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Abstract. In the recent years, considerable attention has been paid to preserving structures and5
invariants in reduced basis methods, in order to enhance the stability and robustness of the reduced6
system. In the context of Hamiltonian systems, symplectic model reduction seeks to construct a7
reduced system that preserves the symplectic symmetry of Hamiltonian systems. However, symplectic8
methods are based on the standard Euclidean inner products and are not suitable for problems9
equipped with a more general inner product. In this paper we generalize symplectic model reduction10
to allow for the norms and inner products that are most appropriate to the problem while preserving11
the symplectic symmetry of the Hamiltonian systems. To construct a reduced basis and accelerate12
the evaluation of nonlinear terms, a greedy generation of a symplectic basis is proposed. Furthermore,13
it is shown that the greedy approach yields a norm bounded reduced basis. The accuracy and the14
stability of this model reduction technique is illustrated through the development of reduced models15
for a vibrating elastic beam and the sine-Gordon equation.16
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1. Introduction. Reduced order models have emerged as a powerful approach20

to cope with increasingly complex new applications in engineering and science. These21

methods substantially reduce the dimensionality of the problem by constructing a22

reduced configuration space. Exploration of the reduced space is then possible with23

significant acceleration [26, 23].24

Over the past decade, reduced basis (RB) methods have demonstrated great suc-25

cess in lowering of the computational costs of solving elliptic and parabolic differential26

equations [27, 28]. However, model order reduction (MOR) of hyperbolic problems27

remains a challenge. Such problems often arise from a set of conservation laws and28

invariants. These intrinsic structures are lost during MOR which results in a qualita-29

tively wrong, and sometimes unstable reduced system [3].30

Recently, the construction of RB methods that conserve intrinsic structures has31

attracted attention [2, 1, 29, 18, 8, 13, 7, 37]. Structure preservation in MOR not only32

constructs a physically meaningful reduced system, but can also enhance the robust-33

ness and stability of the reduced system. In system theory, conservation of passivity34

can be found in the work of [38, 22]. Energy preserving and inf-sup stable methods35

for finite element methods (FEM) are developed in [18, 5]. Also, a conservative MOR36

technique for finite-volume methods is proposed in [12].37

Moreover, the simulation of reduced models incurs solution errors and the estima-38

tion of this error is essential in applications of MOR [24, 40, 19]. Finding tight error39

bounds for a general reduced system has shown to be computationally expensive and40
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often impractical. Therefore, when one is interested in a cheap surrogate for the error41

or when the conserved quantity is an output of the system, it becomes imperative to42

preserve system structures in the reduced model.43

In the context of Lagrangian and Hamiltonian systems, recent works provide a44

promising approach to the construction of robust and stable reduced systems. Carl-45

berg, Tuminaro, and Boggs [14] suggest that a reduced order model of a Lagrangian46

system be identified by an approximate Lagrangian on a reduced order configuration47

space. This allows the reduced system to inherit the geometric structure of the orig-48

inal system. A similar approach has been adopted in the work of Peng and Mohseni49

[37] and in the work of Maboudi Afkham and Hesthaven [2] for Hamiltonian systems.50

They construct a low-order symplectic linear vector space, i.e. a vector space equipped51

with a symplectic 2-form, as the reduced space. Once the symplectic reduced space52

is generated, a symplectic projection result in a physically meaningful reduced sys-53

tem. A proper time-stepping scheme then preserves the Hamiltonian structure of54

the reduced system. It is shown in [2, 37] that this approach preserves the overall55

dynamics of the original system and enhances the stability of the reduced system. De-56

spite the success of these method in MOR of Hamiltonian systems, these techniques57

are only compatible with the Euclidean inner product. Therefore, the computational58

structures that arise from a natural inner product of a problem will be lost during59

MOR.60

Weak formulations and inner-products, defined on a Hilbert space, are at the61

core of the error analysis of many numerical methods for solving partial differential62

equations. Therefore, it is natural to seek MOR methods that consider such features.63

At the discrete level, these features often require a Euclidean vector space to be64

equipped with a generalized inner product, associated with a weight matrix X. Many65

works enabled conventional MOR techniques compatible with such inner products [41].66

However, a MOR method that simultaneously preserves the symplectic symmetry of67

Hamiltonian systems remains unknown.68

In this paper, we seek to combine a classical MOR method with respect to a69

weight matrix with the symplectic MOR. The reduced system constructed by the new70

method is a generalized Hamiltonian system and the low order configuration space71

associated with this system is a symplectic linear vector space with a non-standard72

symplectic 2-form. It is demonstrated that the new method can be viewed as the73

natural extension to [2], and therefore retains the structure preserving features, e.g.74

symplecticity and stability. We also present a greedy approach for the construction75

of a generalized symplectic basis for the reduced system. Structured matrices are76

in general not norm bounded [30]. However, we show that the condition number of77

the basis generated by the greedy method is bounded by the condition number of78

the weight matrix X. Finally, to accelerate the evaluation of nonlinear terms in the79

reduced system, we present a variation of the discrete empirical interpolation method80

(DEIM) that preserves the symplectic structure of the reduced system.81

What remains of this paper is organized as follows. In section 2 we cover the82

required background on the Hamiltonian and the generalized Hamiltonian systems.83

Section 3 summarizes classic MOR routine with respect to a weighted norm and the84

symplectic MOR method with respect to the standard Euclidean inner product. We85

introduce the symplectic MOR method with respect to a weighted inner product in86

section 4. Section 5 illustrates the performance of the new method through a vibrating87

beam and the sine-Gordon equation. We offer a few conclusive remarks in section 6.88
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2. Hamiltonian systems. In this section we discuss the basic concepts of the89

geometry of symplectic linear vector spaces and introduce Hamiltonian and General-90

ized Hamiltonian systems.91

2.1. Generalized Hamiltonian systems. Let (R2n,Ω) be a symplectic linear92

vector space, with R2n the configuration space and Ω : R2n×R2n → R a closed, skew-93

symmetric and non-degenerate 2-form on R2n. Given a smooth function H : R2n → R,94

the so called Hamiltonian, the generalized Hamiltonian system of evolution reads95

(1)

{
ż = J2n∇zH(z),

z(0) = z0.
96

Here z ∈ R2n are the configuration coordinates and J2n is a constant, full-rank and97

skew-symmetric 2n × 2n structure matrix such that Ω(x, y) = xTJ2ny, for all state98

vectors x, y ∈ R2n [34]. Note that there always exists a coordinate transformation99

z̃ = T −1z, with T ∈ R2n×2n, such that J2n takes the form of the standard symplectic100

structure matrix101

(2) J2n =

(
0n In
−In 0n

)
,102

in the new coordinate system [16]. Here 0n and In are the zero matrix and the103

identity matrix of size n × n, respectively. A central feature of Hamiltonian systems104

is conservation of the Hamiltonian.105

Theorem 2.1. [34] The Hamiltonian H is a conserved quantity of the Hamilto-106

nian system (1) i.e. H(z(t)) = H(z0) for all t ≥ 0.107

Under a general coordinate transformation, the equations of evolution of a Hamil-108

tonian system might not take the form (1). Indeed only transformations which pre-109

serve the symplectic form, symplectic transformations, preserve the form of a Hamil-110

tonian system [25]. Suppose that (R2n,Ω) and (R2k,Λ) are two symplectic linear111

vector spaces. A transformation µ : R2n → R2k is a symplectic transformation if112

