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The relaxation of the constraint of periodicity imposed by t he external con�ning magnetic
�eld coils in a nominally 4-�eld period Helias Advanced Stel larator con�guration produces weak
periodicity-breaking deformations of the plasma. The corr ugations are driven by the interaction of
the pressure gradient with the magnetic �eld line curvature and correspond to saturated ideal mag-
netohydrodynamic interchanges with a mode structure domin ated by nonresonant m = 1 ; n = � 1
Fourier components. The conditions of quasi-isodynamicit y of the Helias reactor system investigated
are not signi�cantly altered by the periodicity-breaking d istortions.

Magnetohydrodynamic (MHD) activity can alter the
symmetry properties of magnetically con�ned plasma.
A three-dimensional (3D) equilibrium solver [1] has
been applied to model the breaking of the axisymmetric
properties �rst in Reversed Field Pinches [2{4] and more
recently in tokamaks [5{8]. In stellarator experiments,
very long-lasting oscillations with low toroidal mode
number n have been previously reported [9{11]. Previ-
ous theoretical and simulation research related to this
subject include nonlinear resistive MHD computations of
the LHD device that yield saturated solutions [12], the
generation of current-driven magnetic island structures
when the rotational transform exceeds 1=2 in the CTH
(Compact Toroidal Hybrid) torsatron-tokamak hybrid
with the interesting feature that initial m=n = 10=5
structures coalesce to develop a lower orderm=n = 2 =1
chain [13] and �xed boundary internal nonlinearly
MHD stable 2-�eld period quasiaxisymmetric stellarator
con�gurations have been calculated with the NSTAB
code [14]. The deformations in that work retain the
underlying 2-fold periodicity of the device proposed. In
this Letter, 3D free boundary ideal magnetohydrody-
namic (MHD) equilibrium states are presented for the
�rst time with the VMEC code [1] that develop visible
edge distortions that break the periodicity imposed
by the coil system in a nominally 4-�eld period Helias
reactor device. We contend that the deformations
observed constitute nonlinear saturated ideal magneto-
hydrodynamic (MHD) interchange structures with low
toroidal mode number n driven by the interaction of the
pressure gradient with the magnetic �eld line curvature.
The Helias Advanced Stellarator concept investigated
displays quasi-isodynamic properties [17, 18] which
are essentially unaltered by the periodicity-breaking
distortions at reactor-relevant values of h� i .

The measurement of very long-lasting low order
toroidal mode number oscillations in stellarators [9{11]
and many other toroidal devices [19{23] provides the mo-
tivation to theoretically model this activity and therefore

develop a physics understanding of the phenomena ob-
served. In particular, coherent modes that spontaneously
break the toroidal periodicity have been observed in the
TJ-II stellarator [9]. Computation of 3D MHD equilib-
rium states with the VMEC code imposes nested mag-
netic 
ux surfaces [1]. The states that are computed rep-
resent ideal magnetohydrodynamics because the model
precludes magnetic �eld lines breaking and reconnect-
ing. The Helias con�guration represents one of the most
attractive options for nuclear power production based on
the stellarator concept, hence we concentrate on a nom-
inally 4-�eld system of this type to investigate the for-
mation of energetically favourable solutions of the MHD
equilibrium problem that break the 4-fold periodicity im-
posed by the con�ning coil set.

The plasma energy� 0W =
RRR

d3x[B 2=2+ � 0p(s)=(� �
1)] (where B is the magnetic �eld, p(s) is the plasma
pressure and is a function of the radial variable s
(0 � s � 1) which is proportional to the enclosed
toroidal magnetic 
ux function �, � is the adiabatic
index) is minimised with respect to an arti�cial time
variable employing a steepest descent energy minimisa-
tion scheme. A Green's function technique is applied
to evolve the plasma-vacuum interface to obtain free
boundary MHD equilibria where the vacuum magnetic
�elds are calculated using Biot-Savart's Law from all
toroidal and poloidal �eld coils discretised into �nite
sized �laments. In free boundary mode, initial guesses
for the Fourier amplitudes of R (the distance from the
major axis) and Z (the height above the midplane)
at the magnetic axis and at the last closed magnetic

ux surface (LCFS) must be provided. Though the
coil set dictates 4-fold periodicity around the torus,
we relax this constraint to include all toroidal mode
numbers in the range� 20 � n � 20 and poloidal mode
numbers 0 � m � 11. Typically, the 4-fold periodic
Fourier components of R �

