
Behavioral calibration of a large-scale travelbehavior microsimulationGunnar Flötteröd∗, Yu Chen, Marcel Rieser, Kai Nagel†November 9, 2009AbstractThis article reports on the application and calibration of a fully dis-aggregate (agent-based) transport simulation for the metropolitan areaof Zurich. The application of a novel calibration technique yields cross-validation results that are competitive with any state-of-the-art four-stepmodel. The added value of the proposed modeling/calibration approachis that the transport simulation equilibrates not only route choice but all-day travel behavior, which is in its entirety calibrated from tra�c counts.1 IntroductionThe well-known four-step process, consisting of trip generation, trip distribution(= destination choice), mode choice, and route assignment, has been the mod-eling tool in urban transportation planning for many decades [20]. However,the four-step process, at least in its traditional form, has many problems withmodern issues, such as time-dependent e�ects, more complicated decisions thatdepend on the individual, or spatial e�ects at the micro (neighborhood) scale[26].An alternative is to use a microscopic approach, where every traveler is modeledindividually. This typically starts with a synthetic population of individuals,adds activity patterns and activity locations to each individual, lets the synthetictravelers choose their mode, and ends with a route assignment procedure.One way to achieve this is to start with the synthetic population and thenwork the way �down� towards the network assignment. This typically resultsin activity-based demand models (ABDM), e.g, [5, 6, 16, 21], which sometimesdo and sometimes do not include the mode choice, but typically end with time-dependent origin-destination (OD) matrices, which are then fed to a separate
∗Transport and Mobility Laboratory (TRANSP-OR), Ecole Polytechnique Fédérale deLausanne (EPFL), Switzerland, gunnar.�oetteroed@ep�.ch
†Transport Planning and Transport Telematics Laboratory (VSPVT), Technical Universityof Berlin (TUB), Germany, {chen,rieser,nagel}@vsp.tu-berlin.de1



route assignment package. The assignment package computes a (typically dy-namic) route equilibrium and feeds the result back as time-dependent zone-to-zone travel impedances. When feedback is implemented, then the activity-based demand model recomputes some or all of its choices based on those travelimpedances [17].This type of coupling between the ABDM and the tra�c assignment leavesroom for improvement [3, 23]. In particular, it can be argued that route choiceis also a behavioral aspect, and in consequence the decision to include routechoice into the assignment model rather than into the demand model is arbi-trary. Problems immediately show up if one attempts to base a route choicemodel in a toll situation on demographic characteristics � the demographic char-acteristics, albeit present in the ABDM, are no longer available at the level ofthe assignment. Similarly, in all types of intelligent transport system (ITS)simulations, any modi�cation of the individuals' decisions beyond route choicebecomes awkward or impossible to implement.An alternative is to split the assignment into a route choice model and a net-work loading model and to add the route choice to the ABDM, which leavesthe network loading as the sole non-behavioral model component. If it is im-plemented as a tra�c �ow microsimulation, then the integrity of the simulatedtravelers can be maintained throughout the entire modeling process. This hasthe following advantages:
• Both the route choice and the network loading can be related to the char-acteristics of the synthetic person. For example, toll avoidance can bebased on income, or emission calculations can be based on the type ofvehicle (computed in an upstream car-ownership model).
• Additional choice dimensions besides route choice can be included in theiterative procedure of assignment (also see [11, 27]).This implies that, at least in principle, all choice dimensions of the ABDM canreact to the network conditions, but it also requires to build models of thisfeedback for all a�ected choice dimensions. While, for example, route choiceonly looks at the generalized cost of the trip, departure time choice also in-cludes schedule delay cost, mode choice compares the generalized costs betweendi�erent modes, location choice includes the attractiveness of the possible des-tination, etc. This brings along a vast increase in modeling opportunities, butit also requires substantially more modeling e�orts.In this article, we report on how such an approach can be implemented, usingthe metropolitan area of Zurich as an example (as a sub-region of an �all-of-Switzerland� scenario [19]). The results are compared to 161 counting stationsin the Zurich metropolitan area. Despite of the vastly increased scope of themodel when compared to a four-step approach, we are able to reproduce tra�ccounts with an error of 10% to 15% throughout the entire analysis period.Qualitatively, these results are competitive with any state-of-the art four-stepmodel, but they come along with entirely new modeling perspectives.The quality of the presented results is to a large extent due to new method-ological advances on the calibration side: Until recently, the 4-step-process was2



