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Abstract

The conformal bootstrap is a non-perturbative technique designed to study conformal
�eld theories using only �rst principles, such as unitarity, crossing symmetry and the
existence of an Operator Product Expansion. In this thesis we discuss an application of
the bootstrap method in four dimensional conformal �eld theories. We also consider
in detail the special case where the theory is supersymmetric. In particular we focus
on the case study of four abelian currents. The non-supersymmetric setup applies to
all conformal �eld theories with a global abelian symmetry group. When we include
the assumption of supersymmetry, the current is taken to be the generator of the R-
symmetry, which is tied to the stress tensor due to the superconformal algebra. The
supersymmetric setup therefore applies to all local superconformal �eld theories. We
start by introducing all the necessary ingredients. In particular, we discuss the formalism
of the embedding space and of the conformal frame to study conformal kinematics. We
also give a supersymmetric generalization of the conformal frame formula to count
three-point tensor structures. Then we address the important problem of expanding
superspace correlators in their components. To this aim we introduce a set of differential
operators that act in superspace. Using this formalism we are able to compute the linear
relations among the operators in the same superconformal multiplet. This is a necessary
step in the computation of superconformal blocks, but it will also be useful for other
purposes that we discuss before passing to the bootstrap analysis. First we use it to
impose the averaged null energy condition on arbitrary superconformal �eld theories.
This will lead to interesting consequences on their local operator spectrum. Next we
focus on the case of local superconformal �eld theories with eight supercharges and we
prove that a certain class of operators termed “exotic primaries” cannot exist. Finally,
after a pedagogical introduction to the notion of the conformal bootstrap, we carry out a
detailed study of the correlator of four conserved currents. In particular, we compute
the conformal and superconformal blocks and the crossing equations. We conclude by
proposing several numerical studies and strategies and by showing some preliminary
results for the non-supersymmetric case.

Keywords: Conformal �eld theory, superconformal �eld theory, superspace, averaged
null energy condition, conformal bootstrap, conserved current.
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Riassunto

Il bootstrap conforme è una tecnica non-perturbativa ideata per studiare le teorie di
campo conformi usando solamente principi primi, come l'unitarietà, la simmetria di
crossing e l'esistenza di una Operator Product Expansion. In questa tesi discutiamo
un'applicazione del metodo del bootstrap per teorie di campo conformi in quattro
dimensioni. Consideriamo in dettaglio anche il caso speciale in cui la teoria è super-
simmetrica. In particolare, ci focalizziamo sull'esempio di quattro correnti abeliane.
La formulazione non supersimmetrica si applica a tutte le teorie di campo conformi
con un gruppo di simmetria globale abeliano. Quando includiamo l'assunzione di
supersimmetria, prendiamo come corrente il generatore dell'R-simmetria, la quale è
legata al tensore energia-impulso per via dell'algebra superconforme. Di conseguenza
la formulazione supersimmetrica si applica a tutte le teorie di campo superconformi
locali. Iniziamo introducendo tutti gli ingredienti necessari. In particolare, discutiamo
il formalismo dello spazio di embedding e del frame conforme al �ne di studiare la
cinematica conforme. Inoltre forniamo una generalizzazione supersimmetrica della for-
mula del frame conforme per contare le strutture tensoriali a tre punti. Successivamente
consideriamo l'importante problema di espandere i correlatori in superspazio nelle loro
componenti. A tal �ne introduciamo un insieme di operatori differenziali che agiscono
nel superspazio. Usando questo formalismo siamo in grado di calcolare le relazioni
lineari tra gli operatori nello stesso multipletto superconforme. Questo è un passaggio
necessario nel calcolo dei blocchi superconformi, ma sarà anche utile per altri scopi
che discutiamo prima di passare all'analisi del bootstrap. Per prima cosa lo usiamo
per imporre la condizione di energia nulla integrata su teorie di campo superconformi
arbitrarie. Successivamente ci concentriamo su teorie di campo superconformi con
otto supercariche e dimostriamo che una certa classe di operatori chiamati “primari
esotici” non può esistere. Finalmente, dopo un'introduzione pedagogica alla nozione
del bootstrap conforme, effettuiamo uno studio dettagliato del correlatore di quattro
correnti conservate. In particolare, calcoliamo i blocchi conformi e superconformi e le
equazioni di crossing. Concludiamo proponendo diversi studi numerici e strategie e
mostrando alcuni risultati preliminari per il caso non supersimmetrico.

Parole chiave: Teorie di campo conformi, teorie di campo superconformi, superspazio,
condizione di energia nulla integrata, bootstrap conforme, corrente conservata.
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Introduction

Quantum �eld theory is a remarkably powerful framework, capable of describing a
vast class of phenomena in fundamental physics. We can �nd theories that admit a
formulation in terms of quantum �elds across a wide range of energy scales. Notable
examples are the theories that describe the critical behavior of quantum and statistical
systems and the theories that study the properties of the fundamental interactions for
energies below the Planck scale. There are also numerous idealized models that do not
describe nature, but are useful for better understanding the underlying mathematical
structures of quantum �eld theory. Superconformal theories in various dimensions
are an example of this. Not only they constitute a theoretical laboratory for quantum
�eld theorists, but they also provide a dual description of String Theory in a negatively
curved background. Such a duality is often referred to as AdS/CFT correspondence,
and it is our most powerful tool aimed at understanding the quantum aspects of gravity.

Despite the importance of quantum �eld theory throughout nearly all branches of theo-
retical physics, our understanding of it in a non-perturbative sense is still unsatisfactory.
Naturally, most of the interesting phenomena take place in a strongly coupled regime,
where our intuition and our computational tools fall short. This means that we need a
robust and general framework in which we can study theories that exhibit a strongly
coupled behavior. In this thesis we will argue that a good candidate of such a formalism
is the so-called conformal bootstrap and we will showcase an application of it in four
dimensions. However, before introducing it, let us discuss some general aspects of
quantum �eld theory in order to understand better the context and the motivations.

Renormalization group �ow

An important aspect of quantum �eld theory (QFT) is the dependence on the energy
scale. At large distances we cannot resolve the microscopic details of the system under
consideration. Therefore the high energy excitations become less and less important
as we “zoom out” and can be consistently neglected. In doing so, the Hamiltonian
restricted to only the low lying degrees of freedom is modi�ed in order to account for
the excitations that we removed. This induces a transformation �ow in the space of
parameters of the theory which takes the name of Wilsonian renormalization group (RG)

1



Introduction

�ow.

QFTs at different energy scales may look very different. A notorious example of this is
quantum chromodynamics: the theory of strong interactions. At high energy it behaves
like a weakly interacting theory of partons and at low energies it is a strongly coupled
theory of hadrons, exhibiting con�nement and chiral symmetry breaking. When the
RG �ow makes the couplings grow, we quickly exit the perturbative regime and have
fewer tools at our disposal to follow the evolution of a theory. We can try to focus on
special points with enhanced symmetry, namely the �xed points: those where the �ow is
stationary. The theories at the �xed points are by de�nition scale invariant. Furthermore,
in nearly all cases of interest scale invariance is enhanced to a larger group that includes
all transformations that preserve angles.1 This is called the conformal group. QFTs that
enjoy the conformal group as a symmetry are called conformal �eld theories (CFT). They
will be the subject of the present thesis.

The modern perspective sees a QFT as the theory that lives along an RG �ow between
an ultraviolet and an infrared CFT. This interpretation does not encompass all cases as
the UV theory need not be a CFT. However we will adopt this viewpoint here.

From an experimentalist's perspective CFTs are quite boring: the physics looks exactly
the same at all energy scales and all particles are massless.2 On the other hand theorists
�nd them interesting for essentially two reasons. First, according to the viewpoint given
above, they are in a sense the fundamental objects that give rise to QFTs. Secondly, CFTs
are a good approximations of a system that exhibits a separation of scales from the UV
to the IR, in an energy range equidistant from the two scales. This feature is present by
assumptions in all effective �eld theories and, in particular, in the Standard Model as
well.

Symmetries

Symmetries are our most powerful tool to study QFTs. We already encountered the
conformal symmetry, whose consequences will be described at length in this work.
Symmetries are of central importance in the context of critical phenomena. They are part
of what characterizes a universality class, namely the set of microscopic descriptions of a
system which �ow to the same theory in the infrared. For example, the Ising universality
class is characterized by having two relevant operators (temperature and magnetization)
and a Z 2 global symmetry group. Furthermore we can use symmetries to constrain the

1To be more precise, scale symmetry is always enhanced to conformal symmetry in two dimensional
unitary CFTs [2]. In four dimensions instead it is still an open problem [3–5].

2This statement depends on our common way of thinking about high energy physics in terms of particles.
However there has been a proposal of a type of matter that is not comprised of particles. This type of
excitations go under the name of “unparticles” [6,7]. With this scenario in mind, a conformal sector would
actually be very interesting experimentally.
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local observables by means of selection rules and Ward identities.3 Both are very robust
results of representation theory and therefore are independent on the coupling.

A widely studied type of symmetry involves transformations that relate objects with
different spins and statistics to each other. It goes under the name of supersymmetry.
It is not associated to a Lie group in the usual sense because the generators satisfy
graded commutation relations. Nevertheless it shares many properties with ordinary
Lie groups.

Supersymmetry was �rst introduced for phenomenological reasons. A possible scenario
that explains the Higgs mass naturalness is offered by a supersymmetric extension of
the Standard Model. The contributions to the Higgs mass given by loops of bosons and
fermions cancel if the theory is supersymmetric. This lead to the conjecture that there
should be new physics above � 1TeV which consists in superpartners to the particles of
the Standard Model. This also requires that supersymmetry must be broken as we do
not observe it at lower energies. However, the modern developments in supersymmetry
are less oriented to phenomenology and more oriented to understanding pure QFT or
quantum gravity.

The main reason why supersymmetry is still a very active area of research is that String
Theory requires it in order to be free of quantum instabilities. As a consequence, when
we compactify strings on a manifold that preserves a certain amount of supercharges, we
obtain a supersymmetic QFT at low energies (upon taking the appropriate decoupling
limit).

Furthermore the rare occasions where we can compute quantities exactly in an inter-
acting QFT typically require some amount of supersymmetry as, in that case, we have
additional tools at our disposal, like supersymmetric localization [8 –10]. This is es-
sentially a consequence of the existence of protected observables. In an ordinary QFT
protected operators can only be conserved currents, otherwise the theory would be free.
Whereas in supersymmetric QFTs we have a much richer variety of protected operators,
giving rise to many beautiful mathematical structures, which we will not review in this
thesis.

When we impose supersymmetry on a CFT we obtain a superconformal �eld theory
(SCFT). The combination of conformal symmetry and supersymmetry implies very
strong constraints on the resulting theory. This is because the representation theory
of superconformal algebras is very stringent. The algebras have been classi�ed by
Nahm [11] and their unitary representations have been studied in great detail leading to
a classi�cation for all dimensions and all amounts of supercharges [12–15].

3By selection rules we mean statements like hO1 . . .On i = 0 if no singlet appears in the tensor product
of representations

N n
i= 1 r (Oi ). By Ward identities we mean the class of identities that involve the integral

of a correlator containing a conserved current. Namely
R

dWhJXi � h Q[X ]i , Q being the charge operator.
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Conformal �eld theories in four dimensions

Physics in four dimensions is undoubtedly the most interesting one to study since we
live in a universe that is four dimensional (at least at the energy scales probed so far). It
is disappointing that not much is known about interacting non-supersymmetric 4d CFTs.
The only class of candidates available to us so far are the so-called Caswell-Banks-Zaks
�xed points [16, 17]. They are obtained as the low energy limit of an asymptotically
free gauge theory coupled to matter, such as quantum chromodynamics. In the case
of an SU(Nc) gauge theory with fundamental fermions transforming under the �avor
group SU(N f ), the �xed point exists only when N f and Nc lie in a speci�c range termed
conformal window, whose precise lower limit is still under debate. 4 At Nc = 3 different
estimates of the lower bound on N f range from 10 to 12. See [18] for a recent study, [19]
for a review of the lattice results and [20–24] for computations via other methods.

Naturally it is dif�cult to get quantitative results as the IR limit of these theories is
notoriously strongly interacting. This has to be contrasted with the situation in three
dimensions where interacting �xed points are more abundant. That is because the
Lagrangians are easier to construct since they typically consist in theories of scalars and
at most fermions. The prime example is given by the O(N ) vector models. Due to the
simplicity of these theories, the perturbative e-expansion followed by resummation is
a viable approach and it gives correct results. Moreover, at large N one can also study
these theories in a 1/ N perturbative expansion. Later we will say more about three
dimensions in the context of the conformal bootstrap.

If we allow for supersymmetry, the situation in four dimensions is not so dire anymore.
The amount of supersymmetry 5 N can take values from 1 to 4 in four dimensions.
If N = 1 there is recent evidence of a so-called minimal interacting SCFT, whose
Lagrangian description is still unknown [25,26]. Another example is analogous to the
Caswell-Banks-Zaks �xed point: it is a supersymmetric extension of QCD, which is
believed to have a conformal window for 3

2 Nc < N f < 3Nc [27].

The story for N = 2 supersymmetry is much richer. There are several geometric
constructions inspired by the String Theory duals. Some examples are the so-called class
S SCFTs [28,29], a generalization of the Argyres-Douglas theories [30,31]. In addition,
there exists a classi�cation of N = 2 SCFTs with a two-dimensional Coulomb branch
(also called rank 1 SCFTs) [32,33]. AllN = 2 SCFTs are associated to a two-dimensional
vertex operator algebra through a cohomological construction [34]. 6 This may give
insights towards a possible more general classi�cation in the future.

On the contrary, the class of N = 4 SCFTs is believed to contain only one theory:7 N = 4

4The upper limit of N f 6 11
2 Nc is more robust because it is accessible in perturbation theory.

5In four dimensions the number of supercharges NQ is NQ = 4N .
6A very similar construction also works for six dimensional SCFTs with maximal supersymmetry [35].
7By one theory we mean one conformal manifold of theories. That is, one family of theories obtained by
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super Yang-Mills (SYM). 8 It is dual to String Theory on AdS5 � S5 [36] and has since
been one of the most studied examples of this duality. The only case left to discuss is
N = 3. Surprisingly, examples of such SCFTs have been found only recently [37–39] and
a bootstrap study was carried out in [40]. The reason is that any Lagrangian construction
will automatically fall back to N = 4 supersymetry due to CPT invariance. In this thesis
we will not be interested in N = 4 or 3 supersymmetry.

It seems that the situation for N = 1 supersymmetry is closer to the one of non-
supersymmetric CFTs. Namely our knowledge of the landscape of consistent theories
is still rather limited. This is due to the absence of all the sophisticated mathematical
structures that make an appearance afterN > 2 — like vertex operator algebras, string
constructions etc. It is worth then to adopt a more explorative approach. One possibility
is the numerical bootstrap and we will explain it shortly in the context of general (not
necessarily supersymmetric) CFTs.

1 The conformal bootstrap

Axiomatic approach to conformal �eld theories

In the axiomatic approach to CFTs we are interested in studying the properties of
correlation functions of local operators. Conformal symmetry completely �xes the
functional form of each three-point function up to a �nite number of real numbers
called operator product expansion (OPE) coef�cients. The collection of OPE coef�cients,
conformal dimension and spin of all the operators in the theory is referred to as CFT
data. Higher-point correlation functions may be obtained in terms of the lower ones
by means of the so-called operator product expansion, which we will de�ne shortly.
Therefore, if we want to fully specify all observables of local operators, it is suf�cient to
simply provide the set of CFT data. Since in this context we do not care about nonlocal
operators — such as Wilson lines or defects — this is enough to fully characterize the
theory.

A distinctive feature of CFTs is that the operators live in an Hilbert space because they
can be put in a one-to-one correspondence with the states in radial quantization. As a
consequence we can always expand the product of two local operators at points x and
x + #as an in�nite sum over local operators at x. This is the so-called operator product
expansion. It is possible to show that the OPE always converges in a CFT [41–43].

By taking the OPE of different pairs of operators inside a correlation function we can
eventually reduce it to sums of two-point functions. However, for n > 4-point functions

varying the marginal coupling t .
8It should be emphasized that there is no rigorous evidence supporting this lore yet, except for the fact

that it holds true when restricted to Lagrangian theories. The uniqueness of super Yang Mills as an N = 4
SCFT is still a very important matter to be settled.
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there is more than one way to pair the operators and they all have to agree. This puts
strong, non-perturbative, constraints on the CFT under study. The axiomatic approach
consists in imposing this constraint on the correlators and “bootstrapping” the theory
from it. In this context bootstrapping refers to obtaining something out of nothing, that
is, obtaining a fully �edged quantum theory just from its consistency conditions. Clearly
crossing is not the only constraint that can be imposed. One can also require unitarity —
which will turn out to be crucial for the numerical methods — and any global symmetry
that is shared by the theories under investigation.

This axiomatic approach was initiated in the seventies with the seminal works of
Polyakov, Mack, Ferrara and several other authors [44–48].9 Unfortunately, the ap-
proach in its original formulation was unable to produce concrete results for many years.
The reason is that the crossing equations are too complicated to be studied analytically
in the case ofd > 2 dimensions. The case of two dimensions is special because the con-
formal symmetry is enhanced to the Virasoro algebra. Indeed there are some instances
where crossing has been solved explicitly in closed analytic form. An example is the
solution of Liouville theory with the DOZZ formula [49,50]. In higher dimensions this
quickly becomes unfeasible. However, in 2008 there was a rebirth of this program when
it was realized that the crossing equations could be studied by means of a numerical
method [51].

A numerical method

The modern revival of the conformal bootstrap was motivated by a question of natu-
ralness in the context of the theory of conformal technicolor. The details of this theory
are outside the scope of this thesis. However the concrete question that needed to be
addressed boils down to: “how high can we make the conformal dimension of f 2 if we
�x the dimension of f to be Df ?”

This calls for an axiomatic approach: we want to be completely agnostic about the theory
and consider the correlator hffff i . Sincef 2 is part of the OPE f � f , we will be able
to constrain its dimension by imposing the crossing equations. Unitarity implies that
the OPE coef�cients squared are positive numbers. This turns the crossing equation
in a particular type of convex optimization problems, for which there exist ef�cient
numerical algorithms in the mathematical literature.

One of the �rst results of the numerical bootstrap program was the determination of
the critical exponents of the 3d Ising model [52, 53]. The Ising model was recognized
in a feature or “kink” present in the exclusion plots. 10 By kink we mean a noticeable

9We will not attempt to give a detailed historical account of the early developments of the bootstrap in
this introduction.

10It is often correct to interpret a kink as a physical theory. In this case it de�nitely is. An exception is
when the kink heavily depends on some additional, ad hoc, assumptions or it is numerically unstable.
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change in the slope of the exclusion bounds. Further studies we able to improve on this
result and to isolate the theory in a closed region in parameter space that is referred to as
“island.” In the latter, a crucial assumption was that there was only one Z 2 even relevant
scalar (in the RG sense).

Other noteworthy results in 3d are the O(N ) models [54–56]. In this case the authors
obtained a family of islands, one for each value of N. More recent studies have been
focused in particular to the O(2) case because of its phenomenological relevance [57,58].

There were also several attempts to bootstrap gauge theories. See e.g. [59] where the
authors bootstrapped correlators of monopoles in QED3. In this axiomatic formulation
it is impossible to identify with certainty a gauge theory, because its physical correlators
will be made of gauge invariant operators. Nevertheless one can gain suf�cient evidence
by comparing with available perturbative or large N computations.

Another interesting application of the bootstrap in 3d is the study of M-theory on a stack
of N coincident M2-branes. This can lead to a maximally supersymmetric SCFT in the
decoupling limit [60 –62] (see also [63]). Different bootstrap studies were made in [64–66].
In particular, the results of [66] show a large variety of high precision islands.

All attempts in four dimensions have so far been unsuccessful in �nding islands. The
main targets of the numerical studies are either gauge theories — inspired by the hope
of �nding a Caswell-Banks-Zaks-like �xed point — or supersymmetric theories. The
seminal paper and its follow-ups were set in four dimensions and aimed at �nding
general bounds [51, 67–69]. Later, a more detailed study followed [25]. Further in-
vestigations assumed the presence of global symmetries [70] such asSO(N ) [71, 72],
SO(N ) � SO(M ) [73], SU(N ) [73,74] andSU(N ) � SU(N ) [72,75]. Other studies instead
assumedN = 1 supersymmetry [25,26,76].

Minimal supersymmetry and extended supersymmetry are fairly different in terms of
their bootstrap setups. The former is similar to the non-supersymmetric setup. The only
difference is that the contributions of operators in the same multiplets need to be grouped
together in what are known as the superconformal blocks. On the other hand the setup
for extended supersymmetry also needs to take into account the existence of protected
operators. The contributions of the protected operators can be computed in a model
independent way and can thus be input in the crossing equations. Furthermore, the
superconformal blocks are never computed explicitly as in the N = 1 case, rather they
are obtained by alternative methods which work only for protected external operators
(which are typically the cases of interest). Examples of such bootstrap studies for
N = 2, 4 supersymmetry are [77–81].
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Boostrap of spinning operators

The works we cited so far consisted in applying crossing symmetry on a correlator of
four scalar operators. The bootstrap method however does not have such a limitation
and one is free to consider operators with arbitrary spin as well. The only example
considered so far in four dimensions is the bootstrap of Weyl fermions transforming
under a U(1) global symmetry [82]. Unfortunately, the bounds look rather smooth and
there is no conclusive evidence of new theories. This might be due to the fact that the
interesting theories lie well inside the allowed region and so have little effect on the
shape of the bound. In three dimensions on the other hand there have been already
several works that considered a spinning setup [58,83,84].

The computations quickly become very challenging and intensive as the spin is increased.
But of course there are theoretical motivations for considering other spinning operators
as well. There are two operators which are special: the conserved current (vector of
dimension d � 1) and the stress-energy tensor (rank-two symmetric traceless tensor
of dimension d). The former appears in any theory with a global symmetry, due to
the Noether theorem, and the latter appears in any local theory. Their correlators are
tightly constrained by the Ward identities and the conformal dimensions of the external
operators are �xed. This leaves us with fewer free parameters and, as a consequence,
we can obtain rigorous, theory independent, bounds on a large class of theories. For
example, an upper bound D? on the dimension of the lightest scalar in the OPE of two
currents implies that any theory with a global symmetry must have a scalar operator of
dimension less than D?. An example of this can be found in three dimensions [84].

Another motivation behind considering spinning operators is that in dimensions bigger
than three there are some CFT data which are inaccessible by bootstrapping only scalars.
Those are the data associated to operators with non-vanishing transverse spin.11 In
the OPE of spinning operators instead we can �nd exchanged operators of nonzero
transverse spin. Imposing assumptions on them gives us more constraining power and,
in turn, may lead to stronger bounds.

Currents are particularly interesting in the case of supersymmetric theories. Every
SCFT comes with a global symmetry:12 the R-symmetry. Representation theory dictates
that the current of the R-symmetry must be part of the same multiplet containing the
stress tensor. In supersymmetric theories with at least 8 supercharges we are in luck
because the lowest component of this multiplet is a scalar, so we do not have to resort
to an expensive spinning setup. Meanwhile for lower amounts of supersymmery the
bottom component has nonzero spin. In particular, for exactly 4 supercharges the bottom
component is precisely the R-current. The present thesis will be focused on this case.

11In four dimensions the transverse spin of ( j, â̄) is j j � â̄j. In general, it is given by the number of boxes
in the Young tableaux that belong to the rows after the �rst one.

12Except 3d N = 1.
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2. Studying conformal kinematics

It should be noted, however, that one has the possibility of regarding the current as
part of a �avor multiplet as well. In that case the analysis would be dependent on the
assumption that the theories under investigation have a global symmetry other than the
R-symmetry.

As we remarked in the previous paragraphs, considering a bootstrap setup with spinning
operators comes with many challenges. The additional indices that appear in the
correlator give rise to different tensor structures, which will most likely mix under
crossing. Furthermore, the OPE becomes considerably more involved. Computations of
this sort require the use of a powerful and general formalism that allows for automation
on a computer.

2 Studying conformal kinematics

The many formalisms in conformal �eld theory

In a CFT the functional form of two and three-point functions is �xed. Imposing
conformal invariance on a correlator however is not straightforward, especially if the
operators have nonzero spin. The formalism for symmetric traceless tensors for general
dimension d was developed in the nineties by Osborn and Petkou [85]. Soon after the
2008 revival it became necessary to have a lighter and more ef�cient formalism, in order
to open up the possibility of bootstrapping spinning operators.

If the d dimensional space is embedded in a d + 2 dimensional space with signature
(2,d) the conformal group acts linearly. Dirac was the �rst one to use this fact to study
wave equations [86]. This idea goes under the name of embedding formalism. In its
more recent developments it is combined with the so-called index-free formalism, where
one introduces polarizations to contract all open indices. The formulation for general
d initially dealt only with symmetric traceless representations — since they are not d
dependent [87,88]. In four dimensions or higher there exist also non symmetric traceless
representations. If one is interested in those representations, it is probably best to make
a separate treatment for each number of dimensions. The only case studied in depth so
far is that of d = 4 [89–91]. With more work, however, it is possible to develop a theory
for general d as well [92].

Another formalism that is used goes under the name of conformal frame [93]. Unlike
the embedding formalism, here covariance is lost. However the frame is chosen such
that as many coordinates as possible are �xed to some convenient value, so that the
tensor structures become very simple objects. It is also useful for counting the number
of independent tensor structures.

The embedding formalism and the conformal frame are both indispensable for setting
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up the bootstrap of a correlator of spinning operators. There are several steps that need
to be performed: the three-point function analysis, the computation of the conformal
blocks and the crossing equations. The �rst two are best done with the embedding
formalism and the last one is best done in conformal frame.

The most important elements required for performing a bootstrap study are the confor-
mal blocks. They represent a contribution of a single primary operator to a four-point
function, analogously to the partial waves for a scattering amplitude. The simplest
conformal blocks are those of four external scalars and they were computed in the
pioneering works of Dolan and Osborn [94 –96]. They found explicit formulas for even
spacetime dimension. Later, with the aid of the so-called recursion relations, the con-
formal blocks were computed for arbitrary complex values of d [97,98]. They are not
given in a closed for expression, but it is possible to present them in an expansion that
converges exponentially fast [99]. These recursion relations have recently been gener-
alized for the general spinning case in d = 3 [100], see also [101]. A general strategy
for computing spinning conformal blocks — which we will also adopt here — is to �rst
compute the conformal blocks of a minimal four-point function, 13 which are referred to
as seeds. From the seeds one can then obtain the desired blocks by the action of some
conformally covariant differential operators [88,90,102,103].

There are several other approaches available in the literature. One example is the shadow
formalism [104,105]. There exists also an alternative formulation of the embedding space
which works in full generality for all representations of the spin group [106 –111]. There
the conformal blocks are constructed by applying a speci�c set of substitution rules
on a compact expression given in terms of Gegenbauer polynomials. The elementary
building blocks of these substitution rules are a generalization of Exton G-functions. The
theory is very rich but, unfortunately, it is outside the scope of this thesis. Yet another
interesting approach consists in translating the problem of computing conformal blocks
in that of �nding a solution to a quantum mechanical model called Calogero-Sutherland
model [112,113].

Superspace

The supersymmetry algebra mixes with the conformal algebra, it is therefore necessary to
introduce a new formalism when dealing with SCFTs. Since supersymmetry entails the
presence of spinors, all formalisms for superconformal symmetry tend to be dimension
speci�c, most commonly for d = 4.

Superconformal multiplets can be conveniently grouped in a single �eld that lives in su-
perspace. Superspace is an extension of ordinary Minkowsky spacetime by the addition
of Grassmannian coordinates qi . The action of the supersymmetry algebra can be seen

13Minimal means the simplest possible four-point function that exchanges the desired representation.
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as a transformation acting on these Grassmann variables. Since each coordinate squares
to zero, the �elds can be written as a terminating Taylor expansion. The coef�cients of
this polynomial in the qi are the various operators in the multiplet.

The correlation function of n super�elds F 1, . . . , F n automatically contains, in its Taylor
expansion in q, all correlators of all operators in the multiplets associated to the F i 's. In
particular, this can be used to relate among each other the OPE coef�cients of the opera-
tors in the same multiplets. These relations, while being purely kinematic, cannot be
obtained by simple group theoretic arguments. The only technical obstacle is to actually
perform the expansion in q because the expressions of the superspace correlators are
rather involved. Part of the thesis is devoted to address this problem in great detail as it
is a vital step in the computation of superconformal blocks. The superconformal blocks
are sums of conformal blocks with appropriate coef�cients dictated by the supersymme-
try algebra, and they represent the contribution of an entire superconformal multiplet to
a four-point function.

The �rst appearance of a complete formalism for superconformal symmetry focused
on 4d N = 1 [114,115]. It was later generalized to extended supersymmetry [116], in
particular N = 2 [117], and to six dimensions [118]. The case of extended supersymmetry
can also be specialized to protected operators, where the Ward identities are very strong
and greatly constrain the functional form of the four point function. As a consequence,
the blocks can be computed almost directly [119–121]. There also exists a supersymmetric
version of the embedding formalism [122,123]. The only disadvantage of this method
is that it has not been found yet a way to fully characterize the redundancies among
the various structures. It has however been successfully used for the computation of
superconformal blocks for general scalars in N = 1 [124] and the stress tensor multiplet
in N = 2 [125].

Most of the results involving supersymmetric conformal blocks focus on scalar external
operators [120,124–130]. This does not go hand in hand with the huge progress made for
spinning operators in non-supersymmetric CFTs, as we reviewed previously. Recently
a general theory has been developed [1]. In the formalism of [1] the superconformal
blocks are computed by solving a perturbation of the Calogero-Sutherland model [112]
which becomes exact at a �nite order. Another result involving general superconformal
blocks is the study of their pole structure given in [131].

In this thesis we will address the problem of computing spinning superconformal blocks.
Speci�cally, we will study the blocks of four currents in 4d N = 1 SCFTs. We will
however utilize a different formalism than the one mentioned above. It consists in
the introduction of differential operators which act in superspace and can be used to
simplify the task of expanding the superspace correlators in the Grassmann variables.
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3 Locality

Locality implies that the energy-momentum measurements follow Gauss' law. Namely,
the �ux of energy-momentum on a codimension-one surface S does not depend on
continuous deformations of S. This requires the existence of a spin two operator which
is conserved and has dimension d: the stress-energy tensorTmn.

The OPE coef�cients of Tmnare tightly constrained by the conservation equations and the
Ward identities. In setting up a bootstrap problem, it is important to carefully analyze
all such constraints in order to prevent unphysical solutions being part of the search
space. As we will argue later, sometimes Ward identities alone, without any dynamical
input, may have interesting consequences on their own.

Supersymmetric Ward identities

A possible interesting problem where the Ward identities may have some impact regards
the existence of a class of superconformal multiplets called exotic primaries [132]. This
is precisely an instance where Ward identities alone are strong enough to completely
�x the three-point functions of a stress tensor multiplet and two exotic primaries. Re-
markably, however, the solution of the Ward identity turns out to be inconsistent with
supersymmetry. As a result the exotic primaries cannot appear in any local theory.

Energy conditions

Ward identities are not the only constraints that a correlator of the stress tensor has to
satisfy. Three-point function, in particular, are subject to a class of inequalities that go
under the name of averaged null energy condition (ANEC).

The averaged null energy is an observable that has a long history in jet physics — see
for example [133–135] — but it was �rst examined in the CFT context in the seminal
work [136]. There, it was shown that an energy-positivity condition implies constraints
on the coef�cients in the three-point function of the stress-energy tensor. More precisely,
the expectation value of the stress tensor in a statejy i integrated along a null geodesic
must be a non-negative quantity. In [136] this was viewed as a positivity requirement
for the energy measured by a hypothetical “calorimeter” placed at a large distance
from the region where jy i is localized. It was later proved with several different
approaches [137–139]. In holographic CFTs this inequality has a simple interpretation. It
is a direct consequence of the causality of signals that dip into the bulk.

