
Run-time Mapping of Applications on FPGA-based
Reconfigurable Systems

Ivan Beretta†, Vincenzo Rana‖†, David Atienza†, Donatella Sciuto‖
†Embedded Systems Laboratory (ESL), EPFL, Lausanne, 1015, Switzerland, {ivan.beretta, david.atienza}@epfl.ch

‖Politecnico di Milano, Milano, 20133, Italy, {rana, sciuto}@elet.polimi.it

Abstract— The role of Field-Programmable Gate Arrays (FP-
GAs) in System-on-Chip (SoC) design considerably increased
in the last few years. Their established importance is due to
the large amount of hardware resources they offer, as well
as to their increasing performance, and furthermore to the
support for reconfigurability. Even though FPGAs seem to have
reached their maturity, there is still a lack of Computer-Aided
Design (CAD) tools able to deal with dynamic reconguration.
Existing algorithms aim at optimizing the performance of a set
of applications, basing the computation on classic metrics (such
as communication overhead), while reconfiguration-related issues
are not taken into consideration.

This work proposes a design methodology to map several
applications on the FPGA area at run-time. Starting from a basic
solution found at design-time for the initial set of applications, the
proposed algorithm makes it possible to map a new application
(not known at design-time), both minimizing the number of
synthesis processes and optimizing the on-chip performance of
the new application. Experimental results show that the proposed
approach is able to achieve up to a 18% reduction in the number
of reconfigurations with respect to an off-line static-mapping
approach, while generally preserving the performance of the
executed applications on the FPGA.

I. INTRODUCTION

Multi-core Systems-on-Chip (SoC) represent a promising
opportunity to increase overall system performance [1]. This
approach allows the designer to accelerate specific parts of the
computation by exploiting special-purpose, high-performance
cores, which coordinated execution solves very complex tasks,
such as multimedia and graphics problems [2], [3]. Multi-
core systems design introduces new challenges, ranging from
software development to hardware optimization, such as the
creation of scalable inter-core communication infrastructures.

Field Programmable Gate Arrays (FPGAs) showed promis-
ing results as deployment fabrics for multi-core systems and
new communication paradigms [4], mainly because of their
programmability, but also for their dynamic reconfiguration ca-
pability, which allows the device to be partially reprogrammed
at run-time. Dynamic reconfiguration introduces a tremendous
flexibility in hardware design, since it is possible to target
different applications on the same device, and to switch among
them at run-time by reconfiguring part of the physical device.
Furthermore, it is possible to add new applications to the
system at run-time, thus increasing the lifetime of the final
product. The spreading of dynamic reconfiguration is however
limited by its cost in terms of latency, since a reconfiguration
process may require hundreds of milliseconds [4]. Still, the
reconfiguration overhead can be limited by designing specific

CAD tools that aim at reducing the amount of area that is
reconfigured during the transition between two applications.

This work addresses the problem of adding a new appli-
cation to an already-executing system, by mapping its soft
cores onto the reconfigurable resources. The main contribution
of this work is the definition of a low-complexity algorithm
for this run-time mapping problem, which is able to exploit
domain-related metrics to find a good quality solution. The
goal is to reduce the reconfiguration overhead, while maximiz-
ing on-chip performance related to inter-core communication
issues. Furthermore, since the new application must be syn-
thesized before being deployed on the device, the proposed
approach tries to simplify the synthesis phase by reusing parts
of the applications that are already mapped on the device.

II. RELATED WORK

Multiple works related to mapping algorithms can be found
in literature, but they are generally proposed as design-time
algorithms, and only a few of them are specifically targeted
for reconfigurable systems. For instance, in [5] the authors
propose a mapping algorithm to optimize the communication
latency between the cores, which can be applied to a promising
communication paradigm called Network-on-Chip (NoC). In
[6], the authors combine mapping and routing into a unified
problem, which they solve using an algorithm that minimizes
the complexity of the network. Finally, in [7] an algorithm
that minimizes area and power consumption is proposed.

The previous examples do not explicitly consider dynamic
reconfiguration, and therefore they do not aim at reducing
the reconfiguration overhead. The algorithm proposed in [8]
actually aims at reducing the number of reconfigurations that
are used to deploy a partitioned application on the device. Still,
the approach is too restrictive, because it considers only one
application, which is subject to strict constraints.