P
m;n Rm;n cos(m� � n� )

and Z �
P

m;n Zm;n sin(m� � n� ) (stellarator symmetry
is assumed) at the plasma-vacuum interface are chosen
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as R0;0 = 17:7, R0;4 = 0 :72, R1;0 = 2 :15, R1;4 = 0 :99,
Z0;0 = 0, Z0;4 = 0 :33, R1;0 = 2 :448, Z1;4 = 1 :33
(dimensions in m). Initial edge periodicity-breaking
components are prescribed though the parameter� i ,
such that R1;1 = Z1;1 = � i and R1;� 1 = Z1;� 1 = � � i .

All calculations performed in this article have vanish-
ing toroidal current within each 
ux surface 2 �J (s) = 0
and pressure pro�le prescribed asp(s) = p(0)(1 � s)(1 �
s4). The rotational transform pro�les �(s) for the He-
lias reactor con�guration examined at h� i = 0 :5% and
h� i = 5% are plotted as a function of s in Fig. 1. Note
that � = 1 is outside the plasma; the main low order res-
onances that break the 4-fold periodicity of the coils are
n=m = 10=11, 9=10, 7=8, 6=7 and 5=6.
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FIG. 1. The rotational transform pro�les in a nominally 4-
�eld period Helias reactor con�guration at h� i = 0 :5% and
h� i = 5% in which the periodicity imposed by the coils is not
enforced.

The shape of the LCFS for the Helias reactor system
under consideration at each of the tear-drop cross sec-
tions throughout one toroidal transit are projected onto
one plane in Fig. 2 ath� i = 0 :5%, 2% and 4%. There are
visible deformations of the LCFS in this range ofh� i val-
ues. The Plasma-Vacuum Interface shape at the bean,
tear-drop and triangular cross sections over 1 toroidal
transit at h� i = 5 :0% shows the small corrugation of the
edge surface at each superimposed plane in Fig. 3.

To address the question for the motivation to impose
initial periodicity-breaking deformations, we perform an
ideal MHD stability investigation of Helias reactor equi-
libria constrained to satisfy the 4-fold periodicity im-
posed by the external coils with respect to then = 1
family of modes with the TERPSICHORE code [15, 16].
Convergence studies of the con�guration as a function of
the inverse number of radial grid points squared is plotted
at h� i = 0 :6%, 1:6% and 2:6% in Fig. 4. Marginal sta-
bility at in�nitesimal mesh occurs for h� i = 0 :6% (never-
theless the system is very weakly unstable at �nite mesh
size). The parameter� i that we apply to generate equi-
librium states without the periodicity constraint imposed
consequently constitutes a proxy for them=n = 1 = � 1
components of the linear displacement vector of the lin-
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FIG. 2. The superimposed shape of the LCFS at the 4 tear-
drop cross sections ath� i = 0 :5% (top), at 2 :0% (middle) and
at 4:0% (bottom) in a Helias reactor system. The superim-
posed shapes match exactly when the 4-fold coil periodicity
constraint is imposed.

ear stability calculations at the plasma boundary. We
would like to repeat that � i represents only an initial
periodicity-breaking displacement; it is not a persistently
applied external �eld like a resonant magnetic perturba-
tion. It should be noted that error �elds and eddy cur-
rents in the surrounding metallic walls will also produce
periodicity-breaking perturbations that could be partic-
ularly relevant below the linear ideal MHD stability lim-
its. The results presented in Fig. 4 justify increasing� i
with h� i . Fig. 5 shows the variation of the volume aver-
age total energy




p + B 2=(2� 0)

��
within the plasma as a

function of the parameter � i that shows that the absolute
minimum energy state is achieved for� i = 0 :31m. For
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FIG. 3. The superimposed shapes of the LCFS at h� i = 5 :0%
at the bean-shaped cross section (top), at the tear-drop cross
section (middle) and at the triangular cross section (botto m)
in a Helias reactor con�guration. The 4 superimposed shapes
match exactly at each of the cross sections when the 4-fold
coil periodicity constraint is imposed.