(3) Ω(x, y) = Λ(µ(x), µ(y)), for all x, y ∈ R2n.113

In matrix notation, i.e. when we consider a set of basis vectors for R2n and R2k, a114

linear symplectic transformation is of the form µ(x) = Ax with A ∈ R2n×2k such that115

(4) ATJ2nA = J2k.116

We are interested in a class of symplectic transformations that transform a symplectic117

structure J2n into the standard symplectic structure J2k.118

Definition 2.2. Let J2n ∈ R2n×2n be a full-rank skew-symmetric structure ma-119

trix. A matrix A ∈ R2n×2k is J2n-symplectic if120

(5) ATJ2nA = J2k.121

Note that in the literature [34, 25], symplectic transformations refer to J2n-symplectic122

matrices, in contrast to Definition 2.2.123

It is natural to expect a numerical integrator that solves (1) to also satisfy the con-124

servation law expressed in Theorem 2.1. Conventional numerical time integrators, e.g.125

general Runge-Kutta methods, do not generally preserve the symplectic symmetry of126
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Hamiltonian systems which often result in an unphysical behavior of the solution over127

long time-integration. Poisson integrators [25] are known to preserve the Hamiltonian128

of (1). To construct a general Poisson integrator, we seek a coordinate transformation129

T : R2n → R2n, z̃ = T −1z, such that J2n = T J2nT T . Then, a symplectic integrator130

can preserve the symplectic structure of the transformed system. The Störmer-Verlet131

scheme is an example of a second order symplectic time-integrator given as132

(6)

qm+1/2 = qm +
∆t

2
· ∇pH̃(pm, qm+1/2),

pm+1 = pm −
∆t

2
·
(
∇qH̃(pm, qm+1/2) +∇qH̃(pm+1, qm+1/2)

)
,

qm+1 = qm+1/2 +
∆t

2
· ∇pH̃(pm+1, qm+1/2).

133

Here, z̃ = (qT , pT )T , H̃(z̃) = H(T −1z), ∆t denotes a uniform time step-size, and134

qm ≈ q(m∆t) and pm ≈ p(m∆t), m ∈ N ∪ {0}, are approximate numerical solu-135

tions. Note that it is important to use a backward stable method to compute the136

transformation T . In this paper we use the symplectic Gaussian elimination method137

with complete pivoting to compute the decomposition J2n = T J2nT T . However, one138

may use a more computationally efficient method, e.g., a Cholesky-like factorization139

proposed in [9] or the isotropic Arnoldi/Lanczos methods [35]. There are a few known140

numerical integrators that preserve the symplectic symmetry of a generalized Hamil-141

tonian system without requiring the computation of the transformation matrix T [25].142

The implicit midpoint rule143

(7) zm+1 = zm + ∆t · J2n∇zH
(
zm+1 + zm

2

)
,144

for (1) is an example of such integrators. For more on the construction and the145

applications of Poisson/symplectic integrators, we refer the reader to [25, 11].146

3. Model order reduction. In this section we summarize the fundamentals of147

MOR and discuss the conventional approach to MOR with a weighted inner product.148

We then recall the main results from [2] regarding symplectic MOR. In section 4149

we shall combine the two concepts to introduce the symplectic MOR of Hamiltonian150

systems with respect to a weighted inner product.151

3.1. Model-reduction with a weighted inner product. Consider a dynam-152

ical system of the form153

(8)

{
ẋ(t) = f(t, x),

x(0) = x0.
154

where x ∈ Rm and f : R× Rm → Rm is some continuous function. In this paper we155

assume that the time t is the only parameter on which the solution vector x depends.156

Nevertheless, it is straightforward to generalize the findings of this paper to the case157

of parametric MOR, where x depends on a larger set of parameters that belong to a158

closed and bounded subset.159

Suppose that x is well approximated by a low dimensional linear subspace with160

the basis matrix V = [v1| . . . |vk] ∈ Rm×k, vi ∈ Rm for i = 1, . . . , k. The approximate161

solution to (8) in this basis reads162

(9) x ≈ V y,163
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where y ∈ Rk are the expansion coefficients of x in the basis V . Note that projection164

of x onto colspan(V ) depends on the inner product and the norm defined on (8). We165

define the weighted inner product166

(10) 〈x, y〉X = xTXy, for all x, y ∈ Rm,167

for some symmetric and positive-definite matrix X ∈ Rm×m and refer to ‖ · ‖X as the168

X-norm associated to this inner product. If we choose V to be an orthonormal basis169

with respect to the X-norm (V TXV = Ik), then the operator170

(11) PX,V (x) = V V TXx, for all x ∈ Rm171

becomes idempotent, i.e. PX,V is a projection operator onto colspan(V ).172

Now suppose that the snapshot matrix S = [x(t1)|x(t2)| . . . |x(tN )] is a collection173

of N solutions to (8) at time instances t1, . . . , tN . We seek V such that it minimizes174

the collective projection error of the samples onto colspan(V ) which corresponds to175

the minimization problem176

(12)
minimize
V ∈Rm×k

N∑
i=1

‖x(ti)− PX,V (x(ti))‖2X ,

subject to V TXV = Ik.

177

Note that the solution to (12) is known as the proper orthogonal decomposition (POD)178

[26, 39, 21]. Following [39] the above minimization is equivalent to179

(13)
minimize
Ṽ ∈Rm×k

‖S̃ − Ṽ Ṽ T S̃‖2F ,

subject to Ṽ T Ṽ = Ik.
180

where Ṽ = X1/2V , S̃ = X1/2S, and X1/2 is the matrix square root of X. According181

to the Schmidt-Mirsky-Eckart-Young theorem [33] the solution Ṽ to the minimization182

(13) is the truncated singular value decomposition (SVD) of S̃. The basis V then is183

V = X−1/2Ṽ . The reduced model of (8), using the basis V and the projection PX,V ,184

is185

(14)

{
ẏ(t) = V TXf(t, V y),

y(0) = V TXx0.
186

If k can be chosen such that k � m, then the reduced system (14) can potentially187

be evaluated significantly faster than the full order system (8). Finding the matrix188

square root of X can often be computationally exhaustive. In such cases, explicit use189

of X1/2 can be avoided by finding the eigen-decomposition of the Gramian matrix190

G = STXS [39, 23].191

Besides RB methods, there exist other ways of basis generation e.g. greedy strate-192

gies, the Krylov subspace method, balanced truncation, Hankel-norm approximation193

etc. [4]. We refer the reader to [26, 39, 23] for further information regarding the194

development and the efficiency of reduced order models.195

3.2. Symplectic MOR. Conventional MOR methods, e.g. those introduced196

in subsection 3.1, do no generally preserve the conservation law expressed in The-197

orem 2.1. As mentioned earlier, this often results in the lack of robustness in the198
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reduced system over long time-integration. In this section we summarize the main199

findings of [2] regarding symplectic model order reduction of Hamiltonian systems with200

respect to the standard Euclidean inner product. Symplectic MOR aims to construct201

a reduced system that conserves the geometric symmetry expressed in Theorem 2.1202

which helps with the stability of the reduced system. Consider a Hamiltonian system203

of the form204

(15)

{
ż(t) = J2nLz(t) + J2n∇zf(z),

z(0) = z0.
205

Here z ∈ R2n is the state vector, L ∈ R2n×2n is a symmetric and positive-definite206

matrix and f : R2n → R is sufficiently smooth function. Note that the Hamiltonian207

for system (15) is given by H(z) = 1
2z
TLz + f(z). Suppose that the solution to (15)208

is well approximated by a low dimensional symplectic subspace. Let A ∈ R2n×2k be a209

