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3,4-Diphenyl-2a,5a,6,7,8,8a,8b-heptahydro-furo[4,3,2 -de] -

chromen-2-one (1) was prepared as part of a project aimed

at the synthesis of polycyclic natural-product-like scaffolds.

X-ray analysis of crystals grown from ethanol revealed an

incommensurately modulated structure. Data include main

and satellite reflections up to second order. The modulation

vector was refined using the NADA program. The modulated

character of the structure of the organic compound C22H20O3

is interpreted in terms of the intermolecular C—H� � �O
hydrogen bonds and close-contact approximation.
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1. Introduction

Incommensurate modulated structures are part of a larger

group of aperiodic crystals also including composite and quasi-

crystalline materials. The diffraction pattern of crystals with an

incommensurate modulation is characterized by a series of

reflections, which require additional integers to define them.

In order to model the complete set of observations, it is

convenient to represent the structure in a space of dimension

larger than three. The dimension of the space is given by the

number of integer indices required to completely characterize

the diffraction pattern and is called the superspace. The

current method is essentially based on the work of de Wolff

(1974, 1977) and Janner & Janssen (1979).

As part of the efforts aimed at the synthesis of natural-

product-like compounds (Messer et al., 2004, 2005), we

became interested in compound (1). This tricyclic compound

was synthesized in analogy with the previously published

procedure (Fuhrer et al., 2004). Upon recrystallization of (1)

from ethanol, preliminary structural investigations by X-ray

diffraction showed that this compound exhibits an incom-

mensurate character at 173 K.

Although incommensurate structures appear frequently in

inorganic (Baldinozzi et al., 1998; Boucher et al., 1996; Miles et

al., 1998; Shaw et al., 1988; Speziali & Pimenta, 2004) or metal-

organic materials (Lam et al., 1995; Meyer et al., 1994; Steurer

& Depmeier, 1989), fewer reports are available to date

concerning organic compounds (Zuñiga et al., 1989; Schön-

leber & Chapuis, 2004).

The present study is part of a project based on the under-

standing of the origin of the aperiodic character in organic

materials by diffraction methods (Bussien Gaillard et al., 1996,

1998) and also from molecular dynamical simulations (Pan et

al., 2002, 2003). The validity of the method presented here is

evident just by comparing the magnitude of the anisotropic

displacement parameters obtained from the superspace

refinement and the conventional refinement. In addition, via

the quality of the refinement it is possible to obtain very
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precise indications of the atomic interactions leading to the

incommensurability.

2. Experimental

2.1. Sample preparation and data collection

Compound (1) was prepared according to the previously

published method (Fuhrer et al., 2004). Full experimental

details have been deposited.1 Suitable crystals were obtained

after recrystallization from an ethanol solution. A colourless

rod-like crystal of dimensions 0.50 � 0.22 � 0.22 mm3 was

used for data collection. The intensity data were collected at

173 K on a Stoe IPDS II diffractometer equipped with a two-

circle goniometer and using Mo K� graphite monochromated

radiation. Experimental details are given in Table 1.

2.2. Initial structure solution

The observed systematic absences for main reflections are

compatible with the monoclinic space group P21/c (No. 14).

An initial structure solution was performed using direct

methods by means of the program SHELXS (Sheldrick, 1990).

The refinement and all further calculations were carried out

using SHELXL97 (Sheldrick, 1999). The H atoms were

included in calculated positions and treated as riding atoms

using SHELXL default parameters.

C—H distances were fixed at 0.97 Å. 45 atoms were then

used to describe the structure. In order to help with the

description of the structure, we propose to distinguish it by

considering three different parts (Fig. 1): the two phenyl rings

and the rest of the molecule, later referred to as RB3 (C1 to

C10, O1, O2 and O3), RB1 (the phenyl ring described by

atoms C17 to C22 and linked to the RB3 unit by C1) and RB2

(the phenyl ring described by atoms C11 to C16 and linked to

the RB3 unit by C2), the term RB meaning rigid body and this

approximation being used later in the refinement. H atoms,

not indicated here, are named according to their parent

C atom.

