FACTORING MULTIVARIATE INTEGRAL POLYNOMIALS, II

Preprint

kruislaan 413 1098 SJ amsterdam
Factoring multivariate integral polynomials, II *)

by

A.K. Lenstra

ABSTRACT

We show that the problem of factoring multivariate integral polynomials can be reduced in polynomial-time to the univariate case. Our reduction makes use of lattice techniques as introduced in [3].

KEY WORDS & PHRASES: polynomial algorithm, polynomial factorization

*) This report will be submitted for publication elsewhere.
1. Introduction.

In [5] we presented a polynomial-time algorithm to factor polynomials in \(\mathbb{Z}[x, y] \), and we pointed out how to generalize the algorithm to \(\mathbb{Z}[x_1, x_2, \ldots, x_t] \) for \(t \geq 3 \). A nice feature of this algorithm is that it doesn't depend on the polynomial-time algorithm to factor in \(\mathbb{Z}[x] \) (cf. [3]). Instead of working out the details of this direct approach for \(t \geq 3 \) (this will be done for \(\mathbb{Z}[x_1, x_2, \ldots, x_t] \) in a forthcoming paper [6]), we here simplify the method from [5] somewhat, which results in a polynomial-time reduction from factoring in \(\mathbb{Z}[x_1, x_2, \ldots, x_t] \) to factoring in \(\mathbb{Z}[x] \). This reduction is similar to the reduction from \(\mathbb{F}_q[x_1, x_2, \ldots, x_t] \) to \(\mathbb{F}_q[x, y] \) that was given in [4].

An outline of our reduction is as follows. First we evaluate the polynomial \(\widetilde{f} \in \mathbb{Z}[x_1, x_2, \ldots, x_t] \) in a suitably chosen integer point \((X_2=s_2, X_3=s_3, \ldots, X_t=s_t) \), to obtain a polynomial \(\tilde{f} \in \mathbb{Z}[x_1] \). Using the algorithm from [3] we then compute an irreducible factor \(\tilde{h} \in \mathbb{Z}[x_1] \) of \(\tilde{f} \). Next we construct an integral lattice containing the factor \(h_0 \) of \(f \) that corresponds to \(\tilde{h} \), and we prove that \(h_0 \) is the shortest vector in this lattice. As usual, this enables us to compute \(h_0 \) by means of the so-called basis reduction algorithm (cf. [3]: Section 1); in the sequel we will assume the reader to be familiar with this basis reduction algorithm and its properties).

2. Factoring multivariate integral polynomials.

Let \(f \in \mathbb{Z}[x_1, x_2, \ldots, x_t] \) be the polynomial to be factored, with the number of variables \(t \geq 2 \). By \(d_f = n_f \) we denote the degree of \(f \) in \(x_1 \). We
often use \(n \) instead of \(n_1 \). We put \(N = n^{\frac{n_1}{n_1}}(n_1 + 1) \), and \(N = N_1 \). The content \(\text{cont}(f) \in \mathbb{Z}[x_1,x_2,\ldots, x_t] \) of \(f \) is defined as the greatest common divisor of the coefficients of \(f \) with respect to \(x_1^t \); we say that \(f \) is primitive if \(\text{cont}(f) = 1 \).

Without loss of generality we may assume that \(2 \leq n_1 \leq n_1 + 1 \) for \(1 \leq i \leq t \), and that the gcd of the integer coefficients of \(f \) equals one.

We present an algorithm to factor \(f \) into its irreducible factors in \(\mathbb{Z}[x_1,x_2,\ldots, x_t] \) that is polynomial-time in \(N \) and the size of the integer coefficients of \(f \).