ahead of our approach in this regard because its simple mathematical struc-ture allowed for the development of a broad variety of (more or less automated)demand calibration procedures. In this article, however, we present the �rstreal-world application of a novel methodology for the calibration of demand mi-crosimulations from network conditions such as tra�c counts. The theory forthis was developed over the last couple of years [12, 13]. The article presentscross-validation results that con�rm that the calibration does not simply �drag�the demand towards a good measurement �t but indeed realizes meaningfulstructural demand adjustments.The remainder of this article is organized as follows. Sections 2 describes theused microsimulation, and Section 3 drafts the principles of the deployed de-mand calibration tool. The �eld study is described in length in Section 4. Fi-nally, Section 5 summarizes the article and gives an outlook on future researchdirections.2 Outline of transport microsimulationThe MATSim (�Multi-agent transport simulation toolkit�, [18, 22]) transportmicrosimulation is used for the purposes of this study. This simulation is con-structed around the notion of agents that make independent decisions abouttheir actions. Each traveler of the real system is modeled as an individual agentin our simulation. The simulation consists of two major building blocks, whichare mutually coupled:
• On the demand side, each agent independently generates a so-called plan,which encodes its intentions during a certain time period, typically a day.The plan is an output of an activity-based model that comprises but isnot constrained to route choice, and its generation depends on the networkconditions expected by the agent.
• On the supply side, the plans of all agents are simultaneously executed ina simulation of the physical system. This is also called the tra�c �owsimulation or mobility simulation.The mutual coupling of demand and supply is iteratively resolved, which canbe seen as a mechanism that allows agents to learn. The simulation iteratesbetween plan generation and tra�c �ow simulation. It remembers several plansper agent and evaluates the performance of each plan. Agents normally choosethe plan with the best performance, but they sometimes re-evaluate inferiorplans, and they sometimes obtain new plans by modifying copies of existingplans.The following subsections explains these items in greater detail.2.1 Choice set generationA plan contains the itinerary of activities the agent wants to perform duringthe day, plus the intervening trip legs the agent must take to travel between3



activities. An agent's plan details the order, type, location, duration and othertime constraints of each activity, and the mode, route and expected departureand travel time of each leg.A speci�cation of the plan choice set for every agent before the iterations iscomputational intractable because of the sheer number of possible alternatives.Such an approach also is conceptually questionable because the accessibilitymeasures that a�ect the inclusion of a plan in the choice set are an outcome ofthe iterations, and hence they are a priori unknown. Therefore, the choice set iscontinuously updated during the iterations. Speaking in the technical terms ofMATSim, a plan can be modi�ed by various modules. This paper makes useof the following modules.
• The activity times generator randomly changes the timing of an agent'splan. In every iteration, there is a 10% chance that this module is usedto generate a new plan.
• The router is implemented as a time-dependent Dijkstra algorithm thatruns based on link travel times obtained from the mobility simulation. Inevery iteration, there is a 10% chance that this module is used to generatea new plan.
• Mode choice is enabled by ensuring that the choice set of every agentcontains at least one �car� and one �non-car� plan.The choice set generation is turned o� after a pre-speci�ed number of iterationssuch that the agents select from a stable choice set using the utility-based choicemodel described next. Note that this choice model is also applied during thechoice set generation in order to drive the system towards a plausible state fromthe very beginning.2.2 ChoiceIn order to compare plans, it is useful to assign a quantitative score to theperformance of each plan. In principle, arbitrary scoring schemes can be used,e.g., prospect theory [1]. In this work, a simple utility-based approach is used.The elements of the approach are as follows:
• The total score of a plan is computed as the sum of individual contributionsconsisting of positive contributions for performing an activity and negativecontributions for traveling.
• A logarithmic form is used for the positive utility earned by performingan activity a, which essentially has the following form:

Vperf (a) = βperf · t
∗

a · ln tperf,a (1)where tperf ,a is the actually performed duration of the activity, t∗a is the�typical� duration of the activity, and βperf is the marginal utility of anactivity at its typical duration. βperf is the same for all activities since inequilibrium all activities at their typical duration need to have the samemarginal utility. 4



• The (dis)utility Vtravel(l) of traveling along a leg l is assumed to be linear inthe travel time with di�erent valuations of the time for di�erent transportmodes.The total utility of a plan i can thus be written as
V (i) =

