We use PMwCAS as our baseline since (1) it has recent, openly available and well-maintained code and (2) it is to our knowledge the only other MCAS algorithm in which readers do not write to shared memory in the common uncontended case.

PMwCAS implements an optimization of the Harris et al. algorithm: it marks pointers with a special RDCSS flag instead of allocating a distinct RDCSS descriptor. However, we found that this optimization made the PMwCAS algorithm incorrect, due to an ABA vulnerability. In our evaluation, we fixed the PMwCAS implementation to allocate and manually manage RDCSS descriptors.

Our evaluation uses three benchmarks: an array benchmark in which threads perform MCAS-based read-modify-write operations at random locations in an array, a doubly-linked list benchmark, in which threads perform MCAS-based operations on a list implementing an ordered set, and a B+-tree benchmark in which threads perform MCAS-based operations on a B+-tree. The first two benchmarks are based on the implementation available in [49], and the third is based on PiBench [48] and BzTree [6, 11]. We note, however, that we modified the benchmark in [49] so all threads operate on the same key range (rather than having each thread using a unique set of keys), so we could induce contention by controlling the size of the key range.

In each experiment, we vary the number of threads from 1 to 39 (we reserve one hardware thread for the main thread). Threads are assigned according to the default settings in the evaluation frameworks used [11, 48, 49]. In the array and list benchmarks, threads are assigned in the following way: we first populate the first hardware thread of each core on the first socket, then on the second socket, then we populate the second hardware thread on each core on the first socket, and finally the second hardware thread on each core on the second socket. The B+-tree benchmark uses OpenMP [45], which dictates thread assignment; it also employs a scalable memory allocator [1].

7.2 Array Benchmark

The benchmark consists of each thread performing the following in a tight loop: reading k locations at random from the array ($k = 4$ in our experiments), computing a new value for each location, and attempting to install the new values using an MCAS.

In this benchmark we measure two quantities. The first is throughput: the number of read-modify-write operations completed successfully per time unit. The second metric is the helping ratio. We measure the helping ratio by dividing the number of ongoing MCAS operations encountered (and helped) during read or MCAS operations by the total number of MCAS operations. A higher helping ratio thus means more operations are slowed down due to the need to help other, incomplete MCAS operations.
\begin{figure}[h]
\centering
\begin{subfigure}{0.3\textwidth}
 \centering
 \includegraphics[width=\textwidth]{array_size_10}
 \caption{Array Size 10}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
 \centering
 \includegraphics[width=\textwidth]{array_size_100}
 \caption{Array Size 100}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
 \centering
 \includegraphics[width=\textwidth]{array_size_1000}
 \caption{Array Size 1000}
\end{subfigure}
\end{figure}

\begin{figure}[h]
\centering
\begin{subfigure}{0.3\textwidth}
 \centering
 \includegraphics[width=\textwidth]{list_size_5}
 \caption{List Size 5}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
 \centering
 \includegraphics[width=\textwidth]{list_size_50}
 \caption{List Size 50}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
 \centering
 \includegraphics[width=\textwidth]{list_size_500}
 \caption{List Size 500}
\end{subfigure}
\end{figure}

\begin{figure}[h]
\centering
\begin{subfigure}{0.3\textwidth}
 \centering
 \includegraphics[width=\textwidth]{tree_size_16}
 \caption{Tree Size 16}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
 \centering
 \includegraphics[width=\textwidth]{tree_size_512}
 \caption{Tree Size 512}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
 \centering
 \includegraphics[width=\textwidth]{tree_size_4000000}
 \caption{Tree Size 4000000}
\end{subfigure}
\end{figure}

\textbf{Figure 1} Array benchmark. Top row shows throughput (higher is better), bottom row shows helping ratio (lower is better). Each column corresponds to a different array size (10, 100 and 1000, respectively).

\textbf{Figure 2} Top row: Doubly-linked list benchmark (80% reads) with different initial list sizes (5, 50 and 500 elements). Bottom row: B+-tree benchmark (80% reads) with different initial tree sizes (16, 512 and 4000000 elements).
Efficient Multi-Word Compare and Swap

We run the benchmark with three array sizes (10, 100, and 1000) in order to capture different contention levels. The results of this benchmark are shown in Figure 1 (our algorithm is denoted \textit{AOPT} in all figures in this section).