Let \(s_2, s_3, \ldots, s_t \in \mathbb{Z} \) be a \((t-1)\)-tuple of integers. For \(g \in \mathbb{Z}[x_1,x_2,\ldots, x_t] \) we denote by \(\hat{g}_j \) the polynomial \(g \) modulo \((x_2-s_2), (x_3-s_3), \ldots, (x_{j-1}-s_{j-1}) \in \mathbb{Z}[x_1,x_{j+1},x_{j+2},\ldots, x_t] \); i.e. \(\hat{g}_j \) is \(g \) with \(s_i \) substituted for \(x_i \) for \(i = 2,3,\ldots, j \). Notice that \(\hat{g}_j = g \), and that \(\hat{g}_j = \hat{g}_{j+1} \) modulo \((x_{j+1}-s_{j+1}) \). We put \(\hat{g} = \hat{g}_t \).

Suppose that an irreducible, primitive factor \(h \in \mathbb{Z}[x_1] \) of \(f \) is given such that

\[(2.1) \ h^2 \text{ doesn't divide } f \text{ in } \mathbb{Z}[x_1], \text{ and } \delta_1 h > 0.\]

This condition implies that there exists an irreducible factor \(h_0 \in \mathbb{Z}[x_1, x_2, \ldots, x_t] \) of \(f \) such that \(h \) divides \(h_0 \) in \(\mathbb{Z}[x_1] \), and that this polynomial \(h_0 \) is unique up to sign.

\[(2.2) \text{ Let } m \text{ be an integer with } \delta_1 h \leq m < n. \text{ We define } L \text{ as the collection of polynomials } g \text{ in } \mathbb{Z}[x_1, x_2, \ldots, x_t] \text{ such that}\]

\[(i) \ \delta_1 g \leq m, \text{ and } \delta_1 g \leq n_1 \text{ for } 2 \leq i \leq t, \]

\[(ii) \ h \text{ divides } g \text{ in } \mathbb{Z}[x_1]. \]

This is a subset of the \((m+1)N^2 - 1\)-dimensional real vector space \(\mathbb{R} + \mathbb{R}X_1^* + \ldots + \mathbb{R}X_t^{N^2 - 1} \). We put \(M = (m+1)N^2 \). This vector space can be identified with \(\mathbb{R}^M \) by identifying the polynomial \(\sum_{k=0}^{M} a_k x^k \) with the \(M \)-dimensional vector \((a_0, \ldots, a_0, 0, \ldots, 0) \). The collection \(L \) is a lattice in \(\mathbb{R}^M \) of rank \(M - \delta_1 h \), and a basis for \(L \) is given by

\[\left\{ x_1^i (X_2 - s_2^j), 0 \leq i \leq m, 0 \leq j \leq n_1 \text{ for } 2 \leq j \leq t, \text{ and } (i_2, i_3, \ldots, i_t) = (0, 0, \ldots, 0) \right\} \]

(cf. \([4: (3.2)] \)).

We define the length \(|g| \) of the vector associated with the polynomial \(g \) as the ordinary Euclidean length of this vector. The height \(g_{\text{max}} \) is defined as the largest absolute value of any of the integer coefficients of \(g \).

\[(2.3) \text{ Proposition. Suppose that } b \text{ is a non-zero element of } L \text{ such that}\]

\[(2.4) s_j \geq \frac{b_{\text{max}}}{\text{max}_{j=1}^{n_1} (n + m)!} = \frac{n_1^{n_1}}{n_1^{n_1} + m} \text{ for } 2 \leq j \leq t. \text{ Then } \text{gcd}(f,b) = 1 \text{ in } \mathbb{Z}[x_1, x_2, \ldots, x_t]. \]

Proof. Suppose on the contrary that \(\text{gcd}(f,b) = 1 \). This implies that the resultant \(R = \text{Res}(f,b) \in \mathbb{Z}[X_1, X_2, \ldots, X_t] \) of \(f \) and \(b \) (with respect to the variable \(X_1 \)) is unequal to zero.