The non-H atoms were refined using anisotropic atomic

displacement parameters (ADP). Hydrogen ADPs were

considered isotropic (IDP) and fixed to their respective linked

C atoms by the following equation: Uiso(H) = 1.2Ueq(C), with

Ueq = ð1=3ÞP3
i¼1

P3
j¼1 U ija�i a�j ai � aj:

The average structure, corresponding to the Fourier trans-

form of the main reflections in real space (Schaniel et al.,

2002), is represented in Fig. 2. The corresponding R value,

obtained from 4977 reflections with I > 3�(I) and 226 refined

parameters, is 0.0546. The ORTEP (Farrugia, 1997) repre-

sentation of the structure shows large ADP ellipsoids. The

ADP values are large mainly along the b direction for all of

the atoms, i.e. along the long axis of the molecule.

The packing of the structure is represented in Fig. 3. The

molecules are stacked perpendicularly to the c axis, two

nearest neighbours being related by the c glide. Such a row of
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Table 1
Experimental details.

Crystal data
Chemical formula C22H20O3

Mr 332.4
Cell setting, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 7.2527 (9), 24.951 (3), 9.8959 (10)
� (�) 106.645 (8)
V (Å3) 1715.8 (4)
Z 4
Dx (Mg m�3) 1.286
Radiation type Mo K�
No. of reflections for cell para-

meters
6774

� range (�) 1.6–25.6
� (mm–1) 0.09
Crystal form, colour Rod, colourless
Crystal size (mm) 0.50 � 0.22 � 0.20

Data collection
Diffractometer Stoe IPDS-II
Data collection method ! scans
Absorption correction None
No. of measured, independent and

observed reflections
12 976, 40 786, 12 976

Criterion for observed reflections I > 3�(I)
Rint 0.0375
�max (�) 51.6
Range of h, k, l –8) h) 8

–29) k) 29
–11) l) 11

Intensity decay (%) 2

Refinement
Refinement on F 2

R[F2 > 2�(F2)], wR(F2), S 0.039, 0.087, 0.79
No. of reflections 40 786
No. of parameters 328
H-atom treatment Constrained to parent site
Weighting scheme Based on measured s.u.’s

w = 1/[�2(I) + 0.0004I2]
(�/�)max 0.001
��max, ��min (e Å–3) 0.13, �0.14
Extinction method B-C type 1 Gaussian isotropic

(Becker & Coppens, 1974)
Extinction coefficient 0.78 (3)

Computer programs used: JANA2000 (Petřı́ček et al., 2003).

Figure 1
The 3,4-diphenyl-2a,5a,6,7,8,8a,8b-heptahydro-furo[4,3,2-de]chromen-2-
one molecule. The different parts used in the text to describe the
molecule are represented. The (+/�) symbol indicates the racemic
composition of this molecule.

1 Supplementary data for this paper are available from IUCr electronic
archives (Reference: OG5016). Services for accessing these data are described
at the back of the journal.
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molecules is repeated along the a axis, thus forming a layer of

layer group Pc. These layers are then stacked on top of each

other perpendicularly to the b axis, realising the maximum

degree of order.

2.3. The incommensurately modulated structure

The modulated character of this structure is associated with

the existence of satellite reflections as indicated in Fig. 4. The

diffraction pattern can be fully indexed by introducing the

modulation vector q defined by the relation H = ha� + kb� +

lc� + mq: The symbol m represents the order of the satellite

reflections. The modulation is called commensurate if the

modulation vector components are rational, and incommen-

surate if at least one component is irrational.

Satellite reflections can be considered as a projection of a

four-dimensional lattice in four-dimensional space R4 onto

three-dimensional space R3.

A modulation can be displacive, i.e. displacement of atomic

coordinates, occupational, i.e. a probabilistic occupation of a

crystallographic site, or induced by thermal motion where the

modulation occurs in the ADPs. For a displacive modulation

the position r of an atom is described by the coordinates xi (i =

1, 2, 3, 4) in R4 with xi (i = 1 . . . 3) being the same coordinate as

in R3, and x4 the position along the supplementary dimension.