J2n-symplectic basis containing the basis vectors A = [e1| . . . |ek|f1| . . . |fk], such that210

z ≈ Ay with y ∈ R2k the expansion coefficients of z in this basis. Using the symplectic211

inverse A+ := JT2kAT J2n we can construct the reduced system212

(16) ẏ = A+J2n(A+)TATLAy +A+J2n(A+)T∇yf(Ay).213

We refer the reader to [2] for the details of the derivation. It is shown in [37] that214

(A+)T is also J2n-symplectic, therefore A+J2n(A+)T = J2k and (16) reduces to215

(17) ẏ(t) = J2kA
TLAy + J2k∇yf(Ay).216

This system is a Hamiltonian system with the Hamiltonian H(y) = 1
2y
TATLAy +217

f(Ay). To reduce the complexity of evaluating the nonlinear term in (17), we may218

apply the discrete empirical interpolation method (DEIM) [6, 15, 42]. Assuming that219

∇zf(z) lies near a low dimensional subspace with a basis matrix U ∈ R2n×r the DEIM220

approximation reads221

(18) ∇zf(z) ≈ U(PTU)−1PT∇zf(z).222

Here P ∈ R2n×r is the interpolating index matrix [15]. For a general choice of U the223

approximation in (18) destroys the Hamiltonian structure, if inserted in (15). It is224

shown in [2] that by taking U = (A+)T we can recover the Hamiltonian structure in225

(17). Therefore, the reduced system to (15) becomes226

(19)

{
ẏ(t) = J2kA

TLAy + J2k(A+)T (PT (A+)T )−1PT∇zf(Ay),

y(0) = A+z0.
227

Note that the Hamiltonian formulation of (19) allows us to integrate it using a sym-228

plectic integrator. This conserves the symmetry expressed in Theorem 2.1 at the level229

of the reduced system. It is also shown in [2, 37] that the stability of the critical points230

of (15) is preserved in the reduced system and the difference of the Hamiltonians of231

the two system (15) and (19) is constant. Therefore, the overall behavior (19) is close232

to the full order Hamiltonian system (15). In the next subsection we discuss methods233

for generating a J2n-symplectic basis A.234

3.3. Greedy generation of a J2n-symplectic basis. Suppose that S ∈ R2n×N235

is the snapshot matrix containing the time instances {z(ti)}Ni=1 of the solution to (15).236
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We seek the J2n-symplectic basis A such that the collective symplectic projection error237

of samples in S onto colspan(A) is minimized.238

(20)
minimize
A∈R2n×2k

‖S − P symp
I,A (S)‖2F ,

subject to AT J2nA = J2k.
239

Here P symp
I,A = AA+ is the symplectic projection operator with respect to the standard240

Euclidean inner product onto colspan(A). Note that P symp
I,A ◦ P symp

I,A = P symp
I,A [37, 2].241

Direct approaches to solve (20) are often inefficient. Some SVD-type solutions to242

(20) are proposed by [37]. However, the form of the suggested basis, e.g. the block243

diagonal form suggested in [37], is not compatible with a general weight matrix X.244

The greedy generation of a J2n-symplectic basis aims to find a near optimal so-245

lution to (20) in an iterative process. This method increases the overall accuracy of246

the basis by adding the best possible basis vectors at each iteration. Suppose that247

A2k = [e1| . . . |ek|JT2ne1| . . . |JT2nek] is a J2n-symplectic and orthonormal basis [2]. The248

first step of the greedy method is to find the snapshot zk+1, that is worst approximated249

by the basis A2k:250

(21) zk+1 := argmax
z∈{z(ti)}Ni=1

‖z − P symp
I,A2k

(z)‖2.251

Note that if zk+1 6= 0 then zk+1 is not in colspan(A2k). Then we obtain a non-trivial252

vector ek+1 by J2n-orthogonalizing zk+1 with respect to A2k:253

(22) z̃ = zk+1 −A2kα, ek+1 =
z̃

‖z̃‖2
.254

Here, α ∈ R2k are the expansion coefficients of the projection of z onto the column255

span of A2k where αi = −Ω(zk+1, JT2nei) for i ≤ k and αi = Ω(zk+1, ei) for i > k.256

Since Ω(ek+1, JT2nek+1) = ‖ek+1‖22 6= 0 the enriched basis A2k+2 reads257

(23) A2k+2 = [e1| . . . |ek|ek+1|JT2ne1| . . . |JT2nek+1].258

It is easily verified that A2k+2 is J2n-symplectic and orthonormal. This enrichment259

continues until the given tolerance is satisfied. We note that the choice of the or-260

thogonalization routine generally depends on the application. In this paper we use261

the symplectic Gram-Schmidt (GS) process as the orthogonalization routine. How-262

ever the isotropic Arnoldi method or the isotropic Lanczos method [35] are backward263

stable alternatives.264

MOR is specially useful in reducing parametric models that depend on a closed265

and bounded parameter set S ⊂ Rd characterizing physical properties of the under-266

lying system. The evaluation of the projection error is impractical for such problems.267

The loss in the Hamiltonian function can be used as a cheap surrogate to the projec-268

tion error. Suppose that a J2n-symplectic basis A2k is given, then one selects a new269

parameter ωk+1 ∈ S by greedy approach:270

(24) ωk+1 = argmax
ω∈S

|H(z(ω))−H(P symp
I,A (z(ω)))|,271

and then enriches the basis A2k as discussed above. It is shown in [2] that the loss in272

the Hamiltonian is constant in time. Therefore, ωk+1 can be identified in the offline273
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phase before simulating the reduced order model. Note that the relation between the274

projection error (21) and the error in the Hamiltonian (24) is still unknown.275

We summarize the greedy algorithm for generating a J2n-symplectic basis in Algo-276

rithm 1. The first loop constructs a J2n-symplectic basis for the Hamiltonian system277

(15), and the second loop adds the nonlinear snapshots to the symplectic inverse of278

the basis. We refer the reader to [2] for more details. In section 4 we will show how279

this algorithm can be generalized to support any weighted inner product.280

Algorithm 1 The greedy algorithm for generation of a J2n-symplectic basis

Input: Tolerated projection error δ, initial condition z0, snapshots Z = {z(ti)}Ni=1

and G = {∇f(z(ti))}Ni=1

1. e1 ← z0
‖z0‖2

2. A← [e1|JT2ne1]
3. k ← 1
4. while ‖z − P symp

I,A (z)‖2 > δ for any z ∈ Z
5. zk+1 := argmax

z∈Z
‖z − P symp

I,A (z)‖2
6. J2n-orthogonalize zk+1 to obtain ek+1

7. A← [e1| . . . |ek+1|JT2ne1| . . . , JT2nek+1]
8. k ← k + 1
9. end while

10. compute (A+)T = [e′1| . . . |e′k|JT2ne′1| . . . |JT2ne′k]
11. while ‖g − P symp

I,(A+)T
(g)‖2 > δ for all g ∈ G

12. gk+1 := argmax
g∈G

‖g − P symp
I,(A+)T

(g)‖2
13. J2n-orthogonalize gk+1 to obtain e′k+1

14. (A+)T ← [e′1| . . . |e′k+1|JT2ne′1| . . . |JT2ne′k+1]
15. k ← k + 1
16. end while

17. A←
((

(A+)
T
)+
)T

Output: J2n-symplectic basis A.