We derive an upper bound for \((R_j)_{\text{max}} \). Because \(R_j \) is the resultant of \(f_j \) and \(b_j \) we have

\[(2.5) (R_j)_{\text{max}} \leq (f_j)_{\text{max}} (b_j)_{\text{max}} (n_1^{n_1} + m)! (n_1^{n_1} + 1) \]

\(* \) Here, and in the sequel, \((f_{\text{max}}) \) denotes \(f_{\text{max}} \).
as is easily verified. Because \(b_j = b_{j-1} \mod (x_j - s_j) \), we have
\[
(b_j)_{\max} \leq (b_{j-1})_{\max} (n_j+1) s_j,
\]
so that
\[
(b_j)_{\max} \leq b_{\max} \prod_{i=1}^j (n_i+1) s_i.
\]
and similarly
\[
(f_j)_{\max} \leq f_{\max} \prod_{i=1}^j (n_i+1) s_i.
\]
Combining (2.5), (2.6), and (2.7), we obtain
\[
(f_j)_{\max} \leq \max_{1 \leq j \leq k} (n+j) \cdot (n+1) s_i.
\]
for \(1 \leq j \leq t \).

Because \(h \) divides both \(f \) and \(b \) ((2.2)(ii)), we have that \(h = 0 \). But also \(R = 0 \), so there must be an index \(j \) with \(2 \leq j \leq t \) such that \(s_j \) is a zero of \(h_j \). This implies that
\[
|s_j| \leq (R_j)_{\max}
\]
for some \(j \) with \(2 \leq j \leq t \), which yields, combined with (2.4) and (2.8), a contradiction. We conclude that \(\gcd(f,b) = 1 \).

\[\text{(2.9) Proposition. Let } b_1, b_2, \ldots, b_k \text{ be a reduced basis for } L \text{ (cf. } [3: \text{ Section 1}]) \text{, where } L \text{ and } M \text{ are defined as in } (2.2). \text{ Suppose that}
\]
\[\text{(2.10) } s_j \leq \max_{1 \leq j \leq k} (n+1) s_i \text{ for } 2 \leq j \leq t, \text{ and that } f \text{ doesn't contain multiple factors. Then}
\]
and \(h_0 \) divides \(b_1 \), if and only if \(\delta_1 h_0 \leq m \).

\[\text{Proof. If } h_0 \text{ divides } b_1, \text{ then } \delta_1 h_0 \leq \delta_1 b_1 \leq m; \text{ this proves the "only if"-part.}
\]
We prove the "if"-part. Suppose that \(\delta_1 h_0 \leq m \). The polynomial \(h_0 \) is a divisor of \(f \), so that
\[
(h_0)_{\max} \leq e^{1-1/n} f_{\max}
\]
according to [2]. With \(\delta_1 h_0 \leq m \) and \(\delta_1 h_1 \leq n_1 \) for \(2 \leq j \leq t \) we get
\[
|h_0| \leq \max_{1 \leq j \leq t} (n+1) s_j.
\]
so that [3: (1.11)] combined with \(h_0 \in L \) (this follows from \(\delta_1 h_0 \leq m \)) yields
\[
|b_1| \leq (n+1) e^{1-1/n} f_{\max}.
\]
This proves (2.11) because \((b_1)_{\max} \leq |b_1| \). With (2.10) and (2.3) we now have that \(\gcd(f,b_1) = 1 \). Suppose that \(h_0 \) doesn't divide \(r = \gcd(f,b_1) \).
Then \(R \) divides \(f/f \), so that, with
\[
(f/f)_{\max} \leq e^{1-1/n} f_{\max},
\]
and (2.10), (2.11), and (2.3), we get that \(\gcd(f/f,b_1) = 1 \). This is a contradiction with \(r = \gcd(f,b_1) \), because \(f \) doesn't contain multiple factors. \(\square \)

\[\text{(2.12) Suppose that } f \text{ doesn't contain multiple factors and that } f \text{ is primitive. Let } \sigma'_1, \sigma'_2, \ldots, \sigma'_k \text{ and } R \text{ be chosen such that (2.10) with } m \text{ replaced by } n-1 \text{ and (2.1) are satisfied. The divisor } h_0 \text{ of } f \text{ can be}
\]
determined in the following way.