One might naively think that the only consequence of the ANEC is a system of in-
equalities on the OPE coef�cients. Indeed the �rst applications of it did have results
of this sort [136, 140]. However, it was later noted that a more careful study of the

12



4. Outline

ANEC constraints leads to bounds on the conformal dimensions as well [141]. In this
thesis we study an analogous set of bounds that follow from further assuming N = 1
supersymmetry, thus extending the results of [141].

4 Outline

This thesis will be aimed at setting up the bootstrap problem for abelian currents in four
dimensional CFTs. All the steps leading up to the �nal setup will be explained in detail
and the pertinent literature will be reviewed along the way. For completeness, when
possible, we will explain the main concepts with more generality than what is needed
for the �nal result.

We subdivide the material in three parts, Part I studies the consequences of conformal
and superconformal symmetry on the local observables of the theory. Part II is an
interlude: it concerns the implications of locality — i.e. the existence of a stress tensor —
on any SCFT. Finally Part III contains the study of the conformal blocks of four currents.

Outline of Part I

In more detail, Chapter 1 introduces CFTs and the correlation functions of local op-
erators. The formalism of embedding space and conformal frame are reviewed. The
material is somewhat standard and can be skipped by an expert audience, except for
Subsection 1.3.2 which is needed for Section 2.3.

Chapter 2 instead is about SCFTs. The concept of superspace is introduced, mainly
focusing on four dimensions with N = 1 and 2. Section 2.2 is important in order to
familiarize with the notation. Section 2.3 instead contains some partially novel results
about counting of superconformal tensor structures.

Chapter 3 introduces a set of differential operators in SCFTs for expanding supercon-
formal correlators in the Grassmann variables. This is needed for the computation of
superconformal blocks and, in general, to relate the OPE coef�cients of the operators in
the same multiplet. The analysis has been done for general 4d N = 1, 2 SCFTs.

Outline of Part II

Chapter 4 discusses the constraints of the ANEC on general four dimensional N = 1
SCFTs. The analysis consists in expanding a superspace correlator in the Grassmann
variables, applying all Ward identities and imposing the ANEC. The solution of the
inequalities is obtained by means of numerical techniques.

Chapter 5 discusses the proof of the absence of the exotic primaries from any local
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N = 2 SCFT.

Outline of Part III

Chapter 6 is an introduction to the concept of the conformal bootstrap. In particular,
Section 6.2 discusses the method of semide�nite programming and Section 6.4 reviews
all the tools available in four dimensions for computing conformal blocks of spinning
operators. These concepts will be all used in the subsequent chapter. This chapter can
be safely skipped by readers who are already familiar with the literature.

Finally Chapter 7 contains the computation of the conformal blocks. This is original,
but still unpublished, work. Section 7.1 contains the analysis of non-supersymmetric
three-point functions, Section 6.3 instead contains the analysis of the four-point function
hJJJJi . Section 7.3 shows the computation of the conformal blocks for all exchanged
operators. Section 7.4 and 7.5 address the necessary modi�cations to the setup to
include the assumption of N = 1 supersymmetry. Section 8.1 shows the �nal result:
the set of crossing equations that need to be analyzed by the numerical bootstrap
machinery. Finally Section 8.2 discusses some concrete proposals for the future numerical
investigations.

Outline of the appendices

The appendices are numerous and some are rather technical. Appendix A contains
all notations and conventions used throughout the manuscript. Appendix B has more
details regarding the superspace formalism and has some identities useful for Chap-
ter 3. In particular, Appendix B.1 will turn out to be useful for the computation of
superconformal blocks. Appendix C has all the intermediate results needed for the
ANEC analysis. Appendix D contains all the results relative to the bootstrap analysis. In
particular Appendix D.1 contains necessary data for the conformal blocks, Appendix D.2
has the de�nition of our choice of four-point structures and �nally Appendix D.3 con-
tains all the necessary information to compute superconformal blocks starting from the
non-supersymmetric ones.
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1 Conformal symmetry

1.1 The conformal group

The aim of this chapter is to introduce conformal symmetry in quantum �eld theories.
It is far from being a self-consistent and complete exposition. A classic reference is the
textbook [142], which mainly focuses on d = 2 but introduces the conformal group
for general d. Some of the original works on the foundations of conformal �eld theory
and its representation theory are [44,45,47,143]. We also refer the reader to the more
modern introductions [144 –146], which are thought for d > 2 and focus on the conformal
bootstrap. A review on the subject of the bootstrap can be found in [147]. We will address
this topic later, in Chapter 6.

The conformal group in d dimensional �at space is the set of all transformations of Rd

that preserve angles. In Lorentzian signature it is isomorphic to SO(d, 2). It extends
the Poincaré group SO(d � 1, 1) n Rd by d + 1 additional generators, namely the di-
latation D and the special conformal transformations Km. The former generates scale
transformations

xm 7! l xm, l > 0 , (1.1)

while the latter generate a nonlinear transformation that takes the form

xm 7!
xm � bmx2

1 � 2(b � x) + b2x2 , b 2 Rd . (1.2)

The remaining generator are, of course, translations Pm and rotations/boosts Mmn. It is
obvious that the generators Pm, Mmnand D do preserve angles. The result for Km on the
other hand is slightly more involved, but after a small computation one can show that
indeed the transformation (1.2) induced on the tangent vectors1 is proportional to an

1Given a transformation xm ! f m(x), one can de�ne the induced transformation on the tangent vectors

vm
x ! ¶f m(x)

¶xn vn
x. It is sometimes referred to as pushforward.

17



Chapter 1. Conformal symmetry

orthogonal matrix

f m(x) :=
xm � bmx2

1 � 2(b � x) + b2x2 )
¶f m

¶xr gmn
¶f n

¶xl =
grl

(1 � 2(b � x) + b2x2)2 . (1.3)

The algebra of the generators reads:

[D, Pm] = iPm, [D, Km] = � iKm,

[Pm, Kn] = 2i(gmnD � Mmn) ,

[Mmn, Pr ] = i(gmrPn � gnr Pm) , [Mmn, Kr ] = i(gmrKn � gnr Km) ,

[Mmn, M rl ] = i(gmrMnl + gnl Mmr � gnr Mml � gml Mnr ) ,

(1.4)

all the other commutators being zero. As one can see, the generatorD de�nes a grading,
making P of weight 1 and K of weight � 1. We can thus regard them as "ladder" operators
and construct representations by diagonalizing D. More precisely, we use a strategy
similar to the method of induced representation normally used for the Poincaré group.
However, instead of choosing a frame in momentum space, we will stay in position
space, picking as a reference point the origin x = 0. The group that leaves the origin
invariant — i.e. the little group — is generated by Km, Mmnand D. Local operators at
the origin are required to be �nite dimensional irreducible representations of this group.
We further assume that D can be diagonalized. SinceKm lowers the D weight, at some
point its action must be trivial. We thus always have a lowest weight state which is
annihilated by Km. We call such a state aconformal primaryOD,` (0)

KmOD,` (0) = 0 , MmnOD,` (0) = Smn(` )OD,` (0) , DOD,` (0) = � iDOD,` (0) , (1.5)

where D is the conformal dimension, ` denotes the spin Dynkin labels and Smnis a spin `
matrix representation of SO(d � 1, 1). By acting on OD,` (0) with Pm we can generate all
the other states of the representation, which are called descendants. This allows us to
move away from the origin:

OD,` (x) = e� i xmPmOD,` (0) ei xmPm . (1.6)

The whole representation is then in�nite dimensional as it is spanned by arbitrary prod-
ucts of Pm acting on the primary. We will call such a representation a conformal multiplet.
In unitary theories, the quantum numbers D and ` must satisfy some inequalities which
are called unitarity bounds. In particular, in four dimensions ` is a pair of integers ( j, â̄)
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1.1. The conformal group

and the bounds are2

D > 1 ( j = â̄= 0) ,

D > 1
2 j + 1 ( j > 0, â̄= 0) ,

D > 1
2 â̄+ 1 ( j = 0, â̄> 0) ,

D > 1
2 ( j + â̄) + 2 ( j, â̄> 0) .

(1.7)

For symmetric traceless representations in any d the bound instead is

D > d� 2
2 (` = 0) ,

D > ` + d � 2 (` > 0) .
(1.8)

When a unitarity bound is saturated, one or more states in the representation become
orthogonal to the whole multiplet (and thus also null). We can therefore consistently
mod these states out. The result is still an in�nite dimensional representation but with
fewer states, we will thus refer to is as a short multiplet. The simplest example of a short
multiplet is a free scalar f . It saturates the bound of (d � 2)/ 2 and indeed it has a null
state

[P2, f ] = � f = 0 , (1.9)

as dictated by its equation of motion. Another example are the conserved currents of
any spin ` . They saturate the bound ` + d � 2 and, by de�nition, satisfy the equation

[Pm, J(mm2���m̀ ) ] = 0 . (1.10)

The vanishing of a descendant holds as an operator equation, in the sense that it still
remains true when inserted in any correlation function, up to contact terms.

h(¶ � J)( x)O1(x1) � � � O n(xn)i =
n

å
i= 1

ci (x1, . . . ,xn) d(x � xi ) . (1.11)

The functions ci are not arbitrary but may be �xed in terms of the correlation function
hO1 � � � O ni and the transformation properties of the Oi 's under the symmetry generated
by J. The relation (1.11)goes under the name of Ward identity. In the next section we
will discuss them more quantitatively. The two most common examples are ` = 1 where
the current is associated to an ordinary global symmetry or ` = 2 where the current is
the stress tensor and it is obviously associated to the conformal symmetry.

2It is also possible to have D = j = â̄= 0, which would correspond to the identity operator.
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Chapter 1. Conformal symmetry

1.2 Conformal correlators

1.2.1 General notions

The main focus of this thesis are conformal correlation functions of primary local op-
erators. The correlation function is de�ned as an expectation value in a conformally
invariant vacuum jWi , which we will keep implicit. Conformal symmetry is strong
enough to completely �x two-point functions and �x three-point functions up to a �nite
number of coef�cients, referred to as OPE coef�cients, where OPE stands for operator
product expansion. If we consider only scalar operators f i of conformal dimensions Di

then one simply has

hf 1(x1)f 2(x2)i =

(
(x2

12)
� D if D1 = D2 � D,

0 otherwise .
(1.12)

where xi j := xi � xj . For generic operators the two-point function is also uniquely
�xed. However, for spin representation which are not real O has to be paired with O,
which is the operator whose conformal dimension is the same as O and whose spin
representation is the complex conjugate.3

The three-point function of three scalars is given by

hf 1(x1)f 2(x2)f 3(x3)i =
l f 1f 2f 3

jx12jD123jx13jD132jx23jD231
, (1.13)

where Di jk := Di + Dj � Dk. The real constant l f 1f 2f 3 is the OPE coef�cient, which in
the case of scalar operators is unique. For spinning operators there will be in general
more than one tensor structure, each of them multiplied by an independent l coef�cient.
Note that the value of l f 1f 2f 3 is physical since we normalized the operators f i in such
a way that their two-point function is (1.12). A general treatment of two and three-
point functions for arbitrary spinning operators in general spacetime dimensions was
initiated in [85]. We will however use a more modern method that goes under the
name of embedding formalism, which will be introduced in the next subsection. A simple
case, however, that does not require any heavy formalism it that of two scalars and a
symmetric traceless tensor of spin ` . Their correlator reads

hf (x1)f (x2)O(x3)i =
l ff O

jx12jD123+ ` jx13jD132� ` jx23jD231� `

 
xm

13

x2
13

�
xm

23

x2
23

! `

, (1.14)

where, with a slight abuse of notation, we de�ned (Zm) ` to mean Zm1 � � � Zm̀ � traces.
Also in this case only one tensor structure appears. We should comment on the name

3In four dimensions ( j, â̄) � = ( â̄, j). If there are other quantum numbers such as a global charge, then
they should also be conjugated.
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1.2. Conformal correlators

"OPE coef�cient." Its origin stems from the fact that we can always take the operator
product expansion (or OPE) between two operators in a CFT and the contribution of O3

in the OPE O1 � O 2 is entirely �xed by they three-point correlator, by simply taking the
expectation value of both sides multiplied by O3. Concretely

f (x) � f (0) = å
D,`

l ff OD,`

jxj2Df � D C(¶m, x)m1���m̀ Om1���m̀
D,` (0) , (1.15)

with the functions C �xed by (1.14)(we will not show it explicitly). In the above formula
the sum over operators, as well as the coef�cients, are theory dependent and thus not
known a priori. The OPE can be precisely seen as an algebra on the space of local
operators, the l O1O2O3 being the structure constants. One of the axioms of conformal
�eld theory requires this algebra to be associative. This yields very strong nontrivial
constraints which will be explained in Chapter 6.

In general, a three-point function of operators Oi which may have nonzero spin can be
written as a linear combination of tensor structures ta

O1O2O3
. Each structure is multiplied

by its own OPE coef�cient

hO1(x1)O2(x2)O3(x3)i =
n123

å
a= 1

l (a)
O1O2O3

ta
O1O2O3

(x1, x2, x3) , (1.16)

where xi is a shorthand to denote xi together with the spin polarizations that are carried
by Oi . We will address the problem of enumerating these structures in the subsequent
sections.

The last correlator that we will need is the four-point function. For simplicity we will
only illustrate the case of four not necessarily identical scalars in this subsection. Even
in this simple case the kinematics starts being nontrivial, in the sense that we cannot
�x the correlator anymore but we need to allow for an arbitrary function f (u, v) of the
so-called cross ratios

u =
x2

12x2
34

x2
13x2

24

, v =
x2

14x2
23

x2
13x2

24

. (1.17)

In terms of a theory-dependent f , one has [95]

h
4

Õ
i= 1

f i (xi )i =
1

jx12jD1+ D2 jx34jD3+ D4

�
x2

24

x2
14

� 1
2D12 �

x2
14

x2
13

� 1
2D34

f (u, v) , (1.18)

with Di j := Di � Dj . By using the OPE in (1.15)inside the four-point correlator, together
with the fact that two-point functions are diagonal, one can express f as a sum over the
operators in the spectrum of f 1 � f 2 \ f 3 � f 4. Other permutations are equivalently
valid and their equality stems from the OPE associativity which we mentioned before
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Chapter 1. Conformal symmetry

Figure 1.1. The null cone and the Poincaré section. An in�nitesimal interval dx is mapped to its
conformal transformation d x0by a Rd,2 isometry and a rescaling.

and will be addressed later on in this thesis. More precisely one can write

f (u, v) = å
OD,` 2 f 1� f 2

l f 1f 2OD,` l OD,` f 3f 4
G(D12,D34)

D,` (u, v) ,

where the function g is called conformal block. We put a bar on O in the second OPE
coef�cient to agree with the general case. When all external operators are scalars, the
only operators that are exchanged are symmetric traceless tensors. Thus in this case
O = O and the bar would not be necessary. Even for external scalars the conformal
blocks are somewhat complicated functions. For even dimensions they can be taken as
combinations of 2F1 hypergeometric functions [95,96]. Whereas in any other dimension
they can be obtained with a variety of methods, which were brie�y reviewed in the
Introduction.

If, on the other hand, the external operators have nonzero spin, equation (1.18)will be
replaced by a sum over the possible tensor structures, as in (6.4). The conformal blocks
for spinning operators will be discussed in more detail in Section 6.4.

1.2.2 Embedding formalism

In the previous subsection we called this formalism modern. Although, in fact, it dates
back to Dirac [86]. We actually referred to its more recent formulation as appeared
in [87,88,92] and, more speci�cally, to its four dimensional specialization [89,91,148].
There exists an even more general theory which is able to deal in an uniform way with
all representations of the spin group in arbitrary dimensions [106,107,110,111]. For the
present thesis, which is focused on d = 4, we will adopt the formalism of [89,91].
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1.2. Conformal correlators

The idea behind the embedding formalism is to extend the d dimensional space to a
d + 2 dimensional space where the conformal group SO(d, 2) acts linearly. It is then
much easier to write down conformally covariant tensor structures. The wanted result
is obtained by projecting down to d dimensions. This projection is made in two steps.
First we restrict ourselves on the null cone

X2 = X+ X � + XmXm = 0 , X � := Xd � Xd+ 1 . (1.19)

and then we identify points that differ by a scale factor

X M � l X M , l 2 R+ . (1.20)

This last condition may be enforced by choosing a section X+ = f (Xm). A standard
choice is the Poincaré section which yields a �at metric in d dimensions

(X+ , X � , Xm)jPoincaré � (1,x2, xm) . (1.21)

It is then easy to check that linear isometries in Rd,2 yield conformal transformations
in Rd� 1,1. This is because, after a generic transformation, the null condition X2 = 0
is preserved but we may have to rescale the coordinates in order to fall back into the
section

X M 7! L M
N X N � l � 1L M

N X N , l := L +
N X N (x) . (1.22)

Due to the null cone constraint, this results into an x dependent factor that multiplies
the d dimensional metric d s2 = gmndxmdxn

ds2 = dX M dXM jPoin. 7! l 2dX M dXM + 2dl X M dXM + ( dl )2X2jPoin. , (1.23)

the last two term vanish due to X2 = 0 = d(X2), so we are left only with the �rst one
which reads l 2 gmndxmdxn.

After this general introduction we will specialize to d = 4. The projective null cone
is therefore embedded in six dimensions. We now need to have a convenient formal-
ism to deal with tensors. In four dimensions the indices are contracted with spinor
polarizations h, h̄ (see Appendix A.1). In the same fashion here we introduce twistor
polarizations S, S. The conventions follow the literature but for the reader's convenience
they are summarized in Appendix A.2. An operator in six dimensions is taken to be a
homogeneous function satisfying

O( l X, mS, m̄S) = l � D� 1
2 ( j+ â̄) mj m̄â̄O(X, S, S) , (1.24)

where D is the conformal dimension and ( j, â̄) the spin of O's four dimensional coun-
terpart O(x, h, h̄) � O(X, S, S)jPoincaré. The projection down to the Poincaré patch is
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Chapter 1. Conformal symmetry

de�ned as (1.21) for X M , while for S and S it is de�ned as follows

SbjPoincaré = haXabjPoincaré , SbjPoincaré = h̄ �aX �abjPoincaré . (1.25)

These projections, together with X2 = XX = XX = 0, induce an equivalence relation
on the operators in six dimensions. Namely two operators O and O0 are considered
equivalent if they differ by terms proportional to XS, SX, SSor X2. We can think of this
as a "gauge freedom" which we can use to reduce the number of independent tensor
structures.

In this thesis the embedding formalism will be applied to three and four-point functions.
For this reason we will only list the building blocks that arise in the construction of
correlators with up to four points. After imposing the gauge conditions there can be
only eight different classes of building blocks. The �rst arises for n > 2 points, the next
four arise for n > 3 points and the last three only for n > 4 points4

X i j := � 2(X i � X j ) ,

I i j := SiSj , Ki j
k :=

s
X i j

X ikXkj
SiXkSj ,

Ji
jk :=

1
X jk

SiXjXkSi , Ki j
k :=

s
X i j

X ikXkj
SiXkSj ,

(1.26a)

I i j
kl :=

1
Xkl

SiXkXl Sj , Li
jkl :=

SiXjXkXl Sip
X jkXklX l j

,

Li
jkl :=

SiXjXkXl Sip
X jkXklX l j

.

(1.26b)

The three-point tensor structures ta
O1O2O3

of a given correlator (see (1.16)) are built as
products of the terms in (1.26a)such that they satisfy the correct scaling as in (1.24).
Furthermore, not all products are independent as they are subject to various nonlinear
identities. It is possible to obtain a basis of independent structures by requiring that

i ) There are either only K or only K terms (or none of either)

ii ) Only at most two distinct J terms out of three can appear

iii ) Kkl
i and Ji

mn cannot appear together. Kkl
i and Ji

mn cannot appear together.

With these simple rules writing down tensor structures becomes just an enumeration
problem. We �rst deal with the scaling property (1.24) for X ! l X by de�ning a

4The labels i, j, k are all distinct and there is no sum over repeated labels.
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1.3. Counting tensor structures

prefactor

K3 =
3

Õ
i< j

k6= i ,j

X
1
2 (kk� ki � kj )
i j , ki = Di + 1

2( ji + â̄i ) . (1.27)

Then the most general tensor structure can be written as

ta
O1O2O3

= K3

3

Õ
i6= j

( I i j )mi j (K23
1 )k1(K13

2 )k2(K12
3 )k3(K23

1 ) k̄1(K13
2 ) k̄2(K12

3 ) k̄3( J1
23)

p1( J2
13)

p2( J3
12)

p3 ,

(1.28)
for some numbers mi j , ki , k̄i , pi that must satisfy the constraints following from points i),
ii ) and iii ) listed above and the scaling property (1.24)for S, S ! mS, m̄S. For example i)
implies that for all i, ki = 0 or k̄i = 0. Whereasii ) implies that for at least one i, pi = 0.
The constraints from scaling of S and S can be written as the following linear system

8
>><

>>:

j1 = m21 + m31 + k2 + k3 + p1 ,

â̄1 = m12 + m13 + k̄2 + k̄3 + p1 ,

cyclic permutations of 1, 2, 3.

(1.29)

From (1.28)we can obtain the tensor structures in four dimension via the projection on
the Poincaré patch. See(A.22) for the projections of the building blocks de�ned in this
section I i j , Ji

jk, K i j
k and K i j

k .

Four-point tensor structures instead are built out of the terms in (1.26a)and (1.26b). It is
much harder to �nd a minimal set of independent structures in this case because there
are additional identities that arise at higher order and it is not known how to classify
them or how to �nd some general rules like i), ii ), iii ) listed before. We will defer the
study of four-point function to Sections 6.3 and 6.4. The projection to four dimensions
I i j

kl, L i
jkl and L i

jkl can be found in (A.23).

1.3 Counting tensor structures

The tool we are going to describe in this section goes under the name of conformal frame.
It can be used to count the number of allowed tensor structures in a given correlator
without having to actually construct them. By tensor structures we mean the number of
independent OPE coef�cient in three-point correlators and the number of independent
functions of the cross ratios for n > 4-point correlators. A possible application is to
check that the structures obtained by other methods (such as the embedding formalism)
are indeed linearly independent and complete. It can also be used to construct the tensor
structures, but we will discuss this aspect in Section 6.3, in the context of four-point
functions. In Section 2.3 we will also describe a supersymmetric version of it. This
discussion is based on [93,113] (see also [149]). Since the signature of spacetime does
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Chapter 1. Conformal symmetry

Figure 1.2. Example of the conformal frame con�guration for d > 3 and n = 5. In that case the
tensor structures multiply arbitrary functions of �ve "cross ratios," similar to u and v in the four
point case. Rk

+ denotes the upper half hyperplane.

not play any role, we will switch to Euclidean for the moment.

1.3.1 Conformal frame

The advantage of this method is that it is purely group theoretical, so it is possible
to make statements about complicated representations in any number of dimensions
without any additional dif�culty. Given an n-point correlator

hO1(x1) � � � O n(xn)i , (1.30)

one can use the conformal symmetry to put the points xi in some preferred positions.
First we can use the d translations to set x1 = 0, and then the d special conformal
transformations (1.2) to set x2 = ¥ .5 If n > 2 we use a dilatation to set jx3j = 1 and
d � 1 rotations to set x3 = ê1 (or any other preferred direction). Then, continuing with
the same reasoning for k steps, if n > k we can use d � k + 1 rotations to put xk+ 1 in
the hyperplane spanned by ê1, . . . , êk� 1. This process clearly stops as soon ask = n or
k = d + 2 because we either run out of points or of available hyperplanes. Therefore the
�nal con�guration is

x1 = 0, x2 = ¥ , x3 = ê1, xk> 4 2 Spanf ê1, . . . ,êk� 2g if n 6 d + 2 ,

x1 = 0, x2 = ¥ , x3 = ê1, x46 k6 d+ 2 2 Spanf ê1, . . . ,êk� 2g,

xk> d+ 3 unchanged

)

if n > d + 2 .
(1.31)

De�ne H to be the stability group of such a con�guration. If we are in the second case
(n > d + 2) that means that we used up all symmetries so H = f 1g. The same is true for
the boundary case n = d + 2. If on the other hand we are in the �rst case with n < d + 2,

5We imagine to work in the conformal compacti�cation of Rd = Sd, where the point at in�nity is the
north pole.
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1.3. Counting tensor structures

then we have 1
2(d � n + 1)(d � n + 2) rotations left and indeed they make up the group

SO(d � n + 2). So the �nal result for n > 2 may be expressed as6

H = SO(d � m + 2) , m := min (n, d + 2) . (1.32)

The casen = 2 is different because we never use dilatations. Therefore H becomes
SO(d) � SO(1, 1). In what follows, we will be mostly interested in three-point functions.
In that case the con�guration reads (0,¥ , ê1) and the stability group is H = SO(d � 1).

The reason why we emphasized so much the stability group H is because the number of
tensor structures can be seen as the number ofH-singlets in the tensor product of the
representations of the operators Oi . De�ne r i as theSO(d) representation of Oi , ResGH
as the decomposition of a G representation into H irreducible representations and r H

as the space ofH-singlets in r . Calling n(. . .) the number of tensor structures in the
correlator h. . .i one can write the following general formula

n(O1 � � � O n) = dim

 

ResSO(d)
SO(d� m+ 2)

nO

k= 1

r k

! SO(d� m+ 2)

, (1.33)

where, recall, m = min (n, d + 2). For n = 2 the formula is a bit different because H has
the extra factor due to dilatations. Letting (r , D) be a representation of SO(d) � SO(1, 1),
we have

n(O1O2) = dim ((r 1, D1) 
 (r �
2, � D2))SO(d)� SO(1,1)

, (1.34)

where r � is the conjugate representation of r .7 One can clearly see that the result is1 if
D1 = D2 and r 1

�= r �
2 and zero otherwise. The fact that we need to take this conjugation

might seem confusing at �rst. Why is this special only for the two-point function? The
reason is that we actually need to take this conjugate for higher points too, but in that
case it does not make any difference as far as the number of singlets is concerned. To see
why we need it, let us derive this formula using the approach of [113]. This will require
to de�ne conformal correlators as functions on the conformal group. The discussion
of [113] is focused on four-point functions. We will adapt it to three-point functions as it
will be useful later.

1.3.2 Group theory of tensor structures

Conformal correlators can be thought of as functions on the conformal group. Let
Oi transform in the representation Vi := ( r i , Di ) of SO(d) � SO(1, 1). Then it can be

6The stability group for n > 3 is actually O(d + 2 � m). However, since we will not be interested in
the properties of the correlator under parity, we will ignore this detail and only work with the connected
component SO(d + 2 � m).

7Recall, in four dimensions ( j, â̄) � = ( â̄, j).
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associated to the space of functions

GVi :=

8
>><

>>:
j 2 C¥ (G, Vi )

�
�
�
�
�
�
�
�

j (el D g) = el Di j (g) 8 el D 2 SO(1, 1)

j (rg) = r i (r) j (g) 8 r 2 SO(d)

j (kg) = j (g) 8 k = eibmKm

9
>>=

>>;
, (1.35)

where we denoted the conformal group as G = SO(d + 1, 1) (recall that for the moment
we are in Euclidean signature). For convenience let us also de�ne

G0 = SO(1, 1) � SO(d) , GP = SO(d � 1, 1)P , GK = SO(d � 1, 1)K . (1.36)

The subscripts P and K denote the two different Poincaré subgroups of the conformal
group: the �rst being the standard one and the second being the one where translations
are replaced by special conformal transformations. The de�nition (1.35)is very intuitive:
we want functions that transform as primaries under the left action of GK. The product
of two such spaces can be characterized as follows

GV1 
 GV2 = GV1,V2 :=
(

j 2 C¥ (G, V1 
 V �
2 )

�
�
�
�
�

j (el D g) = el (D1� D2) j (g) 8 el D 2 SO(1, 1)

j (rg) = r 1(r) 
 r �
2(r) j (g) 8 r 2 SO(d)

)

,
(1.37)

where we denoted V � = ( r � , � D). In words, the resulting space is a space of functions
from the group to the tensor product V1 
 V �

2 which satisfy some covariance properties.
Namely the subgroup G0 needs to act covariantly on the left. This is the step where
the conjugate that we encountered in (1.34)comes about. The result (1.37)is proved in
Theorem 9.2 of [150]. Here we just sketch an intuition. The map � is a Weyl re�ection
of the conformal group w : G ! G. It �ips the sign of D, therefore, according to the
grading discussed below (1.4), it exchanges the roles ofPm and Km. Sincew is also an
inner automorphism one has

GV �= GV �
.

where Gis de�ned in the same way as G, except that we require the action of Pm to
be trivial instead of that of Km. Thus, in order to prove (1.37), we need to exhibit an
isomorphism

GV1,V2 �! GV1 
 GV �
2

y (g) �! j 1(g) 
 j 2(g)

If g 2 G0 we know how to recover both j 1 and j 2 as they are �xed by the covariance
properties. If instead g is a translation, j 2(g) = j 2(1), thus we can recover j 1 by
solving y (g) = j 1(g) 
 j 2(1). Similarly, if g is a special conformal transformation,
j 1(g) = j 1(1) and we can recover j 2 by y (g) = j 1(1) 
 j 2(g). Essentially the role
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1.3. Counting tensor structures

played by the Weyl inversion is to make sure that the subgroups that act trivially on j 1

and on j 2 do not overlap. The proof then consists in showing that this map is invertible,
but we will refer the reader to [150] for a complete derivation.

The space of three-point conformal correlators can be realized as the space ofG-invariants
in the tensor product of the three representations

�
GV1 
 GV2 
 GV3

� G
=

�
GV1,V2 
 GV3

� G
. (1.38)

The last product can be written as the space of functions j : G � G ! V1 
 V �
2 
 V3

which satisfy the covariance properties of (1.35)in the �rst G factor and of (1.37)in the
second one. We will not write this out explicitly hoping that it is clear enough. In other
words, the space of functions mentioned above is fully speci�ed by the group elements
on the cosetG0nG � G/ GK.8 Passing to theG-invariants yields a double coset G0nG/ GK

(we will not show this). Let us call (GV1,V2,V3)G the space obtained, namely

�
GV1 
 GV2 
 GV3

� G
=

�
GV1,V2,V3

� G
:=

(

j 2 C¥ (G, V1 
 V �
2 
 V3)

�
�
�
�
�

j (ag) = p 1(a) 
 p 2(a) j (g) 8 a 2 G0

j (gb) = p 3(b) j (g) 8 b 2 GK

)

,
(1.39)

where p i are the Vi representations of the group to which their argument belongs. The
space of conformal correlators is precisely the codomain of these functions, i.e. the set of
values that j can assume. However, claiming that the result is V1 
 V �

2 
 V3 would be
too fast: the decomposition of an element of G into an element of its double coset is not
unique, therefore there are some compatibility conditions of the covariance properties
that need to be satis�ed. The ambiguity of the coset decomposition is characterized
precisely by the stability group H. So the �nal result, as we expected, is

n(O1O2O3) = dim
�

ResG0
H V1 
 V �

2 
 V3

� H
, (1.40)

as in (1.33)for n = 3, except for the � in V2, which, as we argued earlier, does not change
the �nal answer if n > 2.9 All we need to do now is to motivate that indeed H is the
stability group of the coset decomposition G0nG/ GK. We will again present just a sketch
of the argument. It is easier to think in terms of the conformal algebra (this may miss
some discrete identi�cations which we do not care about). The generators of SO(d+ 1, 1)
are LMN , where D = L01 and Mmn= Lmn. The algebrag0 is spanned by L01 and Lmnfor
m, n = 2,. . . , d + 1. While gK is spanned by the same generators and in addition by L1m.

8To see this, we can make the third factor covariant with respect to the right action, instead of the left as
in (1.35). The space obtained is clearly isomorphic to GV3.