In [9], an algorithm has been proposed to map many multi-
core applications on a single device by exploiting dynamic
reconfiguration. The algorithm maps cores into slots of fixed
size, which are connected using a NoC, and it reduces both the
communication overhead and the number of reconfigurations
required to switch between applications. The first part of the
algorithm collects the shared cores and tries to fit them into a
base mapping, whereas the second part places the remaining
cores. Since the algorithm faces some complex problems such
as graph partitioning, it is only suitable for the design-time
phase. In [10], a run-time extension has been proposed, but

978-1-4244-5309-2/10/$26.00 ©2010 IEEE 3329

it only aims at reusing existing system components to deploy
the new application, whenever it is possible.

Other examples of run-time mappers exist in literature. In
[11], the proposed algorithm maps new applications in the
device area that is currently unused, and it takes decisions to
avoid future area fragmentation. However, the basic assump-
tion is that all the applications should fit on the device area at
the same time, and dynamic reconfiguration is not considered.

III. HARDWARE ARCHITECTURE AND BASIC DEFINITIONS

The hardware resources of the FPGA can be shared among
different multi-core applications. We define an application as a
set of cores that are required throughout the whole execution,
which cooperate to achieve a complex functionality and com-
municate with each other to exchange data and to synchronize
their execution. The structure of an application can be modeled
using an undirected graph called communication graph [9],
whose nodes represent the cores, and whose edges represent
a communication. Since the communication among the cores
is not uniform, it is possible to assign different weights to the
edges, which represent a combination of the bandwidth and
the criticality of a communication between two cores.

We divide the dynamically reconfigurable hardware archi-
tecture of the target FPGA-based SoC into fixed-size recon-
figurable regions or slots, as shown in Figure 1. A binary
file called partial bitstream is used to reconfigure an entire
slot during the dynamic reconfiguration process. A partial
bitstream encodes the physical implementation of a slot config-
uration, which is defined as the set of cores mapped in the slot,
and the required communication infrastructure. The generation
of a partial bitstream, also called bitstream synthesis, is a time-
expensive process, since it requires all the stages from high
level synthesis to place and route. Still, it takes a significantly
lower time with respect to a synthesis for the whole device.

NoC

Reconfigurable Slot #1

Reconfigurable
Slot #2

XX

XX

Reconfigurable Slot #3

Reconfigurable Slot #4

Core
A

Core
B

Core
E

Core D

Core C

Core
F

Core
H

Core
G

Fig. 1. The proposed NoC-based hardware architecture

The communication infrastructure is divided into two levels.
Cores of different slots can communicate using the global
inter-region infrastructure, which is provided as a fixed back-
bone based on a Network-on-Chip (NoC) [4] with an arbitrary
topology. Figure 1 shows the mesh grid topology used in this
work. Cores of the same slot can communicate using a local
intra-region infrastructure, which is also based on a NoC, but it
is included in the slot configuration and is reconfigured along
with the cores. It is more specific and it is less affected by the
global traffic, and therefore it performs more efficiently.

IV. THE PROPOSED RUN-TIME MAPPING APPROACH

In this work we propose a low-complexity, multi-stage
heuristic algorithm to solve the run-time mapping problem.

An application mapping is defined as the assignment of all
the cores of an input application to a specific slot. Each
slot can contain one or more cores, or may be left unused,
whereas a core can be mapped in one and only one slot. A
solution is a set of slot configurations, and it is said to be
feasible if all the cores of the applications are mapped. A
solution is logically divided into two parts: the base mapping,
and the specific configurations. The base mapping configures
the device at startup with the initial configurations of all the
slots and the communication backbone. As it does not contain
all the cores, an application may use some configurations
included in the base mapping, but it may require one or more
specific configurations to load the missing cores. Every time
the system switches between two applications, a set of specific
configurations is loaded, introducing an overhead.