For the values \(m = \delta_1 b_1, \delta_2 b_2, \ldots, n-1 \) in succession we apply the basis reduction algorithm (cf. [3: Section 1]) to the lattice \(L \) as defined in (2.2). We stop as soon as a vector \(b_1 \) is found satisfying (2.11). It is not difficult to see that the first vector \(b_1 \) satisfying (2.11) that we encounter, also satisfies \(b_1 = \pm e_0 \) (here we apply [3: (1.37)] and (2.9)). If no vector satisfying (2.11) is found, then \(\delta_1 h_0 > n-1 \), so that \(h_0 = f \); this follows from (2.9).

(2.13) Proposition. Assume that the conditions in (2.12) are satisfied. The polynomial \(h_0 \) can be computed in \(O((\log h_0) \log B) \) arithmetic operations on integers having binary length \(\log B = O(\log n \log \delta_1) \).

Proof. Combining (2.4) and (2.7), we find that

\[
|f| \leq n^t \prod_{i=2}^{\max} n_i^t
\]

(cf. [7]) and (2.7), we find that

\[
|f| \leq n^t \prod_{i=2}^{\max} n_i^t \prod_{i=2}^{\max} n_i^t
\]

The proof follows immediately from (2.2), [3: (1.26)] and [3: (1.37)]. \(\Box \)

(2.14) We describe an algorithm to compute the irreducible factors of \(f \) in \(\mathbb{Z}[x_1, x_2, \ldots, x_t] \). Assume that \(f \) is primitive.

First we compute the resultant \(R = R(f, f') \in \mathbb{Z}[x_2, x_3, \ldots, x_t] \) of \(f \) and its derivative \(f' \) with respect to \(x_1 \), using the subresultant algorithm from [1]. We may assume that \(R \neq 0 \), i.e. \(f \) doesn't contain multiple factors. (In the case that \(R = 0 \), the greatest common divisor \(g \) of \(f \) and \(f' \) is also computed by the subresultant algorithm, and the factoring algorithm can be applied to \(f/g \).)

Next we determine \(s_2, s_3, \ldots, s_t \in \mathbb{Z} \) such that \(R = 0 \) and such that (2.10) is satisfied with \(m \) replaced by \(n-1 \):

\[
s_j \geq (n R_2) n_2^{-2} 2^{-n} (2n-1) \prod_{i=2}^{\max} n_i^t (n_i^t)^{2n-1}
\]

for \(2 \leq j \leq t \). It follows from the reasoning in the proof of (2.3) that if we take \(s_j \in \mathbb{Z} \), minimal such that (2.15) is satisfied, then \(R \neq 0 \).

By means of the algorithm from [3] we compute the irreducible and primitive factors of \(f \) of degree \(> 0 \) in \(x_1 \). The condition \(R \neq 0 \) implies that (2.1) holds for every irreducible factor \(h \) of \(f \) thus found.

Finally, the factorization of \(f \) is determined by repeated application of the algorithm described in (2.12).

(2.16) Theorem. Let \(f \) be a polynomial in \(\mathbb{Z}[x_1, x_2, \ldots, x_t] \) with \(t \geq 2 \), \(\delta_1 f = n_1 \), and \(2 \leq n = n_2 \leq n_3 \leq \ldots \leq n_t \). The irreducible factorisation of \(f \) can be found in \(O(n^{t+2}(n^t \log f_{\max}) \) arithmetic operations on integers having binary length \(O(n^{t+2}(n^t \log f_{\max})) \), where \(N = \prod_{i=1}^{t} n_i^{n_i} \).

Remark. Because \(n^t = O(n) \), Theorem (2.16) implies that \(f \) can be factored in time polynomial in \(N \) and \(\log f_{\max} \).