∑

a∈i

Vperf (a) +
∑

l∈i

Vtravel(l) (2)It is important to note that the score thus takes into account the complete dailyplan. More details can be found in [9, 22].The plan choice is modeled with a multinomial logit model (which clearly callsfor enhancements in the future) [4]. The choice model has one additional twistduring the choice set generation phase: If it happens that an agent receives anewly generated plan from one of the aforementioned plan generation modules,then this plan is chosen for execution without further evaluation. This is nec-essary because the utility of a plan is determined from its execution, and henceit is not available for newly generated plans.Summarizing, the probability Pn(i) that agent n chooses plan i is
Pn(i)

{

= 1 if i is newly generated
∼ exp(V (i)) otherwise, (3)where the normalization of the logit model is omitted for notational simplicity.2.3 Tra�c �ow simulationThe tra�c �ow simulation executes the plans of all agents simultaneously on thenetwork and provides output describing what happened to each individual agentduring the execution of its plan. The tra�c �ow simulation is implemented as aqueue simulation, which means that each street (link) is represented as a FIFO(�rst-in �rst-out) queue with three restrictions [8, 14]: First, each agent has toremain for a certain time on the link, corresponding to the free speed traveltime. Second, the out�ow rate of a link is constrained by its �ow capacity.Third, a link storage capacity is de�ned, which limits the number of agents onthe link. If it is �lled up, no more agents can enter this link.3 Outline of calibrationThe previous section describes a simulation system that predicts the perfor-mance of a transportation system through an iterative process that couplescomplex behavioral and physical models. Notably, some aspects of the simula-tion are what one may call �procedurally modeled� in that there is no explicitmathematical speci�cation of the respective sub-model but rather a sequence ofprocessing steps that build the model output.This lack of a comprehensive mathematical perspective on the simulation andits outputs has, until recently, rendered the calibration of the system a rather5



awkward task that was based on intuition and, unfortunately, the arbitrarinessthis brings along. This section outlines the Cadyts (�Calibration of dynamictra�c simulations� [7, 13]) calibration tool. Because it allows to calibrate ar-bitrary choice dimensions from tra�c counts in a fully disaggregate manner, itlends itself to an application in the Zurich case study.3.1 Basic functioningCadyts makes no assumptions about the form of the plan choice distribution(3) or about the choice dimensions it represents. It combines the prior choicedistribution Pn(i) with the available tra�c counts y into a posterior choicedistribution Pn(i|y) in a Bayesian sense.Assuming (only for the sake of an utmost intuitive formulation) congestion to belight and the tra�c counts to be independently normal distributed, the posteriorchoice distribution can be shown to be approximately of the following form [12]:
Pn(i|y) ∼

∏

ak∈i

exp

(

ya(k) − qa(k)

σ2
a(k)

)

· Pn(i) (4)where ya(k) is the available tra�c count on link a in simulation time step k,
qa(k) is its simulated counterpart, and σ2

a(k) is the variance of the respectivetra�c count. The product runs over all links a and time steps k that (i) arecontained in plan i in that the plan schedules to cross that link in the giventime step and (ii) are equipped with a sensor. (The calibration functions witharbitrary sensor con�gurations.)Intuitively, this works like a controller that steers the agents towards a rea-sonable ful�llment of the measurements: For any sensor-equipped link, the ac-cording exp(·) factor is larger than one if the measured �ow is higher than thesimulated �ow such that the choice probabilities of plans that cross this link arescaled up. Vice versa, if the measured �ow is lower than the simulated �ow,the according factor is smaller than one such that plans that cross this link arepenalized.3.2 Application to MATSimApart from the immediate execution of newly generated plans, the behavioralmodel of MATSim is of the multinomial logit form Pn(i) ∼ exp(V (i)). Substi-tuting this into the posterior choice model (4) yields
Pn(i|y) ∼ exp

(

V (i) +
∑

ak∈i

ya(k) − qa(k)

σ2
a(k)

)

. (5)That is, an implementation of the posterior choice distribution requires nothingbut to add a link-additive correction term to the utility of every considered plan.Again, the functioning of the calibration can be interpreted as a controller inthat the utility of plans that improve the measurement reproduction is increasedand the utility of plans that impair the measurement reproduction is decreased.6