A set of applications can be mapped on the device at design-
time using a static mapper. If an application is added after
the design phase, a new execution of the static mapper cannot
be performed because it may modify the base mapping, thus
forcing the generation of a set of new bitstreams, a complete
reconfiguration of the device, and a temporary interruption
of the execution. Therefore, a run-time mapper is required
to map the new application incrementally, i.e. by generating
and synthesizing only the specific configurations. It is also
possible to reuse some configurations belonging to other
applications: they may contain redundant cores, not used by
the new application, but they do not require a new synthesis.
Both the static and run-time mappers aim at minimizing
some domain-related metrics. The first one is the average
number of reconfigurations that are required when switching
from an application to another. The second one is on-chip
performance, which is primarily related to the communication
overhead in the system, since the algorithm should map
highly-communicating cores close to each other (i.e. in the
same slot, or within a few hops in the NoC). The run-
time mapper also aims at minimizing the number of partial
bitstreams to be synthesized, since it heavily affects the time
required to deploy the new application.

The proposed run-time mapper is able to capture and opti-
mize all the aforementioned metrics, and is divided into three
stages. The first stage aims at reusing the existing bitstreams
to deploy part of the new application, while later stages aim
at mapping the cores that were unknown at design-time, and
those not already included in the solution.

A. First stage: configuration reuse

The first stage of the algorithm is designed to reuse the
existing configurations to map part of the incoming applica-
tion. This stage is crucial to identify the components of the
solution that do not need to be synthesized from scratch, thus
drastically reduce the deployment time. In some cases, it is
also possible to deploy the entire application using the existing
bitstreams, as described in [10], but in general this approach
is not the best option, since it may generate a partial solution
with a lot of wasted area. In the worst case, a high number of
reused configurations may prevent the algorithm from finding a

3330

solution in later stages, thus a termination condition is required
to allow later stages to work with a sufficient area availability.

The first stage adds existing bitstreams to the solution until
the termination condition is detected. At every iteration, each
existing configuration is associated a score, and the one with
the highest score is selected to be included in the solution. The
score of a configuration is computed as a linear combination
of two metrics: (i) the amount of slot area occupied by useful
cores. A core is said to be useful if it is used by the incoming
application, but it is not part of the solution yet. This metric
detects the configurations where most of the area is not used
by the new application; (ii) the amount of communication
between useful cores. This metric detects the configurations
that resolve a large amount of bandwidth using intra-core
communication, which help save traffic on the inter-core NoC.

The choice of whether the candidate configuration should be
reused is determined according to two elements. The first one
is the ratio between the area required to map the remaining
cores and the available area on the FPGA. A high value
means that it will be difficult to map the remaining cores
on the free slots if the candidate configuration is selected.
The second one is related to the number of iterations: the
reuse of a configuration in the early iterations is not likely to
affect the feasibility of the final solution, while the algorithm
should be more careful in later iterations. Then, the candidate
configuration i is selected at iteration j if:

Scorei ≥ α · Required Area
Availabe Area

+ β · j (1)

The length of the first stage can be tuned by modifying two
parameters, α and β. A conservative tuning assigns them two
high values (e.g. 8 to α, and 0.7 to β) and forces the algorithm
to reuse a low amount of bitstreams, which guarantees that a
feasible solution will be found in later stages. Otherwise, a
more aggressive tuning assigns them two low values (e.g. 1 to
α, and 0.2 to β), but it increases the probability of unfeasible
solutions because of lack of area.

B. Second stage: sorting

In general, the first stage of the algorithm does not map the
entire application, thus a set of new specific configurations
must be generated to deploy the unmapped cores. The second
stage determines the order in which the unmapped cores will
be added to the solution: since the algorithm is less constrained
at the beginning, it is important to map critical cores first.

The metrics used to detect the critical cores cover both
area and communication aspects. In particular, larger cores
should be mapped first, because at the end of the algorithm
they cannot easily fit into partially-occupied slots. It is also
desirable that all the cores that require a large bandwidth are
considered early. Therefore, we sorted the cores according to
a linear combination of their size and the weights of their
incident edges in the communication graph.

C. Third stage: mapping

The third stage concludes the algorithm by mapping the
remaining cores, which are considered according to the order

computed above. Furthermore, the cores cannot be mapped on
slots occupied by configurations selected in the first stage.