Proof of (2.16). First assume that \(f \) is primitive. The resultant \(R \) can be computed in \(O(n^{t-1} \log f_{\max}) \) arithmetic operations on integers having binary length \(O(n^{t-1} \log f_{\max}) \) (cf. [1]).
From the choice of \(s_j \) (cf. (2.15)) we derive

\[
\log s_j = O(n^2 N_2 + n \log f_{\max} + \prod_{i=2}^{j-1} n_i \log s_i)
\]

for \(2 \leq j \leq t \), so that

\[
\log s_j = O((n^2 N_2 + n \log f_{\max}) \prod_{i=2}^{j-1} (1+n_i)).
\]

This yields

\[
\sum_{i=2}^{t} n_i \log s_i = O(n^{t-2} (N^2 + N \log f_{\max}))
\]

(2.17)

which gives, combined with (2.7),

\[
\log f_{\max} = O(n^{t-2} (n^2 + N \log f_{\max})).
\]

(2.18)

The polynomial \(F \) can be factored in \(O(n^6 + n^5 \log f_{\max}) \) arithmetic operations on integers having binary length \(O(n^3 + n^2 \log f_{\max}) \), according to [3: (3.6)].

With (2.18) this becomes

\[
O(n^{t+3} (n^2 + N \log f_{\max}))
\]

arithmetic operations on integers having binary length \(O(n^t (n^2 + N \log f_{\max})) \).

According to (2.13) and (2.17), repeated application of the algorithm described in (2.12) takes

\[
O(n^{t-2} (n^6 + n^5 \log f_{\max}))
\]

arithmetic operations on integers having binary length \(O(n^{t-2} (n^3 + n^2 \log f_{\max})) \).

The cost of applying (2.12) therefore dominates the costs of the computation of \(R \) and the factorization of \(f \).

The same estimates are valid in the case that \(R = 0 \). In this case we have that

\[
(f/g)_{\max} \leq \sum_{i=1}^{t} n_i f_{\max}^{\delta_i}
\]

(cf. [2]), so that the same estimates as above are valid for the computation of the factorization of \(f/g \).

Finally, we consider the case that the content of \(f \) is unequal to one.

The computation of \(\text{cont}(f) \) can be done in \(O(n^6 n^2 N^3) \) arithmetic operations on integers having binary length \(O(n^2 \log(f_{\max})) \) (cf. [1]). Because \(\delta_i f = \delta_i \text{cont}(f) + \delta_i (f/\text{cont}(f)) \) for \(2 \leq i \leq t \), the proof follows by repeated application of the above reasoning.

(2.19) Remark. As mentioned in the introduction, a somewhat more complicated but similar approach leads to an algorithm that doesn't depend on the polynomial-time algorithm for factoring in \(\mathbb{Z}[X] \). Instead, it can be seen as a direct generalization of the \(\mathbb{Z}[X] \)-algorithm. We won't give a detailed description of this alternative method here, we only indicate the main differences.

The divisor \(\mathbb{Z}[X_1] \) of \(f \) is replaced by a divisor \((f_{\mod p_k}) \in (\mathbb{Z}/p_k \mathbb{Z})[X_1] \), for some suitably chosen prime power \(p_k \).

Condition (2.2)(ii) is therefore replaced by the condition that \((f_{\mod p_k}) \) divides \((f_{\mod p_k}) \) in \((\mathbb{Z}/p_k \mathbb{Z})[X_1] \). The lattice \(\mathbb{Z}[X] \) now has rank \(n \), and a basis for \(L \) is given by

\[
\{p_i X_1: 0 \leq i < \delta_1 n\}
\]
Again, it can be proven that, if \(t \), \(s \), and \(p^k \) are sufficiently large, then the irreducible factor of \(f \) that corresponds to \((a \mod p^k)\) is the shortest vector in \(L \). This factor can therefore be found by means of the basis reduction algorithm, and the resulting algorithm appears to be polynomial-time. For \(f \in \mathbb{Z}[X, Y] \) the details are given in [5], and for \(f \in \mathbb{Q}(x)[X_1, X_2, \ldots, X_k] \) in [6].

References.