As described in Section 2, MATSim functions in two phases, where the �rstphase builds the choice set and the second phase simulates the choices basedon �xed choice sets. Important from a calibration perspective, plans that arenewly generated during the �rst phase are immediately chosen for execution inthe mobility simulation in order to assess their performance. The utility-drivenestimator (5) is applied in either phase in the following way:
• During the �rst phase, a newly generated plan is always selected. If nonew plan is generated, then an available plan is selected according to (5).
• During the second phase, no new plans are generated and the calibratedchoice distribution (5) is always employed.What is described here is a calibration of the realized choices. Another im-portant aspect of the calibration is to reveal structural information about thechoice model itself, e.g., in terms of coe�cients of the utility function. In thisregard, the additive utility modi�cations can be seen as corrections of the al-ternative speci�c constants of their respective plan alternatives. However, thepossibility to exploit tra�c counts for the calibration of demand parameters isnot limited to this, and it appears plausible to also deploy it to correct otherutility parameters. This is an important subject of future research.4 Zurich �eld studyThis section describes results from an ongoing real-world case study for the cityof Zurich. First, the basic setting of the test case is presented in Section 4.1.Second, the interactions between simulation and calibration are investigated inSection 4.2. Finally, Section 4.3 discusses the validation results for the calibratedsimulation system.4.1 Description of test case and uncalibrated simulationresultsFigure 1 gives an overview of the Zurich analysis zone, and Figure 2 shows theaccording road network. An all-of-Switzerland network with 60 492 links and24 180 nodes is used. It is based on a Swiss regional planning network, which hasbeen made ready for simulation purposes based on additional OpenStreetMapnetwork data [10].A synthetic population of travelers for all of Switzerland is available from aprevious study [2, 19]. All travelers have complete daily activity patterns basedon microcensus information [25]. Such activity patterns can include activities oftype home, work, education, shopping, leisure. The typical durations for thoseactivities are derived from the microcensus data and are speci�ed individuallyfor each member of the synthetic population.The initial demand used for the simulations is based on the aforementioneddemand of whole Switzerland, but consists only of all agents who cross a 30 km7



Figure 1: Zurich analysis zone

Figure 2: Zurich network8



Table 1: Simulation parametersparameter value
βperf.act. 12 Eur/h
βcar −12 Eur/h
βnon−car −6 Eur/hsize of plan choice set 4total number of iterations 500iterations for choice set generation 300Table 2: Opening and closing timesactivity type opening time closing timehome 00:00 24:00work 07:00 18:00education 07:00 18:00shop 08:00 20:00leisure 00:00 24:00(18.6miles) circle around the center of Zurich at least once during their dailytravel, including those agents who stay within that circle for the whole day. Inorder to obtain a higher computational speed, a random 10% sample is chosenfor simulation, which consists of 187 484 simulated travelers.All agents iteratively adapt route choice, departure time choice, and modechoice. Table 1 shows the behavioral parameters used in the scenario. Ac-tivity locations are given opening and closing times in order to keep the agentswithin some timely limit. The opening and closing times are classi�ed by activ-ity type, i.e., the opening and closing times are distinguished for home, work,education, shop and leisure activities. There is not yet any distinction based onthe location of an activity. Table 2 summarizes the opening and closing timesavailable to perform activities. Public transit is simulated as described in Refs.[15, 24], that is, it is assumed that it provides door-to-door connectivity at twicethe car free speed travel times.Hourly tra�c counts from 161 inductive loop sensors are available for an en-tire day. The deviation between measured and simulated tra�c counts is bothgraphically and quantitatively evaluated. For visual inspection, scatter plotssuch as those given in Figure 3 are used. Every point represents one pair ofmeasured/simulated tra�c counts, where the measured value de�nes the x-coordinate and the simulated value de�nes the y-coordinate. If all measure-ments were perfectly reproduced by the simulation, all points would lie on thediagonal with slope one. Deviations from that diagonal signalize inconsistenciesbetween measurements and simulations.Figure 3 shows results after 500 iterations of uncalibrated simulation. Thescatterplots reveal a minor underestimation of the volumes in the simulation,which can be explained by the limited number of activities accounted for inthe generation of the initial demand. However, the overall bias is moderate.9



Figure 3: Scatter plots for uncalibrated base case
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Figure 4: Mean relative error (MRE) for uncalibrated base caseThe line above (below) the main diagonal represents simulation values of twice(half) the observed tra�c counts (note that the plots are double-logarithmic).Most points are within this (admittedly loose) band, which indicates that thesimulation captures the overall situation fairly well. However, there clearly isroom for improvement.A quantitative analysis of the measurement reproduction quality is conductedin terms of the mean relative errorMRE(k) =

〈

|ya(i) − qa(k)|

ya(k)

