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Abstract

In many real world applications we do not have access to-albeled training
data, but only to a list gbossibldabels. This is the case, e.g., when learning visual
classifiers from images downloaded from the web, using hest text captions or
tags as learning oracles. In general, these problems cagrpditficult. However
most of the time there exist differentimplicit sources dbimation, coming from
the relations between instances and labels, which arelysiisiissed. In this
paper, we propose a semi-supervised framework to modekitidsof problems.
Each training sample is a bag containing multi-instancespeiated with a set
of candidate labeling vectors. Each labeling vector ensdle possible labels
for the instances in the bag, with only one being fully cotrethe use of the
labeling vectors provides a principled way not to excludg isformation. We
propose a large margin discriminative formulation, and #igient algorithm to
solve it. Experiments conducted on artificial datasets amébworld images and
captions dataset show that our approach achieves perfoentmmparable to an
SVM trained with the ground-truth labels, and outperforrigeo baselines.

1 Introduction

In standard supervised learning, each training samplestscégted with a label, and the classifier is
usually trained through the minimization of the empiridskron the training set. However, in many
real world problems we are not always so lucky. Partial daté&e, missing labels and other similar
common issues can make you deviate from this ideal situatmving the learning scenario from

supervised learning to semi-supervised learning [7, 26].

In this paper, we investigate a special kind of semi-sugervlearning which considers ambiguous
labels. In particular each training example is associati¢hl severalpossiblelabels, among which
only one is correct. Intuitively this problem can be arbityahard in the worst case scenario.
Consider the case when one noisy label is consistently sipggagether with the true label: in this
situation we could not tell them apart. Despite that, lezgrdould still be possible in many typical
real world scenarios. Moreover, in real problems samplesoéten gathered in groups, and the
intrinsic nature of the problem could be used to constragnpbssible labels for the samples from
the same group. For example, we might have that two labelscaappear together in the same
group or a label can appear only once in each group, as, fon@eaa specific face in an image.

Inspired by these scenarios, we focus on the general case wieehavebagsof instances, with
each bag associated with a set of several possible labeadittgng, and among them only one is fully
correct. Each labeling vector consists of labels for eachesponding instance in the bag. For easy
reference, we call this type of learning problem a Canditateeling Set (CLS) problem.

As labeled data is usually expensive and hard to obtain, QloBl@ms naturally arise in many
real world tasks. For example, in computer vision and infation retrieval domains, photographs
collections with tags have motivated the studies on legrfiom weakly annotated images [2], as
each image (bag) can be naturally partitioned into sevatahgs (instances), and one could assume
that each tag should be associated with at least one patgh-lelrel knowledge, such as spatial



correlations (e.g. “sun in sky” and “car on street”), havemexplored to prune down the labeling
possibilities [14]. Another similar task is to learn a faeeagnition system from images gathered
from news websites or videos, using the associated textocespand video scripts [3, 8, 16, 13].
These works use different approaches to integrate the regmist such as that two faces in one
image could not be associated with the same name [3], moutiomand gender of the person [8],
or modeling both names and action verbs jointly [16]. Anothvblem is the multiple annotators
scenario, where each data is associated with the labels giwmdependently hired annotators. The
annotators can disagree on the data and the aim is to retmveue label of each sample. All these
problems can be naturally casted into the CLS framework.

The contribution of this paper is a new formal way to cast th& Getup into a learning problem.
We also propose a large margin formulation and an efficiegdrghm to solve it. The proposed
Maximum Margin Set learning (MMS) algorithm, can scale ttegats of the order dfo® instances,
reaching performances comparable to fully-supervisathieg algorithms.

Related works. This type of learning problem dates back to the work of Grafehin [12]. Later
Jin and Ghaharmani[17] formalized it and proposed a gefrarakework for discriminative models.
Our work is also closely related to the ambiguous labeliradpfm presented in [8, 15]. Our frame-
work generalizes them, to the cases where instances anithledadels come in the form of bags.
This particular generalization gives us a principled wayusing different kinds of prior knowledge
on instances and labels correlation, without hacking tamieg algorithm. More specifically, prior
knowledge, such as pairwise constraints [21] and mutudlisk@ness of some labels, can be easily
encoded in the labeling vectors. Although several workeHagused on integrating these weakly
labeled information that are complementary to the labeledntabeled training data into existing
algorithms, these approaches are usually computatiopahsive. On the other hand, in our frame-
work we have the opposite behavior: the more prior knowledgexploit to construct the candidate
set, the better the performance and the faster the algovitlirbe.