This position r is given by the relation r = r0 + u. In the average

structure the position of the atom is r0, and u defines the

perturbation generating the satellite reflections. The pertur-

bation is a periodic function of q � r, the ui components of

which can be decomposed into Fourier series, for the ith atom

in the unit cell, as

ui ¼
Xn

p¼ 1

Ai;p sin 2�pðq � r0Þ þ
Xn

p¼ 1

Bi;p cos 2�pðq � r0Þ:

The amplitude of the displacements is given by Ai;p and Bi;p

for the pth harmonic of the modulation function. The x4

coordinate in superspace is defined as t þ q � r, where t is a

continuous function between 0 and 1. Each section of the

superspace with a specific value of t represents a portion of

three-dimensional space.
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Figure 3
Drawing of the unit cell of the packing arrangement corresponding to the
average structure. This packing shows the c-glide relation existing
between molecules stacked perpendicularly to the c axis. H atoms have
been omitted for clarity.

Figure 4
The (h0l) plane showing the main, first- and second-order satellite
reflections. The modulation vector q is indicated.

Figure 2
The molecular structure, obtained from the refinement of main
reflections, showing 50% probability displacement ellipsoids and the
crystallographic numbering scheme. For clarity, H atoms are drawn as
open circles of arbitrary diameter.
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The modulated structure was obtained by taking into

account the complete set of observations extracted from the

X-AREA integration software (Stoe, 2005). A reconstructed

h0l plane is represented in Fig. 4. Main and satellite reflections

up to second order are clearly visible, with some of the

satellites showing strong intensities.

The description of the modulated character of this structure

requires a precise value for the components of the modulation

vector. The program NADA (Schönleber et al., 2001) was used

for this purpose. This program re-indexes the main and

satellite reflections using the orientation matrix and the spatial

peak positions. The refined modulation vector is obtained with

standard uncertainties calculated analytically.

The refined modulation vector was q = 0:2530 ð6Þ a� �
0:2123 ð7Þ c�: The corresponding superspace group is

P21=cð�0�Þ. Using this modulation vector, satellite reflections

are attached to main reflections that are systematically absent.

As no satellite reflections are attached to main reflections, a

reconsideration of the modulation vector had to be carried

out. The modulation vector was transformed into an equiva-

lent one, consistent with the previously indicated superspace

group with the new modulation vector q =

0:2530 ð6Þ a� � 1:2123 ð7Þ c�:
The average structure was introduced as the starting model

in the JANA2000 software (Petřı́ček et al., 2003). The

incommensurately modulated structure was refined by

considering positional parameters with harmonic functions up

to third order. The modulation functions were applied to the

three rigid-body units, thus considerably reducing the number

of refined parameters.

The R (R-weighted) values are 0.0331 (0.0657), 0.0434

(0.0766) and 0.0697 (0.1581) for main, first- and second-order

satellite observed reflections, respectively.

The C—H distances and H-atom positions were constrained

as for the average structure. Nevertheless, a refinement

without constraints was also performed. This should give

better accuracy in C—H distances (Schomaker & Trueblood,

1968). However, the equation applied for calculating

hydrogen IDPs was kept. The R (R-weighted) values are

0.0332 (0.0648), 0.0435 (0.0761) and 0.0703 (0.1597) for main,

first- and second-order satellite reflections, respectively. The

C—H distances vary in all the molecules from 0.967 (6) to

0.977 (7) Å. As the deviations in C—H distances are very

limited, and if we consider the error in the distances, equal to

the distance chosen for the constrained C—H bond, then

the applied constraints on the H-atom positions are justified.

This was done in order to reduce the number of refined

parameters. The total number of refined parameters in the

constrained model is then 328, to be compared with 418 in the

non-constrained model.

In the constrained refinement, the atomic positions vary

mainly with the modulation along the b axis. This variation is

represented in Fig. 5, showing the displacement of atoms C1,

C17, C20, O3, C4 and C11 as a function of the variable t.

By considering the amplitude of the variations of the

displacement for atoms C1, C17 and C20, we notice an

analogous variation for all displacements along y, and an

increase in amplitude for the x and z components from atoms

C1 to C17 and to C20. We can deduce that the molecule moves

as a whole along the b axis, and that the phenyl rings possess
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Figure 5
Modulation function of selected atoms along the a, b and c axis (represented by x, y and z coordinates, respectively), describing the displacement as a
function of the incommensurate parameter t. The similar variation along the b axis is clearly visible. The displacement for the phenyl rings (represented
by atoms C17 and C2) is more important along the three axes than the rest of the molecule. All diagrams present the same y-axis scale.
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more degrees of freedom to move along the other directions.