9In (1.33)we have representations of SO(d) whereas here they are representations ofG0. This makes no
difference because we can drop theSO(1, 1) factor since it does not appear in H. Therefore the Vi 's simply
becomer i 's.
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Chapter 1. Conformal symmetry

We then single out an element which is not in any of these algebras, let us take a = L02.
Any element g 2 G may be written as

g = g0 et agK , g0 2 G0 , gK 2 GK . (1.41)

as a consequence of the Cartan decomposition. This decomposition is ambiguous: all
rotations M i j , with i, j = 3,. . .d + 1 commute with a and can thus be transferred from
the g0 factor to the gK factor. Therefore, at last, the stability group of the decomposition
(1.41) isH = SO(d � 1) as claimed.

1.4 Ward identities

In this brief subsection we will write down the Ward identities for the stress tensor and
a general abelian current and present a simple counting argument that appeared in [82]
to compute how many equations stem from the Ward identities of a given correlator.
Part of this subsection overlaps with the content of Paper II .

Let us denote three-point functions as

tO1O2O3(xi ; hi , h̄i ) := hO1(x1)O2(x2)O3(x3)i , (1.42)

and two-point functions as

nOO (x12, h12, h̄12) := hO(x1)O(x2)i = i j+ â̄cO
(h2x12h̄1) j (h1x12h̄2) â̄

x12
2D+ j+ â̄ . (1.43)

We start from the abelian current case. J is a Noether current associated to a certainU (1)
global symmetry. We take O to have charge r under this group and O to be its conjugate.
De�ne then S as a codimension-one surface enclosingx2 and x3 but not x1. The Ward
identity states

i
2

Z

S
dW(x23) x2

23 ¶h2x23¶h̄2 tOJO(xi ; hi , h̄i ) = 2r nOO (x13, h1,3, h̄1,3) . (1.44)

The factor i / 2 on the left hand side comes from the � 1/ 2 obtained from xmJm = � 1
2x̃ �aaJa�a

and a � i from the Wick rotation. Indeed the integral in the above equation is in Euclidean
signature and the right prescription for the Wick rotation is the one that keeps the
operators radially ordered as indicated, namely if x0

i = � i t i , then t 1 > t 2 > t 3. The
factor of 2 on the right hand side is a normalization for J. Since this integral depends only
topologically on the points we can evaluate it in the simpli�ed limit x1 ! ¥ , x23 ! 0.

We proceed by considering the Ward identities for the conformal group. To each confor-
mal Killing vector #a

m is associated a possibly independent identity. In the cases we will
consider in this thesis it is suf�cient to impose only #m = xm (dilatations) and #n

m = dn
m
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1.4. Ward identities

(translations). Dilatations and translations imply respectively the identities

�
i
8

Z

S
dW(x23) x2

23 ¶h2x23¶h̄2 ¶h2x2¶h̄2 tOTO(xi , hi , h̄i )

= � 2i (D + x3 � ¶3) nOO (x13, h1,3, h̄1,3) ,
(1.45a)

�
i
8

Z

S
dW(x23) x2

23 ¶h2x23¶h̄2 ¶h2y¶h̄2 tOTO(xi , hi , h̄i )

= � 2i y � ¶3 nOO (x13, h1,3, h̄1,3) ,
(1.45b)

where ym is an arbitrary vector used to contract the free index of the translation Killing
vector.

The integrals appearing in (1.44)and (1.45)may be computed by taking a convenient
limit, namely x23 � x13. In this limit we must only keep the terms that scale as O(x0

23).
It is possible that one also obtains terms of order O(x� 1

23 ), but those are necessarily zero
by parity as they must have an odd number of xm

23's. Taking x23 � x13 does not affect
generality because we can always make a conformal transformation to achieve any
desired con�guration. Then we specialize S to be a three-sphere, so that we can use
rotational symmetry to simplify the integrand as follows

Z
dW(x)

xmxn

x2 =
dmn

4
2p 2 ,

Z
dW(x)

xmxnxr xl

x4 =
dmndrl + dmrdln + dml drn

4 � 6
2p 2 ,

Z
dW(x)

xm1 � � � xm2n

x2n =
dm1m2 � � � dm2n� 1m2n + permutations

2n(2)n
2p 2 ,

(1.46)

where (2)n is the Pochhammer symbol and “permutations” stands for all inequivalent
permutations of the mi indices.

An approach similar to the conformal frame de�ned in the previous subsection allows
us to compute the expected number of independent linear equations that stem from a
Ward identity. The topological operator that enters the stress tensor Ward identity is
given by the integral of T contracted with a conformal Killing vector #m

MN

LMN =
Z

S
dWx2 ¶hx¶h̄2 ¶h(s � #MN )¶h̄ T(x) . (1.47)

It is possible to contract this again with the Killing vector, thus obtaining an object that
transforms like a primary of dimension � 1

Qm(x) := #mMN (x)LMN . (1.48)

Q depends on the point x but it is not a local operator. It is instead a �nite dimensional
representation of the conformal group: the adjoint [103]. Under G0 = SO(d) � SO(1, 1)
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Chapter 1. Conformal symmetry

it decomposes as

ResGG0
adj G = ( fund , � 1) � (adj , 0) � (� , 0) � (fund , 1)

= Km � Mmn � D � Pm,
(1.49)

where the � represents a singlet and fund and adj in the right hand side refer to the
fundamental and the adjoint of SO(d), respectively. We can imagine a Ward identity as
a three-point function involving such an operator. Therefore we can count the allowed
tensor structures by the arguments presented in the previous subsection. The stability
group H is the group of two points, namely G0. Calling nW(O) the number of Ward
identities in hOTOi one has

nW(O) =
�

ResGG0
VO 
 V �

O 
 adj G
� G0

= (r O 
 r �
O 
 (� � adj ))SO(d) ,

where VO = ( r O , D) is the G0 representation of O. Since we are in four dimensions

adj = ( 2, 0) � (0, 2) . (1.50)

We will use this formula in Chapter 4 to compute the number of Ward identities for
r O = ( j, 0) and ( j, 1).
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2 Supersymmetry

2.1 The superconformal group

2.1.1 Representations of the superconformal algebra

The conformal group can be extended by the addition of some fermionic generators
which satisfy a Z 2 graded Lie algebra, in the same spirit as Poincaré supersymmetry.
The grading is referred to as fermion number and the supercharges have fermion
number 1. In the non conformal case one introduces some superchargesQ that square
to a translation, namely

f Qa, Qbg � gm
abPm, (2.1)

where gm is a Dirac matrix f gm, gng = 2gmn. Moreover the Q's transform under a
spinorial representation of SO(d). Since in the conformal group we have two Poincaré
subgroups, the other being GK (see(1.36)), one naturally has to introduce additional
supercharges that square to a special conformal transformation

f Sa, Sbg � gm
abKm. (2.2)

In order to respect also the grading realized by the dilatation generator, Q must have
dimension 1/ 2 and S dimension � 1/ 2. The algebra is thus characterized by the number
of spacetime dimensions d and the number of supercharges NQ. Typically one quotes
the number N instead, which is NQ divided by the dimension of a minimal spinor in
d dimensions. In addition to Q and S one often has to introduce additional bosonic
generators R that commute with the conformal group and transform the supercharges
among themselves. They constitute the so-called R-symmetry algebra.

The superconformal algebras have been classi�ed long ago [11] and their unitary rep-
resentations have been studied extensively, leading to a classi�cation in four dimen-
sions [12,13] and in any dimension [14,15]. Surprisingly, only a �nite number of values
for N and d are allowed: a mathematical obstruction prevents superconformal algebras
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Chapter 2. Supersymmetry

to exist in dimensions greater than six; moreover, locality of the resulting superconfor-
mal �eld theory (SCFT) puts an upper bound on the amount of supercharges N .1 The
complete list of all superconformal algebras is given in Table A.1 in Appendix A.3.1.
This thesis is focused on the case4d, N = 1 and 4d, N = 2 which have respectively
R-symmetry u(1) and su(2) � u(1). In Appendix A.3.1 the reader can also �nd the
superconformal algebra and the conventions used.

The classi�cation of unitary superconformal multiplets shares some similarities with
the non-supersymmetric case. SinceS behaves like a “square root” of K one can impose
a condition stronger than primality. Namely we de�ne superconformal primary (or
superprimary) an operator O that satis�es

Sa
I O(0) = S

I �a
O(0) = 0 . (2.3)

Clearly a superprimary is also a primary, but the converse is not necessarily true. By
applying products of the supercharges Q on O we can build the superdescendants.
Schematically

(Q` Q
¯̀O)(0) �

`

Õ
i= 1

QIi
ai

¯̀

Õ
j= 1

QI j �aj
O(0) . (2.4)

These operators will not be superconformal primaries, but appropriate linear combi-
nations of them and the descendants Pm1 � � � Pmn O(0) will be conformal primaries. The
Q's and the Q's are nilpotent and they can be put into a canonical order by using the
anticommutation relation f Q, Qg � P. This means that the superdescendants will only
contain a �nite number of primaries among them. Each of them can then form a full
conformal multiplet upon acting with arbitrary products of Pm. The conclusion is that a
superconformal multiplet is a �nite sum of conformal multiplets with various spins and
dimensions obtained by acting with Q and Q on a superconformal primary operator.

Just like the non-supersymmetric case, also here unitarity places constraints on the
allowed quantum numbers of a superprimary operator. Together with the dimension
D and the spin ( j, â̄) we also have the u(1) R-charge r and (only for N = 2) the su(2)
Dynkin label R.2 Let us �rst de�ne the q, q̄ charges as :

D = q+ q̄ , r = 2
3(q � q̄) , for N = 1 ,

D = q+ q̄ , r = 2(q � q̄) , for N = 2 .
(2.5)

The unitarity bounds for long multiplets in these variables read

2q > j + 2 , 2q̄ > â̄+ 2 , for N = 1 ,

2q > j + 2 + R, 2q̄ > â̄+ 2 + R, for N = 2 .
(2.6)

1In three dimensions there actually exist theories for any N , but those for N > 8 are necessarily free.
2This means that the Cartan R3 ranges in � R/2, . . . , R/2.
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2.1. The superconformal group

However, unlike the non-supersymmetric case, here there are additional nontrivial
allowed values of q and q̄ which are disconnected from the above bounds.3 Namely one
can have

q = j = 0 and/or q̄ = â̄= 0 , for N = 1 ,

q = R
2 , j = 0 and/or q̄ = R

2 , â̄= 0 , for N = 2 .
(2.7)

Also in this case, when one or more of these bounds are saturated, some states become
null and we obtain a short multiplet. However now there are two kinds of short
multiplets: those which are connected to the long multiplet unitarity bound (type A
shortening) and those that satisfy one of the conditions in (2.7) (type B shortening). The
story is analogous also in other superconformal algebras: there are one or more unitary
values that are disconnected from the spectrum of long multiplets. These give rise to
shortening conditions of type A, B, etc. in some cases up toD.

Let us be more precise for the case at hand, we will follow the notation of [14]. Since we
have two sets of superchargesQ and Q, the shortening condition is speci�ed by a pair of
letters XLX R, where XL,R 2 f L, A1, A2, B1g. The subscript indicates the level at which
one can �nd the null state. Furthermore we denote as [j; â̄](R;r) an N = 2 multiplet and
as [j; â̄](r) an N = 1 multiplet. The shortening XL can be

L : Unconstrained action of Q on O. Bound 2q > j + 2 + R.

A1 : Null state [j � 1; â̄](R+ 1;r � 1)
D+ 1

2
= Qa( I O I1��� IR)

aa2���aj . Saturates 2q = j + 2 + R.

A2 : Null state [0; â̄](R+ 2;r � 2)
D+ 1 = eabQ( I

a QJ
bO I1��� IR) . Saturates 2q = 2 + R, has j = 0.

B1 : Null state [1; â̄](R+ 1;r � 1)
D+ 1

2
= Q( I

a O I1��� IR) . Disconnected from L: q = 0, j = 0.

An analogous table can be done for the Q charges, upon changing q, j ! q̄, â̄. The N = 1
case can be simply obtained by setting R to zero and dropping the I , J indices.

2.1.2 Embedding of N = 1 into N = 2

Clearly the N = 2 superconformal algebra contains an N = 1 subalgebra. The embed-
ding is not unique, but any choice is equivalent. We will pick the subalgebra generated
by Q1

a and Q1�a. This leads to

qN = 1 = qN = 2 � R3 , q̄N = 1 = q̄N = 2 + R3 , (2.8)

where R3 is the Cartan of the su(2) R-symmetry.

3In a non-supersymmetric CFT the only operator disconnected from the unitarity bound is the identity
(D = 0).

35



Chapter 2. Supersymmetry

For N = 1 we denote asO the superconformal multiplet, as O the superprimary and
as (Q` Q ¯̀O), with ` , ¯̀ = 0, 1, 2, its superdescendants, which are taken to be conformal
primaries by de�nition. This is a slight abuse of notation because, as we mentioned
earlier, the operator obtained by acting with Q and Q on O is not, in general, a primary.
We need to take appropriate linear combinations with the conformal descendants. This
will be discussed later. When there are multiple choices for the spin, those operators
will be distinguished by a superscript. For example (QQO)+ � has spin ( j + 1, â̄� 1).

For N = 2 instead we de�ne (Q2` Q2
¯̀O) to be a family of N = 1 superconformal

primaries, with the same abuse of notation we did before. In fact, due to the anticommu-
tation relations 4

f QI
a, Sb

Jg = � 4db
a RI

J , f SI �a, QJ �bg = � 4d
�b
�a RI

J , I 6= J, (2.9)

in general such operators will not be obtained by simply acting with Q2 and Q2 on O
and thus some subtractions might be needed. Each of these families will decompose in
R + 1 multiplets with the following charges

(q+ m, q̄ � m) , m = � 1
2R, � 1

2R + 1, . . . ,1
2R, (2.10)

where we denoted the N = 2 charges with q, q̄ and the su(2) representation of O with
R. The set of all conformal multiplets inside a long N = 1 supermultiplet is illustrated
in Figure 2.1. The N = 1 decomposition of a long N = 2 according to the embedding
de�ned above can instead be found in Figure 2.2.

2.1.3 Introducing superspace

One multiplet of great interest is the one that contains the stress tensor. Any local theory
has one, by de�nition. Since T itself is a short conformal multiplet, its superconformal
version must be short too. For N = 1 it goes under the name of the Ferrara-Zumino
multiplet [151] and its superprimary is a conserved vector Ja�a, which is the R-symmetry
Noether current. For N = 2 instead the superprimary is a scalar J of dimension 2 [152].
The shortening conditions are of A type on either side. So, to summarize,

Ja�a = A1A1[1; 1](0)
3 ,

J = A2A2[0; 0](0;0)
2 = bC0(0,0) ,

where in the second line we also included the notation of [13]. At order (Q2Q2J )++ we
can identify precisely the Ferrara-Zumino multiplet J. Inside J, other than the R-current
J(R) , we have the stress tensor at order(QQJ)++ and the supersymmetry currents 5 Sma

4The generatorsRI
J for I 6= Jare the su(2)R ladder operators R� .

5Not to be confused with the conformal supercharges Sa and S
�a
.
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2.1. The superconformal group

Figure 2.1. Diagram of all operators in an N = 1 long multiplet. Superscripts of � indicate the
choice of spin j � 1 or â̄� 1. Subscripts indicate the q, q̄ charges. The R-charge grows from left to
right by 1 and the conformal dimension grows from top to bottom by 1/ 2. A box represents the
full tower of descendants O, ¶mO, ¶2O, . . .

Figure 2.2. Diagram of all N = 1 multiplets in an N = 2 long multiplet. Superscripts of �
indicate the choice of spin j � 1 or â̄� 1. Subscripts indicate the N = 1 q, q̄ charges. Herem = R3
takes integer spaced values between� R/ 2 and R/ 2. The u(1)N = 2 R-charge grows from left to
right by 1 and the conformal dimension grows from top to bottom by 1/ 2. A box represents a
family of long N = 1 multiplets. Underlined indices are su(2)R indices.
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Chapter 2. Supersymmetry

and Sm�a at order (QJ)+ and (QJ)+ , respectively.

Another interesting multiplet is the chiral scalar F . In N = 1 Lagrangian theories it
is a multiplet that represents the matter content: it contains a complex scalar, a Weyl
fermion and a scalar auxiliary �eld. In N = 2 instead the chiral scalar is an su(2)R

singlet and it is also called vector multiplet as it contains the gauge sector of the theory.
The expectation values of the scalars in the multiplet parametrize the so-called Coulomb
branch. The shortening condition of both the N = 1 and the N = 2 case is ofLB1 type
(or B1L) and therefore they have q̄ = 0 (or, respectively, q = 0). That means

F N = 1 = LB1[0; 0](r)3r/2 ,

F N = 2 = LB1[0; 0](0;r)
r/2 = Er/2 (0,0) ,

(2.11)

and similarly for their complex conjugate partners. In the second line we wrote the
multiplet in the notation of [13] as well.

A useful tool for combining together all operators inside a multiplet is superspace. All
de�nitions can be found in Appendix A.3.2. An operator in superspace depends on the
point xm and also on Grassmann variablesqa

I , q̄I
�a, where I is only present in the N = 2

case. We use a shorthandz to denote the tuple x, qI , q̄I , x to denote x, h, h̄ and �nally z to
denote z, h, h̄.

O(z) := O(x, qI , q̄I , h, h̄) = eiqI QI + i q̄I QI O(x) . (2.12)

The shortening conditions can be realized in superspace as some differential equations.
In particular, the A1 type shortening signi�es a Da, with a contracted and a A2 type a
DaDa. So for the stress tensor multiplet we have

DaJa�a = 0 , D �aJa�a = 0 , (2.13a)

eabD I
aD J

bJ = 0 , e�a �bD I �aD J �bJ = 0 . (2.13b)

The B1 type, on the other hand, consists in imposing DaO �a1��� �aâ̄ = 0, without contracting
any Lorentz indices. Therefore the chiral scalar needs to satisfy

D
I
�aF = 0 . (2.14)

The expansion of Ja�a in components reads (see, e.g. [153])

� 1
2 s̄ �aa

m Ja�a(z) = J(R)
m (x) + i

2 qaSma(x) � i
2 Sm�a(x) q̄�a

+ qasn
a�aq̄�a

�
Tmn(x) � 1

2emnrl ¶r J(R) l (x)
�

� 1
8q2 ¶nSm(x)snq̄ � 1

8q̄2 qsn¶nSm(x) � 1
4q2q̄2¶2J(R)

m (x) .

(2.15)

The shortening condition (2.13a)implies the following conservation and irreducibility
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2.1. The superconformal group

conditions:

¶mJm = ¶mTmn= Tm
m = ¶mSm

a = T[mn] = ¶mSm
�a = s̄ �aa

m Sm
a = Sm

�a s̄ �aa
m = 0 . (2.16)

The �rst four equations impose the conservation of the currents that generate the super-
conformal transformations, while the remaining ones simply follow from the fact that
the operators involved are irreducible representation of the Lorentz group. In order to
keep this discussion compact, we will not show explicitly the decomposition of J into
N = 1 multiplets.

In the chiral scalar case the shortening condition does not imply any conservation
equation, but rather it removes some operators from the multiplet. Indeed, by de�ning
ym = xm+ iqsmq̄, it is easy to see thatD �aym = 0 and thus, in N = 1 superspace,

F N = 1(z) = f (y) + qay a(y) + q2 F(y) . (2.17)

This means that there are only half the terms in the expansion. The N = 2 chiral
multiplet can easily be expanded in N = 1 following the results of Subsection 2.1.2.
De�ning now z0 = zjq2= q̄2= 0 one has

F N = 2(z) = F (z0) + qa
2 Ya(z0) + q2

2F (z0) ,

F = [ 0; 0](r/3 )
r/2 ,

Y = [ 1; 0](( r+ 1)/3 )
(r+ 1)/2 ,

F = [ 0; 0](( r+ 2)/2 )
(r+ 2)/2 ,

(2.18)

where F is just the chiral multiplet of (2.17), Y is an N = 1 vector multiplet and �nally
F is another chiral multiplet. When r hits the A2 unitarity bound, r = 2, there is an
additional conservation condition. As a consequence Y has at level one a self-dual free
�eld of spin (2, 0), namely a �eld strength Fmn = ¶mAn � ¶nAm, hence the name vector
multiplet. By extension, the N = 2 chiral multiplet F N = 2 is often referred to as vector
multiplet as well.

Lastly we would like to mention another important multiplet in N = 2 theories: the
hypermultiplet. Using the same notations as before the hypermultiplet Q can be written
as

H = B1B1 [0; 0]R;0
R = bBR . (2.19)

When R = 1 (doublet representation) the multiplet becomes a free �eld. In N = 1
language it can be seen as a chiral and an anti-chiral multiplet. This is particularly easy
to see from Figure 2.2 because the shortening conditions remove all the boxes except
the one at the root. So we get two N = 1 multiplets: one with q, q̄ = 1, 0and one with
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Chapter 2. Supersymmetry

q, q̄ = 0, 1

H I= 1 = F 2 [0; 0](2/3 )
1 , H I= 2 = F 2 [0; 0](� 2/3 )

1 .

The above equality is only schematic. For example, we purposely left unclear the
dependence on the Grassmann variablesq2, q̄2 as it is �xed by the shortening condition.

Both the hypermultiplet bBR and the chiral multiplet Er/2 (0,0) play a key role in all N = 2
quantum �eld theories. Their expectation values parametrize two types of moduli
spaces of vacua which are called respectively Higgs branch and Coulomb branch. These
moduli spaces of vacua are present in most Lagrangian N = 2 QFTs and their names
come from the degrees of freedom that can be found in the low energy effective �eld
theory. In the Higgs branch the hypermultiplet gets a vacuum expectation value thus
breaking the gauge symmetry and, as a consequence, the scalars in the multiplet are
eaten by the gauge vector which becomes massive. In the Coulomb branch, on the
other hand, the chiral multiplet is the one that gets a vacuum expectation value. Since it
transforms in the adjoint of the gauge group, this leaves a number of massless photons
in the IR theory, hence the name Coulomb. An introduction to N = 2 supersymmetry
can be found in [154].

This concludes our introduction to superspace. The interested reader can �nd the N = 1
superspace expansion of a generic long multiplet in Appendix B.2.

2.2 Superconformal correlators

We will follow the conventions of [155] for four dimensional spinors and utilize the
formalism of [114,115] for N = 1 superspace and its generalization [116,117] forN = 2
superspace. See Appendix A.3.2 for more details.

2.2.1 N = 1 superspace

Given three superconformal primaries O1, O2 and O3 whose sum of R-charges is0, 1or
2 in absolute value, one can de�ne a three-point function as

hO1(z1) O2(z2) O3(z3)i = KO1O2(z1,2, z3; ¶c1,2, ¶c̄1,2) tO1O2
O3

(Z3; c1,2, c̄1,2; h3, h̄3) . (2.20)

The KO1O2 is an universal prefactor and the tO1O2
O3

encodes all the information of the three-
point function and can be expressed as a linear combination of tensor structures. The
commuting spinors c i , c̄ i are auxiliary polarizations that are removed by the derivatives
in the prefactor. The variable Z3 collectively denotes the superconformally covariant
variables X3, Q3 and Q3 whose de�nition can be found in (A.30). Clearly, since here the
operator O3 is treated differently, there are two other equivalent representation related
by cyclic permutations. For more details see Appendix B.1.
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2.2. Superconformal correlators

The general form of the prefactor KO1O2 is the following

KO1O2 =
1

j1! â̄1! j2! â̄2!
Õ2

i= 1(hi xi 3̄¶c̄ i )
ji (¶c i x3�̄ h̄i ) â̄i

Õ2
i= 1 x3̄i

2qi + ji x�̄3
2q̄i + â̄i

. (2.21)

For the de�nition of xi â̄see(A.26). Note that, as the name suggests, the prefactor only

depends on the quantum numbers of the �rst two operators. The tO1O2
O3

can contain all
Lorentz invariant combinations of its arguments as tensor structures. They need to be
homogeneous functions of the auxiliary spinors — with the degree dictated by the spins
ji and â̄i — and also satisfy a scaling property illustrated in (B.3). Due to the Schouten
identities 6 these tensor structures can be hard to enumerate. The expected number
can be computed by a group theoretic formula which will be introduced in Section 2.3.
Moreover, since the problem is essentially analogous to listing tensor structures in
embedding space, one can easily obtain them by using the results of [89,91] (reviewed
in Section 1.2.2). The idea is to �rst de�ne the mapping

K̂ i j
k �! hihj , K̂

i j

k �! h̄i h̄j ,

Ĵi
jk �! U � 1

3 hiU3 h̄i Î i j �! U � 1
3 hiU3 h̄j ,

(2.22)

where we have renamed c i and c̄ i to hi and h̄i respectively for simplicity of notation
and used U3 de�ned in (A.31). Then we proceed order by order in Q3, Q3. The order
zero is trivial as it suf�ces to apply (2.22)to the three-point function. Now say we want
to compute the order Q3Q3. We simply consider the three-point functions with all four
combinations of spin 7

( j1, â̄1), ( j2, â̄2), ( j3 � 1, â̄3 � 1) , (2.23)

and D3 ! D3 + 1. Then, after applying the mapping (2.22), we remove the extra
h3, h̄3 spinors with Q3¶h3, Q3¶h̄3 and attach missing h3, h̄3 spinors with Q3h3, Q3h̄3. For
quadratic orders it suf�ces to attach an overall Q2

3 or Q2
3 to the three-point function with

no shifts in the spins. The same logic applies to the other orders. The constraints of
multiplet shortening and conservation can be applied directly on the t by using the
fact that the shortening differential operators always annihilate the prefactor with the
appropriate quantum numbers. This is a consequence of

A1 shortening:
¶

¶h1a
D1a

(h1x13̄h̄1) j

x3̄1
2j+ 2 f (x1̄3) = 0 ,

A2 shortening: D1
2 1
x1̄3

2 f (x1̄3) = 0 ,

B1 shortening: D1a f (x1̄3) = 0 ,

(2.24)

6The Schouten identities are explained in Appendix A.1.
7If j3 or â̄3 is zero the corresponding negative shift is omitted. The choice of shifting the spin labels of

the third operator is unimportant and equivalent to any other choice, even when j3â̄3 = 0. In that case,
correlators of operators with negative spin are de�ned to be identically zero.
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Chapter 2. Supersymmetry

for x13 6= 0. Similar identities hold for D. If x1 = x3 we have the usual contact term
singularity. Once the differential operator is past the prefactor we can use (A.34) to act
on tO1O2

O3
.

2.2.2 N = 2 superspace

With a formalism similar to the previous case one can construct superconformal three-
point functions of N = 2 primaries. First we need to introduce the following unitary
matrix

u J
I (zi j ) = d J

I � 4i
qi j I x�̄ j q̄

J
ij

x�̄ j
2 . (2.25)

By rescaling u(zi j ) appropriately we obtain a unimodular matrix

û J
I (zi j ) =

 
xâ̄i

2

x�̄ j
2

! 1
2

u J
I (zi j ) , û(zi j ) 2 SU(2) . (2.26)

Let us consider three superconformal primaries O I 1
1 , O I 2

2 and O I 3
3 . Here I i is an su(2)

index transforming under the representation Ri . Let us denote as

T R J
I (u) , u 2 SU(2) , (2.27)

the representation with Dynkin label R of SU(2). The simplest cases are8

T 1 J
I (u) = u J

I , T 2 B
A (u) =

1
4

(s Ae) J1I1(esB) J2I2(u I2
I1

u J2
J1

+ u J2
I1

u I2
J1

) . (2.28)

The most general three-point function then has the following form

hOI 1
1 (z1) O I 2

2 (z2) O I 3
3 (z3)i = KO1O2(z1,2, z3; ¶c1,2, ¶c̄1,2)�

T R J 1
I 1

(û(z13)) T R J 2
I 2

(û(z23)) �

tO1O2
O3

j J 1J 2 I 3(Z3; c1,2, c̄1,2; h3, h̄3) ,

(2.29)

with K de�ned in (2.21)and Z3 denoting X3, Q I
3, Q3 I (see Appendix A.3.2). The t has the

same scaling properties as theN = 1 case (see(B.3)). In addition it has to transform as a
tensor with the indices in the appropriate representations. The dependence on the su(2)
indices may come from Q I , Q I or explicit eI J and dI

J tensors.

8(s A ) J
I are the usual three-dimensional Pauli matrices and e12 = e21 = 1 is the Levi-Civita tensor.
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2.3. Counting superconformal correlators

2.3 Counting superconformal correlators

In this section we will derive a formula analogous to (1.40) to count the number of
superconformally invariant tensor structures. The argument is identical to the one in [1]
but adapted to the case of three-point functions. The result is general and applies to all
superconformal algebras. Ultimately we will be interested in 4d, N = 1, for which a
formula has already been derived in Paper I. At the end of this chapter we will obtain it
as a particular case.

2.3.1 Group theory of superconformal tensor structures

One immediate obstacle to the construction of Section 1.3 is that it is quite hard to
construct functions on a superconformal group. The algebra is an easier object to deal
with. The �rst thing we are going to do then is to pass at the level of the algebra so that
we will not have to worry about the meaning of a supergroup.

The starting point was the space of functions from the supergroup G to a certain repre-
sentation spaceV

GV := C¥ (G, V ) . (2.30)

V is taken to be a representation of G0 = SO(d) � SO(1, 1) � R, where R is the R-
symmetry group. We call g the Lie superalgebra of G. Namely

g = su(2, 2j1) , for 4d, N = 1 ,

g = su(2, 2j2) , for 4d, N = 2 .
(2.31)

De�ne U (g) to be the universal enveloping algebra of g, namely the "freest" algebra of
all generators in g subject to the commutation relations only. For any element A 2 U (g)
we can write down a differential operator L A that acts on the functions j 2 GV . By
evaluating this derivative at, say, the origin, we obtain something that could be called a
Taylor coef�cient:

j A := L A j (e) 2 V . (2.32)

By varying A 2 U (g) we can trade the knowledge of j for the knowledge of its Taylor
coef�cients. j A is effectively a map from U (g) to V. So we will get rid of GV and focus
on QV composed by all linear maps from U (g) to V

QV := Hom (U (g), V ) . (2.33)

We now write a decomposition of the algebra in the grading dictated by the dilatation
operator. Namely gn is the eigenspace ofD with eigenvalue n.

g = g� 1 � g� 1
2

� g0 � g1
2

� g1 . (2.34)
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Chapter 2. Supersymmetry

The spaceg� 1 contains the special conformal transformations, g� 1
2

the superchargesS,
g0 contains dilatations, rotations and the R-symmetry algebra r, g1

2
has the supercharges

Q and �nally g1 has the translations. With a notation similar to (1.36)we de�ne gP as
the algebra with non-negative grading and gK as the algebra with non-positive grading.
Namely

gP = g0 � g1
2

� g1 , gK = g� 1 � g� 1
2

� g0 . (2.35)

As before, we want to re�ne the de�nition of Q so that it represents a primary operator.
It suf�ces to put covariance properties under the left action of gK. Therefore we rede�ne
Q as

QV :=
n

j : U (g) ! V
�
�
� j (xA) = ( � 1) jxjj j jp (x) j (A) 8 x 2 gK, A 2 U (g)

o
, (2.36)

where p : g0 ! V is the representation of V that is extended to act trivially on gK 	 g0

and j � j is the fermion number grading. Our goal now is to compute the tensor product
of two such vector spaces. The proof of the result that we are about to give follows
the same lines used to show the form of GV1,V2 explained in Section 1.3. Furthermore, a
complete proof is given in [1]. For these reasons we will not repeat it here.

The tensor products of two Qs reads

QV1 
 QV2 = QV1,V2 :=
n

j : U (g) ! V1 
 V �
2

�
�
� j (xA) = ( � 1) jxjj j jp 1(x) 
 p �

2(x) j (A) 8 x 2 g0, A 2 U (g)
o

.