Other lines of research which are related to this paper aflépiedinstance learning (MIL) prob-
lems[1, 5, 10], and multi-instance multi-label learningl L) problems [24, 25] which extends the
binary MIL setup to multi-labels scenario. In both setugsesal instances are grouped into bags,
and their labels are not individually given but assignedhi bags directly. However, contrary to
our framework, in MIML noisy labeling is not allowed. In oth&ords, all the labels being assigned
to the bags are assumed to be true. Moreover, current MIL aiilLNlgorithms usually rely on

a ‘key’ instance in the bag [1] or they transform each bag gitgle instance representation [25],
while our algorithm makes an explicit effort to label evengtance in a bag and to consider all of
them during learning. Hence, it has a clear advantage inl@mbwhere the bags are dense in la-
beled instances and instances in the same bag are indepeasiepposed to the cases when several
instances jointly represent a label. Our algorithm is atdated to Latent Structural SVMs [22],
where the correct labels could be considered as latentolesia

2 Learning from Candidate Labeling Sets

Preliminaries. In this section, we formalize the CLS setting, which is a galigation of the
ambiguous labeling problem described in [17] from singkances to bags of instances.

In the following we denote vectors by bold letters, eug.y, and use calligraphic font for sets, e.g.,
X. Inthe CLS setting, thé/ training data are provided in the forf@;, Z;} ¥ |, whereX; is a bag of

M; instancesy; = {x; ,,} i, andz; ,, € R4,YVi=1,...,N, m=1,..., M;. The associated
set of L; candidate labeling vectors 1§ = {z;,;};,, wherez;; € Yi andy = {1,...,C}. In
other words there arg; different combinations of\/; labels for theM; instances in theé-th bag.
We assume that the correct labeling vectorApiis present inZ;, while the other labeling vectors
maybe partially correct or even completely wrong. It is imrtpat to point out that this assumption
is not equivalent to just associatiig candidate labels to each instance. In fact, in this way we als
encode explicitly the correlations between instances lagid fabels in a bag. For example, consider
a two instances bafe; 1, x; 2 }: if it is known that they can only come from classes 1 and 2, and
they can not share the same label, then = [1,2], 2, = [2,1] will be the candidate labeling
vectors for this bag, while the other possibilities are edeld from the labeling set. In the following
we will assume that the labeling s&t is given with the training set. In Section 4.2 we will give a
practical example on how to construct this set using the riowledge on the task.



Given the training datd;, Z;}¥ |, we want to learn a functiorf(x), to correctly predict the
class of each single instanag coming from the same distribution. The problem would beeom
the standard multiclass supervised learning if there ig onk labeling vector in every labeling set
Z,;,i.e. L; = 1. On the other hand, given a set©flabels, without any prior knowledge, a bag
of M; instances could have maximuf*: labeling vectors, which becomes a clustering problem.
However, we are more interested in situations wherg C

2.1 Large-margin formulation

We introduce here a large margin formulation to solve the @tdblem. It is helpful to first define
by X the generic bag of/ instanceq 1, ... za}, £ = {z1, ..., 2z} the generic set of candidate
labeling vectors, ang = {y1,...,yn}, 2 = {z1,..., 20} € YM two labeling vectors.

We start by introducing the loss function that assumes the fabely,,, of each instance,, is
known

M
(a(z9) = Y Alzm,Ym) » (1)
m=1

whereA(z,,, ym) IS a non-negative loss function measuring how much we palydeing predicted
zm instead ofy,,,. For exampleA(z,,, y,,) can be defined as(z,, # v ), wherel is the indicator
function. Hence, if the vector is the predicted label for the bagn (z, y) simply counts the number
of misclassified instances in the bag.