〉

a

(6)where the average 〈·〉 over all measurement locations a is evaluated separatelyfor each hour k of the day, ya(k) is the measured volume on link a in hour
k, and qa(k) is its simulated counterpart. Figure 4 shows these values for theuncalibrated base case. The simulation deviates strongly from the reality duringthe night hours, i.e., from midnight until 6 am. However, during daytime thehourly MRE is consistently below 30%. It needs to be stressed that these resultsare not intended to model the nightly conditions because the according traveldemand has been deliberately ignored in this study.4.2 Inserting the calibration into the simulationAccording to Section 3.2, the calibration a�ects all utility-based choices in thesimulation by modifying the utility according to (5). This applies to all choicesbut the selection of newly generated plans, which are always executed. Thisimplies that these parts of the demand remain uncalibrated during the �rstiteration phase that builds the choice sets. Only in the second iteration phase,where stable choice sets are used, the calibration takes full e�ect.11



The evolution of the calibrated simulation over the iterations is visualized in Fig-ure 5, which shows the mean weighted square error MWSE of all measurementsover the iteration number. This error measure is de�ned asMWSE =

〈

(ya(k) − qa(k))2

2σ2
a(k)

〉

ak

(7)where σ2

a(k) is the variance assigned to the sensor data on link a in hour k. Itis calculated as
σ2

a(k) = 0.5 · max{ya(k), (25 veh/h)2}, (8)which also is the speci�cation used in (5). It re�ects two considerations. First,there is the assumption that the variance of a measurement is proportional tothe measured value. Second, the variance is limited to a minimal positive value,which ensures that very small measurements are not over-weighted and avoidsnumerical problems in the evaluation of (5) and (7). The particular numbersused in this speci�cation have been obtained by trial-and-error. Because of thepreviously discussed underestimation of the nightly demand, only measurementsfrom 6:00 to 19:59:59 (as from now called the analysis period) are used by thecalibration and evaluated in (7).Since the system starts already in an equilibrated state that has been attainedafter 500 uncalibrated iterations, all systematic changes of MWSE in Figure 5can be attributed to the calibration. The MWSE is quickly reduced from morethan 100 to around 45 in the �rst 100 iterations. After this, the curve �attens.It is plausible to assume that in the �rst iterations, the calibration ��lls up� themeasurement locations by arbitrary plans, and that in the following iterationsthe simulation rearranges the plans such that behaviorally more reasonable planstake the place of other plans that have been �used� by the calibration before.The choice set generation phase �nishes at iteration 300, which clearly gener-ates a jump in the system behavior: Since the immediate execution of newlygenerated plans is omitted, the calibration can a�ect the whole plan choice dis-tribution, which results in another improvement of MWSE from around 35 tolittle more than 20. The variability of MWSE is reduced to almost zero af-ter iteration 300, which also is a consequence of the reduced variability in theexecuted plans once the choice set generation is turned o�.The scatterplots of Figure 6 are obtained from the last iteration of the cali-brated simulation. A comparison with the uncalibrated scatterplots of Figure 3shows a substantial improvement in measurement �t in that the data points aresubstantially more centered around the main diagonal. Figure 7 shows that thecalibration enforces a MRE that is consistently between 10% and 15% duringthe analysis period, which is a reduction by half. One can also see that the MREis increased outside of the analysis period when compared to the uncalibratedcase. This is likely to result from the omission of certain demand segments,which the calibration compensates for by �drawing� agents from outside of theanalysis period through an adjustment of their departure times. From this,one can also conclude that a better all-day base demand outside of the analysisperiod is likely to improve the results within the analysis period as well.Overall, the calibration generates a substantial improvement in measurement �t.However, this alone does not prove that the calibrated agent behavior becomes12
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0 100 200 300 400 500Figure 5: Mean weighted square error (MWSE) using all counting stationsmore realistic because there are many plausible and not-so-plausible combi-nations of plan choice distributions that reproduce the measurements equallywell. The next section provides cross-validation results that indicate that thecalibrated demand is indeed more realistic.4.3 Cross-validation resultsWhile the previous section clearly demonstrates that the calibration greatly im-proves the measurement reproduction, this section demonstrates that it does soin a way that also improves the realism of the global tra�c situation. This is animportant issue that applies to demand calibration from tra�c counts in generalbecause this problem is highly under-determined, which implies that there is alarge number of demand con�gurations that reproduce the tra�c counts equallywell. Cadyts resolves this under-determination by taking the choice logic thatis implemented in the simulation system itself as the prior information aboutthe demand. The tra�c counts are then added to this information in order toobtain an improved posterior choice distribution.For cross-validation, the 161 sensor locations are randomly assigned to ten dis-joint validation data sets of roughly equal size. For each validation dataset, there is a corresponding measurement data set that contains the traf-�c counts from all sensors that are not represented by the respective validationdata set. For every measurement/validation data set pair, one calibration is con-ducted, where only the measurement data is made available to the calibrationand the corresponding validation data is used to evaluate how well the calibrateddemand generates a spatiotemporal extrapolation of the tra�c counts.13