For each core, the target slot should be selected accord-
ing to the communication between the current core and the
already-mapped ones, so a local minimum can be found in
terms of communication overhead. The target slot should be
close enough to all the existing configurations that heavily
communicate with the core that is being mapped, and it can
be detected by assigning to each slot a score that is computed
using a propagation technique, as shown in Figure 2. For
each slot configuration already included in the solution, the
amount of communication between the cores in the slot and
the current core is computed according to the communication
graph. The resulting value is then propagated from the slot
to all the available reconfigurable regions on the FPGA, but
the original value is reduced by a factor ω < 1 for each hop.
Each slot configuration in the current solution propagates its
own value, and all these values are summed. At the end of
this process, the slot with the highest value is close to all the
slots that heavily communicate with the core to be mapped.

Score = ωx

Score = ω2x

Score = ω2x

Score = ωx Slot selected
in 1st stage Score = ω3x

Score = ω2x Score = ωx Score = ω2x
Slot selected
in 1st stage

Score = ωx

Current
Slot

(Selected in
1st stage)

Score = x

Score = ω4x

Score = ω4x

Slot selected
in 1st stage

Fig. 2. Example of the propagation technique used in the third stage

The choice of the target slot cannot be driven by communi-
cation only, because a large number of slots may be used, thus
affecting the number of reconfigurations. Then, it is necessary
to favor the slots that have been already used in the third stage,
but still provide enough free area to host the current core. This
policy can be implemented by adding a value ψ to the existing
score if the slot is already partially used.

V. EXPERIMENTAL RESULTS

In our experimental results we compare the proposed run-
time approach with the static mapper presented in [9]. The
applications used in the tests are synthetic benchmarks, whose
cores are characterized by different sizes and communication
requirements. Although the results are different according to
the various input applications, the relative gap between the
run-time and the design-time algorithm is generally preserved.

Figure 3 shows how the number of reused configurations
affects the quality of the solution in a 16-slots architecture. A
lower number of reused configurations requires a higher num-
ber of reconfigurations, but the algorithm is less constrained
in the third stage and it is able to generate a good solution
in terms of communication overhead. The parameters α and

3331

β have been manually tuned by analyzing the trends of the
score and the threshold of equation (1) with different sets of
applications: the goal is to stop the reusing procedure for most
applications after 30 to 45% of the slots have been occupied in
the first stage. According to this criterion, α and β have been
set to 5.5 and 0.3 respectively, which leads the algorithm to
find a good trade-off between the two metrics, while never
failing to find a feasible solution in any test.

!!"#$

!!"%$

!!"&$

!'$

!'"'$

!'"#$

!'"%$

%($

%%$

%)$

%&$

%*$

)+$

)!$

)'$

),$

)#$

+$ '$ #$ %$ &$!+$!'$

!
"
#
$%
&
#
'(
)
*
+
#
$'
,
-'

$#
.,
(
/
&
)
$%
0
,
(
1'

2
,
*
*
)
(
3.
%
0
,
(
',
"
#
$4
#
%
5
'

6)*+#$',-'$#)1#5'.,(/&)$%0,(1'

7*8%.9',-'.,(/&)$%0,('$#)1#'

-.//012345.1$.678974:$;6784<7$10/=78$.>$873.1?<0845.1@$

Fig. 3. Effects of configuration reuse on the quality of the final solution

!"

#"

$"

%"

&'"

&!"

&#"

('"

(("

$'"

$("

)'"

)("

%'"

&'*" !'*" +'*" #'*" ('*" $'*")'*" %'*"

!
"
#
$%
&
#
'(
)
*
+
#
$'
,
-'
$#
.,
(
/
&
)
$%
0
,
(
1'

2
,
*
*
)
(
3.
%
0
,
(
',
"
#
$4
#
%
5
'

6',-'(#7'.,$#1'3(8$,5).#5'+9'84#'(#7'%::;3.%0,('

<8%0.'"1'$)(=0*#'*%::3(&'

,-../01234-0"-5678639":";/0:4.6" ,-../01234-0"-5678639":"<6=1>0"4.6"

?5>@"0/.A67"-B"762-0C>/734-0=":";/0:4.6" ?5>@"0/.A67"-B"762-0C>/734-0=":"<6=1>0"4.6"