However, the true labels are unknown, and we only have atodks setZ, knowing that the true
labeling vector is inZ. So we use a proxy of this loss function, and propose the ambigversion
of this loss:
tA(z,2) = min la(2,2') .
z'eZ

We also define, with a small abuse of notati6f (X, Z; f) = (4 (f(X), Z), wheref(X) returns
a labeling vector which consists of labels for each instan¢ke bagX'. It is obvious that this loss
underestimates the true loss. Nevertheless, we can eatigd[8, Proposition 3.1 to 3.3] to the
bag case, and prove that /(1 — ) is an upper bound téx in expectation, wherg is a factor
between 0 and 1, and its value depends on the hardness obtflempr Like the definition in [8]y
corresponds to the maximum probability of an extra labebcodrring with the true label over all
labels and instances. Hence, minimizing the ambiguousaesare actually minimizing an upper
bound of the true loss. It is a known problem that direct mination of this loss is hard, so in the
following we introduce another loss that upper boufgisvhich can be minimized efficiently.

We assume that the prediction functipfw) we are searching for is equal #og max,cy F(x,y).

In this framework we can interpret the valuefofz, y) as the confidence of the classifier in assigning
x to the clasgy. We also assume the standard linear model used in supemigdédiass learning [9].

In particular the functior¥'(x, y) is set to bew - ¢(x) ® 1(y), whereg andy are the feature and
label space mapping [20], amd is the Kronecker produtt We can now defin@& (X, y; w) =
fozl F(xm,ym), Which intuitively is gathering from each instanceAnthe confidence on the
labels iny. With the definitions above, we can rewrite the functidas

F(va;w) = Z F(:Bmvym) = Z w - ¢7($m) ®w<ym) =w- (I)(va) ) 2

where we define@®@ (X, y) = an‘le é(xm) ® ¥(ym). Hence the functiolir can be defined as the
scalar product betweein and a joint feature map between the I38@nd the labeling vectay.

Remark. If the prior probabilities of every candidate labeling vert z; € Z are also available,
they could be incorporated by slightly modifying the featmapping scheme in (2).

We can now introduce the following loss function

linaz (X, Z;w) = |max (Eﬁ(i, Z)+F(X,z;w)) — maxF(X, z;w) 3)
zZ¢Z z€Z i

where|z|y = max(0,z). The following proposition shows théf,... upper boundgA .

For simplicity we will omit the bias term here, it can be egsitided by modifying the feature mapping.



Proposition. £,,q. (X, Z;w) > (4 (X, Z;w) .

Proof. Definez = argmax,cym F(X, z;w). If 2 € Zthenl,,q. (X, Z;w) > (4 (X, Z;w) = 0.
We now consider the case in whigh¢ Z. We have that

(A (X, Z;w) < IA(2,2) + F(X, 2;w) — max F(¥, 2;w)
zE
< méa%( (Eg(E,Z) +F(X, z;w)) — ma%(F(X,z;w) < Uz (X, Z;w) . O
z z€

The l0ss(,,,. IS non-convex, due to the secondwx(-) function inside, but in Section 3 we will
introduce an algorithm to minimize it efficiently.

2.2 A probabilistic interpretation

It is possible to gain additional intuition on the proposeskl functior?,, .. through a probabilistic
interpretation of the problem. Itis helpful to look at thediiminative model for supervised learning
first, where the goal is to learn the model parametefer the functionP(y|xz; ), from a pre-
defined modeling clag’. Instead of directly maximizing the log-likelihood for thraining data, an
alternative way is to maximize the log-likelihood ratio Wween the correct label and the most likely
incorrect one [9]. On the other hand, in the CLS setting thresmb labeling vector fo” is unknown,
but it is known to be a member of the candidateZetHence we could maximize the log-likelihood
ratio betweenP(Z|X'; §) and the most likely incorrect labeling vector which is notmieer of Z
(denoted a%). However, the correlations between different vector€imre not known, so the
inference could be arbitrarily hard. Instead, we could apipnate the problem by considering just
the most likely correct member &. It can be easily verified thahax,cz P(z|X;0) is a lower
bound of P(Z|X'; 0). The learning problem becomes to minimize the ratio for thg: b