4. Symplectic MOR with weighted inner product. In this section we com-281

bine the concept of model reduction with a weighted inner product, discussed in sub-282

section 3.1, with the symplectic model reduction discussed in subsection 3.2. We283

will argue that the new method can be viewed as a natural extension of the original284

symplectic method. Finally, we generalize the greedy method for the symplectic basis285

generation, and the symplectic model reduction of nonlinear terms to be compatible286

with any non-degenerate weighted inner product.287

4.1. Generalization of the symplectic projection. As discussed in subsec-288

tion 3.1, the error analysis of methods for solving partial differential equations often289

requires the use of a weighted inner product. This is particularly important when290

dealing with Hamiltonian systems, where the system energy can induce a norm that291

is fundamental to the dynamics of the system.292

Consider a Hamiltonian system of the form (15) together with the weighted inner293

product defined in (10) with m = 2n. Also suppose that the solution z to (15) is294

well approximated by a 2k dimensional symplectic subspace with the basis matrix295
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A. We seek to construct a projection operator that minimizes the projection error296

with respect to the X-norm while preserving the symplectic dynamics of (15) in the297

projected space. Consider the operator P : R2n → R2n be defined as298

(25) P = AJT2kATXJ2nX.299

It is easy to show that P is idempotent if and only if300

(26) JT2kATXJ2nXA = I2k,301

in which case P is a projection operator onto colspan(A). Suppose that S is the302

snapshot matrix containing the time samples {z(ti)}Ni=1 of the solution to (15). We303

seek to find the basis A that minimizes the collective projection error of snapshots304

with respect to the X-norm,305

(27)
minimize
A∈R2n×2k

N∑
i=1

‖z(ti)− P (z(ti))‖2X ,

subject to JT2kATXJ2nXA = I2k.

306

By (25) we have307

(28)

N∑
i=1

‖z(ti)− P (z(ti))‖2X =

N∑
i=1

‖z(ti)−AJT2kATXJ2nXz(ti)‖2X

=

N∑
i=1

‖X1/2z(ti)−X1/2AJT2kATXJ2nXz(ti)‖22

= ‖X1/2S −X1/2AJT2kATXJ2nXS‖2F
= ‖S̃ − ÃÃ+S̃‖2F .

308

Here S̃ = X1/2S, Ã = X1/2A, and Ã+ = JT2kÃTJ2n is the symplectic inverse of309

Ã with respect to the skew-symmetric matrix J2n = X1/2J2nX
1/2. Note that the310

symplectic inverse in (28) is a generalization of the symplectic inverse introduced in311

subsection 3.2. Therefore, we may use the same notation (the superscript +) for312

both. We summarized the properties of this generalization in Theorem 4.1. With this313

notation, the condition (26) turns into Ã+Ã = I2k which is equivalent to ÃTJ2nÃ =314

J2k. In other words, this condition implies that Ã has to be a J2n-symplectic matrix.315

Finally we can rewrite the minimization (27) as316

(29)
minimize
Ã∈R2n×2k

‖S̃ − P symp

X,Ã
(S̃)‖F ,

subject to ÃTJ2nÃ = J2k.
317

where P symp

X,Ã
= ÃÃ+ is the symplectic projection with respect to the X-norm onto318

the colspan(Ã). At first glance, the minimization (29) might look similar to (20).319

However, since Ã is J2n-symplectic, and the projection operator depends on X, we320

need to seek an alternative approach to find a near optimal solution to (29).321

As (20), direct approaches to solving (29) are impractical. Furthermore, there are322

no SVD-type methods known to the authors, that solve (29). However, the greedy323

generation of the symplectic basis can be generalized to generate a near optimal basis324

Ã. The generalized greedy method is discussed in subsection 4.3.325
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Now suppose that a basis A = X−1/2Ã, with Ã solving (29), is available such326

that z ≈ Ay with y ∈ R2k, the expansion coefficients of z in the basis of A. Using327

(26) we may write the reduced system to (15) as328

(30) ẏ = JT2kATXJ2nXJ2nLAy + JT2kATXJ2nXJ2n∇zf(Ay).329

Since (JT2kATXJ2nX)A = I2k, we may use the chain rule to write330

(31) ∇zH(z) = (JT2kATXJ2nX)T∇yH(Ay).331

Finally, as ∇zH(z) = Lz +∇zf(z), the reduced system (30) becomes332

(32)

{
ẏ(t) = J2kA

TLAy + J2k∇yf(Ay),

y(0) = JT2kATXJ2nXz0,
333

where J2k = Ã+J2n(Ã+)T is a skew-symmetric matrix. The system (32) is a general-334

ized Hamiltonian system with the Hamiltonian defined asH(y) = 1
2y
TATLAy+f(Ay).335

Therefore, a Poisson integrator preserves the symplectic symmetry associated with336

(32).337

We close this section by summarizing the properties of the symplectic inverse in338

the following theorem.339

Theorem 4.1. Let A ∈ R2n×2k be a J2n-symplectic basis where J2n ∈ R2n×2n is340

a full rank and skew-symmetric matrix. Furthermore, suppose that A+ = JT2kATJ2n341

is the symplectic inverse. Then the following holds:342

1. A+A = I2k.343

2. (A+)T is J−1
2n -symplectic.344

3.

((
(A+)

T
)+
)T

= A.345

4. Let J2n = X1/2J2nX
1/2. Then A is ortho-normal with respect to the X-norm,346

if and only if (A+)T is ortho-normal with respect to the X−1-norm.347

Proof. It is straightforward to show all statements using the definition of a sym-348

plectic basis.349

4.2. Stability Conservation. It is shown in [37, 2] that a Hamiltonian reduced350

system constructed by the projection P symp
I,A preserves the stability of stable equilib-351

rium points of (19), and therefore, preserves the overall dynamics. In this section, we352

discuss that the stability of equilibrium points is also conserved using the projection353

operator P symp

X,Ã
.354

Proposition 4.2. [10] An equilibrium point ze ∈ R2n is Lyapunov stable if there355

exists a scalar function W : R2n → R such that ∇W (ze) = 0, ∇2W (ze) is positive356

definite, and that for any trajectory z(t) defined in the neighborhood of ze, we have357
d
dtW (z(t)) ≤ 0. Here ∇2W is the Hessian matrix of W , and W is commonly referred358

to as a Lyapunov function.359

It is shown in [2] that the stable points of the Hamiltonian reduced system con-360

structed using the projection P symp

X,Ã
is Lyapunov stable. However, since the proof361

only requires the conservation of the Hamiltonian and the positive definiteness of H,362

the proof also holds for generalized Hamiltonian reduced systems.363

Theorem 4.3. [2] Consider a Hamiltonian system of the form (15) together with364

the reduced system (32). Suppose that ze is an equilibrium point for (15) and that365

ye = Ã+X1/2ze. If H (or −H) is a Lyapunov function satisfying Proposition 4.2,366

then ze and ye are Lyapunov stable equilibrium points for (15) and (32), respectively.367
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4.3. Greedy generation of a J2n-symplectic basis. In this section we modify368

the greedy algorithm introduced in subsection 3.3 to construct a J2n-symplectic basis.369

Ortho-normalization is an essential step in greedy approaches to basis generation370