(2.37)
Notice the difference: now we ask for covariance only under g0. The representation
V �

2 has the same meaning as before: it is the representation obtained by conjugating p 2

with the Weyl re�ection w. It simply conjugates the spin, changes sign to � D and leaves
the R-symmetry untouched. Note that the Weyl re�ection w maps gK $ gP because
w(gn) = g� n.

Let us continue with the third operator. We need to multiply by QV3 and then take the
g-invariants of the result. This will yield the space of superconformal correlators. The
product is given by functions j : U (g) 
 U (g) ! V1 
 V �

2 
 V3 which satisfy suitable
covariance properties. These functions are determined by the values that they assume
in the coset U (g0)nU (g) 
 U (g) / U (gK). Like before, taking the g invariants turns this
into U (g0)nU (g) / U (gK). Therefore we obtain

�
QV1 
 QV2 
 QV3

� G
=

�
QV1,V2,V3

� G
:=

8
<

:
j : U (g) ! V1 
 V �

2 
 V3

�
�
�
�
�
�

j (aA) = ( � 1) jajj j jp 1(a) 
 p �
2(a) j (A) 8 a 2 g0, A 2 U (g)

j (Ab) = ( � 1) jbjj j jp 3(b) j (A) 8 b 2 gK, A 2 U (g)

9
=

;
.

(2.38)

Later we will denote this space again as Hom (U (g), V1 
 V �
2 
 V3), leaving the covari-

ance properties implicit.
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2.3. Counting superconformal correlators

Now the choice of going to the Taylor coef�cient space pays off. The universal envelop-
ing algebra of any superalgebra can be decomposed as follows

U (g) = U (geven) 
 L godd , (2.39)

where geven is the direct sum of gn for n even. Similarly for godd . Equivalently geven is the
set of bosonic generators andgodd the set of fermionic ones. The spaceL godd denotes the
alternating algebra of godd , namely the set of all antisymmetrized products of elements
in godd . We can use this to pass from functions on U (g) to functions on U (geven)

Hom (U (geven) 
 L godd , V ) �= Hom (U (geven), L g�
odd 
 V ) . (2.40)

The dual space on the left hand side L g�
odd is actually isomorphic to L godd . This is nice

because functions from U (geven) to any complicated vector space can be interpreted as
functions on the bosonic part of the group G � R, where R represents the R-symmetry
group and G the conformal group. Indeed we can do the argument that led us from GV

to QV in the opposite direction. Therefore

Hom (U (geven), L godd 
 V ) �= C¥ (G � R, L godd 
 V ) . (2.41)

We are now almost done. The space of tensor structures is given by the set of values that
the functions j can assume. To claim that it is L godd 
 V1 
 V �

2 
 V3 would be wrong
because the covariance properties on the left and on the right do not act freely. There is
again a stability group H . The bosonic part of this subgroup is H = SO(d � 1) � R. The
reason for the �rst factor was explained in the non-supersymmetric case. The second
factor follows immediately since R commutes with the whole conformal group, so in
the decomposition U (g0)nU (g) / U (gK) it can be taken from one side to the other. There
is however an extra set of generators that we have to mod out, namely the conformal
supercharges in gK. This reduces the alternating algebra L godd to the alternating algebra
of the Q's only, namely L g1

2
.

The �nal result is that the space of superconformally invariant tensor structures in the
correlator hO1O2O3i , which we call n(O1O2O3), is given by

n(O1O2O3) = dim
�

ResG0
H L g1

2

 V1 
 V �

2 
 V3

� H
, (2.42)

where H = SO(d � 1) � R and G0 = SO(d) � SO(1, 1) � R. Since theSO(1, 1) factor
does not appear in H, the conformal dimension does not play any role and we get

n(O1O2O3) = dim
�

ResSO(d)� R
H L g1

2

 (r 1, r1) 
 (r �

2, r2) 
 (r 3, r3)
� H

, (2.43)

where we use r to denote a representation of R.
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2.3.2 Rederiving the formula for the case 4 d, N = 1

We want to now specialize (2.43)for the case of four dimensional N = 1 supersymmetry
as it will be the main focus of this thesis. This particular case of the formula �rst
appeared in Paper I. Here we will rederive it using the general formalism explained
before.

By looking at the function t in (2.20)we can get a better intuition of the formula. Indeed
t contains all terms that can be built out of contractions of hi , h̄i , X3 and Q3, Q3. Now we
can separate the terms according to the various orders in Q3 and Q3. At order zero we
have the usual formula in conformal frame for the non-supersymmetric case. At order,
e.g.,Q3 instead we can replace all occurrences of the Grassmann variable with an extra
polarization h4. This can be interpreted as having an operator, say O1, transforming in
the reduciblerepresentation r 1 
 (1, 0). That would mean that the �rst j a indices are
contracted with h1 and the �ctitious ( j + 1)th is contracted by h4. The structures in this
case are counted by

nQ(O1O2O3) = dim
�

ResSO(4)
SO(3) (1, 0) 
 r 1 
 r �

2 
 r 3

� SO(3)
. (2.44)

Similarly, for all other possible orders in Q3, Q3 we can think of adding extra indices
to one of the operators and writing down formulae such as the one above. Now
the comparison to (2.43) is clear: the possible orders of Q3 and Q3 are precisely the
elements of L g1

2
. The Grassmann variables anticommute and transform in the same

representations as theQ's. So they make up the same alternating algebra.

Let us be more explicit. Consider O1, O2, O3 to transform in the representations Vi =
(r i , r i ), where r i are representations of SO(4) and r i are u(1) charges. De�ne now the
sum of the R-chargesd

d = r1 + r2 + r3 . (2.45)

As mentioned in Subsection 2.2.1,d can be0, � 1 or � 2. The function tO1O2
O3

contains a
subset of the following monomials (we will drop the subscript 3 in Q3 for brevity)

Q0Q0 , Qa , Q2Qa , Q �a , QaQ �a , Q2Q �a , Q2 , Q2 , Q2Q2 . (2.46)

Which ones are present depends on the R-charges of the operators. Let us denote as
nX (O1O2O3) the number of structures of a given order X in Q, Q, where X is any
monomial in (2.46). Following the discussion above we have

n1(Oi ) = n
Q2Q

2(Oi ) = nQ2(Oi ) = n
Q

2(Oi ) = Resr 1 
 r 2 
 r 3 ,

nQ(Oi ) = n
QQ

2(Oi ) = Resr 1 
 r 2 
 r 3 
 (1, 0) ,

nQ(Oi ) = nQ2Q(Oi ) = Resr 1 
 r 2 
 r 3 
 (0, 1) ,

nQQ(Oi ) = Resr 1 
 r 2 
 r 3 
 (1, 1) .

(2.47)
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2.3. Counting superconformal correlators

where Res � ResSO(4)
SO(3) and a superscript SO(3) in all terms is understood. Then the

general formula for the number n(O1O2O3) of tensor structures in the three-point
function hO1O2O2i may be written as

n(O1O2O3) =

8
>><

>>:

2n1(O1O2O3) + nQQ(O1O2O3) d = 0 ,

n1(O1O2O3) d = � 2 ,

nQ(O1O2O3) + nQ(O1O2O3) d = � 1 .

(2.48)

Now we show how this is an immediate consequence of (2.43). It suf�ces to notice that,
due to the factor R in H, we need to take singlets in the u(1) R-group as well. This means
that only the terms with R-charge � d in L g1

2
will survive. For 4d, N = 1 the alternating

algebra is given explicitly as

L g1
2

= [ 0; 0](0)
0 � [0; 1](1)

1/2 � [1; 0](� 1)
1/2 � [0; 0](� 2)

1 � [0; 0](2)
1

� [1; 1](0)
1 � [0; 1](� 1)

3/2 � [1; 0](1)
3/2 � [0; 0](0)

2 .
(2.49)

where the notation [j; â̄](r)D representsr = ( j, â̄) and R-charger. The conformal dimension
D was included for completeness but it does not play any role here. The reader may
check that the representations with R-charge equal to � d match precisely those included

in (2.48) for all cases d = 0, � 1, � 2. For example: the cased = 0 selects [0; 0](0)
1 �

[1; 1](0)
1 � [0; 0](0)

2 . According to the de�nitions in (2.47) this selects two n1's and one

nQQ. Similarly d = 1 selects[1; 0](� 1)
1/2 � [0; 1](� 1)

3/2 , which is again in agreement with the
formula as it yields nQ + nQ.

It is also possible to use this formalism to account for kinematic constraints such as
permutation of the operators and conservation. It is however quite dif�cult to develop a
general formula that encompasses all possible cases. We will therefore postpone this
discussion to the case of two Ferrara-Zumino multiplets and a general long multiplet O,
which will be the main focus of Chapter 7.

47





3 Differential operators

This chapter is based onPaper III .

3.1 Introduction

This chapter's goal is to introduce a convenient formalism to expand a superspace
correlation function in its components. The �nal output of the formalism shown here
will be a set of linear relations among the OPE coef�cients and norms of the operators in
the same multiplet 1

l (a)
(Q` Q ¯̀O1)O2O3

= M a
b l (b)

O1O2O3
, C(Q` Q ¯̀O1) = N CO1 ,

for some, in general rectangular, matrix M and some complex number N. Once the con-
formal blocks of all operators in a multiplet are known, it suf�ces to take the appropriate
linear combination following from the knowledge of M and N.

The main motivation behind seeking these kinds of relations is to be able to compute
superconformal blocks. Their knowledge is indispensable if one wants to carry a
conformal bootstrap program for studying SCFTs. A detailed account of the current state
of the art in terms of superconformal blocks is given in the Introduction and thus will
not be repeated here. The explanation of how to compute them given the results of this
section is in Section 7.5. On the other hand, there are also other interesting applications of
the formalism shown here which are explored in Chapter 4 and Chapter 5. Namely, we
can impose on the whole multiplet the constraints stemming from locality. 2 This often
has implications which are stronger than the ones obtained by studying the component
�elds separately.

1We call l the coef�cient appearing in the three-point function in some standard basis and C the
normalization of the two-point function relative to some standard convention. See Section 3.4.1 for more
details.

2A theory is local if it admits a conserved stress tensor.
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Chapter 3. Differential operators

The approach adopted here consists in de�ning a set of superconformally covariant
differential operators that can be applied to any correlator in superspace. In N = 1,
by setting the Grassmann variables to zero, one obtains a superconformal primary.
Whereas in N = 2, by setting to zero only the Grassmann variables q2, q̄2, one obtains
an N = 1 superconformal primary. The advantage of these operators is that they have
nice covariant properties when acting on the prefactor of three-point functions, thus
allowing us to de�ne their action directly on tO1O2

O3
in (2.20).

In order to de�ne such differential operators we need to carefully subtract the conformal
descendants — or the superdescendants of the other supercharges in theN = 2 case
— that are generated when acting with Q, Q on O. This is done in full generality to all
orders in N = 1. Whereas only some cases have been considered inN = 2. Speci�cally
we considered all operators with vanishing su(2) R-charge up to quadratic order in the
Q2, Q2 supercharges and all operators with su(2) R-charge1 and 1/ 2 up to linear order.
By expanding the differentiated three-point function in a standard basis one can read
out the linear relations among the OPE coef�cients of O and Q` Q ¯̀O. Similarly, by acting
on two-point functions, one can obtain the relative norms, even though they are already
known in general for N = 1 [156]. We also introduce a Mathematica package to work
on four dimensional superspace. It will be brie�y explained at the end of this chapter.

The differential operators that we will de�ne in what follows will be denoted with the
letter “ D ” in several different fonts. In order not to generate confusion we summarize
here their meaning. See Subsection 2.2.1 for the de�nition of the Z variables.

Symbol Supercharges Acts on
DQ` Q ¯̀ N = 1 z1 / z2

DQ ¯̀Q` / QQ ¯̀Q` N = 1 Z3

D Q` Q ¯̀ N = 2 z1 / z2

D Q ¯̀Q` / QQ ¯̀Q` N = 2 Z3

Table 3.1. Reminder for the notation of differential operators. The alternatives in the �rst column
represent the differential operator obtained by acting on the �rst / second operator, respectively.

3.2 Constructing the differential operators

3.2.1 N = 1 case

Strategy

In this section we derive a set of superconformally covariant differential operators D
that extract a given order in q, q̄ from an N = 1 superconformal multiplet O(z). That is,
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3.2. Constructing the differential operators

we want them to satisfy the following property

DQ` Q ¯̀ O(z)j0 = ( Q` Q
¯̀
O)(x) . (3.1)

where j0 means evaluating at q = q̄ = 0 after taking the derivative. The set of all
operators in a long multiplet is illustrated in Figure 2.1. Clearly, by the de�nition of
O(z) (2.12), the �rst orders will be simply a derivative with respect to q or q̄. However,
the situation becomes more complicated when both ` and ¯̀ are nonzero. In this case the
term multiplying q` q̄¯̀ is not a conformal primary, but a linear combination of (Q` Q ¯̀O)
and the descendants of the previous orders. Thus we need to be able to disentangle
these contributions. Furthermore we will not be content with any form of the differential
operator. We will need to express it as a combination of chiral and antichiral derivatives
Da, D �a (A.29). The reason will be evident in the next section: these derivative have
nice covariant properties that allow us to pass them through the prefactor KO1O2 of a
three-point function and then their action on tO1O2

O3
can be fully recast as a derivative

with respect to X3, Q3, Q3.

Firstly we need to compute the exact linear combinations of descendants that appear
in the ` ¯̀ 6= 0 terms. This has been done already in [156] by analyzing superconformal
two-point functions. We summarize their results in Appendix B.2. Then we need an
ansatz for the differential operator that we wish to compute. Schematically we have

DQ � Da , DQ � D �a . (3.2)

Therefore an ansatz for DQ` Q ¯̀ will be something of the form

DQ` Q ¯̀ � a1 (DQ) ` (DQ) ¯̀ + permutations , (3.3)

and the coef�cients a1, . . . need to be �xed in terms of the ci 's in (B.13–B.15). This
matching could be done by simply working out the algebra of the chiral derivatives,
namely f Da, D �ag = 2sm

a�a ¶m. However, we opted for a more convenient method. The
strategy is to de�ne a functional that acts on the non-supersymmetric operators O(x)
and turns them into an explicit function j [O](x). It is then possible to implement the
rules for derivatives and index contractions in a computer algebra system and impose
the following equality.

j [DQ` Q ¯̀ O(z)j0](x) = j [(Q` Q
¯̀
O)](x) . (3.4)

The functional j can be chosen arbitrarily as long as it is generic enough to make
(3.4) imply (3.1).3 There are a few advantages to this method. First, it can be easily

3Another way to say this is the following: we want to prove some identities between differential
operators. The identities should hold for any choice of functions to which the operators are applied.
Therefore we need to �nd a set of functions which are generic enough to completely �x the ansatz, but also
as easy as possible to manipulate.
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implemented using the package introduced in Section 3.4. Second, it is possible to
choose among many functionals thus obtaining an overconstrained system of equations
like (3.4). The existence of a solution serves as a check for our results.

A possible choice is j [O](x) = hXO(x)i . However if X is a local operator then j becomes
a quadratic functional (because necessarilyX = O) and it is hard to solve the constraints.
If X is the product of two local operators we have a linear functional but there is no
choice that gives a nonzero three-point function with all possible Os. Naturally, there is
no reason why j needs to be a physical correlator. This is then our choice:

j [O](x) =
(c xh̄) l (hxc̄ )k

xDO+ l+ k (hc) j � k (h̄c̄ ) â̄� l . (3.5)

The parametersk, l can be varied between0 and, respectively, j and â̄to obtain a family of
functionals. The only identity that needs to be considered when comparing derivatives
of the above expression is the following

c xc̄ h xh̄ = c xh̄ hxc̄ + x2 hc h̄c̄ . (3.6)

This is particularly convenient because the main obstacle in solving (3.4) is �nding all
linearly independent tensors. In this case, thanks to (3.6), a basis of independent tensors
can be simply taken to be

(c xc̄ )n(hxh̄)m(c xh̄)a(hxc̄ )b (hc)c (h̄c̄ )d , with mn = 0 . (3.7)

Now the task of �xing the ansatz for the differential operators DQ` Q ¯̀ is tedious but
entirely straightforward.

First order

At �rst order in q and q̄ no descendants need to be subtracted. The differential operators
are simply ¶q or ¶q̄, which can be then completed to chiral derivatives (A.29)

D+
Q = �

i
j + 1

haDa , D �
Q = �

i
j

¶
¶ha

Da ,

D+
Q

= �
i

â̄+ 1
h̄ �aD �a , D �

Q
= �

i
â̄

¶
¶h̄ �a

D �a .
(3.8)

As needed, these operators satisfy

D �
Q O(z)j0 = ( QO) � (x) , D �

Q
O(z)j0 = ( QO) � (x) . (3.9)

They will be used as building blocks for the subsequent differential operators.
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3.2. Constructing the differential operators

Orders Q2 and Q2

For the quadratic order we may use the operators DaDa and D �aD
�a
. However in the next

section we want to prove that all DQ` Q ¯̀ commute with the prefactor of the three-point
function. This can be done easily only if all operators are expressed in terms of D �

Q and
D �

Q
. Since we act on homogeneous functions ofh and h̄ this amounts to only an overall

factor.4 The result is

DQ2 =
2j( j + 1)

j + 2
D �

Q D+
Q , D

Q
2 = �

2â̄( â̄+ 1)
â̄+ 2

D �
Q

D+
Q

. (3.10)

The factors j( j + 1) in the numerator simply cancel the denominator of (3.8). For scalar
operators they can be omitted and D �

Q is used without the j at the denominator.

Order QQ

This is the �rst order where we need to subtract the descendants. Schematically we have

Ojqq̄ = qq̄
�
(QQO) � ic ¶mO

�
, (3.11)

see(B.13)for the full expression. The needed ansatz is simple. Letting s and r represent
either a plus or a minus sign we have

Dsr
QQ = asr Ds

QD r
Q + bsr D r

QDs
Q . (3.12)

The coef�cients asr and bsr are a function of c1 if sr = ++ , c2 if sr = � + , c3 if sr = + �
and c4 if sr = �� . We will directly give the �nal expression by replacing the values of ci

computed in [156].

a++ =
2q+ j

2(q+ q̄) + j + â̄
, b++ = �

2q̄+ â̄
2(q+ q̄) + j + â̄

,

a� + =
2q � j � 2

2(q+ q̄ � 1) � j + â̄
, b� + = �

2q̄+ â̄
2(q+ q̄ � 1) � j + â̄

,

a+ � =
2q+ j

2(q+ q̄ � 1) + j � â̄
, b+ � = �

2q̄ � â̄� 2
2(q+ q̄ � 1) + j � â̄

,

a�� =
2q � j � 2

2(q+ q̄ � 2) � j � â̄
, b�� = �

2q̄ � â̄� 2
2(q+ q̄ � 2) � j � â̄

.

(3.13)

4 Indeed for an homogeneous function f` = ha1 � � � ha` f a1...a` one has

¶hD hD f ` = 1
2 D2 ¶hb hbha1 � � � ha` f a1...a`

= 1
2(` + 2) D2 f` .
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We should remark that these expressions are valid for a generic long multiplet. When
the multiplet is short (e.g. 2q = j + 2) the differential operators associated to null
superdescendants should be discarded.

As a quick example we can take the QQ descendant of the Ferrara-Zumino multiplet
J(z), namely the energy-momentum tensor. The result is simply one half the commutator

T(x) =
1
2

(D+
Q D+

Q
� D+

Q
D+

Q) J(z)j0 , (3.14)

as can be easily seen by lettingj = â̄= 1 and q = q̄ = 3/2.

Orders Q2Q and Q2Q

The contribution at this order is shown in equation (B.14). Letting s = � , the ansatz is

Ds
Q2Q = cs Ds

Q D �
Q

D+
Q

+ ds D �
Q

Ds
Q D+

Q
+ es D �

Q
D+

Q
Ds

Q ,

Ds
Q2Q = c̄s Ds

Q D �
Q D+

Q + d̄s D �
Q Ds

Q D+
Q + ēs D �

Q D+
Q Ds

Q .
(3.15)

The various coef�cients are a function of c5,6,7,8and c̄5,6,7,8. We have the following simple
relation

cs, ds, es = � c̄s, � d̄s, � ēs j j$ â̄, q$ q̄ , (3.16)

It will then suf�ce to quote the result for the coef�cients of D �
Q2Q

only

c+ =
2â̄( â̄+ 1)(2q+ j)( j + â̄+ 2q+ 2q̄+ 2)

( â̄+ 2)( â̄� j � 2q � 2q̄+ 2)( j + â̄+ 2q+ 2q̄)
,

c� =
2â̄( â̄+ 1)(2q � j � 2)( â̄� j + 2q+ 2q̄)

( â̄+ 2)( j + â̄� 2q � 2q̄+ 4)( â̄� j + 2q+ 2q̄ � 2)
,

d+ =
4â̄( â̄+ 1)(2q+ j)

( â̄� j � 2q � 2q̄+ 2)( j + â̄+ 2q+ 2q̄)
,

d� =
4â̄( â̄+ 1)(2q � j � 2)

( j + â̄� 2q � 2q̄+ 4)( â̄� j + 2q+ 2q̄ � 2)

e+ = �
2â̄( â̄+ 1)(2q̄+ â̄)

( â̄+ 2)( j + â̄+ 2q+ 2q̄)
,

e� = �
2â̄( â̄+ 1)(2q̄+ â̄)

( â̄+ 2)( â̄� j + 2q+ 2q̄ � 2)
. (3.17)

Order Q2Q2

At last we have the highest order in q and q̄. The subtractions needed are six: c9

through c14. This means that our ansatz will need seven terms obtained by permuting

54



3.2. Constructing the differential operators

D+
Q , D �

Q , D+
Q

and D �
Q

. In total there are fourteen permutations after taking into account

f D, Dg = f D, Dg = 0. Not all of these are independent and the choice of seven out of
these is not unique. We made this ansatz

DQ2Q2 = f1 D �
Q

D+
Q

D �
Q D+

Q + f2 D �
Q

D �
Q D+

Q
D+

Q + f3 D �
Q

D �
Q D+

Q D+
Q

+ f4 D �
Q D �

Q
D+

Q
D+

Q + f5 D �
Q D �

Q
D+

Q D+
Q

+ f6 D �
Q D+

Q D �
Q

D+
Q

+ f7 D+
Q D �

Q
D+

Q
D �

Q .

(3.18)

These are the values of the coef�cients fi

f1 =
4j( j + 1) â̄( â̄+ 1)(2q̄ � â̄� 2)( â̄+ 2q̄)( j + â̄+ 2q+ 2q̄+ 2)

( j + 2)( â̄+ 2)( j � â̄� 2q � 2q̄+ 2)( j � â̄+ 2q+ 2q̄ � 2)( j + â̄+ 2q+ 2q̄)
,

f2 =
16j( j + 1) â̄( â̄+ 1)(2q̄ � â̄� 2)(2q̄+ â̄)

( j � â̄� 2q � 2q̄+ 2)( j + â̄� 2q � 2q̄+ 4)( j � â̄+ 2q+ 2q̄ � 2)( j + â̄+ 2q+ 2q̄)
,

f3 = �
8j( j + 1) â̄( â̄+ 1)(2q+ j)

( j + 2)
�

�

�
j2 + 4jq̄+ 2j + â̄2 + 2â̄� 4q2 � 8qq̄+ 4q � 4q̄2 + 12q̄

�

( j � â̄� 2q � 2q̄+ 2)( j + â̄� 2q � 2q̄+ 4)( j � â̄+ 2q+ 2q̄ � 2)( j + â̄+ 2q+ 2q̄)
,

f4 =
4j â̄( â̄+ 1)(2q � j � 2)(2q̄+ â̄)( j � â̄� 2q � 2q̄)

( â̄+ 2)( j � â̄� 2q � 2q̄+ 2)( j + â̄� 2q � 2q̄+ 4)( j + â̄+ 2q+ 2q̄)
,

f5 =
16j( j + 1) â̄( â̄+ 1)(2q � j � 2)(2q+ j)

( j � â̄� 2q � 2q̄+ 2)( j + â̄� 2q � 2q̄+ 4)( j � â̄+ 2q+ 2q̄ � 2)( j + â̄+ 2q+ 2q̄)
,

f6 =
4j( j + 1) â̄( â̄+ 1)(2q � j � 2)(2q+ j)( j + â̄+ 2q+ 2q̄+ 2)

( j + 2)( â̄+ 2)( j � â̄� 2q � 2q̄+ 2)( j � â̄+ 2q+ 2q̄ � 2)( j + â̄+ 2q+ 2q̄)
,

f7 =
4j â̄( â̄+ 1)(2q+ j)(2q̄+ â̄)( j + â̄+ 2q+ 2q̄+ 2)

( â̄+ 2)( â̄� j + 2q+ 2q̄ � 2)( j � â̄+ 2q+ 2q̄ � 2)( j + â̄+ 2q+ 2q̄)
. (3.19)

All these expressions are available within the Mathematica package that we introduce in
Section 3.4.

3.2.2 N = 2 case

General remarks

Now we want to de�ne differential operators that extract full N = 1 superconformal
multiplets inside an N = 2 multiplet. The embedding of the N = 1 subalgebra was
explained in Section 2.1.2. There we also commented on the necessity of taking suitable
linear combinations of superdescendants in order to de�ne the superconformal primary
(Q2` Q2

¯̀O). We only considered operators with R = f 0, 1, 2g and give results up to the
�rst nontrivial order in the Grassmann variables with I = 2, leaving the general analysis
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for future work.

Zero R-charge

If the superconformal primary is an su(2) singlet, no computation is needed at the linear
order. Indeed from (2.9)and from the fact that R� on a singlet yields zero, one can see
that these operators are automatically N = 1 superconformal primaries

2D �
Q O(z)j0 = ( Q2O) � (z) , 2D �

Q
O(z)j0 = ( Q2O) � (z) , (3.20)

where now we de�ned j0 as jq2= q2= 0 and the pre�x on the differential operator as an
su(2) index

IDQ` Q ¯̀ := DQ` Q ¯̀ jD ! D I , D ! D I
. (3.21)

Similarly, the order, Q2 and Q2 require no subtractions as well and can be de�ned by
attaching an index I = 2 to (3.10).

More interesting is the order QQ. We expect a single superconformal primary at this
level. The correct differential operator is a linear combination of the operators in (3.12)
for I = 1 and 2. We will not prove this result here but postpone the discussion to
Section 3.3.2. Let us denote with a boldfaceD the N = 2 differential operators. Letting
s and t represent a sign � , the result is

D st
QQ = 2Dst

QQ + Ast
1Dst

QQ , (3.22)

with

A++ = �
2

2(q+ q̄+ 1) + j + â̄
, A � + = �

2
2(q+ q̄) � j + â̄

,

A �� = �
2

2(q+ q̄ � 1) � j � â̄
, A+ � = �

2
2(q+ q̄) + j � â̄

.
(3.23)

As a quick example we can reproduce the result of [117] for the stress tensor multiplet.
Let us denote with J (z) the N = 2 superconformal primary and with J(z) the Ferrara-
Zumino multiplet. Recalling that for J we have q = q̄ = 1 and j = â̄= 0, the result is

J(z) = D ++
QQ

J j0 =
�

2D++
QQ

J �
1
3 1D++

QQ
J

�
j0 , (3.24)

with, from (3.12) and (3.8),

I D++
QQ

J = �
1
2

[D I
a, D �aI ]J . (3.25)

Apart from an overall minus sign, which simply re�ects in a different normalization, we
obtain the same linear combination.
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3.2. Constructing the differential operators

R-charge 1/2

When the su(2) R-charge is non-zero, the differential operators are nontrivial starting
from the �rst order. The simplest case is that of the doublet, for which we expect two
N = 1 superconformal primaries. The operator O on which they act will have an I
index. Letting s = � , we can write general ansatze as

JD s
Q OJ = I Ds

Q M I J
s OJ , JD s

Q OJ = I Ds
Q M I J

s OJ . (3.26)

We denoted with D the N = 2 differential operator. In order to have a superconformally
covariant operator we need to contract the index of O with an appropriate matrix. Since
we expect two multiplets to arise at each order, the solutions for M s and M s must have
two degrees of freedom each. We denote the two classes of solutions asA and B. The
matrix M may be an arbitrary linear combination of those solutions, but the basis that
we chose is the one that projects into N = 1 multiplets of de�nite R-charge. In order to
avoid confusion we indicate here what term is represented by each entry

M s =

 
1Ds

Q O1 1Ds
Q O2

2Ds
Q O1 2Ds

Q O2

!

, similarly for M s . (3.27)

The A solution for M will be M s = A s, M s = A s, with

A s =

 
0 0
1 0

!

, A s =

 
0 0
0 1

!

. (3.28)

The solutions does not depend on s. Whereas theB solution for M will be M s = Bs,
M s = Bs, with

B+ =

 
� 2

2q+ j+ 1 0

0 1

!

, B� =

 
� 2

2q� j � 1 0

0 1

!

,

B+ =

 
0 2

2q̄+ â̄+ 1

1 0

!

, B� =

 
0 2

2q̄� â̄� 1

1 0

!

.

(3.29)

In this case a nontrivial linear combination is needed to obtain an N = 1 superconformal
primary and the solution does depend on the sign s. The resulting operators will have
charges and spin dictated by Figure 2.2. As before, we defer the proof of these results to
Section 3.3.2.
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R-charge 1

The case ofsu(2) R-charge1 is not conceptually different from the last section. Now the
operator will have an adjoint index A and the matrices M in (3.26)will be rectangular.

JD s
Q OJ = I Ds

Q M IA
s OA , JD s

Q OJ = I Ds
Q M IA

s OA . (3.30)

We expect three degrees of freedom for the choice ofM s and M s. Thus we can span
the basis by three classes of solutionsA , B and C. For the reader's convenience we will
show all of them at once by taking an arbitrary linear combination of them 5

aA + + bB+ + cC+ =

 
2c

2q+ j+ 2
2i c

2q+ j+ 2 � 2i b
2q+ j

1
2(a+ ib) i

2(a � ib) c

!

,

aA � + bB� + cC� =

 
2c

2q� j
2i c

2q� j � 2i b
2q� j � 2

1
2(a+ ib) i

2(a � ib) c

!

,

aA + + bB+ + cC+ =

 
2c

2q̄+ â̄+ 2 � 2i c
2q̄+ â̄+ 2

2i b
2q̄+ â̄

1
2(a � ib) � i

2(a+ ib) c

!

,

aA � + bB� + cC� =

 
2c

2q̄� â̄ � 2i c
2q̄� â̄

2b
2q̄� â̄� 2

1
2(a � ib) � i

2(a+ ib) c

!

.

(3.31)

As before, the various N = 1 superconformal primaries are obtained by (3.30) by
replacing M with either A , B or C. The proof these results is postponed to Section 3.3.2.