P(Z|X;_9) ~ —log max,ez P(i|X;9) - (@)
maxz¢z P(Z|X;0) maxz¢z P(Z|X;0)

If we assume independence between the instances in théagn be factorized as:

—log

maxzez [ [, P(zm|Tm;0)

—1
8 maxz¢z [[,,, P(Zm|Tm;0)

= log P(Zm|Tm; 0) — log P(zm|Tm; 0) .
Izpél%(; og P(Zp|xm; 0) Iznea%(; og P(zm|Tm;0)

If we take the margin into account, and assume a linear modé¢hé log-posterior-likelihood, we
obtain the loss function in (3).

3 MMS: The Maximum Margin Set Learning Algorithm

Using the square norm regularizer as in the SVM and the losdgifon in (3), we have the following
optimization problem for the CLS learning problem:

A 1 &
IIE)D 5”11)”%4— Nizlemax (Xiazi;w) (5)

This optimization problem (5) is hon-convex due to the nonvex loss function (3). To convexify
this problem, one could approximate the secand(-) in (3) with the average over all the labeling
vectors inZ;. Similar strategies have been used in several analogobkepns [8, 24]. However, the
approximation could be very loose if the number of labeliegters is large. Fortunately, although
the loss function is not convex, it can be decomposed inton#ecoand a concave part. Thus the
problem can be solved using the constrained concave-cqmeerdure (CCCP) [19, 23].

3.1 Optimization using the CCCP algorithm

The CCCP solves the optimization problem using an iteratiirémization process. At each round
r, given an initialw("), the CCCP replaces the concave part of the objective fumetith its first-
order Taylor expansion ab("), and then setsv("*1) to the solution of the relaxed optimization
problem. When this function is non-smooth, suchass.c z, F(X;, z; w) in our formulation, the
gradient in the Taylor expansion must be replaced by theraalignt. Thus, at the--th round, the

2Given a functiory, its subgradiendg(x) atx satisfiesvu, g(u) — g(z) > dg(x) - (u — x). The set of
all subgradients of at is called the subdifferential af atx.



CCCP replacemax ¢z, F(X;, z; w) in the loss function by

max F(X;, z,w™) + (w —w') - 9 (mazx F(X;, z;'w)) . (6)
zE€2Z;

zZEZ;

The subgradient of a point-wise maximum functigfx) = max; g;(x) is the convex hull of the
union of subdifferentials of the subset of the functigng&e) which equalg(x) [4]. Defining by

¢ = {z € 2 : (X, z;w™) = maxzcz F(X;, 2/;w™)}, the subgradient of the function
maXzez F(X;, z;w) equals toy_; « T)aF(XZ,Z”, => an?(I)(Xi,zi,l), with 3, az(.;) =1,
anda. =0 if z;; € CZ.( anda;; = 0 otherwise. Hence we have

Za” w'") - D(X;, z;;) = max (w(r) -®(X;, z)) Z aETl) = max (w(r) -®(X;, z)) )

zEeZ; ’ z€EZ;
l:zmecy)

We are free to choose the values of tﬁ@ in the convex hull, here we choose to &é’ﬁ) = 1/|C§T)|
forvz;; € Cl.(r). Using (6) the new loss function becomes

0y (X, Ziw) = |maxsgz, ((4(2, Z;) + w - B(X;,2)) —w - 1 e ®(Xnz)| L ()

+

Replacing the non-convex loss.... in (5) with (7), the relaxed convex optimization program-dh
round of the CCCP is

A
HLI)H §Hw||2 Zec(,(,p Xi?Zi;w) (8)

With our choice ob( z)- in the first round of the CCCP whenis initialized at0, the secondnax(-)

in (3)is approxmated by the average over all the labelingars. The CCCP algorithm is guaran-
teed to decrease the objective function and it convergestmedminimum solution of (5) [23].