� i > 0:35m, we have failed to obtain a converged equilib-
rium state with VMEC and conjecture that under such
circumstances the initial state we prescribe is too far re-
moved to achieve an equilibrium solution. For lowerh� i ,
the energetically favoured MHD equilibrium solutions are
achieved with progressively lower values of the initial dis-
tortion � i prescribed at the plasma boundary. We de�ne
hhAii �

R
d3xA=

R
d3x. There is of course no guarantee

that each equilibrium point in Fig. 5 actually corresponds
to a stable state. However, a 2nd variation of the vol-
ume averaged total plasma energy with respect to� i will
identify the minima in Fig. 5 to represent stable states
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FIG. 4. The linear ideal MHD eigenvalue � plotted with re-
spect to 1=N 2 , where N corresponds to the number of radial
intervals in the plasma at di�erent values of h� i . A straight
line identi�es the convergence properties as quadratic. Th e
4-fold periodicity of the underlying equilibrium states is pre-
served.

with respect to m=n = 1 =� 1 initial deformations of the
plasma boundary. The absolute minimum corresponds to
the nonlinearly saturated equilibrium state at h� i = 5%.
Hence, without actually performing an explicit stability
calculation, we can infer nonlinear ideal MHD stability
properties from equilibrium computations. One intrigu-
ing speculation prompted by a referee's comment is that
the local minima observed at the lower values of� i in
Fig. 5 constitute manifestations of the 2nd , 3rd and so
forth less unstable ideal MHD states of the 4-�eld period
constrained con�guration. This merits further investiga-
tions in the future.
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FIG. 5. The value of the volume averaged total plasma energy


p + B 2=(2� 0 )

��
at the minimum energy state as a function

of the initial guess of the distortion � i in a Helias reactor
system at h� i = 5 :0%. The initial Fourier amplitudes of R
and Z corresponding to the m = 1 ; n = � 1 components are
R1;1 = Z1;1 = � R1; � 1 = � Z1; � 1 = � i . The dotted curve
represents a 15th order polynomial �t to the simulation data
points.

The minimum energy state in the rangeh� i = 0 :5%�
� 5:6% is plotted in Fig. 6. The initial guesses for the
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m = 1, n = � 1 components ofR and Z speci�ed by
� i that yield the minimum energy states at eachh� i are
identi�ed in the plot. �




p + B 2=(2� 0)

��
corresponds

to the di�erence between




p + B 2=(2� 0)
��

evaluated at
�nite � i and � i = 0. Note that the ordinate values in
Fig. 6 are negative indicating that the volume averaged
total plasma energy obtained at the �nite values of � i is
lower than that for � i = 0 in the range of h� i explored.
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FIG. 6. The value of the di�erence of the volume averaged
total plasma energy




p + B 2=(2� 0 )

��
at �nite � i (which cor-

responds to the minimum energy state) with that at � i = 0
as a function of h� i . The values of � i are labelled at selected
values of h� i . The dashed curve represents a 6th order poly-
nomial �t to the simulation data points.

A Fourier decomposition of R at the outermost mag-
netic 
ux surface is undertaken and displayed in Fig. 7
at h� i = 0 :5% and 5:0%. We would like to highlight
that the main resonances identi�ed in the description of
Fig. 1 that break the periodicity of the system provide
only weak distortions compared with the mainly nonres-
onant contributions of Rm;n that appear in Fig. 7. The
spectrum is slightly broader and the amplitudes smaller
in absolute magnitude at the lower h� i values. Though
the amplitudes of the R1;� 1 term increase in magnitude
with h� i , the resulting interference pattern appears not
to be constructive as the corrugations of the shape of the
last surface as shown in Figs. 2, 3 do not change much.

In current-free stellarators, the interaction of the pres-
sure gradient with the magnetic �eld line curvature con-
stitutes the principal driving mechanism for MHD in-
stabilities. The structure of 2

p
gp0(s)� � r s on a 
ux

surface close to the edge of the plasma reveals that the
most destabilising contribution (most negative) concen-
trates near the outside edge of one of the bean-shaped
cross sections indicating an importantn = 1 distortion.
Furthermore, the structure when the 4-fold periodicity
is relaxed is more closely magnetic �eld aligned com-
pared with the 4-�eld period constrained con�guration
where it is cross-�eld aligned. The comparison between
the 2 cases ath� i = 5% is presented in Fig. 8. An-
other important observation is that the range of values
for 2

p
gp0(s)� �r s is neutral (with respect to positive and

negative values) when the periodicity constraint is re-
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FIG. 7. The dominant Fourier components of R on the LCFS
in a Helias reactor system at the minimum energy state at
h� i = 0 :5% (top) and h� i = 5 :0% (bottom) poloidal mode
number m and toroidal mode number n phase space. To vi-
sualize the periodicity-breaking Fourier terms, the domin ant
4-fold periodic components of R are suppressed. The main
periodicity-breaking terms have signi�cant amplitude for rel-
atively low m; n values. Consequently, we limit the display
to the range 0 � m � 4 and � 13 � n � 13. The Fourier
amplitudes Rm;n are normalized to the R1;0 term.