[26, 39]. Here, we summarize a variation of the GS orthogonalization process, known371

as the symplectic GS process.372

Suppose that ΩJ2n is a symplectic form defined on R2n such that ΩJ2n(x, y) =373

xTJ2ny, for all x, y ∈ R2n and some full rank and skew-symmetric matrix J2n =374

X1/2J2nX
1/2. We would like to build a basis of size 2k+2 in an iterative manner and375

start with some initial vector, e.g. e1 = z0/‖z0‖X . It is known that a symplectic basis376

has an even number of basis vectors [34]. We may take Te1, where T = X−1/2JT2nX1/2,377

as a candidate for the second basis vector. It is easily verified that Ã2 = [e1|Te1] is J2n-378

symplectic and consequently, Ã2 is the first basis generated by the greedy approach.379

Next, suppose that Ã2k = [e1| . . . |ek|Te1| . . . |Tek] is generated in the kth step of the380

greedy method and z 6∈ colspan
(
Ã2k

)
is provided. We aim to J2n-orthogonalize z381

with respect to the basis Ã2k. This means we seek a coefficient vector α ∈ R2k such382

that383

(33) ΩJ2n

(
z + Ã2kα, y

)
= 0,384

for all possible y ∈ colspan(Ã2k). It is easily checked that (33) has the unique solution385

αi = −ΩJ2n(z, Tei) for i ≤ k and αi = ΩJ2n(z, ei) for i > k, i.e., z has a unique386

symplectic projection. If we take z̃ = z+ Ã2kα, then the next candidate pair of basis387

vectors are ek+1 = z̃/‖z̃‖X and Tek+1. Finally, the basis generated at the (k + 1)-th388

step of the greedy method is given by389

(34) Ã2k+2 = [e1| . . . |ek+1|Te1| . . . |Tek+1].390

Theorem 4.4 guarantees that the column vectors of Ã2k+2 are linearly independent.391

Furthermore, it is checked easily that Ã2k+2 is J2n-symplectic. We note that the392

symplectic GS orthogonalization process is chosen due to its simplicity. However, in393

problems where there is a need for a large basis, this process might be impractical. In394

such cases, one may use a backward stable routine, e.g. the isotropic Arnoldi method395

or the isotropic Lanczos method [35].396

It is well known that a symplectic basis, in general, is not norm bounded [31]. The397

following theorem guarantees that the greedy method for generating a J2n-symplectic398

basis yields a bounded basis.399

Theorem 4.4. The basis generated by the greedy method for constructing a J2n-400

symplectic basis is orthonormal with respect to the X-norm.401

Proof. Let Ã2k = [e1| . . . , ek|Te1| . . . |Tek] be the J2n-symplectic basis generated402

at the kth step of the greedy method. Using the fact that Ã2k is J2n-symplectic, one403

can check that404

(35) 〈ei, ej〉X = 〈Tei, T ej〉X = ΩJ2n(ei, T ej) = δi,j , i, j = 1, . . . , k,405

and406

(36) 〈ei, T ej〉X = ΩJ2n(ei, ej) = 0 i, j = 1, . . . , k,407

where δi,j is the Kronecker delta function. This ensures that ÃT2kXÃ2k = I2k, i.e.,408

Ã2k is an ortho-normal basis with respect to the X-norm.409
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We note that if we take X = I2n, then the greedy process generates a J2n- symplectic410

basis. With this choice, the greedy method discussed above becomes identical to the411

greedy process discussed in subsection 3.3. Therefore, the symplectic model reduc-412

tion with a weight matrix X is indeed a generalization of the method discussed in413

subsection 3.2.414

We notice that X1/2 does not explicitly appear in (32). Therefore, it is desirable415

to compute A2k = X−1/2Ã2k without requiring the computation of the matrix square416

root of X. It is easily checked that the matrix B2k := X1/2Ã2k = XA2k is J2n-417

symplectic and orthonormal. Reformulation of condition (33) yields418

(37) ΩJ2n (w +B2kα, ȳ) = 0, ∀ȳ ∈ colspan(B2k),419

where w = X1/2z. From (22) we know that (37) has the unique solution αi =420

−ΩJ2n(z, JT2nêi) for i ≤ k and αi = ΩJ2n(z, êi) for i > k, where êi is the ith column421

vector of B2k. Furthermore, we take422

(38) êk+1 = ẑ/‖ẑ‖2, ẑ = w +B2kα,423

as the next enrichment vector to construct424

(39) B2(k+1) = [ê1| . . . |êk+1|JT2nê1| . . . |JT2nêk+1].425

One can recover ek+1 form the relation ek+1 = X−1/2êk+1. However, since we are426

interested in the matrix A2(k+1) and not Ã2(k+1), we can solve the system XA2(k+1) =427

B2(k+1) for A2(k+1). This procedure eliminates the computation of X1/2.428

For identifying the best vectors to be added to a set of basis vectors, we may use429

similar error functions to those introduced in subsection 3.3. The projection error can430

be used to identify the snapshot that is worst approximated by a given basis Ã2k:431

(40) zk+1 := argmax
z∈{z(ti)}Ni=1

‖z − P (z)‖X .432

Where P is defined in (25). Alternatively we can use the loss in the Hamiltonian433

function in (24) for parameter dependent problems. We summarize the greedy method434

for generating a J2n-symplectic matrix in Algorithm 2.435

It is shown in [2] that under natural assumptions on the solution manifold of (15),436

the original greedy method for symplectic basis generation converges exponentially437

fast. We expect the generalized greedy method, equipped with the error function438

(40), to converge as fast, since the X-norm is topologically equivalent to the standard439

Euclidean norm [20], for a full rank matrix X.440

4.4. Efficient evaluation of nonlinear terms. The evaluation of the nonlin-441

ear term in (32) still retains a computational complexity proportional to the size of442

the full order system (15). To overcome this, we take an approach similar to subsec-443

tion 3.2. The DEIM approximation of the nonlinear term in (32) yields444

(41) ẏ = J2kA
TLAy + Ã+X1/2J2nU(PTU)−1PT∇zf(Ay).445

Here U is a basis constructed from the nonlinear snapshots {∇zf(z(ti))}Ni=1, and P446

is the interpolating index matrix [15]. As discussed in subsection 3.2, for a general447

choice of U , the reduced system (32) does not retain a Hamiltonian form. Since448

(Ã+X1/2)A = I2k applying the chain rule on (41) yields449

(42) ẏ = J2kA
TLAy + Ã+X1/2J2nU(PTU)−1PT (Ã+X1/2)T∇yf(Ay).450
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Algorithm 2 The greedy algorithm for generation of a J2n-symplectic basis

Input: Tolerated projection error δ, initial condition z0, the snapshots Z =
{Xz(ti)}Ni=1, full rank matrix X = XT > 0

1. z1 = Xz(0)
2. P = AJT2kATXJ2n

3. ê1 ← z1/‖z1‖2
4. B ← [ê1|JT2nê1]
5. k ← 1
6. while ‖z − Pz‖X > δ for any z ∈ Z
7. zk+1 := argmax

z∈Z
‖z − Pz‖X

8. J2n-orthogonalize zk+1 to obtain êk+1

9. B ← [ê1| . . . |êk+1|JT2nê1| . . . |JT2nêk+1]
10. k ← k + 1
11. end while
12. solve XA = B for A

Output: The reduced basis A

Freedom in the choice of the basis U allows us to require U = X1/2(Ã+)T . This451

reduces the complex expression in (42) to452

(43) ẏ = J2kA
TLAy + J2k∇yf(Ay),453

and hence we recover the Hamiltonian structure. The reduced system then yields454

(44)

{
ẏ(t) = J2kA

TLAy + J2k(PTXJ2nXAJ2k)−1PT∇zf(z),

y(0) = JT2kATXJXz0.
455

We now discuss how to ensure that X1/2(Ã+)T is a basis for the nonlinear snapshots.456