3.2 Solve the convex optimization problem using the Pegasframework

In order to solve the relaxed convex optimization problejref8ciently at each round of the CCCP,
we have designed a stochastic subgradient descent algoriging the Pegasos framework devel-
oped in [18]. At each step the algorithm takésandom samples from the training set and calculates
an estimate of the subgradient of the objective functiongiiese samples. Then it performs a sub-
gradient descent step with decreasing learning rate,wellbby a projection of the solution into
the space where the optimal solution lives. An upper bountherradius of the ball in which the
optimal hyperplane lives can be calculated by consideh'ag t

A A
Sl |3 < min 2 w3 + wa (X;, Zi;w) < B

wherew* is the optimal solution of (8), an® = maxi(eﬁ’;lp(xi, Z;;0)). If we useA(zy, ym) =
1(zm # ym) In (7), B equals the maximum number of instances in the bade details of the
Pegasos algorithm for solving (8) are given in Algorithm Zird) the theorems in [18] it is easy to
show that afte©(1/()e)) iterations Algorithm 2 converges in expectation to a solutf accuracy
e.

Efficient implementation. Note that even if we solve the problem in the primal, we cahise
nonlinear kernels without computing the nonlinear mappifg) explicitly. Since the implementa-
tion method is similar to the one described in [18, Sectiofo#lack of space we omit the details.

Greedily searching for the most violating labeling vectgrin line 4 of Algorithm 2 can be com-
putational expensive. Dynamic programming can be carrigdmreduce the computational cost
since the contribution of each instance is additive ovderkht labels. Moreover, by looking into
the structure ofZ;, the computational time can be further reduced In the gérsiuation, the
worst case complexity of searching the maximunzaf Z; is O(H ., Cim), whereC; ,, is the
number of unique possible labels @ ,,, in Z; (usuallyC; ,, < T i) This complexity can be
greatly reduced when there are special structures suchapbhgand trees in the labeling set. See
for example [20, Section 4] for a discussion on some speaifiblpms and special cases.
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Algorithm 1 The CCCP algorithm for solving MMS
initialize: w™® =0
repeat
SetCi(T) ={z¢€ 2 :F(X;, z;w")) = maxycz, F(X;, 25 w))}
Setw("*+1) as the solution of the convex optimization problem (8)
until convergence to a local minimum
output: w1

Algorithm 2 Pegasos Algorithm for Solving Relaxed-MMS (8)
1: Input: w, {Xi,Zl-,Ci(")}fV:l, \NT,K, B
2. fort=1,2,...,7Tdo
3:  Drawatrandomd, C {1,..., N}, with |4;| = K

4. Computez;, = arg maXz¢ z, (f’g(f, Zk) + wy - @(Xk, 2)) Vk € Ay

5. SetAS = {k € A : £lhp(Xe, Zpsw;) > 0}

6: Setthr% = (1 — %)wt + ﬁ ZkeA:r (ZZECET) D (X, Z)/|CZ-(T)| — (I)(Xk, 21@))
7. wser = min (1, ,/23/A/||wt+%||) wy i1

8: end for
9: Output: wryq

4 Experiments

In order to evaluate the proposed algorithm, we first perfesxperiments on several artificial
datasets created from standard machine learning datalbasaby, we test our algorithm on one of
the examples motivating our study — learning a face recagngystem from news images weakly
annotated by their associated captions. We benchmark MNBstghe following baselines:

e SVM: we train a fully-supervised SVM classifier using the grodndh labels by consid-
ering every instance separately while ignoring the othadiziate labels. Its performance
can be considered as an upper bound for the performanceassidgate labels. In all our
experiments, we use the LIBLINEAR [11] package and test tifi@rnt multiple-class
extensions, the 1-vs-All method using L1-loss (1vA-SVMylahe method by Crammer
and Singer [9] (MC-SVM).

e CL-SVM: the Candidate Labeling SVM (CL-SVM) is a naive approachalitransforms
the ambiguous labeled data into a standard supervisedsegetion by treating all possi-
ble labels of each instance as true labels. Then it learrssAINSVM classifiers from the
resulting dataset, where the negative examples are iretamitich do not have the corre-
sponding label in their candidate labeling set. A similasddze has been used in binary
MIL literature [5].