Fig. 4. Comparison w.r.t. communication and average reconfigurations

Figure 4 proposes a comparison between the static and
the run-time mappers in terms of communication overhead
and average number of reconfigurations. Starting from an
initial solution of 6 applications mapped statically, the run-
time mapper has to find a mapping for a seventh application,
which introduces different percentages of new cores. The
result is compared to the best of 25 executions of the design-
time algorithm over all the 7 applications. The design-time
mapper is expected to outperform the more flexible run-time
algorithm, especially if applications are similar to each other.
The results actually confirm this behavior, although the gap
between the two different solutions is limited, and the run-time
approach shows almost the same performance when the new
application is not very similar to the ones mapped statically.
Moreover, the run-time algorithm also performs at least as
well as the static mapper in terms of average number of
reconfigurations because in the first stage it efficiently exploits
the configurations included in the base mapping, and in the
third stage it is able to keep the number of used slots low.
The same policies reduce the number of new bitstreams that
must be synthesized, especially when the new application is

sufficiently similar to the others, as shown in Figure 5.

!"

#"

$"

%"

&"

'"

("

)*+" ,*+" !*+" #*+" $*+" %*+" &*+" '*+" (*+"

!
"
#
$
%
&'
(
)'
*
%
+
'$
,-
.-
&%
/
#
.'

0'()'*%+'1(&%.',*-&(2"1%2'$3'-4%'*%+'/556,1/7(*'

!%+'$,-.-&%/#.8'.-/71'9.'&"*:7#%'

-../012345"62..78"29":;5<367" -../012345"62..78"29"=7>05?"367"

Fig. 5. Number of bitstreams to be synthesized to deploy the new application

Notice that the run-time algorithm generated the previous
results more than 20 times faster than the design-time ap-
proach. Moreover, the static mapping of 6 applications plus
the mapping of a seventh one is 2% faster that the static
mapping of 7 applications, although the overall execution time
is dominated by the design-time algorithm.

VI. CONCLUSIONS

In this paper, we addressed the run-time application map-
ping problem on dynamically reconfigurable devices. As new
applications may be added to the system at any time, we
proposed a run-time algorithm which maps all the application
cores on the FPGA area in an incremental way, based on
the solution computed at design-time. Experimental results
show that the proposed approach can generate a good-quality
solution, comparable to the one computed at design-time, but
in a very short time, making it suitable for run-time scenarios.

ACKNOWLEDGMENTS

This research has been partly supported by the HiPEAC net-
work of excellence (www.hipeac.net) and the Swiss National
Science Foundation (SNF), grant number 200021-127282.

REFERENCES

[1] D. Pham, “Key considerations given to the design of a next generation
multi-core communications platform,” in Proc. of ICICDT, June 2008.

[2] P. Kollig, et al., “Heterogeneous multi-core platform for consumer
multimedia applications,” in Proc. of DATE, April 2009.

[3] E. Flamand, “Strategic directions towards multicore application specific
computing,” in Proc. of DATE, April 2009.

[4] V. Rana, et al., “A Reconfigurable Network-on-Chip Architecture for
Optimal Multi-Processor SoC Communication,” in VLSI-SoC, 2009.

[5] S. Murali and G. De Micheli, “Bandwidth-constrained mapping of cores
onto noc architectures,” in Proc. of DATE, February 2004.

[6] A. Hansson, et al., “A unified approach to mapping and routing on a
network-on-chip for both best-effort and guaranteed service traffic,” in
VLSI Design, 2007.

[7] S. Murali, et al., “A methodology for mapping multiple use-cases onto
networks on chips,” in Proc. of DATE, March 2006.

[8] S. Ghiasi, et al., “An optimal algorithm for minimizing run-time recon-
figuration delay,” in ACM Trans. Embed. Comput. Syst., 2004.

[9] V. Rana, et al., “Minimization of the reconfiguration latency for the
mapping of applications on FPGA-based systems,” in Proc. of CODES-
ISSS, October 2009.

[10] I. Beretta, et al., “Run-Time mapping for Dynamically-Added applica-
tions in reconfigurable embedded systems,” in Proc. of ICM, Dec. 2009.

[11] C.-L. Chou, et al., “Energy- and performance-aware incremental map-
ping for networks on chip with multiple voltage levels,” Computer-Aided
Design of Integrated Circuits and Systems, October 2008.

3332

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index

	Table of Contents