3.3 Acting on three-point functions

3.3.1 N = 1 case

Idea

The main goal is to �x a basis of non-supersymmetric three-point functions for a given
triplet of representations ta

O1O2O3
, where a = 1,. . .n123, and to expand the three-point

function of a superdescendant in that basis. Namely we want to �nd the coef�cients l (a)

such that

DQ` Q ¯̀ hÕ3
i= 1 Oi (zi )i j0 =

n
(1` ¯̀)23

å
a= 1

l (a) ta
(Q` Q ¯̀O1)O2O3

(x1, x2, x3) , (3.32)

5As before, this choice of basis is not arbitrary but it is the one that projects on N = 1 multiplets with
de�nite R-charges.
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3.3. Acting on three-point functions

provided that the full superconformal three-point function is known. 6 A three-point
function can be decomposed as(2.20). When we act on it with, say, D+

Q we get two
terms. But since KO1O2 is bosonic, when the Grassmann variables are set to zero only
one survives

D+
QhÕ3

i= 1 Oi (zi )i j0 = KO1O2 D+
Q tO1O2

O3
(Z3)j0 . (3.33)

This is certainly convenient as we do not have to worry about the prefactor when taking
derivatives, but it is not yet what we need. If we want to compare the above expression
with a chosen basis of three-point functions we still need to expand the de�nitions of Z3

and to act with the spinor derivatives inside KO1O2. It would be much better if we could
express (3.33) as

D+
QhÕ3

i= 1 Oi (zi )i j0 = K (QO1)+ O2
D+

Q
tO1O2
O3

(Z3)j0 , (3.34)

following [117]. Here K (QO1)+ O2
is the prefactor of an hypothetical three-point function

of (QO1)+ , O2 and O3, if (QO1)+ were a superconformal primary. It is simply a KO1O2

with shifted arguments

K (QO1) � O2
= KO1O2

�
�
�
�
�
q1! q1� 1/2
q̄1! q̄1+ 1
j1! j1� 1

, K (QO1) � O2
= KO1O2

�
�
�
�
�
q̄1! q̄1� 1/2
q1! q1� 1
â̄1! â̄1+ 1

.
(3.35)

And D+
Q

will be de�ned later together with all the details, but the important point is that

it is a differential operator with respect to the variables X3, Q3 and Q3. Now the problem
is drastically simpli�ed. We can choose a basis of non-nilpotent tensor structures in
tO1O2
O3

,

tO1O2
O3; a (X3) , a = 1, . . . ,n123 , (3.36)

which in turn will induce a basis of non-supersymmetric three-point functions. Then
the comparison can be done at the level of the t. Assuming for now that this reasoning
works for all superdescendants one has7

DQ ¯̀Q` tO1O2
O3

(Z3)j0 =

n
(1` ¯̀)23

å
a= 1

l (a) t (Q` Q ¯̀O1)O2
O3; a (X3) , (3.37)

in place of (3.32). It is evident that (3.37) is easier to solve for l (a) . But we went too
fast in all the steps involved. First we need to show that DQ` Q ¯̀ actually commutes with
the prefactor for any ` , ¯̀. Then we also need to prove that (3.34) is always possible and
de�ne the DQ ¯̀Q` operators that arise from it.

The proof of (3.34)is not hard. We need to make use of the formulas (A.34), which are
valid for any function of Z3 = X3, Q3, Q3. The extra factors of xi â̄ that appear can be

6We implicitly de�ned n(1` ¯̀)23 as the number of tensor structures in h(Q` Q ¯̀O1)O2O3i .
7Notice the swap ` $ ¯̀.
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reabsorbed in the prefactor and they give automatically the right shifts in the quantum
numbers. Then one can de�ne the derivatives

D+
Q =

1
â̄+ 1

c aDa , D �
Q = �

1
â̄

¶
¶ca

Da ,

D+
Q

=
1

j + 1
c̄ �aD �a , D �

Q
= �

1
j

¶
¶c̄ �a

D �a ,
(3.38)

in complete analogy with (3.8).8 The detailed expressions are given in Appendix B.3.
Clearly one can also de�ne, by repeated application, the following operators

DQ ¯̀Q` = DQ` Q ¯̀ jD ! D , D !D . (3.39)

Checking for commutativity with KO1O2 requires us to show

�
DQ` Q ¯̀ KO1O2 tO1O2

O3
� K (Q` Q ¯̀)O1O2

DQ ¯̀Q` tO1O2
O3

�
j0 = 0 . (3.40)

This is trivially true if ` ¯̀ vanishes: If ` or ¯̀ is 1 then we can do the same argument
as the example of before: the derivative acting on KO1O2 is necessarily fermionic and
thus vanishing if the Grassman variables are set to zero. When, on the other hand,
` or ¯̀ is 2, there are two pieces. One is fermionic an thus vanishing and the other
must be proportional to q2 or q̄2 due to its R-charge scaling. If ` ¯̀ 6= 0 the result is
non-trivial and will be proven explicitly in the next paragraphs. We can however argue
that the commutativity property must hold without any computation. Indeed it is easy
to convince oneself that the terms in (3.40) that survive after setting the q's to zero
cannot recombine to form an expression with the right prefactor and a function of X3.
Therefore, if they did not vanish, the result of DQ` Q ¯̀ applied on a correlator would
not be a three-point function of conformal primaries but of a combination of primaries
and descendants. This is a contradiction by construction of the operator DQ` Q ¯̀ . We
will nevertheless carry an explicit computation in order to have a non-trivial check of
our results. The rest of this section will be devoted to show that (3.40)holds and thus
complete the proof of (3.37).

Order QQ

We want to show (3.40)for ` = ¯̀ = 1. There are two kinds of terms: those where one
derivative acts on K and one on t and those where both act on K . After setting the
Grassmann variables to zero only the latter may survive, so we need to focus on them.
Concretely we need to show

(asr Ds
QD r

Q + bsr D r
QDs

Q) KO1O2 = 0 . (3.41)

8Notice the swap j $ â̄.
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3.3. Acting on three-point functions

We now use (B.19)for the �rst derivative and (B.20)for the second one. The expressions
obtained for different values of s, r = � will be proportional to the following factors:

s = r = 1 : a++ (2q̄+ â̄) + b++ (2q+ j) ,

� s = r = 1 : a� + (2q̄+ â̄) + b� + (2q � j � 2) ,

s = � r = 1 : a+ � (2q̄ � â̄� 2) + b+ � (2q+ j) ,

s = r = � 1 : a�� (2q̄ � â̄� 2) + b�� (2q � j � 2) .

(3.42)

From (3.13)it is easy to verify that all these quantities are zero and thus the derivative
commutes with the prefactor as needed. As we commented earlier, this depends crucially
on the fact that the differential operators do not yield conformal descendants.

Orders Q2Q and Q2Q

For this order, only the terms with one derivative on t and two derivatives on K can
survive. Furthermore, the derivatives on K must be with respect to Q and Q. Since
also applying derivatives on t shifts the quantum numbers (see (B.21)), one needs to be
careful with the ordering. For the derivatives that act on K we use (B.19)and (B.20)as
before. There are in total eight different cases (see(3.15)): in Ds

Q2Q
either the D+

Q or the

D �
Q may act on the t and s may be � . Similarly in Ds

Q2Q
, D+

Q
or D �

Q
may act on the t and

s may be � . For brevity we only illustrate two cases. If D+
Q

acts on the t and s = + , the
result is proportional to

(2q+ j) e+ � (2q+ j + 2) d+ � (2q̄ � â̄� 4) c+ . (3.43)

If, on the other hand, D �
Q acts on the t and c = � , the result is proportional to

(2q̄ � â̄� 2) ē� � (2q̄ � â̄) d̄� � (2q � j � 4) c̄� . (3.44)

In all cases it can be checked that the resulting expressions vanish when one replaces the
coef�cients with (3.17).

Order Q2Q2

This is the last and most challenging order. The terms that can survive are of two kinds:
those where two derivatives ( DQ and D

Q
) act on the t and the other two on the K and

those where all the derivatives act on K . Working out these cases in the same way as
we did before requires deriving formulas for repeated applications of the differential
operators, similar to those appearing in Appendix B.3. We preferred resorting to a
“brute force” approach instead. We used the explicit de�nition of K and applied the
derivatives on it using the Mathematica package introduced in Section 3.4. The case
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Chapter 3. Differential operators

where all derivatives act on K is straightforward and can be done with the functions
de�ned in the package. The case where only two derivatives act on K requires a small
explanation �rst. Since t is a generic function, we cannot take explicit derivatives of it.
But we can always modify (A.34) as follows

D1a t(Z3) = � i
(x13̄)a�a

x1̄3
2 x̄ �a ~¶x̄¶x̄0 x̄0D t(Z3) ,

D1 �a t(Z3) = � i xa (x31̄)a�a

x3̄1
2 ¶x0 ~¶x x0D t(Z3) ,

(3.45)

where x, x0, x̄, x̄0are other auxiliary polarization. In this way we can factorize either a
x0D x̄0D t or a x̄0D x0D t and focus on the rest. Now the problem becomes explicit and
one can check whether the resulting expressions vanish.

We performed this computation and observed that, with the values of fi given in (3.19),
all expressions identically vanish. This completes the proof of (3.40).

3.3.2 N = 2 case

Lowest order

The lowest order q2 = q̄2 = 0 is almost entirely trivial. The matrices û J
I appearing in the

prefactor of (2.29) reduce to

û 1
1 (z13)jq2= q̄2= 0 =

�
x1̄3

2

x3̄1
2

� 1
2

, û 2
2 (z13)jq2= q̄2= 0 =

�
x3̄1

2

x1̄3
2

� 1
2

, (3.46)

the off-diagonal components being zero. It is also obvious from (A.26) that all N = 2
quantities that depend on x�̄ j simply reduce to the same quantity but with the N = 1
de�nition of x�̄ j . By looking at the prefactor (2.21)it is easy to see that the factors of û
can be absorbed by shifting the q, q̄ labels as follows

û 1
1 (z13) KO1O2 = KO1O2

�
�
�
�
q1! q1+ 1/2
q̄1! q̄1� 1/2

, û 2
2 (z13) KO1O2 = KO1O2

�
�
�
�
q1! q1� 1/2
q̄1! q̄1+ 1/2

. (3.47)

The component of O with su(2) R-charge R3 = m will have a prefactor containing
(û 1

1 )
1
2 R� m (û 2

2 )
1
2 R+ m. This contributes to an N = 1 superconformal primary with q, q̄

charges equal to (q � m, q̄+ m), consistently with (2.10).

Zero R-charge

If the superconformal primary is an su(2) singlet, the commutativity with the prefactor
follows immediately from the N = 1 case. Indeed the structure of KO1O2 is identical
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3.3. Acting on three-point functions

except for the fact that xi â̄has more Grassmann variables. The crucial observation is that
only x 3�̄ or x i 3̄ appear. We can thus write

xi 3̄ = (xi3 � 2i q1i q̄1
i � 2i q13 q̄1

3 + 4i q1i q̄1
3 )

� 2i q2i q̄2
i � 2i q23 q̄2

3 + 4i q2i q̄2
3 ,

(3.48)

Since there is no term mixing q1 and q2 we can simply rename the quantity inside the
parentheses asx0

i3 and carry the same exact computation as theN = 1 case. The same
argument applies to x3�̄. The necessary shifts that need to be applied to the prefactor
differ sightly from (3.35). They follow directly from (A.36)

K (QI O1) � O2
= û I

J (z31) KO1O2

�
�
�
�
q̄1! q̄1+ 1/2
j1! j1� 1/2

,

K (QI O1) � O2
= û J

I (z13) KO1O2

�
�
�
�
q1! q1+ 1/2
â̄1! â̄1� 1/2

.
(3.49)

Then, using (A.36) followed by setting the q2, q̄2 Grassmann variables to zero results in
an N = 1 superconformal correlator. The identities presented in (3.47), (3.49)imply that
the resulting superconformal primary has the desired q, q̄ charges: (q+ 1/ 2, q̄) for the
Q2 descendant and (q, q̄+ 1/ 2) for the Q2 descendant.9 The result is consistent with
Figure 2.2.

At order Q2Q2 instead we need to use the operator D QQ de�ned in (3.22). Here we will
adopt a different strategy from the N = 1 case. We will actually use the commutativity
with the prefactor to derive the form of the differential operator. The reason why this is
a valid proof is that, thanks to the formulas (A.36), we can show that the action of such
an operator on a three-point function yields a correlator of a superconformal primary.
We could have followed the same approach for the N = 1 case, of course. However
in the way we did it the prefactor commutativity served as an important nontrivial
check of our results. The computation is a bit more involved than that of Section 3.3.1
because we are not setting all q's to zero but only q2 and q̄2. In particular, there are
non-vanishing contributions also from terms where only one derivative acts on K . We
follow a “brute force” approach similar to that of Section 3.3.1: we act either with both
differential operators D and D on the K or we act with one of them on the t and we
factorize it away using (3.45). Letting j0 � j q2= q2= 0, the following equation has a unique
solution for Ast, given by (3.23):

(2Dst
QQ + Ast

1Dst
QQ) KO1O2 tO1O2

O3
j0 =

= K (Q2Q2O1)O2
û 2

2 (z13) û 1
1 (z13) (2Dst

QQ + Ast
1Dst

QQ) tO1O2
O3

j0 , (3.50)

9To see this, one needs to use the propertyû 2
2 (z31) = û 1

1 (z13).
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Chapter 3. Differential operators

where we used the property in footnote 9. In analogy with (3.21)and (3.39)we de�ned

I DQ ¯̀Q` � D Q ¯̀Q` jD!D I , D! D I
. (3.51)

According to the shifts de�ned in (3.49)and the de�nitions in (3.46)the result of the
action on the t is a superconformal primary with charges (q+ 1/ 2,q̄+ 1/ 2) as expected
from Figure 2.2. We can then de�ne the analog of the D QQ when acting on the t as

D st
QQ = 2Dst

QQ + Ast
1Dst

QQ . (3.52)

R-charge 1/2

Following an approach similar to the last subsection here we will claim that (3.26)
annihilates the prefactor. The difference now is that the prefactor has indices: KO1O2û

J
I

one of which is contracted with the matrix M . By explicitly computing the action of the
differential operators on the prefactor we can impose that it vanishes and use this to �x
the matrix M . We discover that there are two possible solutions for each case:A de�ned
in (3.28)and B de�ned in (3.29). These two choices will give rise to two independent
N = 1 multiplets when acting on the t. They will have charges (q+ 1/ 2 � 1/ 2,q̄ � 1/ 2)
for the Q descendant and (q � 1/ 2,q̄+ 1/ 2 � 1/ 2) for the Q descendant, as described by
Figure 2.2. If we chooseM = A we have (a j0 is implicit in all the following formulas)

I Ds
Q A I J

s KO1O2 û K
J (z13) tO1O2 jK

O3
= K (Q2O1)O2

û 1
1 (z13) û 2

2 (z31) 2Ds
Q tO1O2 j 1

O3
,

I Ds
Q A I J

s KO1O2 û K
J (z13) tO1O2 jK

O3
= K (Q2O1)O2

û 2
2 (z13) û 2

2 (z13) 2Ds
Q tO1O2 j 2

O3
.

(3.53)

The �rst line corresponds to the Q2 descendant with charges (q+ 1,q̄ � 1/ 2), while the
second line corresponds to the Q2 descendant with charges (q � 1/ 2,q̄+ 1), as can be
seen from (3.47), (3.49)and the property in footnote 9. Similarly, if we choose M = B
we have

I Ds
Q B I J

s KO1O2 û K
J (z13) tO1O2 jK

O3
= K (Q2O1)O2

û 1
1 (z13) û 2

2 (z13) �

�
�

2Ds
Q tO1O2 j 2

O3
+ B11

s 1Ds
Q tO1O2 j 1

O3

�
,

I Ds
Q B I J

s KO1O2 û K
J (z13) tO1O2 jK

O3
= K (Q2O1)O2

û 1
1 (z13) û 2

2 (z13) �

�
�

2Ds
Q tO1O2 j 1

O3
+ B12

s 1Ds
Q tO1O2 j 2

O3

�
,

(3.54)

where again we have used the property of footnote 9. Now the �rst line corresponds to
the Q2 descendant with charges (q, q̄+ 1/ 2) and the second line corresponds to the Q2

descendant with charges (q+ 1/2, q̄).
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3.3. Acting on three-point functions

R-charge 1

There are no qualitative differences between the cases with R = 1 and R = 2. As before
we act on the prefactor, impose that it vanishes, and solve for the matrix M . This will
give rise to three different choices, A , B and C de�ned in (3.31). We will now list all
possible ways of acting on the t and show the charges of the N = 1 superconformal
primaries that are produced. In order to streamline the notation we will denote with
T � T 2 the R-charge1 (R = 2) representation that appears in (2.28). We will also de�ne

tO1O2 j �
O3

=
1
2

�
tO1O2 j 1
O3

� i t O1O2 j 2
O3

�
. (3.55)

Let us start from A

I Ds
Q A IA

s KO1O2 T (û(z13)) B
A tO1O2 jB

O3
= K (Q2O1)O2

(û 1
1 (z13)) 3

2Ds
Q tO1O2 j +

O3
,

I Ds
Q A IA

s KO1O2 T (û(z13)) B
A tO1O2 jB

O3
= K (Q2O1)O2

(û 2
2 (z13)) 3

2Ds
Q tO1O2 j �

O3
.

(3.56)

These representN = 1 superconformal primaries with charges, respectively, (q +
3/2, q̄ � 1) and (q � 1,q̄+ 3/2 ). Then we continue with B

I Ds
Q B IA

s KO1O2 T (û(z13)) B
A tO1O2 jB

O3
= K (Q2O1)O2

û 2
2 (z13) �

� i
�

2Ds
Q tO1O2 j �

O3
+ B13

s 1Ds
Q tO1O2 j 3

O3

�
,

I Ds
Q B IA

s KO1O2 T (û(z13)) B
A tO1O2 jB

O3
= K (Q2O1)O2

û 1
1 (z13) �

� (� i)
�

2Ds
Q tO1O2 j +

O3
+ B13

s 1Ds
Q tO1O2 j 3

O3

�
.

(3.57)
These representN = 1 superconformal primaries with charges, respectively, (q �
1/2, q̄+ 1) and (q+ 1,q̄ � 1/2 ). Finally we have C

I Ds
Q CIA

s KO1O2 T (û(z13)) B
A tO1O2 jB

O3
= K (Q2O1)O2

û 1
1 (z13) �

�
�

2Ds
Q tO1O2 j 3

O3
+ 2C11

s 1Ds
Q tO1O2 j +

O3

�
,

I Ds
Q CIA

s KO1O2 T (û(z13)) B
A tO1O2 jB

O3
= K (Q2O1)O2

û 2
2 (z13) �

�
�

2Ds
Q tO1O2 j 3

O3
+ 2C11

s 1Ds
Q tO1O2 j �

O3

�
.

(3.58)

Here we also used C11 = � i C12 and C11 = i C12. These last operators representN = 1
superconformal primaries with charges, respectively, (q+ 1/2, q̄) and (q, q̄+ 1/2 ).
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Chapter 3. Differential operators

3.4 A Mathematica package

Computations in superspace, in particular those necessary to solve (3.37), might be hard
to do by hand. We introduce a Mathematica package as a convenient tool to perform
such tasks. It can be found in the repository gitlab.com/maneandrea/spinoralgebra .
There is also a version of this package that only deals with commuting variables, which
can be used for any tensor computation in four dimensions. A complete documentation
is made available in the form of a notebook.

The package works with the index-free formalism following the same conventions as
this thesis. There are different input and output notations available: one for improved
readability and one to write code more easily. It is possible to reduce, Taylor expand
and compare expressions. Furthermore, many differential operators have been de�ned,
including the chiral derivatives (A.29, A.32, A.33) and all the operators appearing in
(B.10 – B.15). It contains a precomputed two-point function for general values of q, q̄, j, â̄.
By including the package CFTs4D[91] it is also possible to use the functionalities for
N = 1 superspace three-point functions. For any three given operators, the package
gives a basis oftO1O2

O3
tensor structures.

3.4.1 Note on the conventions

For two-point function we follow the conventions of [156]. Namely if a superprimary O
has a two-point function given by

hO(z1)O(z2)i = i j+ â̄nO
(h1x12̄h̄2) j (h2x1̄2h̄1) â̄

x12̄
2q+ j x1̄2

2q̄+ â̄ , nO > 0 , (3.59)

then any of its descendants will have a non-supersymmetric two-point function given
by

hO0(x1) O0(x2)i = i j0+ â̄0 n(Q` Q ¯̀O)
(h1x12h̄2) j0(h2x12h̄1) â̄0

x12
2(q0+ q̄0)+ j0+ â̄0

, O0(x) � (Q` Q
¯̀
O)(x) ,

(3.60)
with the ratio of the respective normalizations �xed. From the package, it can be obtained
as follows

i j0+ â̄0 n(Q` Q ¯̀O)

i j+ â̄nO
= operatorNorm[" Q` Q

¯̀
O", {q,qb}, {j,jb}] . (3.61)

Explicitly, the values of n(Q` Q ¯̀O) for ` = ¯̀ � k and q = q̄ = D/ 2 are given in Table 3.2.10

Supersymmetric three-point functions instead can be computed by the function SUSY3pf.
The expressions are given directly in the space where tO1O2

O3
(X, Q, Q) lives, which we

10We show explicitly only the values for ` = ¯̀ and q = q̄ because they will be useful later on.
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3.4. A Mathematica package

(QkQkO) n(QkQkO)st

O 1

(QQO)++ 4(D + `)(D + ¯̀)(2D + ` + ¯̀ + 2)
( ¯̀ + 1)2(` + 1)2(2D + ` + ¯̀)

(QQO)+ � 4( ¯̀ + 1)(D � ¯̀ � 2)(D + `)(2D + ` � ¯̀)
¯̀ (` + 1)2(2D + ` � ¯̀ � 2)

(QQO) � + 4(` + 1)(D � ` � 2)(D + ¯̀)(2D + ¯̀ � ` )
` ( ¯̀ + 1)2(2D + ¯̀ � ` � 2)

(QQO) �� 4(` + 1)( ¯̀ + 1)(D � ` � 2)(D � ¯̀ � 2)(2D � ` � ¯̀ � 2)
` ¯̀ (2D � ` � ¯̀ � 4)

(Q2Q2O)
28

�
(D + `)(D � ` � 2)(2D � ` + ¯̀)

2D � ` + ¯̀ � 2
� (` $ ¯̀)

�

�
(2D � ` � ¯̀ � 2)(2D + ` + ¯̀ + 2)

(2D � ` � ¯̀ � 4)(2D + ` + ¯̀)

Table 3.2. Normalization coef�cient n(QkQkO)st for the superdescendants generated by the

differential operators Dst
QkQk.

will call “ t space” in this paragraph. The notation of the package is as follows

x3 ! X3 , � 3 ! Q3 , � b3 ! Q3 .

The structures are generated by calling internally the package CFTs4Dand then following
the procedure explained in Section 2.2.1. Naturally one can work in t space also for
non-supersymmetric three-point functions using the non nilpotent supersymmetric
structures as a basis. Expanding any function of X3, hi , h̄i in such a basis does not
require much computational effort. It may however be useful to make contact with more
familiar bases. In Table 3.3 we show the mapping between the Q, Q ! 0 limit of the
non-nilpotent structures in t space and the embedding space structures inCFTs4D[91].
Every tensor structure can be constructed as a monomial over the building blocks listed
in Table 3.3. In order to pass from t space to embedding one has to multiply both sides
by the appropriate prefactors. The structures in t space need to be multiplied by KO1O2

times an overall scaling Xa
3. While the embedding structures should be multiplied by

the kinematic prefactor given in CFTs4Dasn3KinematicFactor . In formulas one has

KO1O2 X2(D3� D2� D1)
3 j0 � ( t space) =

3

Õ
i< j

k6= i ,j

jxi j jkk� ki � kj � (embedding) , (3.62)

with
Di � qi + q̄i , ki � Di + 1

2( ji + â̄i ) .
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t space Embedding
h1X3h̄2

(X2
3)1/2

Î 1,2

�
h2X3h̄1

(X2
3)1/2

Î 2,1

h2h3 Î 2,3

� h̄2h̄3 Î 3,2

h1h3 Î 1,3

� h̄1h̄3 Î 3,1

...
...

t space Embedding
...

...

�
h3X3h̄2

(X2
3)1/2

K̂ 2,3
1

�
h3X3h̄1

(X2
3)1/2

K̂ 3,1
2

�
h2X3h̄3

(X2
3)1/2

K̂
2,3

1

�
h1X3h̄3

(X2
3)1/2

K̂
3,1

2

...
...

t space Embedding
...

...
h̄1h̄2 K̂ 1,2

3

h1h2 K̂
1,2

3

�
h1X3h̄1

(X2
3)1/2

Ĵ1
2,3

�
h2X3h̄2

(X2
3)1/2

Ĵ2
3,1

�
h3X3h̄3

(X2
3)1/2

Ĵ3
1,2

Table 3.3. Mapping between the Q, Q ! 0 limit of the non nilpotent three-point tensor structures
in t space and the embedding formalism structures in [91]. The equality between neighboring
columns holds after we apply the appropriate KO1O2Xa

3 prefactor to the t space structures and
the kinematic prefactor to the embedding structures. See (3.62).
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4 Averaged Null Energy Condition

This chapter describes the implications of the averaged null energy condition on super-
conformal �eld theories. It is entirely based on Paper II .

4.1 Conformal collider bounds

Any local conformal �eld theory must satisfy a positivity constraint called the averaged
null energy condition. It states that the following integrated expectation value of the
stress tensor must be non-negative

Ey :=
Z ¥

� ¥
dl hy jTmnjy i umun > 0 . (4.1)

Here jy i is any state and um is the four-velocity of a null geodesic parametrized by l
(i.e. umum = 0). Since we can choosey to be any operator acting on the vacuum, the
condition in (4.1)represents an in�nite set of linear inequalities on the OPE coef�cients
l OTO. Furthermore, as it was discovered in [141], for some conformal dimensions the
inequalities have no solutions and thus they imply lower bounds typically stronger than
unitarity (1.7). This means that, schematically, we get a system of constraints as follows

DO > DANEC ( j, â̄) and M ( l OTO, DO) � 0 , (4.2)

where M is a matrix that can be computed by evaluating the integral (4.1). The goal of
this chapter is to extend the results of [141] to superconformal theories. Supersymmetry
can potentially give more stringent constraints. The reason is that a generic state may be
taken to be

jy i �
�
O + aQO + bQO + . . .

�
j0i . (4.3)

And, by varying arbitrarily the coef�cients a, b, etc., we get several different inequalities
on the same set of OPE coef�cients. Indeed l (QO)T(QO) , l (QO)T(QO) , etc. are all related
to l OTO. The problem of �nding these relations has been addressed extensively in
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Chapter 4. Averaged Null Energy Condition

Figure 4.1. The state jy i creates a localized excitation and the decay products are measured by
calorimeters placed far away.

Chapter 3.

But before diving into the computations let us review the intuition behind (4.1) and
mention the proofs available in the literature. The intuitive explanation of the ANEC
originates from a thought experiment called conformal collider. It was described in [136]
by Hofman and Maldacena and was immediately used to get upper and lower bounds

on the OPE coef�cients l ( i= 1,2)
TTT , which can be related to the conformal anomalies a and c.

Later these bounds were also proven rigorously [140]. Consider the setup in Figure 4.1,
in which there is a local excitation at the origin created by the state jy i and a series of
detectors (or calorimeters) placed far away. The energy measured by the detector placed
at the direction n̂ is computed as

Ey (n̂) := lim
r ! ¥

r2
Z ¥

� ¥
dt n̂i hy jT0i (t, r n̂i )jy i . (4.4)

An energy integrated over all times in quantum �eld theory must be a non-negative
quantity, therefore we must conclude Ey (n̂) > 0. This is the origin of the ANEC. So
far this applies to all theories, but for CFTs one can make a conformal transformation
and turn this integral into an integral over a null geodesic, making it equivalent to
(4.1). Indeed, by looking at Figure 4.2, one can see that the limit at r ! ¥ makes the
integration run over Minkowski null in�nity. Then, by means of a special conformal
transformation, we can transform the integration path in any null geodesic we want.

There are rigorous proofs of the ANEC that hold in any conformal �eld theory and there
is also an holographic proof. We will not review them here but only cite the papers
in which they appeared. The proof in [139] relies on the principle of causality and on
the fact that in the OPE of two scalars one can always single out the stress tensor by
taking an appropriate limit, namely the lightcone limit. The holographic proof [137]
shows that a violation of the ANEC leads to superluminal propagation of signals in the
bulk. There exists also another proof that adopts a completely different strategy and
it originates from information theory [138]. Furthermore, the ANEC operator may be
seen as a particular case of a so-called light-ray operator, which were introduced in [157].
With the formalism introduced there it is also possible to prove the ANEC by using
Rindler positivity, with the only additional assumption that there exists a scalar operator
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4.2. Applying the ANEC to superconformal theories

Figure 4.2. The time integral of the energy measured by the calorimeter at large r becomes an
integral over Minkowski future null in�nity. There is no contribution from past in�nity since the
excitation is turned off at t = � ¥ .

of dimension Df 6 d+ 2
2 .

It is worth to also mention that the ANEC is a special case of a series of constraints which
go under the name of “higher spin ANEC” or “deep inelastic scattering bounds” [139,
140,158,159]. They consist in similar positivity conditions on the operator Om1���ms that
has minimal twist 1 over all operators of spin s. The statement is that the following
expectation value

E(s)
y :=

Z ¥

� ¥
dl hy jOm1���msjy i um1 � � � ums , (4.5)

is non-negative. We will not explore this direction in the present work.

4.2 Applying the ANEC to superconformal theories

4.2.1 Strategy

We focus on superconformal multiplets O(x, q, q̄) for which the lowest component �eld
O transforms in the ( j, 0) irreducible representation of the Lorentz group. Our �rst goal
is to determine the most general form of the three-point function in superspace among
O, its complex conjugate super�eld, and the Ferrara-Zumino multiplet J, which contains
the stress-energy tensor:2

hO(z1) J(z2)O(z3)i . (4.6)

In order to determine (4.6), in Section 4.3 we write the most general three-point func-
tion consistent with N = 1 superconformal invariance, complex conjugation, and
conservation of the Ferrara-Zumino multiplet. Next, we �x certain combinations of the

1The twist is de�ned as the difference between the conformal dimension and the spin t = D � s. The
stress tensor, being conserved, has necessarily minimal twist.

2In this section we only present schematic formulas. Details are given in the next sections.

73



Chapter 4. Averaged Null Energy Condition

three-point function coef�cients entering (4.6)by imposing the Ward identities gener-

ated by the conserved currents J(R)
m , Tmnand Sa

m in J. Although in principle it should be
possible to obtain a superspace version of the Ward identities, along the lines of [115],
in this work we impose the constraints at the level of the individual primaries and

superdescendants. More speci�cally, we �nd that once the J(R)
m and TmnWard identities

are imposed in the three-point function involving the superprimary O, all other ones we
checked follow. 3

As a �nal step, we need to decompose the superspace three-point function in the
various q components and extract the non -supersymmetric three-point functions of
the superprimary O and various primary superdescendants. This task is performed in
Section 4.5 and summarized in the Tables in Appendix C.3.2. We only pushed to the
fourth order in qi or q̄i and computed three-point functions involving at most Tmnand
superdescendantsQO� and QO.

After all these preparatory steps, we can impose the ANEC (4.1)on a general state of the
form of (4.3). Due to R-charge conservation, only a few three-point functions are non
vanishing. In the end we impose that 4

hOjE jOi > 0 , h(QO)jE j(QO)i > 0 ,
 

h(QO+ )jE j(QO+ )i h(QO+ )jE j(QO� )i
h(QO� )jE j(QO+ )i h(QO� )jE j(QO� )i

!

� 0 .
(4.7)

We should stress that the above conditions are a subset of all conditions one can impose,
since they do not include superdescendants of the form Q2O or QQO for example.
Nevertheless, we �nd that in any unitary and local SCFT superprimaries that transform
in the ( j, 0) representation and satisfy the usual unitarity bounds do not necessarily
satisfy the conditions (4.7).

In Section 4.6 we obtain closed-form expressions for all the correlators appearing in (4.7)
as rational functions of the spin j and dimension D. Such formulas allow us to easily
compute bounds up to large values of j and in some cases rigorously prove bounds for
any j.

Finally, we explore the consequences of our analysis for theories with extended super-
symmetry. In Section 4.7 we consider special N = 2 and N = 4 supermultiplets and
decompose them with respect to an N = 1 subalgebra. The ANEC constraints presented
in the next subsection are then recast as bounds on theN = 2, 4 superprimaries.

3More speci�cally, we checked the Ward identities for h(QO) J(R) (QO)i , h(QO)T(QO)i and h(QO)SOi .
In principle there could be extra relations that we did not take into account.