The top row of Figure 1 shows that our algorithm outperforms PMwCAS at every contention level and at every thread count, including in single-threaded mode. This can be explained by two related factors. First, our algorithm has a lower CAS complexity \((k + 1)\text{CASes per } k\text{-CAS for our algorithm compared to } 3k + 1\text{ for PMwCAS})\). Second, as a consequence of its lower complexity, in our algorithm there is a shorter “window” for each MCAS operation to interfere with other operations by forcing them to help.

To illustrate the second factor above, we examine the helping ratios of the two algorithms (bottom row of Figure 1). We observe that the helping ratio of our algorithm is considerably lower than that of PMwCAS. This means that, on average, each operation helps (and is slowed down by) fewer MCAS operations in our algorithm than in PMwCAS.

In order to quantify the impact of descriptor cleanup on performance in our algorithm, we also measure the \textit{detaching ratio}: the number of CASes performed in order to detach (in the sense of Section 6) finalized MCAS descriptors, divided by the total number of completed MCAS operations. We find the detaching ratio to be less than 0.001 for every thread count and array size. This is because finalized MCAS descriptors are constantly being replaced by ongoing MCAS operations, and thus recycling these detached descriptors requires no CASes. We conclude that the vast majority of our MCAS operations do not incur any cleanup CASes.

7.3 Doubly-linked List Benchmark

In this benchmark we operate on a shared ordered set object implemented from a doubly-linked list. The list supports search and update (insert and delete) operations. Insertions are done using 2-CAS and deletions are done using 3-CAS. We initialize the list by inserting a predefined (configurable) number of nodes. During the benchmark, each thread selects an operation type (search, insert or delete) at random, according to a configurable distribution; the thread also selects a value at random; it then performs the selected operation with the selected value.

We perform this benchmark with three initial list sizes (5, 50 and 500 elements). The operation distribution is: 80% reads, 20% updates (in all our experiments, updates are evenly distributed among insertions and deletions). As is standard practice, the initial size of the list is half of the key range. Results are shown in the top row of Figure 2. We also ran experiments with 50\%, 98\%, and 100\% reads; performance graphs for these less representative cases are available in the full version of our paper \cite{25}.

Our algorithm outperforms PMwCAS for list sizes 5 and 50 by \(2.6 \times\) and \(2.2 \times\) on average, respectively. This shows that under high and moderate contention, our algorithm’s faster MCAS operations (due to the double effect of lower complexity and lower helping ratio) compensate for its slower read operations (due to the extra level of indirection). In the low contention case (list size 500), PMwCAS outperforms our algorithm at low thread counts and is outperformed at high thread counts. On average, PMwCAS outperforms our algorithm by \(1.2 \times\). Under low contention, operations have a low probability to conflict on the same element and thus the lower read complexity of PMwCAS has a stronger impact on performance than the lower MCAS complexity of our algorithm.
7.4 B+-tree Benchmark

In this benchmark we operate on a B+-tree which supports search and update (insert and delete) operations. Insertions and deletions use k-CAS, where k may vary, e.g., depending on whether the operation led to nodes being split or merged.

Similar to the previous benchmark, we initialize the B+-tree with a configurable number of entries; threads then select operations and values at random. We perform the benchmark with 80% reads and three initial tree sizes (16, 512, and 4000000). As for the previous benchmark, performance graphs for the 50%, 98% and 100% reads cases are shown in the full version of our paper [25]. As before, the initial size of the tree is half of the key range. Results are shown in the bottom row of Figure 2.

We observe a similar behavior to the previous benchmark. Our algorithm outperforms PMwCAS under high and medium contention (because it performs fewer CASes and triggers less helping) and is slightly outperformed under low contention (where helping no longer plays a major role).

8 Related Work

Lock- and wait-free implementations of MCAS. Our algorithm shares similarities with previous work [31, 53]: as has become standard practice, it uses operation descriptors and a three-phase design (locking, status-change and unlocking). However, our algorithm introduces key differences with respect to previous work: it defers the unlocking phase and combines it with the reclamation of descriptors, without compromising correctness. This deferment has a triple beneficial effect on complexity: (1) it removes k CASes from the critical path, (2) it allows these CASes to be amortized across several operations, and (3) it removes the onus of ABA-prevention from the locking phase, thus shaving off k further CASes from the latter.