laxed indicating marginal stability. However, it tends to
be more negative when the 4-fold periodicity is enforced
suggesting that this con�guration is linearly unstable to
ideal MHD. The periodicity-breaking deformations con-
stitute a saturated ideal MHD instability state.

FIG. 8. The distribution of the interaction of the pressure
gradient with the magnetic �eld line curvature 2

p
gp0(s)� � r s

on a magnetic 
ux surface close the edge of the plasma at
h� i = 5%. The top row represents the equilibrium state with
unconstrained periodicity. The bottom row represents the
equilibrium state constrained to satisfy the 4-fold period icity
of the coils.

The Helias reactor con�guration examined approaches
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conditions of quasi-isodynamicity [17, 18]. The poloidal
closure of the contours of the 2nd adiabatic invariant J in
a polar plot for particles with pitch angles that vary from
deeply to barely trapped represents a good measure of
the con�nement of fast ions and of neoclassical transport
properties in general. Essentially particles that reside in
the phase space volume of poloidally closedJ contours
do not drift far from their birth 
ux surfaces and as a
result should remain well con�ned in the 3D Helias B -
�eld [17, 18]. We have found that the relaxation of the
periodicity exacted by the external coils does not mod-
ify in a signi�cant way the contours of the J for di�erent
particle pitch angles. A comparison of theJ behavior for
the general equilibrium case and the 4-fold periodic case
at h� i = 5% demonstrates that both are very similar, as
shown in Fig. 9. Thus energetic particle con�nement and
neoclassical transport should not be seriously impacted
whether periodicity is enforced or not, however this re-
quires veri�cation in future work.

FIG. 9. The contours of the second adiabatic invariant J in
polar coordinate representation for a Helias reactor con�g u-
ration at h� i = 5%. The radial variable is � =

p
s and � is

the poloidal angle. The columns correspond to reference mag-
netic �eld values B ref = 4 :55T , 4:6T , 4:7T and 4:8T from left
to right, respectively. The particle pitch angle correspon d to
� � �= E = 1 =Bref . The top row represents the equilibrium
state with unconstrained periodicity. The bottom row repre -
sents the equilibrium state constrained to satisfy the 4-fo ld
periodicity of the coils.

We report, for the �rst time, free boundary stel-
larator equilibria using the VMEC code with novel 3D
distortions to the plasma-vacuum interface that break
the underlying periodicity imposed by the external
magnetic con�nement coils of a nominally 4-�eld period
Helias reactor. The edge corrugations occur in the
range 0:5% < h� i < 5:6% investigated. The Fourier
spectrum of R and Z at the LCFS is dominantly m = 1,
n = � 1 at h� i = 5%. The m=n = 1 = � 1 structures
are nonresonant as�max < 0:95. We contend that these
geometric deformations correspond to saturated ideal
MHD interchanges driven by the interaction of the
pressure gradient with the magnetic �eld curvature. The
2
p

gp0(s)� � r s structure con�rms a n = 1 modulation
around the torus. The quasi-isodynamic properties
of the Helias con�guration we have investigated are
not signi�cantly altered by the periodicity-breaking
corrugations we report, thus we surmise that fast
particle con�nement and neoclassical transport will not
be a�ected. The edge distortions are very benign (even

at high h� i > 5%) compared with other con�nement
concepts. These conditions augur very favorably for the
Helias advanced stellarator system as a power producing
fusion energy reactor concept.

The simulation model we have applied constrains the
magnetic surfaces to remain nested. Our work thus
opens new avenues of research like the consideration
of more general equilibrium approaches that allow for
the formation of periodicity-breaking magnetic islands
and internal stochastic regions [24{26] (typically these
solvers use a VMEC solution as an initial guess). Also,
nonlinear kinetic theory can be invoked to examine
the generation of �nite frequency oscillations using the
VMEC equilibria we have computed.
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