Figure 6: Scatter plots after calibration
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Figure 7: Mean relative error (MRE) after calibrationFigure 8 shows the MWSE trajectories of the measurement data for all tenexperiments over the iterations, where all trajectories are normalized to theirvalues at iteration zero for better comparability. Figure 9 shows the same type ofcurves for the validation data. The similar dynamics of the measurement MWSEvalues indicate that the calibrated simulation exhibits well-behaved dynamicsand generates reproducible results. Overall, the measurement reproduction er-ror is reduced by around than 80% in all cases.The validation MWSE curves exhibit a greater variability, which can be ex-plained by the lower number of measurements that enter the averaging in (7).Again, the variability is substantially decreased once the choice set generation isturned o� in MATSim. The di�erent experiments attain di�erent values, whichcan be explained by the fact that here disjoint sets of sensor data are evaluated.Overall, an improvement of 15% to 45% is attained. This clearly indicatesthat the local information that is contained in the measurement data is usedby the calibration in a way that a�ects the network-wide agent behavior suchthat more realistic network conditions result even far away from the sensor loca-tions. One also has to keep in mind that the relative positioning of the sensorsa�ects the validation results in that the extrapolation power of the calibrationis limited by the spatiotemporal correlations in the network conditions: if thevalidation sensors are too far away, they simply are not a�ected any more bythe calibration, no matter how good it is.These results show clearly that the calibration conducts demand modi�cationsthat are structurally meaningful in that they do not only �t the sensor datawell but also lead to a global improvement in the system's realism. At thispoint, the di�culty of the calibration problem that is solved here needs to bestressed. The calibration adjusts simultaneously the route choice, mode choice,and departure time choice of hundreds of thousands of individual travelers in15
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a purely simulation-based environment on a network with many ten thousandlinks. The number of iterations required to obtain stable and realistic results isin the order of a plain simulation, and the computational overhead introduced bythe calibration is negligible. The authors are not aware of any other calibrationtechnique that comes close to such results.5 Summary and outlookThis article demonstrates that a fully disaggregate transport microsimulationthat represents travel demand at the level of individual persons can be appliedto the realistic simulation of large metropolitan systems. Crucial to the qualityof the simulation is a proper calibration of the demand, for which tra�c countsare shown to be a valuable data source. In particular, tra�c counts from 161sensors are used in a novel calibration methodology to adjust the route choice,mode choice, and departure time choice of hundreds of thousands of individualtravelers on a network with many ten thousand links. The calibrated simulationsystem is successfully evaluated by cross-validation.Future work will concentrate on the following items:
• Ongoing improvements of the Zurich base case with respect to all modelingaspects.
• Extension of the calibration system to the identi�cation of structural de-mand parameters.Finally, it should be mentioned that the deployed Cadyts calibration tool is notconstrained to the MATSim microsimulation but is designed to be compatiblewith a wide variety of transport simulation systems.References[1] E. Avineri and J.N. Prashker. Sensitivity to uncertainty: Need for paradigmshift. Transportation Research Record, 1854:90�98, 2003.[2] M. Balmer, K.W. Axhausen, and K. Nagel. A demand generation frame-work for large scale micro simulations. Transportation Research Record,1985:125�134, 2006.[3] M. Balmer, N. Cetin, K. Nagel, and B. Raney. Towards truly agent-basedtra�c and mobility simulations. In Autonomous agents and multiagentsystems (AAMAS'04), New York, NY, July 2004.[4] M.E. Ben-Akiva and S.R. Lerman. Discrete Choice Analysis. MIT Pressseries in transportation studies. The MIT Press, 1985.[5] C.R. Bhat, J.Y. Guo, S. Srinivasan, and A. Sivakumar. A comprehen-sive econometric microsimulator for daily activity-travel patterns (cemdap).Transportation Research Record, 1894:57�66, 2004.17
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