Table 1 summarizes the differences between our algorithm and existing non-blocking MCAS implementations, while the detailed treatment of each of the numerous prior efforts is deferred to the full version of our paper [25]. The results in Table 1 reflect the number of CASes per MCAS operation required for correctness by each algorithm in the common uncontended case. We note that previous MCAS implementations perform descriptor cleanup immediately after applying MCAS, and it is not clear how to separate cleanup from these algorithms while preserving correctness. If we take the cleanup cost into consideration for our algorithm as well, its theoretical (worst-case) complexity becomes $2k + 1$, the same as some of the previous work. As our experiments in Section 7 demonstrate, however, the number of CASes in the cleanup phase is negligible in practice. Furthermore, we highlight the fact that unlike most previous work, including the one that employs $2k + 1$ CASes, readers in our case do not write into the shared memory in the common case, even when cleanup is considered.

General techniques. Transactional memory (TM) [34, 51] can be seen as the most general approach to providing atomic access to multiple objects. It allows a block of code to be designated as a transaction and thus executed atomically, with respect to other transactions. Thus, TM is strictly more general than MCAS. This generality comes at a cost: software implementations of transactional memory (STM) have prohibitive performance overheads, whereas hardware support (HTM) is subject to spurious aborts and thus only provides “best-effort” guarantees. Prior work on nonblocking STMs [21, 40] share goals similar to our work; namely reduction of overheads in the critical path. However, these works (i) either employ k extra cleanup CASes [21] on the critical path, incurring precisely the overheads we avoid in our work, or (ii) employ a vastly more complex “stealing” framework to avoid overheads from the critical path [40].
Table 1 Comparison of non-blocking MCAS implementations in terms of the number of CAS instructions required, whether readers perform writes to shared memory or expensive atomic instructions, and the number of persistent fences (all per \(k \)-word MCAS, in the uncontended case).

<table>
<thead>
<tr>
<th></th>
<th>CASes</th>
<th>Readers write</th>
<th>P. fences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Israeli and Rappoport [37]</td>
<td>(3k + 2)</td>
<td>Yes</td>
<td>N/A</td>
</tr>
<tr>
<td>Anderson and Moir [4]</td>
<td>(3k + 2)</td>
<td>Yes</td>
<td>N/A</td>
</tr>
<tr>
<td>Moir [43]</td>
<td>(3k + 4)</td>
<td>Yes</td>
<td>N/A</td>
</tr>
<tr>
<td>Harris et al. [31]</td>
<td>(3k + 1)</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>Ha and Tsigas [27, 28]</td>
<td>(2k + 2)</td>
<td>Yes</td>
<td>N/A</td>
</tr>
<tr>
<td>Attiya and Hillel [7]</td>
<td>(6k + 2)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Sundell [52]</td>
<td>(2k + 1)</td>
<td>Yes</td>
<td>N/A</td>
</tr>
<tr>
<td>Feldman et al. [20]</td>
<td>(3k - 1)</td>
<td>Yes</td>
<td>N/A</td>
</tr>
<tr>
<td>Wang et al. [53] (volatile)</td>
<td>(3k + 1)</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>Wang et al. [53] (persistent)</td>
<td>(5k + 1)</td>
<td>No</td>
<td>(2k + 1)</td>
</tr>
</tbody>
</table>

Our algorithm | \(k + 1 \) | No | 2

Prior Work on Persistent MCAS. Pavlovic et al. [46] provide an implementation of MCAS for persistent memory which differs from ours in the progress guarantee (theirs is blocking) and hardware assumptions (theirs uses HTM).

Wang et al. [6, 53] introduce the first lock-free persistent implementation, based on the algorithm of Harris et al. [31]. The main differences with respect to our algorithm are outlined in Table 1. This algorithm uses a per-word dirty flag to indicate that the word is not yet guaranteed to be written to persistent memory. Operations encountering a set dirty flag will persist the associated word and then unset the flag. This technique avoids unnecessary persistent flushes, but uses 2 extra CAS instructions per target location in order to manipulate the dirty flag.

In our work we use the recent durable linearizability correctness condition [38], which assumes a full-system crash-recovery model, but other models of persistent memory can be explored in this context [2, 8, 14, 26, 47].

9 Conclusion

Atomic multi-word primitives significantly simplify concurrent algorithm design, but existing implementations have high overhead. In this paper, we propose a simple and efficient lock-free algorithm for multi-word compare-and-swap, designed for both volatile and persistent memory. The complementary lower bound shows that the complexity of our algorithm, as measured in the number of CASes in the uncontended case, is nearly optimal.

References

Efficient Multi-Word Compare and Swap

Paul E. McKenney. Is parallel programming hard, and, if so, what can you do about it?, 2017.

Persistent multi-word compare-and-swap (PMwCAS) for NVRAM. https://github.com/microsoft/pmwcas, 2019.