We observe that C11 and C17 present the same displacement

along t, and that all of the C atoms from the RB1 and RB2

phenyl rings move with approximately the same amplitude.

All the O atoms (only O3 is presented in Fig. 5) present the

same behaviour with a slight displacement along the x and

z axis.

The phenyl rings described as RB1 and RB2 units present

small deviations compared with the basic hexagonal geometry.

The C—C—C angles vary from 118.5 (4) to 120.9 (4)� for RB1

and from 117.8 (4) to 121.2 (4)� for RB2, with a small variation

along t. The atomic deviations from the planes of the two

phenyl rings are very small, with a maximum distance from the

basal plane of �0.009 Å for C atoms.

The C1 C2 double bond presents a slight variation from

planarity. This can be interpreted as a combination of twisting

and antisymmetric out-of-plane torsion (Ermer & Mason,

1982). The twist angles are 173.8 (3)� for O1—C1—C2—C11

and 166.2 (3)� for C3—C2—C1—C17, which correspond to

the average value considering the modulation parameter.

Bending angles are 10.1 (2)� for O1—C1—C2—C3 and

9.9 (3)� for C17—C1—C2—C11. We must mention that the

first torsion angle is constant whatever the modulation para-

meter t considered, while the second torsion angle varies from

8.5 (3) to 10.9 (3)� (Fig. 6).

The opposite behaviour of the two angles characterizing the

position of the phenyl rings from the rest of the molecule

indicates that they are displaced in phase, but with a larger

variation for the RB1 unit.

If we consider the torsion angles of the two phenyl rings

around the C1—C17 (respectively C2—C11) axis (Fig. 7) we

observe that the two phenyl rings are also rotated in opposite

directions. This can be understood if we consider the molecule

viewed along its long axis. The clockwise rotation of the RB1

phenyl ring then induces an anticlockwise rotation for the

RB2 phenyl ring.

Observation of the distances between the C17 and C18

atoms, and the C11 and C16 atoms from the RB1 and RB2

phenyl rings, respectively, shows that these distances are in

fact less than the sum of the van der Waals radii, which

corresponds to the close-contact approximation. The average

values are 3.133 (7) Å (C17—C11), 3.262 (7) Å (C17—C16),

3.155 (7) Å (C18—C11) and 3.180 (7) Å (C16—C18). This

explains the behaviour of the phenyl rings observed both in

Figs. 6 and 7.

3. Discussion

As expected, the refinement of the modulated structure

greatly reduces the ADP values for all the atoms obtained

from the average structure. The corresponding ADPs are very
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Figure 8
ORTEP view of the structure showing the quasi-isotropic behaviour of all
the atoms after the refinement of the modulation parameters. The
ellipsoids are shown for the 50% probability level.

Figure 6
Variation of the angle of the two phenyl rings attached to the RB3 unit.

Figure 7
Variation of the torsion angles of the phenyl rings attached to the RB3
unit. Torsion angles are defined by C2—C1—C17—C18 for the RB1 unit
and by C1—C2—C11-C16 for the RB2 unit.
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regular for all atoms, leading to a quasi-isotropic behaviour of

all the atoms. Fig. 8 shows an ORTEP representation of the

molecule and must be compared with Fig. 2. The elongation of

the ADP ellipsoids was corrected by the displacement of the

structure along the b axis induced by the modulation.

With the crystal packing shown in Fig. 3, some interactions

between the molecules, in the form of hydrogen bonds, must

be considered (Steiner, 1997). The layer stacking is exclusively

mediated by van der Waals forces. In this structure the C—

H� � �O interactions can occur in three ways, with the partici-

pation of the three different O atoms of the molecule.

Considering that the hydrogen bond is preferentially aligned

with a bonding angle between 150 and 180� (Steiner &

Desiraju, 1998), only intermolecular hydrogen bonds occur in

the crystal structure.

The strongest hydrogen bond of the structure is C4—

H4� � �O1 (x, 1
2 � y, 1

2 + z). The distance varies with the

modulation from 2.443 (5) to 2.510 (5) Å. This hydrogen bond

links the RB3 units within the layers of the molecule, as shown

in Fig. 9. The � angle C—H� � �O describing the geometry of the

hydrogen-bonding system varies from 167.30 (8) to 172.4 (4)�

along the t parameter.