4For certain short supermultiplets some of these three-point functions vanish.
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4.2. Applying the ANEC to superconformal theories

4.2.2 Summary of results

Let us �rst mention the results of our analysis for non-supersymmetric CFTs, in the case
of a conformal primary with dimension D, transforming in the ( j, â̄) representation, with
â̄= 0, 1. In Section 4.6.5 we show convincing evidence that the ANEC requires

D > min ( j, 1
15(13j + 42)) . (4.8)

For â̄= 0, 1the above expression is stronger than the corresponding unitarity bound for
j > 2, 6, respectively. Although we do not have an analytic proof, we checked (4.8)up to
j = 103.

Next, we summarize the results of applying the ANEC inequality to superconformal
multiplets O( j,0) . We present them as bounds on the quantum numbers q, q̄, which are
related to the dimension and the R-charge of a given operator by the simple relations in
equation (2.5). We considered all possible shortening conditions. They were reviewed in
Section 2.1.

All cases for j = 0 In this case the ANEC requires only q > 0 and q̄ > 0. Therefore, it
is never stronger than the unitarity bound.

A1 B for j = 1 For these operators there are no free three-point function coef�cients
and the dimension and R-charge are �xed. It can be easily veri�ed that the ANEC holds.

A1 B for j > 2 As shown in Table 4.1, these operators do not admit a three-point
function with the Ferrara-Zumino multiplet consistent with all conditions. They are
therefore absent in any local SCFT.5

L B for j > 1 With this shortening condition, corresponding to chiral operators, there
are no free three-point function coef�cients. Therefore the ANEC for any given j is
simply a system of inequalities on q that can be solved algebraically. The result is

D = q > 3
2 j . (4.9)

This is equivalent to the unitarity bound for j = 1 and it is stronger for all j > 1. This
result is not in contradiction with already known Lagrangian constructions, which so far
have only provided examples for j = 1 [160,161]. Also note that the bound is saturated

5This conclusion does not require the ANEC.
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by j copies of a free j = 1 superconformal chiral primary y a
i

Ya1...aj = : y (a1
1 � � � y

aj )
j : . (4.10)

In N = 2 theories, the bound in (4.9) implies a constraint on the dimension of the so
called “exotic chiral primaries” discussed in [132]. In Section 4.7.2 we show that

Dexotic > 3
2 j + 1 . (4.11)

Then in Chapter 5 we apply the full set of constraints stemming from N = 2 Ward
identities to show that the exotic operator are actually not allowed at all.

L L for j > 1 In this case there are two free parametersq and q̄ and two undetermined
three-point function coef�cients (one for j = 1). For every value of j we �xed q̄ and ran
a bisection algorithm on q. The results are in Figure 4.3. See also Figure 4.4 for a plot in
the (r, D) plane.

Figure 4.3. Lower bounds on the conformal dimension as a result of the ANEC for long multiples.
Each point is the result of a bisection algorithm done with sdpb [162] (see Section 4.6.4). The
solid lines are the unitarity bound: the red line is the bound on q̄ and the colored lines are the
j-dependent bounds on q. The larger dots correspond to the points with shortening conditions
L A2 (for the red circled dots) and A1 L (for the black circled dots).
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4.2. Applying the ANEC to superconformal theories

Figure 4.4. Plot of the results in Figure 4.3 in the (r, D) plane.

L A2 for j > 1 For this shortening condition the constraints are equivalent to [L, L] for
q̄ = 1. The results are given in Figure 4.5 and correspond to the red circled dots on
Figure 4.3. The operators at the unitarity bound, which satisfy the [A1, A2] shortening,
are not allowed for j > 3 (see below). Therefore, for j > 3 the ANEC provides a
constraint strictly stronger than unitarity.

A1 L for j > 1 Since for this case there is only one free three-point function coef�cient
and one parameter, q̄, the system of inequalities is considerably simpler to solve. The
results are given in Figure 4.6 and correspond to the black circled dots on Figure 4.3. As
before, for j > 3, the ANEC is strictly stronger than unitarity.

A1 A2 for j > 1 This condition admits solutions only for j 6 3. In the edge casej = 3
the ANEC inequalities �x the only independent three-point function coef�cient to

C6 = �
16
p 2 . (4.12)

For all j > 3 the ANEC admits no solution and thus such operators must be absent in
any local SCFT.
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Figure 4.5. Lower bounds on the conformal dimension as a result of the ANEC for L A2 multi-
plets. Each point is the result of a bisection algorithm done with sdpb [162] (see Section 4.6.4).
The red line is the unitarity bound q = 1

2 j + 1. The operators for j 6 3 that lie on the red line
satisfy A1 A2.

Figure 4.6. Lower bounds on the conformal dimension as a result of the ANEC for A1 L multi-
plets. Each point is the result of a bisection algorithm done with Mathematica. The operators for
j 6 3 that lie on the red line satisfy A1 A2.

4.3 Setup

We can adapt the general formula in Section 2.2.1 to our case: the correlator of an

operator O, its conjugate and J. Renaming tOJ
O � t the three-point function reads

hO(z1) J(z2)O(z3)i =
(¶c1x31̄h̄1) j h2x23̄¶c̄2 ¶c2x32̄h̄2

x1̄3
2q+ j x3̄1

2q̄ x3̄2
4 x2̄3

4
t(Z3; c1, c2, c̄2, h3) , (4.13)

where all the de�nitions are given in and Appendix A.3.2. We can then form fully
contracted monomials of the quantities de�ned above to obtain the building blocks of
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4.4. Constraints on the supersymmetric three-point correlator

the tensor structures in t. We give a complete list in a condensed notation

[i â̄] =
hiUh̄j

jU j
, [QQ] =

QUQ
U2 , [i j ] = hihj , [�̄ â̄] = h̄i h̄j , [Q2] =

Q2

jU j
,

[Q
2
] =

Q
2

jU j
, [Qj] =

Qhj

jU j1/2 , [Qâ̄] =
Qh̄j

jU j1/2 , [jQ] =
hiUQ
jU j3/2 , [Qâ̄] =

QUh̄j

jU j3/2 .

(4.14)

The correlator must satisfy the constraints stemming from the conservation of Jand the
invariance under simultaneous permutation 1 $ 3 and complex conjugation O � = O.
Moreover, the function t must satisfy the homogeneity properties of (B.3). in this case
they read

t( l l̄ X, l Q, l̄ Q; kh1, mh2, m̄h̄2, k̄h3) = ( l l̄ ) � 3(kk̄) jmm̄t(X, Q, Q; hi , h̄i ) . (4.15)

All possible tensor structures are built out of the blocks in (4.14)times a factor U � 3 to
take care of the l l̄ scaling. By the methods explained in Section 2.2 and 2.3 we can show
that t may be written as a linear combination of the following ten tensor structures

t(Z; h1, h2, h̄2, h3) =
1

U3

10

å
k= 1

Ck T k(Z; h1, h2, h̄2, h3) , (4.16)

where the explicit expressions for the T k's are

T 1 = i [22̄] [13]j T 6 = [ 12] [12̄] [Q3] [3Q] [13]j � 2

T 2 = i [12] [32̄] [13]j � 1 T 7 = [ 12] [Q2̄] [Q3] [13]j � 1

T 3 = [ 3Q] [Q2] [12̄] [13]j � 1 T 8 = [ 12] [32̄] [QQ] [13]j � 1

T 4 = [ Q2] [Q2̄] [13]j T 9 = i [Q2] [Q
2
] [22̄] [13]j

T 5 = [ 22̄] [QQ] [13]j T 10 = i [Q2] [Q
2
] [12] [32̄] [13]j � 1 .

(4.17)

The factors of i are introduced for later convenience. If j = 1 then T 6 is not present and
if j = 0 then T 2,3,6,7,8,10are not present.

4.4 Constraints on the supersymmetric three-point correlator

4.4.1 Conservation

The superconformal multiplet J(z) satis�es a shortening condition as explained in
Subsection 2.1.3. In this subsection we will explore the consequences of this constraint
on the correlator at separated points. In Section 4.4.3 we will study the contact terms
instead. At separated points the prefactor in (4.13)commutes with the conservation
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differential operators acting on z2,6 thus we can express the conservation condition as
an equation involving only t and the variable Z:

¶h2D t(Z; hi , h̄i ) = ¶h̄2D t(Z; hi , h̄i ) = 0 , (4.18)

where D and D have been de�ned in Appendix A.3.2. Equation (4.18) imposes the
following linear constraints for general j > 1:

C5 = �C 3 � 2C4 , C7 = 2C2 � C 3 � C 6 , C8 = � 4C2 + 2C3 + C6 , C9 = C10 = 0 .
(4.19)

When j = 1 it suf�ces to set C6 to zero and when j = 0 one simply has

C5 = � 2C4 , C9 = 0 . (4.20)

4.4.2 Reality

SinceO and O = O � are conjugated to each other and J is hermitian, the correlator
under study must be real. Concretely, we want to impose that



O(z1) J(z2)O(z3)

� �
=



O(z3) J(z2)O(z1)

�
, (4.21)

namely that taking the complex conjugation is the same as swapping points 1 and 3. The
prefactor in (4.13)is not invariant under this transformation, moreover the exchange
1 $ 3 does not act nicely on Z3. This means that we cannot translate the reality condition
into a constraint for t right away. 7 This obstacle can be overcome by using the results of
Appendix B.1, which lead to 8

(� 1) j X
� 2j

(t � )( Z;Xh1, h2, h̄2,Xh3) = t(Z; h3, h2, h̄2, h1) . (4.22)

We can then solve this equation much more easily. In doing so we �nd the following
linear constraints for even j > 1:

C1
� = C1 , C2

� = C2 , C3
� = 2C2 � C 6 � C 7 , C4

� = � 2C2 + C3 + C4 + C6 + C7 ,

C5
� = C5 , C6

� = C6 , C7
� = 2C2 � C 3 � C 6 , C8

� = C8 ,

C9
� = C2 � 1

2(C3 + C6 + C7) + C9 , C10
� = � 2C2 + C3 + C6 + C7 + C10 .

(4.23)

6Due to Da
2(x23̄)a�a/ x4

3̄2 = D �a
2(x32̄)a�a/ x4

2̄3 = 0 when x23 6= 0.
7This is obviously a consequence of our parametrization. In the ordering hOOJi the reality condition

can be solved easily. On the other hand we would lose the fact that the conservation operator commutes
with the prefactor thus making conservation much harder to impose.

8By (t � )( Z; . . .) we mean: �rst apply the complex conjugation to t(Z; h1, h2, h̄2, h3), then replace h̄1(3)

with Xh1(3) . We also de�ned Z = ( � X, � Q, � Q).
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If j is odd the equations are obtained by adding an overall minus sign on the right hand
side. If j = 1 it is suf�cient to set C6 = C6

� = 0. For j = 0 instead one has simply

C1
� = C1 , C4

� = C4 , C5
� = C5 , C9

� = C9 . (4.24)

Combined with conservation (4.19), these equations imply that the remaining Ck are
purely real (resp. imaginary) if j is even (resp. odd).

4.4.3 Ward identities

There are in principle two ways to impose the Ward identities: one could apply them
directly in superspace with the formalism of [115], or alternatively one could expand
the correlator in components and apply the non-supersymmetric Ward identity to
each triplet of superdescendants. Since we already need the three-point function in
components to make contact with the ANEC and since non-supersymmetric Ward
identities are much easier to compute, we opted for the second approach. We did
not explore all possible combinations of superdescendants but we observed that after
imposing the identities for hOJ(R)Oi and hOTOi , all other choices of superdescendants
that we investigated were not yielding any new constraints.

In Section 1.4 we reviewed the Ward identities for the R-current J(R) and the stress tensor.
The results for the former and an operator O of spin ( j, 0) are summarized in Table C.1
and those for O of spin ( j, 1) in Table C.2. For the latter, we need to �rst motivate that it
is enough to consider only the Killing vectors associated to translations and dilatations.
As we argued previously, the number of independent equations equals the number of
singlets in the tensor product

r O 
 r �
O 
 (� � (2, 0) � (0, 2)) , (4.25)

r O representing the Lorentz representation of O and � the singlet. For r O = ( j, 0) the
tensor product contains two singlets (one if j = 0) and for r = ( j, 1) it contains three
singlets (two if j = 0). The equations (1.45)yield the exact same number of independent
constraints. When the operator O in (1.45)is the superconformal primary of spin ( j, 0),
the result is summarized in Table C.3. If instead O ! QO of spin ( j, 1) the results
are in Table C.4. Finally one could also consider O ! QO; the result is obtained by a
simple rescaling of the coef�cients in Table C.3 and a replacement j ! j � 1. For the
reader's convenience we report here the relative normalizations for the operators in the
O multiplet as derived in [156]:

c(QO)+

cO
= 2

j + 2q
( j + 1)2 ,

c(QO) �

cO
= 2

( j + 1)(2q � j � 2)
j

,
c(QO)

cO
= 4q̄. (4.26)

The other set of identities that we will need are those associated to the generators of
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supersymmetries Sma, Sm�a. Let us �x the third operator to be O. We then have three
choices: t (QO)SO and t (QO) � SO. The topological operator obtained by integrating S or

S over S is precisely the supercharge Q or Q respectively. We thus readily obtain the
following identities

i
2

Z

S
dW(x23) x23

2 ¶h2x23¶h̄2 t (QO)SO(xi ; hi , h̄i ) = 2h̄2¶h̄3 n(QO)( QO) (x13, h1,3, h̄1,3) ,

i
2

Z

S
dW(x23) x23

2 ¶h2x23¶h̄2 t (QO)+ SO(xi ; hi , h̄i ) = 2h2¶h3 n(QO)+ (QO)+ (x13, h1,3, h̄1,3) ,

i
2

Z

S
dW(x23) x23

2 ¶h2x23¶h̄2 t (QO) � SO(xi ; hi , h̄i ) =
2j

j + 1
h2h3 n(QO) � (QO) � (x13, h1,3, h̄1,3) .

(4.27)

The two-point functions must be normalized according to (4.26). All the results are
summarized in Tables C.5, C.6 and C.7.

4.4.4 Shortening conditions

The possible shortening conditions have been reviewed in Section 2.1. For simplicity we
will refer to L B aschirality. Furthermore the conditions XL A1 are absent because we
are considering the caseâ̄= 0. SinceO = O � , O will satisfy the conjugate shortening
XR X L. However, after imposing reality, either one of the two conditions is suf�cient.

We can impose the shortening conditions directly on the t thanks to (2.24) and its
conjugate. This leads to

B1 or B1 : h̄1D t(Z; hi , h̄i ) = 0 , h1D t(Z; hi , h̄i ) = 0 , (4.28a)

A1 : ¶h1D t(Z; hi , h̄i ) = 0 , (4.28b)

A2 or A2 : D2 t(Z; hi , h̄i ) = 0 , D2 t(Z; hi , h̄i ) . (4.28c)

In Table 4.2 we summarize all the constraints arising from (4.28a), (4.28b)and (4.28c).
All shortening conditions can be easily obtained by combining them. Table 4.1 instead
shows how many independent coef�cients are left in the superspace correlator as we
choose different shortening conditions and impose all other constraints obtained before.

4.5 Expansion of the superspace correlator

In order to apply the various constraints originating from the ANEC to our three-
point function in superspace we need to express its components in a basis of non-
supersymmetric three-point functions. This will be achieved by Taylor expanding in the
Grassmann coordinatesqi , q̄i . The techniques that can be used to perform such a task
have been discussed at length in Chapter 3.
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L A2 B̄
L 2 2 0
A1 1 1 �

(a) j > 1

L A2 B
L 1 1 0
A1 1 1 0

(b) j = 1

L A2 B
L 0 0 0
A2 0 0 0
B 0 0 0

(c) j = 0

Table 4.1. Number of independent coef�cients Ck of the superspace correlator as different
shortening conditions are chosen. The slash means that there is no consistent three-point
function. The boldface zero means that the three-point function is identically zero. Other zeros
imply that the three-point function is completely �xed in terms of q, q̄ and j. In all cases these
numbers refer to realdegrees of freedom as theCk are either all real or all purely imaginary.

Constraints Conditions

A1

C6 = ( j � 1)C3 + j( j � 1)
j+ 1 (C5 � 4C1) ,

C7 = � 2C2 + C3 + j C4 + 2j
j+ 1(C5 + ( j � 3) C1) ,

C8 = 4C2 � C 3 + 2j
1+ j (4C1 � C 5) ,

C10 = j C9 = j C4 + j
2(C3 + C5) .

j > 1, q = 1
2 j + 1

A2 C9 = C4 + 1
2 C5 . j = 0, q = 1

A2
C9 = � 1

2 (C3 + C5) � C 4 ,

C10 = � 1
2 (C6 + C8) � C 7 .

q̄ = 1

B C4 = � 2C1 , C5 = 4C1 , C9 = 0 . j = 0, q = 0

B

C4 = 2C1 , C5 = � 4C1 ,

C7 = 2C2 , C8 = � 4C2 ,

C3 = C6 = C9 = C10 = 0 .

q̄ = 0

Table 4.2. Constraints on the coef�cients Ck following from the various shortening conditions on
the multiplet O (here â̄= 0 is implicit). Case A1 for j = 1 and casesA2 and B for j = 0, 1can be
obtained by setting to zero the absent coef�cients ( C6 for j = 1 and C2,3,6,7,8,10for j = 0).
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4.5.1 Lowest order

At this order we simply have J(R) . Consistently with the previous sections we denote
the three-point function coef�cients by

tOJO �! Ck . (4.29)

The results, without assuming the reality condition and conservation, are shown in
Table C.8.

4.5.2 Three-point function hOTO i

At order q2q̄2 we have the stress-energy tensor. Consistently with the previous sections
we denote the three-point function coef�cients by

tOTO �! Dk . (4.30)

The results are shown in Table C.9. The conservation of Jand the reality condition are
not assumed there. In principle the expansion also contains superdescendants of Jof
spin (0, 0), (0, 2) and (2, 0). We checked that those contributions vanish after imposing
conservation and we will not report those results here.

4.5.3 Three-point functions h( QO) SOi and h( QO) SOi

At order q1q̄2, q̄1q2 we have the supersymmetry current with the �rst superdescendant
of O. The naming of the coef�cients is

t (QO)+ SO �! Ek , t (QO) � SO �! Fk , t (QO)SO �! Gk .

Also in these cases the results are presented without conservation and reality applied
— they can be found in Tables C.10, C.11 and C.12. There are also contributions from
superdescendants of spin (0, 1) or (1, 0). As in the previous subsection we have veri�ed
that they vanish after conservation is imposed and we will not report those results.

4.5.4 Three-point functions h( QO) J( QO ) i and h( QO) J( QO ) i

At order q1q̄3, q̄1q3 we extract the descendantsQO, QO and their conjugates. We need
this mainly as a preliminary result for the computation of the next subsection. We named

t (QO)+ J(QO)+ �! Nk , t (QO)+ J(QO) � �! Ok ,

t (QO) � J(QO)+ �! Pk , t (QO) � J(QO) � �! Qk ,
(4.31)
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where
t (QO) J(QO) �! Ik . (4.32)

In order to make the computation more manageable, this time we applied conservation
and reality from the start. The results are in Tables C.13, C.14, C.15, C.16 and C.17.

4.5.5 Three-point functions h( QO) T( QO ) i and h( QO) T( QO ) i

At order q1q2q̄2q̄3, q̄1q2q̄2q3 we extract the descendants QO, QO and their conjugates
coupled with the stress tensor. These terms are needed in order to impose the ANEC on
superconformal descendants inside O. We named

t (QO)+ T(QO)+ �! Jk , t (QO)+ T(QO) � �! Kk ,

t (QO) � T(QO)+ �! Lk , t (QO) � T(QO) � �! M k ,
(4.33)

t (QO)T(QO) �! Hk . (4.34)

Also this time we applied conservation and reality from the start. The results are in
Tables C.18, C.19, C.20, C.21 and C.22.

4.6 The averaged null energy condition

Following [141, 163] we de�ne the state jy i of (4.1) by acting with some operator
O(x, h, h̄) on the CFT vacuum j0i . Then we take the Fourier transform in order to
give the state a de�nite momentum, 9 which can be set to qm = ( 1,0) without loss of gen-
erality. Next we multiply by (x+ )2/16 and send x+ ! ¥ to simplify the computations.
Lastly we need to specify a polarization, but using the auxiliary spinors h and h̄ we can
obtain all possible polarizations at once.

The ANEC integral breaks rotation invariance to an SO(2) generated by s12 b
a and s̄12�a

�b

in the respective representations. Under a j rotation of this subgroup, fundamental
spinors with a lower index transform as follows:

 
a
b

!

a

�!

 
a e� i j /2

b ei j /2

!

a

,

 
ā
b̄

!

�a

�!

 
ā ei j /2

b̄ e� i j /2

!

�a

. (4.35)

This will help us in the following way: in principle, if there are s choices for the polar-
ization of O and O one would have to apply the ANEC integral to each pair of choices,
diagonalize an s � smatrix and require the positivity of each eigenvalue (or equivalently

9Due to translational invariance, Fourier transforming in both x1 and x3 will lead to a divergent
answer. This can be �xed by using Gaussian wavepackets and taking the limit of plane waves in the end.
Alternatively we can simply keep the third point �xed and integrate in x13 only.
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require semide�nite positiveness of an s � s matrix). This rotational symmetry reduces
the matrix to a block diagonal form, making much simpler the study of its positiveness.

4.6.1 Operators of spin ( j , 0)

Let us focus �rst on the case where O(x, h, h̄) has spin ( j, 0). We can expand theh's in
the eigenbasis of the SO(2) spin,

ha
3 =

 
m
p

!

:= mxa
� + pxa

+ , h̄ �a
1 =

 
p̄
m̄

!

:= p̄ x̄ �a
+ + m̄ x̄ �a

� , (4.36)

where the redundancy x� = x̄� has been introduced for convenience. The stress tensor
is instead polarized along the null geodesic um, which is translated to

ha
2 = xa

� , h̄ �a
2 = x̄ �a

+ . (4.37)

Now we can perform the ANEC integral (4.1)with the prescriptions de�ned above on
an arbitrary three-point function tOTO.10 We de�ne x13 = x, x23 = y and

A [tOTO] :=
Z ¥

� ¥
dy� lim

y+ ! ¥

(y+ )2

16

Z

R4
d4x e� ix0

tOTO(x, y; h̄1, h2, h̄2, h3)
�
�
�
� h̄1,h3! (4.36)
h̄2,h2! (4.37)

.

(4.38)

In order to enforce the correct ordering, the integral in y� must be supplemented with
the appropriate ie prescription, namely y0 ! y0 � ie and x0 ! x0 � 2ie. The integrals
and the limit y+ ! ¥ remove all dependence on the points x, y. The result is therefore a
polynomial in the variables p, m, p̄ and m̄. The same considerations apply for the norm
of the state, which is computed by Fourier transforming the two-point function

F [nOO] :=
Z

R4
d4x e� ix0

nOO(x; h̄1, h3)
�
�
�
�
h̄1,h3! (4.36)

. (4.39)

The restrictions imposed by SO(2) invariance imply that only certain terms can appear,
i.e.

A [tOTO] =
j

å
s= 0

A s[tOTO] (pm̄)s(mp̄) j � s , F [nOO] =
j

å
s= 0

F s[nOO] (pm̄)s(mp̄) j � s .

(4.40)
Each coef�cient of this polynomial corresponds to a different choice for the polarizations

10The conventions are

x+ = x0 + x3 = x� x x̄+ , x� = x0 � x3 = x+ x x̄� , x2 = � x+ x� + ~x2
? .
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of O and O, therefore the polarization matrix is diagonal and the ANEC states

E[D; ( j, 0); s] :=
A s[tOTO]
F s[nOO]

> 0 , for s = 0, . . . ,j . (4.41)

The integrals have been computed explicitly for some values of j in [141]. Here we
provide a general formula, whose proof can be found in Appendix C.2:

E[D; ( j, 0); s] =
3p (� i) j

8
(d � 1)(d+ j)

(d+ j � s � 1)3

�
D1 +

j � s
j

d+ j � 1
d+ j � s � 2

D2 +

+
( j � s � 1)2

( j � 1)2

(d � j � 2)2

(d+ j � s � 3)2
D3

�
,

(4.42)

where d = D � 1
2 j � 1 and (a)n = G(a + n)/ G(a) is the Pochhammer symbol. See

Table C.3 for the meaning of the three-point function coef�cients. For the special cases
j = 0, 1 it suf�ces to set to zero the absent coef�cient(s). Note that (4.42)is real because
the coef�cients D i are purely real (resp. imaginary) if j is even (resp. odd).

4.6.2 ANEC on a superposition of states

In the previous subsection the operator O could have been either the superconformal pri-
mary or the �rst superdescendant QO� . However, these operators mix with each other,
i.e. the three-point function h(QO)+ T(QO) � i is nonzero. This means that we can im-
pose an even stronger constraint by demanding positivity on the general superposition

jy i =
v (QO)+ j0i

jh(QO)+ (QO)+ ij 1/2
+

w (QO) � j0i
jh(QO) � (QO) � ij 1/2

. (4.43)

A similar approach was used in [164]. Since v and w can be chosen arbitrarily, the ANEC
now becomes a semide�nite-positiveness constraint on a 2( j + 1) � 2( j + 1) matrix. Such
a matrix can be decomposed in j blocks of size 2 � 2 and two 1 � 1 blocks, resulting in

 
E[D + 1

2; ( j + 1, 0); s+ 1] Eint [D + 1
2; ( j � 1, 0); s]

Eint [D + 1
2; ( j � 1, 0); s] E[D + 1

2; ( j � 1, 0); s]

!

� 0 for s = 0, . . . ,j � 1 ,

E[D + 1
2; ( j + 1, 0); s] > 0 for s = 0, j + 1 .

(4.44)
The diagonal entries have the same expression as(4.42)with the substitution D i ! Ji

or D i ! M i (see Tables C.18, C.21), together with the appropriate rede�nition of d. The
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“interference” terms Eint are de�ned as follows: 11

Eint [D + 1
2; ( j + 1, 0); s]

= Eint [D + 1
2; ( j � 1, 0); s] �

A s[t (QO
+

)T(QO� ) ]

(F s+ 1[n(QO
+

)( QO+ ) ]F s[n(QO
�

)( QO� ) ])
1/2 .

(4.45)

Following steps similar to the ones illustrated in Appendix C.2 one can prove the general
formula

Eint [D + 1
2; ( j � 1, 0); s] =

3p (� i) j � 1

16

s
d(s+ 1)( j � s)

j( j + 1)(d+ j + 1)
(d+ j � 1)3

(d+ j � s � 2)4
�

�
�

d+ j � s � 2
d+ j � 1

K1 +
j � s � 1

j � 1
K2

�
,

(4.46)
where the coef�cients Ki = Li are de�ned in Tables C.19, C.20 and d = DQO � 1

2 j � 3
2.

Here DQO = D + 1
2 is the dimension of the superdescendant. The polarization s takes

values from 0 to j � 1.

4.6.3 Operators of spin ( j , 1)

The only difference when considering more general SO(1, 3) representations is that the
polarization matrix will not be diagonal. This means that the ANEC will not be a set of
simple inequalities but rather semide�nite positiveness constraints. In the ( j, 1) case we
further have to specify the polarizations h1 and h̄3; thus together with (4.36)and (4.37)
one has

ha
1 =

 
m0

p0

!

� m0xa
� + p0xa

+ , h̄ �a
3 =

 
p̄0

m̄0

!

� p̄0x̄ �a
+ + m̄0x̄ �a

� . (4.47)

The ANEC integral for an arbitrary operator O of spin ( j, 1) takes the form

Ã [tOTO] �
Z ¥

� ¥
dy� lim

y+ ! ¥

(y+ )2

16

Z

R4
d4x e� ix0

tOTO(x, y; h1,2,3, h̄1,2,3)
�
�
�
� h̄1,h3! (4.36)
h̄3,h1! (4.47)
h̄2,h2! (4.37)

. (4.48)

We also de�ne F̃ [nOO] in a similar way. The constraints of SO(2) invariance allow us to
express

Ã [tOTO] =
j+ 1

å
s= 0

1

å
a,b= 0

(Ã s[tOTO])ab(pm̄)s(mp̄) j � sp0m̄0
�

p̄m0

m̄p0

� a �
mp̄0

pm̄0

� b

, (4.49)

11The de�nition of A s for the interference correlator is similar to (4.40)with the difference that we pick
up the term m̄p̄(pm̄)s(mp̄) j � s� 1 for h(QO)+ T(QO) � i and mp(pm̄)s(mp̄) j � s� 1 for its conjugate.

88



4.6. The averaged null energy condition

and similarly for F̃ [nOO]. The terms for s = 0 and s = j + 1 are restricted to, respectively,
a = b = 0 and a = b = 1. Thus we can see that the polarization matrix is block diagonal
with j blocks of size 2 � 2 and two blocks of size 1 � 1. De�ning

(E[D; ( j, 1); s])ab �
(Ã s[tOTO])ab

((F̃ s[nOO])aaF̃ s[nOO])bb)
1/2 , (4.50)

the positivity constraints are

E[D; ( j, 1); s] � 0 , for s = 1, . . . ,j ,

E[D; ( j, 1); s] > 0 , for s = 0, j + 1 .
(4.51)

In the next subsection we will explain how to implement a numerical study of this system
of inequalities. We obtained a general formula for E[D; ( j, 1); s] as well—unfortunately,
however, the expression is too unwieldy to be reported here. In Appendix C.2 we brie�y
explain how to obtain it.

4.6.4 The ANEC as a semide�nite programming problem

Imposing semide�nite positiveness on a symmetric matrix is a well known problem
for which there exist algorithms that go under the name of semide�nite programming.
We will make use of the implementation realized by the software sdpb [162], which
was developed for the numerical bootstrap approach for the study of CFTs [147], but is
general purpose enough to work for our problem too. For an introduction to semide�nite
programming in the context of the conformal bootstrap see Section 6.2.

In general we need to solve a system of inequalities

E[D; ( j, â̄); s] � 0 , for s = 0, . . . ,j + â̄, (4.52)

where E[D; ( j, â̄); s] is a symmetric ms � ms matrix with ms = min f j, â̄, s, j + â̄� sg + 1.
The matrices E will depend on N arbitrary three-point function coef�cients (given by
Table 4.1) plus an inhomogeneous part which is �xed by the Ward identities. Dropping
the D and ( j, â̄) labels for brevity one has

E[s] = E(0) [s] +
N

å
n= 1

l n E(n) [s] � 0 , for s = 0, . . . , j + â̄. (4.53)

This is known as the dual formulation of a semide�nite problem. We are interested in
studying the feasibility of (4.53). The algorithm we used only terminates when either
a solution l n is found, or when a numerical threshold for the internal computations 12

is exceeded. For our purposes, a problem that terminates for the latter condition is

12Called �maxComplementarity .
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considered to have no solution. This means that our ANEC-disallowed points are not
disallowed in a mathematically rigorous way. We expect this to not have any practical
consequences.13

4.6.5 Details on ANEC bounds: non-supersymmetric case

Let us brie�y review the results obtained in [141] and prove a few results for generic
values of j. First let us consider conformal primaries in the ( j, 0) Lorentz representation.
The ANEC condition is expressed by the formula (4.42), where the coef�cients D i are
given in Table C.3. In particular, one can take D̂1 = � i j D1 to be the only independent
real coef�cient. By choosing the value s = 0 and s = j in (4.42)and restricting to the case
j > 2 for simplicity we obtain

(d � 1)((p 2D̂1 � 4)d+ j(p 2D̂1 + 2d � 6) + 2j2 + 4) > 0 , D̂1 > 0 , (4.54)

where d > 0 represents the distance from the unitarity bound. It is straightforward to
verify that the above conditions cannot be simultaneously satis�ed unless d > 1.

By considering all polarizations we can obtain stronger bounds at the price of �xing the
value of j, for instance by using the function Reduceof Mathematica. We show our results
in Figure 4.7 up to j = 103. Although the bound initially agrees with the conjecture
of [141], it departs from it for j > 21 and follows a different pattern which is well �tted
by the expression D = 1

2 j + 1 + d > 1
15(13j + 42). It would be tempting to assign a

meaning to the kink at j � 21, but the explanation might simply reside in the fact that,
going to large values, the integer nature of j becomes less and less important and new
solutions for D̂1 become available.