e MIML : we also compared with two SVM-based MIML algorithin®IMLSVM [25] and
M3MIML [24]. We train the MIML algorithms by treating the lakein Z; as a label for
the bag. During the test phase, we consider each instanaeasely and predict the labels
as: y = argmaxyey Fmimi (2, y), WhereFmim is the obtained classifier, amthimi(z, v)
can be interpreted as the confidence of the classifier inrdagithe instance: to the class
y. We would like to underline that although some of the experital setups may favor our
algorithm, we include the comparison between MMS and MIMijoaithms because to the
best of our knowledge it is the only existing principle framoek for modeling instance bags
with multiple labels. MIML algorithms may still have theimm advantage in scenarios
when no prior knowledge is available about the instancesinvi bag.

3We used the original implementationtetp://lamda.nju.edu.cn/data.ashx#code . We did
not compare against MIMLBOOST [25], because it does notestahll the experiments we conducted. Be-
sides, MIMLSVM [25] does not scale to data with high dimemnsibfeature vectors (e.g., news20 which has
a 62,061-dimensions features). Running the MATLAB implatagon of M°MIML [24] on problems with
more than a few thousand samples is computational infeasithlus, we will only report results using this two
baseline methods on small size problems, where they canibbdthin a reasonable amount of time.
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Figure 1:(Best seen in colorsClassification performance of different algorithms orifitil datasets.

We implemented our MMS algorithm in MATLAB and used a value of the/ N for the regular-
ization parameteh in all our experiments. In (1) we useN(z.,, ¥m) = 1(zm #ym). For a fair
comparison, we used linear kernel for all the methods. Tis¢ garameter for SVM algorithms is
selected from the rangg < {0.1, 1, 10, 100, 1000}. The bias term is used in all the algorithms.

4.1 Experiments on artificial data

We create several artificial datasets using four widely uselti-class datasets (usps, letter, news20
and covtype) from the LIBSVM [6] website. The artificial tnétig sets are created as follows: we
first set at random pairs of classes as “correlated clasaad’as “ambiguous classes”, where the
ambiguous classes can be different from the correlatededag-ollowing that, instances are grouped
randomly into bags of fixed sizB with probability at least’,. that two instances from correlated
classes will appear in the same bag. Theambiguous labeling vectors are created for each bag,
by modifying a few elements of the correct labeling vectdre humber of the modified element is
randomly chosen fronfl, ..., B}, and the new labels are chosen among a predefined ambiguous
set. The ambiguous set is composed by the other correcsl&oeh the same bag (except the true
one) and a subset of the ambiguous pairs of all the correetddiom the bag. The probability of
whether the ambiguous pair of a label is present eghald-or testing, we use the original test set,
and each instance is considered separately.

Varying P., P,, and L we generate different dataset difficulty levels to evaluhtebehaviour of
the algorithms. For example, whdf, > 0, noisy labels are likely to be present in the labeling
set. Meanwhile P, controls the ambiguity within the same bags. Af is large, instances from
two correlated classes are likely to be grouped into the daagethus it becomes more difficult to
distinguish between these two classes. The paramBteasd P, are chosen frord0, 0.25,0.5}.
For each difficulty level, we run three different trainiregt splits.

In figure 1, we plot the average classification accuracy. S¢wbservations can be made: first,
MMS achieves results close to the supervised SVM methodkpatter than all other baselines.
As MMS uses a similar multi-class loss as MC-SVM, it even eudfprms 1vA-SVM when the
loss has its advantage (e.g., on the ‘letter’ dataset). k®rdovtype’ dataset, the performance
gap between MMS and SVM is more visible. It may because ‘que/thas a class unbalance,
where the two largest classes (among seven) dominate thie whtaset (more than 85% of the
total number of samples). Second, the change on perfornoduM®IS is small when the size of the
candidate labeling set grows. Moreover, when correlatstaimces and extra noisy labels are present
in the dataset, the baseline methods’ performance dropsveya percentages, while MMS is less
affected. The CCCP algorithm usually convergesin 3 — 5 repaidd the final performance is about
5% — 40% higher compared to the results obtained after thedusd, especially wheh is large.
This behavior also proves that approximating the seaand(-) function in the loss function (3)
with the average over all the possible labeling vectors ead to poor performance.