Note that if z ∈ colspan
(
X1/2(Ã+)T

)
then X−1/2z ∈ colspan

(
(Ã+)T

)
. Therefore,457

it is sufficient to require (Ã+)T to be a basis for {X−1/2∇zf(z(ti))}Ni=1. Theorem 4.1458

suggests that (Ã+)T is a J−1
2n -symplectic basis and that the transformation between459

Ã and (Ã+)T does not affect the symplectic feature of the bases. Consequently, from460

A we may compute (Ã+)T and enrich it with snapshots {X−1/2∇zf(z(ti))}Ni=1. Once461

(Ã+)T represents the nonlinear term with the desired accuracy, we may compute Ã =462 ((
(Ã+)T

)+
)T

to obtain the reduced basis for (44). Theorem 4.1 implies that (Ã+)T463

is ortho-normal with respect to the X−1-norm. This affects the ortho-normalization464

process. We note that greedy approaches to basis generation do not generally result465

in a minimal basis.466

As discussed in subsection 4.3 it is desirable to eliminate the computation of467

X±1/2. Having z ∈ colspan
(
X1/2(Ã+)T

)
implies that X−1z ∈ colspan(JT2nXAJ2n).468

Note that Algorithm 2 constructs a J2n-symplectic matrix XA and JT2nXAJ2n is the469

symplectic inverse of XA with respect to the standard symplectic matrix J2n. Given470

e as a candidate for enriching X1/2(Ã+)T we may instead enrich JT2nXAJ2n with ê,471

that solves Xê = e.472

Since JT2nXAJ2n is J2n-symplectic the projection operator onto the column span473

of JT2nXAJ2n can be constructed as Q = JT2nXAJ2nA
TX. Given a nonlinear snap-474
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shot z, we may need to project the vector X−1z onto colspan(JT2nXAJ2n). However,475

Q(X−1z) = JT2nXAJ2nA
T z and thus, the matrix X−1 does not appear explicitly.476

This process eliminates the computation of X±1/2. We summarize the process of477

generating a basis for the nonlinear terms in Algorithm 3.478

Algorithm 3 Generation of a basis for nonlinear terms

Input: Tolerated projection error δ, J2n-symplectic basis B = XA of size 2k, the
snapshots G = {∇zf(z(ti))}Ni=1, full rank matrix X = XT > 0

1. Q← JT2nXAJ2nA
T

2. compute (B+)T = JT2nBJ2n = [e1| . . . |ek|JT2ne1| . . . |JT2nek]
3. while ‖g −Qg‖2 > δ for any g ∈ G
4. gk+1 := argmax

g∈G
‖g −Qg‖2

5. solve Xe = gk+1 for e
6. J2n-orthogonalize e to obtain ek+1

7. (B+)T ← [e1| . . . |ek+1|JT2ne1| . . . |JT2nek+1]
8. k ← k + 1
9. end while

10. compute XA =
((
B+)T

)+)T
Output: J2n-symplectic basis XA

4.5. Offline/online decomposition. Model order reduction becomes particu-479

larly useful for parameter dependent problems in multi-query settings. For the pur-480

pose the of most efficient computation, it is important to delineate high dimensional481

(O(nα)) offline computations from low dimensional (O(kα)) online ones, for some482

α ∈ N. Time intensive high dimensional quantities are computed only once for a483

given problem in the offline phase and the cheaper low dimensional computations484

can be performed in the online phase. This segregation or compartmentalization of485

quantities, according to their computational cost, is referred to as the offline/online486

decomposition.487

More precisely, one can decompose the computations into the following stages:488

Offline stage: Quantities in this stage are computed only once and then used in the489

online stage.490

1. Generate the weighted snapshots {Xz(ti)}Ni=1 and the snapshots of the non-491

linear term {∇zf(z(ti))}Ni=1492

2. Generate a J2n-symplectic basis for the solution snapshots and the snapshots493

of the nonlinear terms, following Algorithms 2 and 3, respectively.494

3. Assemble the reduced order model (44).495

Online stage: The reduced model (44) is solved for multiple parameter sets and the496

output is extracted.497

5. Numerical results. Let us now discuss the performance of the symplectic498

model reduction with a weighted inner product. In subsections 5.1 and 5.2 we apply499

the model reduction to equations of a vibrating elastic beam without and with cavity,500

respectively. And we examine the evaluation of the nonlinear terms in the model501

reduction of the sine-Gordon equation, in section subsection 5.3.502
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(a) (b)

Fig. 1. (a) initial condition and a snapshot of the 3D beam. (b) initial condition and a snapshot
of the 2D beam with cavity.

5.1. The elastic beam equation. Consider the equations governing small de-503

formations of a clamped elastic body Γ ⊂ R3 as504

(45)


utt(t, x) = ∇ · σ + f, x ∈ Γ,

u(0, x) = ~0, x ∈ Γ,

σ · n = τ, x ∈ ∂Γτ ,

u(t, x) = ~0, x ∈ ∂Γ\∂Γτ ,

505

and506

(46) σ = λ(∇ · u)I + µ(∇u+ (∇u)T ).507

Here u : Γ→ R3 is the unknown displacement vector field, subscript t denotes deriva-508

tive with respect to time, σ : Γ → R3×3 is the stress tensor, f is the body force per509

unit volume, λ and µ are Lamé’s elasticity parameters for the material in Γ, I is the510

identity tensor, n is the outward unit normal vector at the boundary and τ : ∂Γτ → R3511

is the traction at a subset of the boundary ∂Γτ [32]. We refer to Figure 1(a) for a512

snapshot of the elastic beam.513

We define a vector valued function space as V = {u ∈ (L2(Γ))3 : ‖∇ui‖2 ∈ L2, i =514

1, 2, 3, u = ~0 on ∂Γτ}, equipped with the standard L2 inner product (·, ·) : V ×V → R,515

and seek the solution to (45). To derive the weak formulation of (45), we multiply it516

with the vector valued test function v ∈ V , integrate over Γ, and use integration by517

parts to get518

(47)

∫
Γ

utt · v dx = −
∫

Γ

σ : ∇v dx+

∫
∂Γτ

(σ · n) · v ds+

∫
Γ

f · v dx,519

where σ : ∇v =
∑
i,j σij(∇v)ji is the tensor inner product. Note that the skew-520

symmetric part of ∇v vanishes over the product σ : ∇v, since σ is symmetric. By521

prescribing the boundary conditions to (47) we recover522

(48)

∫
Γ

utt · v dx = −
∫

Γ

σ : Sym(∇v) dx+

∫
∂Γτ

τ · v ds+

∫
Γ

f · v dx,523

with Sym(∇v) = (∇v + (∇v)T )/2. The variational form associated to (45) is524

(49) (utt, v) = −a(u, v) + b(v), u, v ∈ V,525
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where526

(50) a(u, v) =

∫
Γ

σ : Sym(∇v) dx, b(v) =

∫
∂Γτ

τ · v ds+

∫
Γ

f · v dx.527

To obtain the FEM discretization of (49), we triangulate the domain Γ and define528

vector valued piece-wise linear basis functions {φi}Nhi=1, referred to as the hat functions.529

We define the FEM space Vh, an approximation of V , as the span of those basis530

functions. Projecting (49) onto Vh yields the discretized weak form531

(51) ((uh)tt, vh) = −a(uh, vh) + b(vh), uh, vh ∈ Vh.532

Any particular function uh can be expressed as uh =
∑Nh
i=1 qiφi, where qi, i =533