Let us now move to the case of conformal primaries in the ( j, 1) representation. The
procedure to obtain the general formula is described in Appendix C.2.2. After impos-
ing the Ward identities, whose solution is reported in Table C.4, one is left with four
independent three-point function coef�cients Hi . In order to systematically address the
feasibility of the ANEC we translated the linear matrix inequality into a semide�nite
problem as discussed in the previous subsection. We found agreement with the results
of [141] for j 6 7 and extended the bounds up to j = 50. A lower bound on D as a
function of j is shown in Figure 4.8: again we observe that for j > 21 the bounds departs
from the conjecture D > j of [141] and closely follows the bound D > 1

15(13j + 42)
instead.

In the case of conserved operators the problem simpli�es considerably: only two coef�-

13In principle there is also a way to mathematically prove that no solutions exist by providing a certi�cate
of infeasibility [165]. By using [166 –168] this amounts to �nding a solution of another (larger) semide�nite
problem.

90



4.6. The averaged null energy condition

Figure 4.7. Lower bounds on the conformal dimension D as a result of the ANEC for primaries
transforming in the ( j, 0) Lorentz representation. Each point is the result of a bisection in D. The
red line is the unitarity bound, D = 1

2 j + 1. The black line corresponds to the conjecture of [141],
D = j, and the green line gives an approximate behavior of the bound valid above j = 20.

cients remain independent 14 and we can easily prove that conserved currents cannot
exist for j > 5. For instance, we can takeĤ9,10 = � i j+ 1H9,10 to be the two independent
real coef�cients. By considering the eigenvalues of matrices with s = j � 3,. . . , j and the
condition at s = j + 1, we obtain the following set of inequalities:

Ĥ10 > 0 , 3Ĥ9 +
18
p 2

j � 1
j + 1

6 Ĥ10
2j + 1
j � 1

,

Ĥ9 6
2
3

Ĥ10 , 3Ĥ9 +
12
p 2 > 2Ĥ10

j + 1
j � 1

. (4.55)

One can immediately check that the above conditions admit a solution only for j 6 5,
corresponding to the cases when conserved currents can be constructed in free theories.
Interestingly, for the boundary case j = 5 the solution to the ANEC is unique:

Ĥ9 = �
4

p 2 , Ĥ10 = 0 . (4.56)

It is easy to construct conserved operators explicitly out of free �elds for the ( j, 1) case
when j 6 5. Denoting with f a complex boson, y a Weyl fermion and F a self-dual �eld
strength one has

(1, 1) : yg my , f � ¶mf , D = 3 ,

(2, 1) : y �aFab , y a¶b �af , D = 7
2 ,

(3, 1) : y a¶b �ay g , D = 4 ,

14The relation imposed by conservation of the operator O can be easily computed using the package
CFTs4D.
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Figure 4.8. Lower bounds on the conformal dimension D as a result of the ANEC for primaries
transforming in the ( j, 1) Lorentz representation. Each point is the result of a bisection in D.
The red line is the unitarity bound, D = 1

2 j + 5
2. The operators for j 6 5 lie on the red line. The

black line corresponds to the conjecture of [141], D = j, and the green line gives an approximate
behavior of the bound valid above j = 20.

(4, 1) : y a¶b �aFgd , D = 9
2 ,

(5, 1) : Fab¶g �aFd#, D = 5 .

Similar attempts for constructing conserved operators for j > 5 will fail, as one would
expect from the ANEC bound.

4.6.6 Details on ANEC bounds: supersymmetric case

In the supersymmetric case the analysis follows the same steps as before, except that
now one needs to combine multiple conditions. Let us discuss some of the results
presented in the introduction. We �rst start from a multiplet whose zero component
transforms in the ( j, 0) representation and satis�es the L B shortening condition. These
are the generalizations to j > 1 of the usual chiral scalar and gauge-invariant spin- 1

2
multiplets. In this case q̄ = 0 and q = D. The multiplet contains only four conformal
primaries: O, QO� and Q2O. In this work we only consider the �rst three. As discussed
in Section 4.4.4 the superspace three-point function does not have any free parameters.
Let us consider, then, the ANEC applied to the superprimary only. The condition is
again encoded in (4.42), where now the coef�cients D i are related to the superspace
coef�cients through the relations in Table C.9, supplemented by the relations in Table 4.2.
The analog of D̂1 > 0 in (4.54) is now simply

2q � 3j > 0 . (4.57)
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We explicitly checked that including other constraints does not strengthen the bound.
This is expected since one can construct chiral operators with D = 3

2 j by taking products
of free chiral vector multiplets. The bound is therefore optimal.

Let us move to another simple case, namely A1 A2, corresponding to superprimaries
again in the ( j, 0) representation with q = 1

2 j + 1 and q̄ = 1. This multiplet contains
conserved operators in the ( j + 1, 1) and, due to the results of the previous subsection,
we can immediately conclude that j 6 4. It turns out, however, that j = 4 is excluded
since the valuesĤ9 and Ĥ10 �xed by supersymmetry do not satisfy (4.56). Smaller values
of j must be consistent since these operators appear in the decomposition of extended
supersymmetry multiplets in the free limit.

All other bounds found in this work were obtained with a numerical approach. For
completeness we collect here all the conditions we imposed in the most complicated case
L L. In simpler cases some of them do not appear since the corresponding superdescen-
dant is absent. At the same time, the correct three-point function coef�cient relations
must be imposed. Given an L L supermultiplet with a superprimary transforming in the
( j, 0) representation and q > j / 2 + 1, q̄ > 1, the ANEC can be satis�ed if there exist real
coef�cients Ĉk = i jCk, k = 2, 6, such that

hOTOi :

E[D, ( j, 0); s] > 0 , for s = 0, . . . ,j ,

h(QO)T(QO)i :
 

E[D + 1
2; ( j + 1, 0); s+ 1] Eint [D + 1

2; ( j � 1, 0); s]
Eint [D + 1

2; ( j � 1, 0); s] E[D + 1
2; ( j � 1, 0); s]

!

� 0 for s = 0, . . . ,j � 1 ,

E[D + 1
2; ( j + 1, 0); s] > 0 for s = 0, j + 1 ,

h(QO)T(QO)i :

E[D + 1
2; ( j, 1); s] � 0 , for s = 0, . . . ,j + 1 . (4.58)

As usual we de�ned D = q + q̄. Whenever the above system of conditions does not
admit a solution, we conclude that the corresponding supersymmetry multiplet cannot
exist in a local unitary SCFT.

4.7 Bounds on extended supersymmetry multiplets

4.7.1 Conventions

The aim of this section is to constrain the superconformal multiplets of theories with
N > 1 supersymmetry by decomposing them into N = 1 multiplets. This approach
does not make use of the additional linear relations among the three-point function
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coef�cients and thus may not yield optimal bounds.

We consider for any N the superalgebra generated by Q1
a and Q1 �a. The embedding of

the N = 1 u(1) R-charge in the larger R-symmetry group is 15

N = 2 : rN = 1 = � 4
3R3 + 1

3rN = 2 ,

N = 4 : rN = 1 = � 1
3(3H1 + 2H2 + H3) ,

(4.59)

where Hi is the Cartan generator associated to thei-th Dynkin label in [p1, p2, p3]. The
generator R3 is the su(2) Cartan in units of 1

2 (R3 = � R/2, . . . , R/2).

4.7.2 N = 2

Let us start by considering the so-called “exotic chiral primaries,” namely the LB1[j; 0](0,r)
D

multiplets, with D = 1
2r.16 The bound on chiral multiplets (4.9)for the N = 1 subalgebra

generated by Q1
a, applied to the chiral superprimary Q2

(a1
Oexotic

a2...aj+ 1) implies that

D + 1
2 > 3

2( j + 1) ) D > 3
2 j + 1 . (4.60)

The unitarity bound is D > 1
2 j + 1, and so we see that the ANEC bound is stronger for

j > 0.

A similar argument can be made on operators with nonzero su(2) R-charge LB1[j; 0](R,r)
D ,

where D = R + 1
2r and R is in integer units. We considered several values of R and

performed the decomposition into N = 1 multiplets. Imposing (4.9) on each of the
chiral multiplets that appear yields the following pattern (which we conjecture to be
true for arbitrary R):

r > 3j + 2 � 2R ) D > 3
2 j + 1 . (4.61)

This is stronger than unitarity ( r > j + 2) for j > R. As a consequence, short multiplets

of the form A ` B1[j; 0](R,r)
D are only allowed for j 6 R.

The multiplets A1B1[j; 0](1,j+ 2)
D and A1A2[j; 0](0,j)

D with D = 1
2 j + 2 are absent from any

local SCFT for j > 2. This is a consequence of the presence of anA1A2[j + 1; 0] multiplet
in their N = 1 decomposition, which we have shown to be forbidden by the ANEC
when j + 1 > 3.

We also considered long multiplets LL[j; 0](R,r)
D for some values of R. Calling d the

15For N = 2 this embedding is the same as the one explained in Subsection 2.1.2
16Denoted E r

2 ( j,0) in [13].
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difference of their dimension and their unitarity bound,

d = D � 2 � j � R + 1
2r , (4.62)

and calling f (R, j) the separation between the unitarity and the ANEC bound in Fig-
ure 4.4, we �nd the following pattern

d > f ( 1
3(r + 1), j + 1) � R. (4.63)

4.7.3 N = 4

We considered a few short multiplets and found no constraints from the ANEC. Interest-

ingly, B1B1[0; 0](1,0,1)
2 contains a chiral multiplet that saturates (4.9), namely

B1B1[0; 0](1,0,1)
2 � LB1[2; 0](2)

3 . (4.64)

The simplest long multiplet is the Konishi multiplet LL[0; 0](0,0,0) . In its N = 1 decompo-
sition we �nd a long multiplet of spin (3, 0) and R-charge1 with dimension DKonishi + 3

2.
In terms of the Q1

a subalgebra, calling f the Konishi operator, one has

Oa1a2a3 = #1IJKQI
(a1

QJ
a2QK

a3) f . (4.65)

Since in perturbation theory one can compute DKonishi = 2 + O(g2), we see that the
ANEC and the unitarity bound for N = 1 long multiplets of spin (3, 0) are saturated.

More generally, we checked some cases of long multiplets LL[j; 0](p1,p2,p3) , namely those
with Dynkin labels [p1, p2, p3] = [ 0, 0, 0], [0, 2, 0] and [1, 0, 1]. Calling d the difference of
their dimension and their unitarity bound,

d = D � 2 � j � 1
2(3p1 + 2p2 + p3) , (4.66)

and calling f (R, j) the separation between the unitarity and the ANEC bound in Fig-
ure 4.4, we �nd

[0, 0, 0] : d > f ( 4
3, j + 2) � 2 ,

[0, 2, 0] : d > f ( 7
3, j + 3) � 4 ,

[1, 0, 1] : d > f ( 7
3, j + 3) � 4 .

(4.67)
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5 Spinning chiral primaries

This brief chapter discusses the fate of a class of superconformal chiral primaries in
N = 2 SCFTs which have been dubbed “exotic” primaries. It is based on Section 5 of
Paper III .

5.1 Introduction

The presence of a conserved stress tensor gives non trivial constraints on the operator
spectrum. We already saw in Chapter 4 the consequences of the ANEC. Sometimes
even simply applying the Ward identities could lead to strong results. Here we will
consider a class of operators called “exotic chiral primaries.” They are consistent with
the representation theory of four dimensional N = 2 superconformal symmetry but
are forbidden from any local SCFT due to the stress tensor Ward identities. This result
requires the use of the differential operators de�ned in Chapter 3. 1

The chiral operators are N = 2 superconformal multiplets that satisfy an LB1 shortening
condition. 2 That means that they are annihilated by the Q supercharges

[QI �a , X (z) g = 0 , I = 1, 2 . (5.1)

This dictates that they must have spin ( j, 0), with j any non-negative integer, and their
conformal dimension must be half their u(1) R-charge r. In terms of the q, q̄ charges
in (2.5)one hasq = r/ 2 and q̄ = 0. The exotic primaries X are de�ned as those chiral
operators with j > 0 that are su(2) singlets. If j = 0 the chiral operators are often called
Coulomb branch operators. There exist also chiral operators with non-vanishing su(2)
R-charge but we will not consider those here.

1We should point out that the differential operator needed for the proof, while being a particular case of
the ones de�ned in this paper, was already known from [117].

2In the notation of [13] this shortening condition is denoted as E.

97



Chapter 5. Spinning chiral primaries

The name "exotic" re�ects the fact that such operators were proven to be absent from a
very large class of theories. Arguments that excluded them from certain theories of class
S appeared in [169].3 The more general result of [132] instead excludes them from:

i ) theories with a Lagrangian description,

ii ) theories related to Lagrangian ones via a generalized Argyres-Seiberg-Gaiotto
duality [28,170],

iii ) theories that �ow to an IR Lagrangian theory via an N = 2–preserving deforma-
tion.

The proof that will be shown in the next section is logically independent from these
earlier results. Therefore we will not review them.

5.2 Absence of spinning chiral primaries in N = 2 SCFTs

We start by constructing a three-point function of X , its conjugate4 X and the stress
tensor multiplet J . Let us choose the following parametrization

hX (z1) J (z2) X (z3)i = KX J tX J
X (Z3, c1, h3) . (5.2)

The function tX J
X must be chiral at point z1, for example. This implies

D I
�a tX J

X (Z3, c1, h3) = 0 , I = 1, 2 . (5.3)

By using the representation (A.32a) of the differential operators one can see that tX J
X

may only depend on X3 and Q I
3. However, since the sum of R-charges is zero there

cannot be an isolated Q I
3 and thus tX J

X is a function of X3, which can be �xed by scaling
(B.3) up to an overall constant.

tX J
X (Z3, h1, h3) = A

(h1h3) j

X3
2 . (5.4)

It is also easy to verify that the conservation of J is satis�ed. The conservation operators
are (Q I )2 and (Q I )2. If we rewrite (5.4)as a function of X3, Q3I , Q I

3 we see that there
are no terms of order Q2

3Q2
3. This means that we can use the representation(A.33a) for

(Q I )2 and the representation (A.33b) for (Q I )2 and get trivially zero in both cases.

The proof now consists in showing that (5.4) does not satisfy the stress tensor Ward
identities unless j = 0. In order to obtain the Ward identities we have to expand

3Theories of classS have been introduced in [28,29]. They are obtained by compactifying a 6d SCFT on
a two dimensional puntured Riemann surface. Most of them do not admit a Lagrangian.

4The conjugate has R-charge� r, spin (0, j) and chargesq = 0, q̄ = r/2. It satis�es a B1L̄ shortening.
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5.2. Absence of spinning chiral primaries in N = 2 SCFTs

this function in components and extract the contribution from T(x2), the stress tensor,
and J(x2), the R-symmetry current. Then impose the equalities in (1.45) and (1.44).
Fortunately, however, half of the work has already been done. It suf�ces to extract the
contribution from the Ferrara-Zumino multiplet J(z2) inside of J (z2). Then we can
use the results of Chapter 4 to apply the Ward identities. More precisely, we need the
tables C.1, C.3, C.8 and C.9 subject to the constraints in the last line of Table 4.2.

We will keep denoting as X the N = 1 primary appearing as the lowest order in the
exotic operator multiplet. Extracting the contribution of the Ferrara-Zumino gives

hX (z1) J(z2) X (z3)i = KX (Q2Q2J ) Q++
QQ

tX J
X (Z3, c1, h3) j0 , (5.5)

with the de�nition Q++
QQ

= D++
QQ

jD!Q , D de�ned in (3.52)and Q de�ned in (A.33). The
result is

Q++
QQ

tX J
X (Z3, h1, h3) j0 = �

4i
3

A (h1h3) j h2X3h̄2

X3
4 , (5.6)

where now X3 follows the N = 1 de�nition. A three-point function of an N = 1 chiral
operator instead reads5

tX J
X (Z3, h1, h3) = i A 1 (h1h3) j h2X3h̄2

X3
4 + i A 2 (h1h3) j � 1 h1X3h̄2 h2h3

X3
4 . (5.7)

The comparison between (5.6) and (5.7) is straightforward and yields

A1 = �
4
3

A , A2 = 0 , (5.8)

while the Ward identities for chiral operators require

A1 = i j r � 3j
3p 2 , A2 = i j 2j

p 2 . (5.9)

This immediately implies that there are no solutions for j > 0 and thus the exotic
primaries cannot couple consistently with the stress tensor and must be absent from any
local theory. It also tells us that if j = 0 then A is �xed to be

A = �
r

4p 2 . (5.10)

As a check of our formalism we expanded (5.4) to higher orders in the supercharges and
extracted also the contributions from Q2X and Q22X , which are all N = 1 LB̄1 chiral
multiplets. We veri�ed that for j = 0 all the components satisfy the Ward identities
when A takes the value in (5.10).

5In the basis of Chapter 4 the coef�cients A1,2 are translated into the coef�cients C1,...,10as follows:

C1 = 1
2 C4 = � 1

4 C5 = A1 + A2, C2 = 1
2 C7 = � 1

4 C8 = � A2 , C3,6,9,10= 0 .
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6 Conformal bootstrap

In the previous chapters we described all the elements for performing a thorough
analysis of the kinematics of a conformal or superconformal �eld theory. This has
already produced the results that we showed in Chapter 4 and 5. However, the main
motivation behind this thesis is different: we want to perform a bootstrap study of
(S)CFTs in four dimensions. The work that we did so far will be fundamental to this
aim. However, before diving in our case study, namely that of four abelian currents, we
would like to introduce to the reader the main ideas behind the numerical bootstrap.

The notions explained in the �rst two sections are very general and can be found in
any review of the conformal bootstrap (e.g. [144 –147]). The rest of the chapter instead
focuses mainly on four dimensions.

6.1 Crossing equations

As we discussed in Chapter 1, operators in a CFT always admit an operator product
expansion, or OPE. In a four-point function there is more than one way to do it and they
must all agree. This gives a set of nontrivial constraints which go under the name of
crossing equations. We denote the OPE betweenO1 and O2 as a contraction

O1(x1)O2(x2) := å
r

n12r

å
a= 1

l (a)
O1O2Or

jx12jD1+ D2� D C(a)
r (¶m, x12, ¶h)Or � (0,h) , (6.1)

where, xi = ( xi , hi ),1 h is a polarization that contracts the indices of Or � and a is an index
that runs over all three-point tensor structures. r = ( D, ` , . . .) is a label that contains
the quantum numbers of the conformal group (dimension and spin) and eventual other
global symmetries that might appear in the theory under consideration, whereas r �

stands for the conjugate representation. We also abbreviated n(O1 � � � O k) de�ned in

1We will suppress the dependence on hi in Cr for brevity.
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Chapter 6. Conformal bootstrap

(1.33)as n1���k. As explained before, Cr (¶m, x, ¶h) is a function that can be completely
�xed by conformal symmetry but its precise form will not be important to us. With this
notation in mind, any four-point function should satisfy the following constraints

hO1O2O3O4i = hO1O2O3O4i = hO1O2O3O4i . (6.2)

These three different choices for the OPE lead to different expansions of the four-point
function. Indeed, after we apply the de�nition in (6.1), we get the following expressions

hOiO jOkOl i = å
r ,a,b

l (a)
Oi O j Or

l (b)
Or � OkOl

C(a)
r (¶m, xi j , ¶h)

jxi j jDi + Dj � D

Ir (xjl , h, h0)
jxjl j2D

C(b)
r � ( ~¶m, xkl, ~¶

0
h)

jxkl jDk+ Dl � D , (6.3)

where the quantity I (x, h, h0) is the two-point function tensor structure. There is only
one sum over r because the two-point function hOr Or 0i is proportional to dr 0r � . The
expression that multiplies the OPE coef�cient is called conformal partial wave, which
in turn can be written as a sum of conformal blocks once a basis of four-point tensor
structures is �xed. In practice, however, the conformal blocks are computed by other,
more ef�cient, methods that do not require the explicit form of Cr . We will discuss them
in Section 6.4.

Consider now a basis of tensor structures T i so that the four-point function reads

hO1(x1)O2(x2)O3(x3)O4(x4)i =
n1234

å
i= 1

T i (x1, . . . ,x4) fi (u, v) , (6.4)

where u and v have been de�ned in (1.17). An explicit de�nition of the T i in the case of

four dimensions will be given in Section 6.3. In the OPE hO1O2O3O4i the functions fi
can be expanded as

fi (u, v) = å
r

n12r

å
a= 1

nr � 34

å
b= 1

l (a)
O1O2Or

l (b)
Or � O3O4

Ga,b
i, r (u, v) , (6.5)

and Ga,b
i, r (u, v) is what we call a conformal block. The simplest way to impose the crossing

equations is to always consider the OPE among the �rst two and the last two operators
and then permute the order of the points. The permutations that leave the OPE invariant
are symmetries of either the cross ratios or the blocks themselves. More precisely, the
group S4 is generated by2 p 12, p 13 and p 34. The permutations

p 12p 34 , p 13p 24 , p 14p 23 , (6.6)

leave the OPE untouched and u and v are mapped to themselves (note that the last one

2We use the notation: p i j to indicate the permutation that swaps i $ j. Then the product p i j p kl � � � is
just the composition where the leftmost element acts last.
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6.1. Crossing equations

is, in fact, the composition of the �rst two). These are called kinematic permutations.
On the other hand p 12 and p 34 do change u and v, but the blocks are mapped to a
multiple of themselves. For the conformal blocks of four identical scalars for example
one has [96]3

GD,` (u, v)
p 12 or p 34

���! GD,`
� u

v , 1
v

�
= ( � 1) ` GD,` (u, v) . (6.7)

This leaves us with only p 13 as a nontrivial permutation. Its action on u and v is rather
simple, it simply swaps them: u $ v. Let us �rst see how it acts on the tensor structures.
The permutation applied to any of the T i in general will be a linear combination of the
structures of the permuted four-point function. Thus letting

hO3(x1)O2(x2)O1(x3)O4(x4)i =
n1234

å
i= 1

eT i (x1, . . . ,x4) f̃i (u, v) , (6.8)

one has

eT i j1$ 3 =
n1234

å
j= 1

Ri j T j , (6.9)

where R is a matrix satisfying R2 = 1. SincehO3O2O1O4ij x1$ x3 = hO1O2O3O4i , one
has a condition like (6.9)on the functions fi as well. We can always choose a basis of
eigenvectors for R so that the �rst no functions are mapped to minus themselves and
the remaining ones are mapped to themselves. With this choice of basis we obtain the
following list of equations

å
r ,a,b

l (a)
O1O2Or

l (b)
Or � O3O4

Ga,b
i, r (u, v) = å

r̃ ,a,b

l (a)
O3O2O r̃

l (b)
O r̃ � O1O4

eGa,b
i, r̃ (v, u) �

(
1 i 6 no

� 1 i > no
,

(6.10)
where we called eG the conformal block of the permuted four-point function. On its own
this constraint is not very powerful because we have different sets of OPE coef�cients
on either side. That is why in the case of non identical operators one has to take into
account all possible correlators that can be made out of the operators considered. Then
the equality above will be just a part of the entire system crossing equations. Since our
case will consist in four identical operators, let us from now on consider Oi = O for all

i. For convenience let us group all OPE coef�cients l (a)
OOO r

in a vector ~l r . Then we can
write the crossing equations in the form

å
r

~l T
r � Vi , r �~l r = 0 ,

�
Vi , r (u, v)

�
ab = Fa,b

� ; i, r (u, v) := Ga,b
i, r (u, v) � Ga,b

i, r (v, u) , i 6 no ,
�
Vi , r (u, v)

�
ab = Fa,b

+ ; i, r (u, v) := Ga,b
i, r (u, v) + Ga,b

i, r (v, u) , i > no ,

(6.11)

3This does not mean that the crossing equations for p 12 or p 34 are useless. In this particular case, for
instance, they require all OPE coef�cients of the operators of odd spin to vanish.
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where we de�ned F� as the even and odd combinations of the conformal blocks. We
can always isolate one operator from the sum, namely the identity r = ( 0, 0,. . .). The
number of three-point structures n(OO1) is of course 1 and the OPE coef�cients are
unit normalized. So the vector of matrices degenerates to an ordinary vector and (6.11)
can be rewritten as

Vi ,1 + å
r 6= 0

~l T
r � Vi , r �~l r = 0 , Vi ,1 :=

�
Vi ,(0,0,...)

�

1,1
. (6.12)

This form of the crossing equations is very useful. It is part of a very general class
of problems that go under the name of convex optimization. More precisely, it is a
linear programming problem if the matrices F� are all one by one and is a semide�nite
programming problem otherwise. Finding exact or approximate solutions to (6.11)
is often out of the question, however there are several techniques to extract useful
information from the CFT and they will all be addressed in the following section.

Before concluding this section let us introduce a convenient set of variables that replace
u and v:

u =
x2

12x2
34

x2
13x2

24

= zz̄ , v =
x2

14x2
23

x2
13x2

24

= ( 1 � z)(1 � z̄) . (6.13)

In these variables the permutation p 13 sendsz, z̄ ! 1 � z, 1 � z̄. The point z = z̄ = 1
2 is

special because it corresponds to a crossing symmetric con�guration

,
x2

12 = x2
23 = x2

34 = x2
41 = 1 ,

x2
13 = x2

24 = 2 .
(6.14)

It also provides the best compromise for the convergence of both OPE channels, namely

hOOOOi and hOOOOi . Indeed the former (the “ s” channel) converges well for z, z̄ � 0
and the latter (the “ t” channel) converges well for z, z̄ � 1.

We warn the reader that often we will switch from one set of variables to the other. When
writing, for instance, Ga,b

i, r (z, z̄) we implicitly mean Ga,b
i, r (u(z, z̄), v(z, z̄)) .

6.2 Semide�nite programming

The �rst step to address (6.11) is to discretize the equations. This is done by Taylor
expanding the functions F� (z, z̄) that appear in the crossing equations around a �xed
point, retaining only a �nite number of coef�cients. As discussed before, the best choice
is the point z = z̄ = 1/2. This still leaves an in�nite sum over D and ` . The sum is thus
truncated to a maximal value of the spin and the Taylor coef�cients (¶n

z¶m
z̄ F(z, z̄)) jz= z̄= 1

2
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are approximated by rational functions of D. After the truncation we end up with a
system of equation of the form

å
r

å
a,b

( l r )a(VI , r )a,b( l r )b = � VI ,1 , 8 I . (6.15)

The index I runs over all independent four-point structures times the number of Taylor
coef�cients kept in the discretization of F� (z, z̄). The right hand side of the equation
is obtained from the vector Vi ,1 of the identity (6.12). The strategy of the conformal
bootstrap is to try and rule out possible candidate solutions to (6.11)by showing that
they lead to a contradiction. One typically starts from a set of assumptions that depend
on a small number of parameters and tries to “carve out” regions in parameter space.
The contradictions may be found with the following general strategy: suppose that there
exists a linear functional aI such that

å
I

aI VI , r � 0 , 8 r 2 f assumptionsg ,

å
I

aI VI ,1 = 1 .
(6.16)

This looks like an in�nite set of constraints because we have not restricted the conformal
dimensions D to a �nite set, therefore r may assume a continuum of values. Recall,
however, that the functions appearing in V are rational and their denominator is known.
Thus one simply has to impose positivity on a polynomial in D over some interval,
typically of the form [D0, ¥ ). This can be done rigorously with a computer since the
polynomials can be implemented as matrices. With this approach, even the case with a
single correlator requires a semide�nite programming setup. If there exists such an a,
then, by contracting aI with (6.15), one would obtain 0 6 å r l T

r (a � Vr ) l r = � 1, namely
a contradiction. There is a nice geometrical interpretation of this fact. We are simply
asking whether the vector � V1 lies or not in the convex hull formed by the non-negative
linear combinations of the vectors Vr .4 If the answer is no, then we will never be able to
satisfy (6.12)and the assumptions we made are inconsistent. This also means that there
is a plane that separates the vector� V1 from all other vectors Vr . The normal to this
plane will have a non-negative scalar product with all Vr 's and a negative scalar product
with � V1 . Therefore the plane de�nes the functional a. This is shown in Figure 6.1.

There is an important detail that we have glossed over: until now, the formulas we
presented implicitly assumed that the operators Or were non degenerate. Meaning
that there is only one operator per representation r = ( D, ` , . . .). This is generically
true, but we do not want to rely on this fact. For instance, we want to be agnostic
about possible additional global symmetries that have not been accounted for in the
bootstrap equations. In order to �x this issue, let us notice that the operators that share

4For this geometrical picture, let us assume that Vr is a vector of one by one matrices and thus the sum
is of the form å l 2

r Vr with l 2
r > 0.
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(a) The identity block is inside
the convex hull of the conformal
blocks.

(b) The identity block is outside the
convex hull.

(c) The identity block lies on
the boundary of the convex
hull.

Figure 6.1. Different scenarios for the bootstrap equation. In case (b) there is a plane that
separates the identity from the other blocks, which de�nes a functional a. In case(c) some blocks
lie on the plane and thus the functional has zeros.

the same quantum numbers r enter in the sum (6.5)with the same conformal blocks.
This motivates de�ning the following quantity, 5

Pb,a
r := å

Or

l (a)
OOO r

l (b)
Or � OO , (6.17)

where we sum over all operators in the same representation r . It is always possible to

de�ne the three-point function basis so that l (a)�
OOO r

= l (a)
Or � OO , which in turn implies

that
Pr � 0 . (6.18)

Namely the P's are positive semide�nite hermitian matrices. This is fundamental for
obtaining a semide�nite programming problem. The crossing equation (6.11)now reads

å
r

tr
�
Pr Vi , r

�
= � Vi ,1 . (6.19)

We can now use the same strategy as before. We look for a functional that satis�es (6.16)

5Recall that we are assuming all external operators to be the same for simplicity. At the end, we will
only need to consider this case.
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and if we �nd one we obtain the following contradiction 6

� 1 = å
r

tr
�
Pr a[Vi ,r ]

�
> 0 . (6.20)

The equality holds by the linearity of a and the inequality follows from the fact that the
trace of a product of two semide�nite positive matrices is non-negative. 7

The problem now consists in implementing a numerical algorithm that searches for a
functional a with the property described in (6.16). To this end, we use the program
sdpb [162, 171] which is a semide�nite program solver optimized for the conformal
bootstrap.

According to the kind of assumptions that we make, the bootstrap problems that we
need to solve can be quite different. We will now explain the most common approaches.
First we start with the assumptions of the type

All operators in a representation(D, ` ) have conformal dimensionD > D` ,

where D` is a function that we can choose. In the most common case it is

D`? = D? ,

D` = Dunitarity
` , 8 ` 6= `? ,

(6.21)

for a chosen representation `? and a real number D?. We de�ned Dunitarity
` as the unitarity

bound (1.7) for the representation with spin ` .8 The goal in this kind of problem is to
�nd an upper bound on D` . This can be done by a simple binary search. Namely one
�xes two values Dmax and Dmin , which are respectively disallowed and allowed. Then,
iteratively, the interval is divided in half and either Dmax or Dmin is updated according
to whether the middle point results allowed or disallowed by the bootstrap.

Another setup that can be used consists in assuming a gap for a certain class of operators,
just as in the previous case, and further assuming the following:

The lightest operatorO with spin `? has conformal dimensionD?. Meanwhile all
other operators in the same representation haveD > D0 > D?.

6We denote as a[VD,` ] the action of the functional in the in�nite dimensional space of functions. It
reduces to å I aI VI , r when we discretize and truncate the equations.

7This can be seen by applying a Cholesky decomposition to both matrices. Namely, if A, B � 0 then
there exist L, M so that A = L†L and B = M †M. Therefore

tr (AB) = tr (LL†M †M ) = tr (( ML )( ML )†) > 0 .