4.2 Applications to learning from images & captions

A huge amount of images with accompanying text captions ea#éadle on the web. This cheap
source of information has been used, e.g., to name facesaigeisnusing captions [3, 13]. Thanks
to the recent developments in the computer vision and ndamguage processing fields, faces in
the images can be detected by a face detector and names iaptiens can be identified using a
language parser. The gathered data can then be used to isaa@l olassifiers, without human’s

4Code available atttp://dogma.sourceforge.net/



PresidentBarack Obama and first lady Z1 22 23 24 25 Z6

Michelle Obama wave from the steps of [ g n, ]« face,
Air Force One as they arrive in Prague, o |« face,
Czech Republic.

Figure 2:(Left): An example image and its associated caption. There arelétexted faceface, andface,
and two names Barack Obanrg ) and Michelle Obaman,) from the caption. Right): The candidate labeling
set for this image-captions pairs. The labeling vectorgareerated using the following constrairi: a face

in the image can either be assigned with a name from its agptiat possibly corresponds to none of them (a
NULL class, denoted ag; i) a face can be assigned to at most one naifies name can be assigned to at most
a face. Differently from previous methods, we do not allow tabeling vector with all the faces assigned to
theNULL class, because it would lead to the trivial solution viitless by classifying every instance ld§/LL.

Table 1: Overall face recognition accuracy
Dataset|| 1vA-SVM MC-SVM CL-SVM MIMLSVM MMS
Yahoo! || 81.6% £0.6 | 87.2% £ 0.3 || 76.9% +0.2 | 74.7% £ 0.9 | 85.7% + 0.5

effort in labeling the data. This task is difficult due to thecalled “correspondence ambiguity”

problem: there could be more than one face and name appé&athmgimage-caption pairs, and not
all the names in the caption appear in the image, and vicavalsvertheless, this problem can be
naturally formulated as a CLS problem. Since the names dfelygoersons in the image typically

appear in the captions, combined with other common asson®ifB, 13], we can easily generate
the candidate labeling sets (see Figure 2 for a practicahple.

We conducted experiments on the Labeled Yahoo! News dat@seit3]. The dataset is fully an-
notated for association of faces in the image with namesdrcéption, precomputed facial features
were also available with the dataset. After preprocessheydataset contains 20071 images and
31147 faces. There are more than 10000 different names fremetptions. We retain the 214 most
frequent ones which occur at least 20 times, and treat ther oimes adlULL. The experiments
are performed over 5 different permutations, sampling 8@%ges and captions as training set, and
using the rest for testing. During splitting we also maintdie ratio between the number of samples
from each class in the training and test set. For all algo#tNULL names are considered as an
additional class, except for MIML algorithms where unknofanes can be automatically consid-
ered as negative instances. The performance of the algwrith measured by how many faces in
the test set are correctly labeled with their name. Tableminsarizes the results. Similar observa-
tions can also be made here: MMS achieves performance cabipdo the fully-supervised SVM
algorithms (4.1% higher than 1vA-SVM on Yahoo! data), whilgperforming the other baselines
for ambiguously labeled data.

5 Conclusion

In this paper, we introduce the “Candidate Labeling Set'bfgm where training samples contain
multiple instances and a set of possible labeling vectoesalMb propose a large margin formulation
of the learning problem and an efficient algorithm for sofvit Although there are other similar
frameworks, such as MIML, which also investigate learnimgyf instance bags with multiple labels,
our framework is different since it makes an explicit effariabel and to consider each instance in
the bag during the learning process, and allows noisy labelse training data. In particular,
our framework provides a principled way to encode prior klealge about relationships between
instances and labels, and these constraints are expliakgn into account into the loss function
by the algorithm. The use of this framework does not have ttnhieed to data which is naturally
grouped in multi-instance bags. It could be also possiblréop separate instances into bags and
solve the learning problem using MMS, when there are lagedonstraints between these instances
(e.g., a clustering problem with linkage constraints).
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