1, . . . , Nh, are the expansion coefficients. Therefore, by choosing test functions vh =534

φi, i = 1, . . . , Nh, we obtain the ODE system535

(52) Mq̈ = −Kq + gq.536

where q = (q1, . . . , qNh)T are unknowns, the mass matrix M ∈ RNh×Nh is given as537

Mi,j = (φi, φj), the stiffness matrix K ∈ RNh×Nh is given as Ki,j = a(φj , φi) and538

gq = (b(v1), . . . , b(vNh))T . Now introduce the canonical coordinate p = Mq̇ to recover539

the Hamiltonian system540

(53) ż = J2NhLz + gqp,541

where542

(54) z =

(
q
p

)
, L =

(
K 0
0 M−1

)
, gqp =

(
0
gq

)
,543

together with the Hamiltonian function H(z) = 1
2z
TLz+ zT JT2Nhgqp. An appropriate544

FEM setup leads to a symmetric and positive-definite matrix L. Hence, it seems545

natural to take X = L, the energy matrix associated to (53). The system parameters546

are summarized in the table below. For further information regarding the problem,547

we refer to [32].548

Domain shape box: lx = 1, ly = 0.2, lz = 0.2
Time step-size ∆t = 0.01
Gravitational force f = (0, 0,−0.4)T

Traction τ = ~0
Lamé parameters λ = 1.25, µ = 1.0
Degrees of freedom 2Nh = 1650

549

Projection operators PX,V , P symp
I,A and P symp

X,Ã
are constructed following subsections 3.1550

to 3.3, respectively, with σ = 5 × 10−4, 2 × 10−4 and 1 × 10−4. In order to apply a551

symplectic time integrator, we first compute the transformation J2k = T J2kT T using552

the symplectic GS method with complete pivoting. The reduced systems, obtained553

from P symp
I,A and P symp

X,Ã
, are then integrated in time using the Störmer-Verlet scheme554

to generate the temporal snapshots. The reduced system obtained from PX,V is555

integrated using a second order implicit Runge-Kutta method. Note that the Störmer-556

Verlet scheme is not used since the canonical form of a Hamiltonian system is destroyed557

when PX,V is applied.558
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Fig. 2. Numerical results related to the beam equation. (a) the decay of the singular values.
(b) conservation of the Hamiltonian. (c) error with respect to the 2-norm. (d) error with respect to
the X-norm.

Figure 2(a) shows the decay of the singular values of the temporal snapshots S559

and XS, respectively. The difference in the decay indicates that the reduced sys-560

tems constructed using P symp
I,A and P symp

X,Ã
would have different sizes to achieve similar561

accuracy.562

Figure 2(b) shows the conservation of the Hamiltonian for the methods discussed563

above. This confirms that the symplectic methods preserve the Hamiltonian and the564

system energy. However, the Hamiltonian blows up for the reduced system constructed565

by the projection PX,V .566

Figure 2(c) shows the L2 error between the projected systems and the full order567

system, defined as568

(55) ‖e‖L2 =
√

(e, e) ≈
√

(q − q̂)TM(q − q̂),569

where e ∈ V is the error function and q̂ ∈ R2n is an approximation for q. We notice570

that the reduced system obtained by the non-symplectic method is unstable and the571

reduced system, constructed using PX,V , is more unstable as k increases. On the other572

hand, the symplectic methods yield a stable reduced system. Although the system,573

constructed by the projection P symp

X,Ã
, is not based on the 2-norm projection, the error574

remains bounded with respect to the 2-norm.575

We define the energy norm ‖ · ‖E : V → R as576

(56) ‖(u, u̇)‖E =
√
a(u, u) + (u̇, u̇) ≈ ‖z‖X .577

Figure 2(d) shows the MOR error with respect to the energy norm. We observe that578

the classical model reduction method based on the projection PX,V does not yield a579

stable reduced system. However, the symplectic methods provide a stable reduced580

system. We observe that the original symplectic approach also provides an accurate581
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Fig. 3. Numerical results related to the beam with cavity. (a) the decay of the singular values.
(b) conservation of the Hamiltonian. (c) error with respect to the 2-norm. (d) error with respect to
the energy norm.

solution with respect to the energy norm. Nevertheless, the relation between the two582

norms depends on the problem set up and the choice of discretization [17].583

5.2. Elastic beam with cavity. In this section we investigate the performance584

of the proposed method on a two dimensional elastic beam that contains a cavity. In585

this case a nonuniform triangulated mesh is desirable to balance the computational586

cost of a FEM discretization with the numerical error around the cavity. Figure 1(a)587

shows the nonuniform mesh used in this section. System parameters are taken to588

be identical to those in subsection 5.1. Numerical parameters are summarized in the589

table below.590

cavity width lc = 0.1
Time step-size ∆t = 4× 10−4

Degrees of freedom 2Nh = 744
591

Figure 3(a) shows the decay of the singular values for the snapshot matrix S and592

XS. The divergence of the two curves indicates that to obtain the same accuracy593

in the reduced system, the basis constructed from S and XS would have different594

sizes. Projection operators PX,A, P symp
I,A and P symp

X,Ã
are constructed according to the595

subsections 3.1 to 3.3. The truncation error is set to δ = 2.5 × 10−3, δ = 1 × 10−3596

and δ = 5× 10−4 in Algorithms 1 and 2597

The 2-norm error and the error in the energy norm are presented in Figure 3(c)598

and Figure 3(d), respectively. We notice that although the non-symplectic method599

is bounded, it contains larger error compared to the symplectic methods. Moreover,600

we notice that the error generated by the symplectic methods is consistently reduced601

under basis enrichment. It is observed that in the energy norm, the projection P symp

X,Ã
602
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provides a more accurate solution (compare to Figure 2). This is because on a nonuni-603

form mesh, the weight matrix X associates higher weights to the elements that are604

subject to larger error. Therefore, we expect the reduced system constructed with the605

projection P symp

X,Ã
to outperform the one constructed with P symp

I,A on a highly nonuni-606

form mesh.607

Figure 3(b) shows the error in the Hamiltonian. Comparing to Figure 2, we notice608

that the energy norm helps with the boundedness of the non-symplectic method.609

However, the symplectic methods preserves the Hamiltonian at a higher accuracy610

5.3. The sine-Gordon equation. The sine-Gordon equation arises in differ-611

ential geometry and quantum physics [36], as a nonlinear generalization of the linear612

wave equation of the form613

(57)


ut(t, x) = v, x ∈ Γ,

vt(t, x) = uxx − sin(u),

u(t, 0) = 0,

u(t, l) = 2π.