The C3—H3� � �O2 (x, 1
2 � y, 1

2 + z) hydrogen bond occurs

approximately in the same direction as the first described, with

O� � �H distances varying from 2.707 (6) to 2.917 (6) Å and �
angles from 142.5 (5) to 147.4 (4)�.

The third hydrogen bond to be considered is C22—

H22� � �O3 (�1 + x, y, z). In fact, three different hydrogen

bonds should be considered which share the O3 atom, the

other two being C6—H62� � �O3, with H� � �O distances varying

from 2.870 (7) to 3.091 (6) Å, and C5—H5� � �O3, with H� � �O
distances from 2.631 (4) to 2.914 (4) Å. The reason why these

two bonds are not retained is essentially due to the C—H� � �O
angle, 112.3 (5) and 123.3 (3)� for the average values, respec-

tively, which are in the lower limit of acceptance for a direc-

tional bond.

The O3� � �H22 distances vary from 2.554 (8) to

3.016 (10) Å, and � angles from 142.3 (7) to 153.7 (7)�. This

hydrogen bond is established between the RB3 unit of a

molecule and the RB1 phenyl ring of a neighbour molecule

considering the c axis. This interaction can be seen in Fig. 10.

The difference in the amplitude of the C—H� � �O bond

lengths with t is essentially due to the displacement of the C

atoms. The amplitude of C3—H3� � �O2 is three times larger

than for C4—H4� � �O1, which can be compared with the

amplitude of the displacement of the respective C atoms (see

Fig. 5, C3 atom is displaced like C1). The same occurs for

C22—H22� � �O3 compared with, for example, C3—H3� � �O2

with twice the distance amplitude.

Owing to the existence of two hydrogen bonds between the

RB3 unit in the crystal packing, this part of the molecule is

stable with only a displacement along the b axis with the t

parameter. The stability of this molecular part is also observed

with the constant value of the O1—C1—C2—C3 torsion angle.

If we consider the two phenyl rings, one is linked to the RB3

unit of a neighbour molecule by a hydrogen bond and the

other one is free of intermolecular bonds. As these two rings

move in phase owing to geometrical constraints, the C22—

H22� � �O3 hydrogen bond acts as a spring. The small displa-

cements of these rings relative to the rest of the molecule

induces small displacements generating deviation from three-

dimensional periodicity. The less constrained behaviour of the

RB2 phenyl ring is also observed in Fig. 6, with a larger

evolution along t for RB2 compared with RB1.

RB1 is less distorted than RB2. This must be related to the

existence of a hydrogen bond between H22 from RB1 and O3

from a neighbour RB3 molecular part, constraining the posi-

tion of RB1 constituent atoms. RB2 atoms are then less

constrained in position, leading to a more distorted ring,
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Figure 10
Two different views of the packing structure showing the disposition of
the O3� � �H22 hydrogen bonds [symmetry code: (i) �1 + x, y, z].

Figure 9
Packing of the structure showing the hydrogen bonds between atoms O1
and H4 and atoms O2 and H3 [symmetry code: (i) x, 1

2 � y, 1
2 + z].
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considering C—C distances and angles defining the ‘hexa-

gonal’ ring. The deviation from the planes between these two

different rings is very small and should be considered as

insignificant.

Considering the O-atom displacements, we observed that

there is a slight displacement along x and z (Fig. 5). O atoms,

owing to the existence of hydrogen bonds, are more

constrained in position, so that the only significant displace-

ment is along the b axis. This corresponds to the global

displacement of the molecule in a transverse way compared

with the modulation vector.

The refinement of the structure without taking into account

the modulation information (commonly referred to as the

average structure) yields quite large ADP values for the C and

O atoms. The introduction of a displacive modulation leads to

satisfactory ADP values for all atoms.

This modulation is adequately described with harmonics up

to third order. All the molecules are displaced along the b axis.

The phenyl rings are also displaced in the two other directions

(Fig. 5), with an increase of the displacement from the centre

to the exterior of the molecule. The phenyl rings are displaced

and rotated in phase with the modulation parameter t.
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