614

Here Γ = [0, l] is a line segment and u, v : Γ→ R are scalar functions. The Hamilto-615

nian associated with (57) is616

(58) H(q, p) =

∫
Γ

1

2
v2 +

1

2
u2
x + 1− cos(u) dx.617

One can verify that ut = δvH and vt = −δuH, where δv, δu are standard variational618

derivatives. The sine-Gordon equation admits the soliton solution619

(59) u(t, x) = 4arctan

(
exp

(
±x− x0 − ct√

1− c2
))

,620

where x0 ∈ Γ and the plus and minus signs correspond to the kink and the anti-kink621

solutions, respectively. Here c, |c| < 1, is the arbitrary wave speed. We discretize the622

segment into n equi-distant grid point xi = i∆x, i = 1, . . . , n. Furthermore, we use623

standard finite-differences schemes to discretize (57) and obtain624

(60) ż = J2nLz + J2ng(z) + J2ncb.625

Here z = (qT , pT )T , q(t) = (u(t, x1), . . . , u(t, xN ))T , p(t) = (v(t, x1), . . . , v(t, xN ))T ,626

cb is the term corresponding to the boundary conditions and627

(61) L =

(
DT
xDx 0N
0N In

)
, g(z) =

(
sin(q)
~0

)
,628

where Dx is the standard matrix differentiation operator. We may take X = L as the629

weight matrix associated to (60). The discrete Hamiltonian, takes the form630

(62) H∆x = ∆x · 1

2
‖p‖22 + ∆x · ‖Dxq‖22 +

n∑
i=1

∆x · (1− cos(qi)).631

The system parameters are given as632
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Fig. 4. Numerical results related to the sine-Gordon equation. (a) the decay of the singular
values. (b) error in the Hamiltonian. (c) error with respect to the 2-norm. (d) error with respect
to the energy norm.

Domain length l = 50
No. grid points n = 500
Time step-size ∆t = 0.01
Wave speed c = 0.2

633

The midpoint scheme (7) is used to integrate (57) in time and generate the snapshot634

matrix S. Similar to the previous subsection, projection operators PX,V , P symp
I,A and635

P symp

X,Ã
are used to construct a reduced system. To accelerate the evaluation of the636

nonlinear term, the symplectic methods discussed in subsections 3.1 and 3.2 are cou-637

pled with the projection operators P symp
I,A and P symp

X,A , respectively. Furthermore, the638

DEIM approximation is used for the efficient evaluation of the reduced system, ob-639

tained by the projection PX,V . The midpoint rule is also used to integrate the reduced640

systems in time. Figure 4 shows the numerical results corresponding to the reduced641

models without approximating the nonlinearity, while the results corresponding to642

the accelerated evaluation of the nonlinear term are presented in Figure 5.643

Figure 4(a) shows the decay of the singular values of matrices S and XS. As in644

the previous section, we observe a saturation in the decay of the singular values of XS645

compared to the singular values of S. This indicates that the reduced basis, based646

on a weighted inner product, should be chosen to be larger to provide an accuracy647

similar to based on the Euclidean inner product. Put differently, unweighted reduced648

bases, when compared to the weighted ones, may be highly inaccurate in reproducing649

underlying physical properties of the system.650

Figure 4(b) displays the error in the Hamiltonian. It is observed again that the651

symplectic approaches conserve the Hamiltonian. However, the classical approaches652

do not necessarily conserve the Hamiltonian. We point out that using the projection653

operator PX,V ensures the boundedness of the Hamiltonian. The contrary is observed654
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Fig. 5. Numerical results related to the sine-Gordon equation with efficient evaluation of the
nonlinear terms. Here, “DEIM” indicates classical model reduction with the DEIM, “s.+DEIM”
indicates symplectic model reduction with the DEIM and “s.” indicates symplectic model reduction
with symplectic treatment of the nonlinear term. (a) error with respect to the Euclidean norm. (b)
error with respect to the X-norm. (c) error in the Hamiltonian.

when we apply the POD with respect to the Euclidean inner-product, i.e. applying655

the projection operator PI,V . This can be seen in the results presented in [37], where656

the unboundedness of the Hamiltonian is observed when PI,V is applied to the sine-657

Gordon equation. Nevertheless, only the symplectic model reduction consistently658

preserves the Hamiltonian.659

Figure 4(c) shows the error with respect to the Euclidean inner-product between660

the solution of the projected systems and the original system. The behavior of the661

solution is investigated for k = 100, k = 125 and k = 150. We observe that all662

systems which are projected with respect to the X-norm are bounded. As the results663

in [37] suggest, the Euclidean inner-product does not necessarily yield a bounded664

reduced system. Moreover, we notice that the symplectic projection P symp

X,Ã
results in665

a substantially more accurate reduced system compared to the reduced system yielded666

from PX,V . This is because the overall behavior of the original system is translated667

correctly to the reduced system constructed with the symplectic projection.668

The error with respect to the X-norm between the solution of the original system669

and the projected systems is presented in Figure 4(d). We see that the behavior of670

the X-norm error is similar to the Euclidean norm, however the growth of the error671

is slower for methods based on a weighted inner product. Note that the connection672

between the error in the Euclidean norm and the X-norm is problem and discretiza-673

tion dependent. We also observed that symplectic methods are substantially more674

accurate.675

Figure 5 shows the performance of the different model reduction methods, when676

an efficient method is adopted in evaluating the nonlinear term in (60). This figure677

compares the symplectic approaches against non-symplectic methods. For all simu-678

lations, the size of the reduced basis for (60) is chosen to be k = 100. The size of679
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the basis of the nonlinear term is then taken as kn = 75 and kn = 100. For symplec-680

tic methods, a basis for the nonlinear term is constructed according to Algorithm 3,681

whereas for non-symplectic methods, the DEIM is applied. Note that for symplectic682

methods, the basis for the nonlinear term is added to the symplectic basis A. This683

means that the size of the reduced system is larger compared to the classical approach.684

Figure 5(a) and Figure 5(b) show the error with respect to the Euclidean norm and685

the X-norm between the solution of the projected systems compared to the solution686

of the original system, respectively. We observe that all solutions are bounded and the687

behavior of the error in the Euclidean norm and the X-norm is similar. We observe688

that enriching the DEIM basis does not increase the overall accuracy of the system689

projected using PX,V . Furthermore, applying the DEIM to a symplectic reduced690

system also destroys the symplectic nature of the reduced system, as suggested in691

subsection 4.4. Therefore, it is essential to adopt a symplectic approach to reduce the692

complexity of the evaluation of the nonlinear terms. We observe that the symplectic693

method presented in subsection 4.4 provides not only an accurate approximation of694

the nonlinear term, but also preserves the symplectic structure of the reduced system.695

Moreover, enriching such a basis consistently increases the accuracy of the solution,696

as suggested in Figure 5(a) and Figure 5(b).697

Figure 5(b) shows the conservation of the Hamiltonian for different methods. It698

is again visible that applying the DEIM to a symplectic reduced system destroys the699

Hamiltonian structure, therefore the Hamiltonian is not preserved.700

6. Conclusion. We present a model reduction routine that combines the classic701

model reduction method, defined with respect to a weighted inner product, with702

symplectic model reduction. This allows the reduced system to be defined with respect703

to the norms and inner-products that are natural to the problem and most suitable704

for the method of discretization. Furthermore, the symplectic nature of the reduced705

system preserves the Hamiltonian structure of the original system, which results in706

robustness and enhanced stability in the reduced system.707

We demonstrate that including the weighted inner-product in the symplectic708

model reduction can be viewed as a natural extension of the unweighted symplec-709

tic method. Therefore, the stability preserving properties of the symplectic method710

generalize naturally to the new method.711

Numerical results suggest that classic model reduction methods with respect to a712

weighted inner product can help with the boundedness of the system. However, only713

the symplectic treatment can consistently increase the accuracy of the reduced system.714

This is consistent with the fact the symplectic methods preserve the Hamiltonian715

structure.716

We also show that to accelerate the evaluation of the nonlinear terms, adopting717

a symplectic approach is essential. This allows an accurate reduced model that is718

consistently enhanced when the basis for the nonlinear term is enriched.719

Hence, the symplectic model-reduction with respect to a weighted inner product720

can provide an accurate and robust reduced system that allows the use of the norms721

and inner products most appropriate to the problem.722
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