8Since we only consider unitary theories, the assumption D > Dunitarity is always the default one.
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Chapter 6. Conformal bootstrap

In this case we cannot rely on a binary search and we need to scan over all values of
D? between unitarity and D0. Moreover, if the representation under consideration has
more than one three-point structure, we can get more stringent bound by considering a
variation of the bootstrap problem. Normally we should impose

a[VD?,`?] � 0 , a[VD,`?] � 0 , 8 D > D0. (6.22)

This is a suf�cient condition for getting a contradiction, but it is not necessary. We
can contract the matrix ~V with unit vectors directed in an arbitrary direction 9 n̂q =
(sin q, cosq) and search for aq that makes the result positive. Then, if we chose a
suf�ciently dense set of q 2 [0,p ) and found a functional for all those values, we can
conclude that the point is disallowed. We thus use the stronger formulation of the
problem

aq[n̂T
q � VD?,`? � n̂q] > 0 , 8 q 2 [0,p ) . (6.23)

In this particular formulation, however, we are also imposing that the operator is non-
degenerate.

Next, we would like to discuss a slightly different setup that allows us to �nd upper
and lower bounds on OPE coef�cients without having to make multiple runs of the
semide�nite solver. Indeed sdpb can also maximize a given objective vector, subject
to certain semide�nite positiveness conditions. Suppose we are interested in the OPE
coef�cients of a certain operator in the representation 10 r ? = ( D?, `?). The crossing
equations can be rewritten to isolate the contribution of that operator

j l r ? j2 n̂T
q � Vr ? � n̂q + å

r 6= r ?

l T
r � Vr � l r = � V1 . (6.24)

If there is only one tensor structure the unit vectors are trivial (i.e. n̂ = 1). Then we
search for functionals a satisfying

a[n̂T
q � Vr ? � n̂q] = � 1 = : s,

a[Vr ] � 0 , 8 r 6= r ? ,

a[V1 ] = � B,

(6.25)

and minimize the value of B. This yields an upper or lower bound on j l r ? j2, namely

j l r ? j2 6 B, if s = 1 ,

j l r ? j2 > � B, if s = � 1 .
(6.26)

9We restrict to the simple case where the matrices are at most two by two. In the more general case
clearly one would have to consider a vector in the unit n-sphere and thus introduce more angles.

10r ? is an arbitrarily chosen representation. It should not be confused with r � , which is the conjugate
representation of r .
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Finally we brie�y introduce the extremal functional method. It is a technique that can
be used to extract an approximation of the spectrum (conformal dimensions and OPE
coef�cients) of the theory that lives at the boundary of an allowed region in parameter
space. First notice that the functional a takes its normalization from the condition
a[Vshort ] = 1. We can relax this to a[Vshort ] > 0 while still getting a contradiction when a
is found. The boundary of this region in functional space is given by all a¶ that satisfy

a¶[Vr ] � 0 8 r , a¶[V1 ] = 0 . (6.27)

This implies that the only terms that can contribute to the sum of a consistent theory
living on the boundary must satisfy

a¶[n̂T
q � Vr � n̂q] = 0 . (6.28)

In the geometric interpretation we explained earlier, this situation would correspond to
Figure 6.1c. For simplicity, let us consider only the simpler case where all Vr are one by
one matrices. The equality above together with the positivity constraint implies that the
function f` de�ned by

f` (D) := a¶[VD,` ] , (6.29)

has even order zeros (typically double zeros) only on those values of D that belong to the
physical spectrum of operators with spin ` . Naturally in a numerical computation we
will only �nd a �nite number of such zeros. Then, in order to �nd the OPE coef�cients,
we can truncate the crossing equation to that �nite number of operators and solve the
linear system of equations

å
D,`2f f` (D)= 0g

V(D,` ) a(D,` ) = � V1 , (6.30)

with ar = l 2
r . If we �nd a forbidden point in parameter space very close to the allowed

region,11 the functional a that excludes it will be a very good approximation of a¶. We
can therefore use it to de�ne the function f` (D) and extract the spectrum. For the results
to be meaningful one needs to both be very close to the boundary and to observe that
the position of the boundary remains stable if the size of the numerics is increased.

6.3 Four-point functions

6.3.1 Conformal frame basis

In (6.4) we introduced the four-point tensor structures T i . In this section we will
construct them explicitly for four dimensional CFTs. There are two possible approaches,

11This can be done by either running a binary search to very high accuracy or by extremizing an OPE
coef�cient with the methods explained before.
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one is to use the embedding formalism as explained at the end of Subsection 1.2.2, the
other is to �x the coordinates to the conformal frame introduced in Section 1.3. The
�rst approach is convenient if we want to act on the tensor structures with differential
operators because it is manifestly covariant. The ability to do so will be essential for the
computation of conformal blocks, as we will explain in Subsection 6.4.2. The drawback
is that, as we explained before, it is very hard to obtain a list of linearly independent
tensor structures due to the complexity of the identities that arise in the in embedding
space for four points.

The situation is opposite in the conformal frame approach. Indeed, once the frame is
�xed, it suf�ces to list structures that are singlets under the stability group H (1.32).
In the case of four points in four dimensions this group is SO(2), which is very easy
to deal with. Furthermore, conformal frame tensor structures are manifestly linearly
independent and transform simply under permutation and crossing. On the other hand,
covariance is lost and the action of differential operators on a �xed frame is much harder
to obtain.

Let us then adopt the conformal frame approach and then explain how to translate
between the two. We will follow [91]. In four dimension the conformal frame reads

xm
1 = ( 0, 0, 0, 0) ,

xm
2 =

� 1
2(z � z̄), 0, 0,1

2(z + z̄)
�

,

xm
3 = ( 0, 0, 0, 1) ,

xm
4 = ( 0, 0, 0,¥ ) .

(6.31)

The last point being set to in�nity means that we take x4 = ( 0, 0, 0,L), rescaleO4 !
L2D4 O4 and that let L ! ¥ . With this choice the stability group H = SO(2) = U(1) is
generated by M 12. This situation is analogous to the one encountered in Section 4.6. We
can write the polarizations as

ha
i =

 
mi

pi

!

, h̄ �a
i =

 
pi

mi

!

. (6.32)

The SO(2) charge of the complex numbers m, m̄, p, p̄ is given by

Q[p] = Q[p] = 1 , Q[m] = Q[m] = � 1 . (6.33)

The most generic contribution to a four-point function in conformal frame will be a
function of z and z̄, which we called fi in (6.4), times a function of the polarizations. This
means that the tensor structures are monomials in p, p, m, m in such a way that their
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total Q charge is zero, namely they are H singlets. We can represent them as follows12

T i =

"
q1 q2 q3 q4

q̄1 q̄2 q̄3 q̄4

#

:=
4

Õ
i= 1

p� qi + ` i /2
i mqi + ` i /2

i m� q̄i + ¯̀
i /2

i pq̄i + ¯̀
i /2

i , (6.34)

where the chargesqi and q̄i range in

qi 2
�

�
` i

2
, . . . ,

` i

2

�
, q̄i 2

�
�

¯̀
i

2
, . . . ,

¯̀
i

2

�
,

4

å
i= 1

(qi � q̄i ) = 0 . (6.35)

By construction these tensor structures are all linearly independent and it is trivial to
enumerate them. Going from embedding to conformal frame is also very straightforward.
It suf�ces to perform the Poincaré projection de�ned in (1.21)and (1.25)followed by
setting the coordinates as in (6.31). The only bit of computation needed is the limit
L ! ¥ for the fourth point. This is however easily done thanks to the scaling shown in
(1.24). The rescaled operatorO4 reads

L2D4 O4(X, S, S) = ( L2)D4+ 1
2 (`+ ¯̀) L� ` L� ¯̀ O4(X, S, S) = O4(X/ L2, S/ L, S/ L) . (6.36)

This means that we simply have to make the replacements

X4 ! lim
L! ¥

X4/ L2 , S4 ! lim
L! ¥

S4/ L , S4 ! lim
L! ¥

S4/ L , (6.37)

which are easily computed.

Translating the other way around is certainly more challenging as the procedure is
bound to be ambiguous: in embedding space there are non trivial identities between
structures. However, for any speci�c case, once a basis is �xed one can easily write a
dictionary between the two formalisms.

We should point out that going to embedding space is not necessary, even if we want to
act with derivatives on a four point function. It is perfectly possible to do it in conformal
frame, even though it is far more involved. Due to conformal invariance it is always
true that the sum of the LMN generators annihilates the four-point function

� 4

å
i= 1

Li , MN

�
hO1(x1)O2(x2)O3(x3)O4(x4)i = 0 , (6.38)

Li ,MN being the conformal group generator at point i. These are 15 differential equations
that relate the various ¶/ ¶xm

i derivatives among each other. One of them imposes the
H invariance and so does not contain xm

i derivatives in conformal frame. On the other
hand, the other 14 are suf�cient to express the derivatives with respect to ¶/ ¶xm

i in

12By convention, in conformal frame we include the conformally covariant prefactor K4 in the de�nition
of the fi . E.g. (x2

12x2
34)

� Df would result in a contribution (zz̄) � Df in the functions fi . It is important to keep
this in mind when translating to embedding or position space.
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terms of only ¶/ ¶x0
2, ¶/ ¶x3

2. Therefore we can use(6.38)to convert any derivative into
derivatives with respect to z and z̄. The spinor derivatives do not pose any problem as
the polarizations are not affected by going to conformal frame. Clearly this procedure is
very cumbersome but it can be automated with, for instance, Mathematica.

6.3.2 Enhanced symmetry

This discussion is based on Appendix D of [82]. The stability group of the conformal
frame H can be enhanced if the points are put in a special con�guration. To see this,
imagine that in Figure 1.2 three points are chosen to be collinear. Then the plane that
they span collapses to a line and the stability group is enlarged by the rotations that
keep that line �xed. In the case at hand, namely four points in four dimensions, the
special con�guration is the one that gives z = z̄, for which H is enhanced to SO(3).13

Let us denote the enhanced group as bH.

The representations of bH appearing in the correlator are given by

ResSO(4)
SO(3)

4O

k= 1

r k . (6.39)

And, when z = z̄, only the singlets survive. This means that the functions fi that are not
associated to singlets will satisfy the property

lim
z̄! z

fi (z, z̄) = 0 () T i /2 SO(3) singlet . (6.40)

But we can say more about it: we can organize the tensor structures based on how fast
they go to zero as z̄ ! z. The group bH acts on the �rst three coordinates of xm

i . Therefore,
by looking at the de�nition of xm

2 in (6.31), one can see thatya = ( 1
2(z � z̄), 0, 0) is an

SO(3) vector and 1
2(z + z̄) is a scalar. This implies that we can expand any function fi as

fi (z, z̄) =
Jmax

å
J= 0

fi (z + z̄)a1...aJ ya1 � � � yaJ , (6.41)

where J is the SO(3) spin and Jmax is the maximal spin appearing in (6.39). This ex-
pansion does not tell us much about fi in general, but it becomes very useful if the fi 's
transform in a de�nite way under bH. The basis that achieves this can be found by acting
with the SO (3) Casimir operator

CSO(3) = ( L01)2 + ( L02)2 � (L12)2 , (6.42)

on the structures fi , and then diagonalizing the resulting matrix. The eigenfunctions

13As we remarked in footnote 6, the actual stability group would be O(2), which is then enhanced to
O(3). For the purpose of this discussion we will ignore this detail.
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of the Casimir will have de�nite spin Ji and thus they can be written as a symmetric
traceless tensor of rank Ji contracted with the vectors ya. More concretely, if one has

CSO(3) fi = C k
i fk , M � C � M � 1 = diag( Ji ) , (6.43)

then the new basis is f̂i = M k
i fk. It follows that f̂i has spin Ji and we can write it as

f̂i (z, z̄) = f̂i (z + z̄) i1...i J yi1 � � � yi J , (6.44)

which in turn implies

f̂i (z, z̄) µ (z � z̄) Ji , f̂ ( z̄, z) = ( � 1) Ji f̂ (z, z̄) . (6.45)

With this knowledge one can obtain a series of smoothness conditions on the functions fi
at z = z̄. It is important to include in the bootstrap problem also this class of constraints.

6.4 Conformal blocks

The most important elements needed to study the crossing equations (6.11)are obviously
the conformal blocks Ga,b

i, r . They are completely determined by the conformal group, but
they can be very dif�cult to compute. The main idea of the method is to de�ne a set of
conformally covariant differential operators that add spinning indices to a correlation
function. These operators applied to a conformal block will increase the spin of its
external operators. Therefore a small set of “seed” blocks are suf�cient for knowing all
conformal blocks of any external spin. We will present this concept more precisely along
the way. For now, let us discuss the simplest possible seed block: the conformal block of
four external scalars exchanging a symmetric traceless primary of spin ` .

6.4.1 Conformal blocks of external scalars

The de�nition of conformal block given in (6.3) is rather cumbersome even for the
simplest case of external scalar operators. One would need to compute the functions
Cr (¶m, xi j , ¶h) by matching them with three-point function and then evaluate the product
of two Cr 's and the two point function hOr � Or i . Nevertheless, this is the way the blocks
were �rst computed [94]. Later the same authors found a simpler method that requires
solving a second order differential equation: the Casimir equation [95]. Conformal
blocks can be schematically represented as a sum over all descendants ofOr

K4 Gr � å
A,B2O r

hf 1f 2A i gABhBf 3f 4i , (6.46)

where K4 is the prefactor de�ned in (1.18)and gAB is the inverse of the matrix of two-
point functions gAB = hABi . Each state in a representationr = ( D, ` ) is an eigenvector
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of the Casimir differential operator. In embedding coordinates this reads

L2jOi := 1
2LMN LMN jOi = CD,` jOi ,

with

LMN := i
�

XM
¶

¶X N � XN
¶

¶X M

�
, CD,` = D(D � d) + `(` + d � 2) . (6.47)

Naturally, since the correlators are conformally invariant, å n
i= 1 Li applied on a n-point

function gives zero, as we noted in (6.38). Therefore the Casimir at points 1 and 2 applied
on (6.46) gives preciselyCD,` . We thus obtain the Casimir equation

(L1 + L2)2 (K4 Gr ) = CD,` K4 Gr . (6.48)

After rewriting it in terms of the z, z̄ variables we are left dealing with a second order
partial differential equation. With some rede�nitions, (6.48)can be seen to factorize
when d is an even integer. In those cases it is possible to �nd a closed form solution
in terms of 2F1 hypergeometric functions. Whereas if d is odd no closed form solution
exists. Without dwelling to much on the details, we will present the solution for d = 4.
It is expressed in terms of a function kb

kb(x) := xb
2F1

�
b � D12

2 , b + D34
2 ; 2b; x

�
,

Gr (z, z̄) =
1

(� 2) `
zz̄

z � z̄

�
k D+ `

2
(z) k D� ` � 2

2
( z̄) � (z $ z̄)

�
,

(6.49)

where Di j = Di � Dj is the difference of the conformal dimensions of the external �elds.

For numerical applications we need to �nd an ef�cient and precise approximation of the
derivatives of the conformal blocks at z = z̄ = 1/ 2 that consists in rational functions
in D. The Casimir equation is particularly useful in that regard because it allows us
to know all derivatives of the conformal block at a given point once the function and
its �rst derivative are known at that point. However, using the expression (6.49)for
evaluating and approximating the blocks is not the most convenient approach. Other
faster methods, which we will not review, are available in the literature. The interested
reader may consult the reviews cited at the beginning of this chapter or the references
at the end of Subsection 1.2.1. In what follows we will only worry about “spinning up”
the scalar blocks, assuming that we already have an ef�cient method for evaluating and
approximating them.

6.4.2 Differential operators in embedding space

In this subsection we will brie�y review the work done in [90]. We are thus focusing
in four dimensions and making use of the embedding space formalism (which we
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introduced in Section 1.2.2). Unlike the previous chapters, we will from now on denote
spin labels as (` , ¯̀) instead of ( j, â̄).

Before diving into the de�nition of the differential operators, let us understand from the
representation theoretic point of view what can we gain from them. Let us de�ne for
convenience the conformal partial waves Wa,b

r (x1, . . . ,x4) as

Wa,b
r (x1, . . . ,x4) :=

n1234

å
i= 1

T i (x1, . . . ,x4) Ga,b
i, r (u, v) , (6.50)

where we also used a shorthand xi = ( xi , hi , h̄i ). Conformal partial waves can be written
schematically in the same fashion as (6.46). More precisely, it is possible to express
them as a certain pairing of three-point tensor structures [103,105], which is sometimes
denoted by

Wa,b
r ,O1O2O3O4

(xi ) = ta
O1O2Or

(x1, x2, x0) ./ tb
Or � O3O4

(x0, x3, x4). (6.51)

One may think of the operation ./ roughly as performing an integral over the coordinates
and summing over polarizations of x0.14 Its precise de�nition will not be important to
us.

So, suppose we have a differential operator D 12 that takes hf 1f 2Oi to hO1O2Oi , where
O1 and O2 are symmetric traceless tensors with nonzero spin.15 We can use it to write

Wa,b
r , O1O2O3O4

(x1, . . . ,x4) = D (a)
12 D (b)

34 W1,1
r , f 1f 2f 3f 4

(x1, . . . ,x4) , (6.52)

where we used the fact that there is only one tensor structure for hff Oi . The indices a, b
on D i j will be made clear later. One might naîvely say that, due to this, the only seed
block needed is the scalar one. After all we can generate all partial waves starting from
the one with external scalars. This would be wrong because the differential operators
cannot act on the exchanged operator16 and therefore we can only do the trick when the
three-point function hf 1f 2Oi is nonzero. This is the case only for symmetric traceless
operators. The correlator with the lowest possible spin that contains an operator of spin
(` , ¯̀) with p = j` � ¯̀j is

hf F(p)Oi or hf F̄(p)Oi , (6.53)

14Note that the ./ notation obscures the fact that the normalization of conformal blocks also implicitly
depends on the normalization of the two-point functions.

15The operators O1 and O2 should not be thought of as real operators of the theory. The sense in which
D12hf 1f 2Oi = hO1O2Oi holds is that the left hand side has the functional form of a conformal correlator
with the quantum numbers of the operators in the right hand side. Equivalently, it may be seen as a relation
between tensor structures, without any reference to physical correlators.

16Actually this is not correct: it is possible to act on the exchanged primary with the aid of the so-called
weight shifting operators [103] by using the crossing equations that they satisfy. We will not use this method
in the thesis and so we will not discuss it any further.
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where F(p) is an operator of spin (p, 0) and F̄(p) of spin (0, p). Furthermore, for these
operators the three-point structure is unique, so we do not have a, b labels. Then, for
every p, we de�ne the partial waves 17

Wseed
r := W1,1

r , f 1F(p)
2 f 3 F̄(p)

4

. (6.54)

These together with the block of four external scalars complete the list of all needed
seeds. We could have equivalently chosen seeds with two F(p) and two scalars or two
F̄(p) and two scalars in place of (6.54). We will now address the problem of obtaining
general partial waves from the seed ones. In the next subsection we will show how
to compute the seeds. The �nal step would be to go from partial waves to conformal
blocks, but this is a relatively trivial task as it only requires to expand Wr in the basis of
the T i .

Now that we have our objective clear we can start writing down the differential operators
D i j . They will be constructed by simpler building blocks which modify the spin by
the smallest possible amount. We will de�ne them for the �rst two point. The other
operators are obtained with the obvious replacement 1 ! 3, 2 ! 4. Let us list these
building blocks. The simplest ones that we can construct are

p
X12 , (� 1

2; � 1
2 j0, 0; 0, 0) ,

I12 , (� 1
2; � 1

2 j0, 1; 1, 0) ,

I21 , (� 1
2; � 1

2 j1, 0; 0, 1) .

These are just multiplicative operators. Next to them we wrote the shifts that they make
on the conformal dimensions and spins d := ( dD1; dD2jd`1, d¯̀

1; d`2, d¯̀2) (for example,
d`1 means `new

1 � `old
1 ). The same notation will be used for what follows. At �rst order

in the number of derivatives we have

D12 =
1
2

S1SM SN S1

 

X2M
¶

¶X N
1

� X2N
¶

¶X M
1

!

, (0; � 1j1, 1; 0, 0) ,

D21 = D12j1$ 2 , (� 1; 0j0, 0; 1, 1) ,

eD12 = S1X2SN S1
¶

¶X N
2

+ 2I12S1a
¶

¶S2a
� 2I21S

a
1

¶

¶S
a
2

, (� 1; 0j1, 1; 0, 0) ,

eD21 = eD12j1$ 2 , (0; � 1j0, 0; 1, 1) .

(6.55)

The operators listed so far do not change the overall difference between ` and ¯̀. Here

17The dependence onp of the left hand side is in r = ( D, ` , ¯̀) with p = j` � ¯̀j. The dependence on the
external dimensions is kept implicit for brevity.
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are some operators that change it by two:

d12 = S2X1
¶

¶S1
, (� 1

2; � 1
2 j0, � 1; 1, 0) ,

d21 = d12j1$ 2 , (� 1
2; � 1

2 j1, 0; 0,� 1) ,

d̄12 = S2X1
¶

¶S1
, (� 1

2; � 1
2 j � 1, 0; 0, 1) ,

d̄21 = d̄12j1$ 2 , (� 1
2; � 1

2 j0, 1;� 1, 0) .

(6.56)

There are also other operators that change the spins in a similar way, but they can be
shown to be redundant. Lastly, we need an operator to decrease the spin and change the
difference `1 � ¯̀

1 � (`2 � ¯̀2). This is necessary in order to connect three-point functions
with one operator of spin (` , ¯̀) to those with an operator of spin (` � 1, ¯̀ � 1), while
keeping the other operators unchanged. It is suf�cient to introduce the following second
order differential operators

r 12 = ( X1X2)a
b

¶2

¶S
a
1¶S2b

, (� 1
2; � 1

2 j0, � 1; � 1, 0) ,

r 21 = r 12j1$ 2 , (� 1
2; � 1

2 j � 1, 0; 0,� 1) .

(6.57)

One of the crucial aspects of these operators is that there is generally more than on way
to connect two three-point functions of different spins. These different ways can be used

to create a many-to-one mapping between the space of differential operators D (a)
12 and

the three-point tensor structures ta
O1O2O . That means that we can de�ne a basis such that

D (a)
12 t f F(p) O(x1, x2, x3) = ta

O1O2O(x1, x2, x3) . (6.58)

Typically the most natural basis from the differential operators perspective is not a very
convenient one in terms of embedding space structures, and vice versa. This is not
important as one can always work in the best basis for the purpose at hand and then
translate from one to the other when needed. The most general differential operator
reads

D (a)
12 = ( I12)m12( I21)m21D m13

12 D m23
21

eD j1
12

eD j2
21 dk1

12 dk2
21 d̄ k̄1

12 d̄ k̄2
21 r r

12 . (6.59)

This differential operator should be applied on a three-point structure of a scalar, an
operator of spin (p = j` � ¯̀j, 0) and an operator of spin (` , ¯̀) with conformal dimensions
given by D0

1, D0
2 and D.18 The result is a structure with spins (`1, ¯̀

1),(`2, ¯̀2),(` , ¯̀) and

18If we want to act on a correlator with an operator of spin (0, p) at the second point it suf�ces to replace
r 12 by r 21.
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conformal dimensions D1, D2 and D given as follows

8
>>>>>>>>>>><

>>>>>>>>>>>:

D1 = D0
1 � m23 � j1 � 1

2(m12 + m21 + k1 + k2 + k̄1 + k̄2 + r) ,

D2 = D0
2 � m13 � j2 � 1

2(m12 + m21 + k1 + k2 + k̄1 + k̄2 + r) ,

`1 = j1 + k2 � k̄1 + m13 + m21 ,

¯̀
1 = j1 + k̄2 � k1 + m13 + m12 � r ,

`2 = j2 + k1 � k̄2 + m23 + m12 � r + p,

¯̀2 = j2 + k̄1 � k2 + m23 + m21 .

(6.60)

The basisD (a)
12 t f F(p) O is often referred to as the differential basis, while the basis given in

(1.28)is called the OPE basis. Mind that we are not claiming that the solutions to (6.60)
are in one-to-one correspondence with the elements in the OPE basis. There might still
be some redundancies. We will be content with de�ning a possibly overcomplete basis
here. A general prescription for when the �rst two operators are symmetric traceless is
given in [90]. 19

We end this subsection with a technical remark: often it is necessary to replace eD with
D + eD in the de�nition (6.59). This yields a different but still perfectly valid basis.
The reason for doing so is that in the former case the matrix that translates from the
differential basis to the OPE basis will contain elements with poles for unitary values of
D, ` and ¯̀. These are unphysical poles which should be removed.

6.4.3 Seed partial waves

We have shown in the last subsection that a general partial wave for the exchange of
r = ( D, ` , ¯̀) in the correlator hO1O2O3O4i can be obtained by acting on the “seed”
partial wave with some conformal differential operators

Wa,b
r ,O1O2O3O4

= D (a)
12 D (b)

34 Wseed
r , (6.61)

Before giving the expressions for the seeds, we need to write down their four point-
function. The partial wave decomposition reads

hf 1(x1)F(p)
2 (x2, h2)f 3(x3) F̄(p) (x4, h̄4)i

= å
q= p,p� 2,...

å
r =( D,` ,`+ q)

( l 2
r W1,1

r , f 1F(p)
2 f 3F̄(p)

4

+ ( r $ r � )) .
(6.62)

19It should be stressed that the prescription in [90] is de�ned so that it works in general (when the �rst
two operators are symmetric traceless) but it is not necessarily optimized for minimizing the number of
terms or the order of the differential operators. Such an optimization is not necessary from a theoretical
perspective but it may make a signi�cant difference in the numerical computation of the blocks.
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We are interested in the waves for q = p. Next we want to decompose the partial
waves in the tensor structures T i . For these minimal four-point functions, listing the
tensor structures is not a dif�cult problem. Furthermore we want to be able to act with
differential operators on them. As per the discussion at the beginning of Section 6.3, it is
more convenient to use the embedding formalism. There are in total p + 1 structures
given by

Wseed
D, (` ,`+ p) = K4

p

å
e= 0

G(p)
D,` ;e(z, z̄) ( I42)e( I42

31)p� e ,

Wseed
D, (`+ p,` ) = K4

p

å
e= 0

G(p)
D,` ;e(z, z̄) ( I42)e( I42

31)p� e ,

(6.63)

where K4 is the prefactor

K4 = X
� p

4 � 1
2 (D1+ D2)

12 X
� p

4 � 1
2 (D3+ D4)

34

�
X24

X14

� � p
4 + 1

2D12
�

X14

X13

� � p
4 + 1

2D34

. (6.64)

The functions G(p)
D,` ;e, G(p)

D,` ;e are the seed conformal blocks and they will be the object
of study of this subsection. In what follows we will suppress their dependence on
D and ` for brevity. We will review the computation of [172] which uses the method
of the Casimir equation. We already explained the idea of the Casimir equation in
Subsection 6.4.1. The complications that arise in the spinning case are two: the equation

will actually be a system of partial differential equations relating G(p)
e for different values

of e. Moreover, now the operator LMN has also a non-vanishing spin part

Li , MN = i
�

X iM
¶

¶X iN
� X iN

¶
¶X iM

+ Si SMN
¶

¶Si
+ Si SMN

¶

¶Si

�
. (6.65)

The eigenvalue for a representation (` , ¯̀) is given by

CD,` , ¯̀ = D(D � 4) + 1
2

�
` (` + 2) + ¯̀( ¯̀ + 2)

�
. (6.66)

After applying this operator on (6.63)and requiring that the coef�cient of each tensor
structure vanishes20 we obtain this system of second order partial differential equations

�
D(ae,be;ce)

2+ p � 1
2(CD,`+ p,` � #p

e)
�

G(p)
e + Ap

e zz̄ L(ae� 1) G(p)e� 1 + BeL(be+ 1) G(e)
e+ 1 = 0 ,

(6.67)
with the de�nitions

ae :=
D2 � D1

2
+

p
4

, be :=
D3 � D4

2
�

p
4

+ p � e, ce := p � e, (6.68a)

#p
e := 3

4 p2 � (1 + 2e)p + 2e(2 + e) , Ap
e := 2(p � e+ 1) , Be :=

e+ 1
2

, (6.68b)

20This is not at all a straightforward step because the action of the Casimir operator on the T i generates
many invariants which are linearly dependent. It is thus necessary to apply the various relations in
embedding space to eliminate them.
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L(m) := �
1

z � z̄
(z(1 � z)¶z � z̄(1 � z̄)¶z̄) + m, (6.68c)

D (a,b;c)
z := z2(1 � z)¶2

z �
�
(a+ b+ 1)z2 � cz

�
¶z � abz, (6.68d)

D(a,b;c)
e := D (a,b;c)

z + D (a,b;c)
z̄ + e

zz̄
z � zb

((1 � z)¶z � (1 � z̄)¶z̄) . (6.68e)

In (6.67)it is understood that G(p)
� 1 = G(p)

p+ 1 = 0. The equations for G(p)
e are analogous.

It is interesting to notice a nearest-neighbor structure in the Casimir equation. Namely

every block G(p)
e only couples to its neighbors G(p)

e� 1.

In order to attempt solving this system we need some guidance. In particular, we can
bene�t from knowing the asymptotic behavior of the solution as z, z̄ ! 0. This is not
easy to obtain from the equations themselves, but there is an alternative way to obtain
the blocks which is viable for small values of p, namely the shadow formalism [104,105].
By studying the asymptotic behavior of the solutions obtained with this latter method
we can extrapolate a pattern for all p and then we can use that knowledge to come up
with an ansatz. We will not show here the shadow formalism solution nor the general
asymptotic behavior and refer the reader to [172].

Figure 6.2. Octagon Oct(p)
e for p = 4 and e= 3 representing the values of m, n for which ce

m,n is
nonzero.

The solution can be parametrized by a matrix of coef�cients ce
m,n for G(p)

e and c̄e
m,n for

G(p)
e that are nonzero only for m and n belonging to an octagon region on the plane

Oct(p)
e � Z 2 that we will describe shortly. In terms of these coef�cients the solution
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reads

G(p)
e (z, z̄) =

�
zz̄

z � z̄

� 2p+ 1

å
m,n2Oct(p)

e

ce
m,n F (ae,be;ce)

b1+ m,b2+ n(z, z̄) , (6.69a)

G(p)
e (z, z̄) =

�
zz̄

z � z̄

� 2p+ 1

å
m,n2Oct(p)

p� e

c̄e
m,n F (ae,be;ce)

b1+ e+ m,b2+ e+ n
(z, z̄) , (6.69b)

where we de�ned

b1 :=
D + `

2
+

p
4

, b2 :=
D � `

2
+

p
4

,

b1 :=
D + `

2
�

p
4

, b2 :=
D � `

2
�

5p
4

� 1 ,

k(a,b;c)
b (z) := zb

2F1(a+ b, b+ b; c+ 2b; z) ,

F (a,b;c)
b1,b2

(z, z̄) := k(a,b;c)
b1

(z) k(a,b;c)
b2

( z̄) � (z $ z̄) .

(6.70)

We have already encountered kb in (6.49)for the case of c = 0. The octagonOct(p)
e on

which the coef�cients ce
m,n lie is de�ned by the boundaries

� p 6 n 6 e+ p, e� 2p 6 m 6 p,

e� 2p 6 m + n 6 p + e, � 2p 6 m � n 6 p.
(6.71)

and it contains N (p)
e = p(4p+ 3) � e2 + ep+ 1 points, which is easily seen to be invariant

under e ! p � e. The shape of the octagon can be seen in Figure 6.2. The coef�cientsce
m,n

and c̄e
m,n may be obtained by means of a recursion relation, which we will not reproduce

here. The growth in the number of coef�cients together with the complexity of the
recursion relation make this task very computationally demanding. Luckily, however,
the coef�cients for p up to four have been already computed and can be found in this
repository: gitlab.com/bootstrapcollaboration/CFTs4D . Those are all we need for
bootstrapping four currents. Indeed, the exchanged operators in the OPE J � Jcan have
p = 0, 2 or 4.
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7 Conformal blocks

In this chapter we describe all the steps needed to prepare the bootstrap problem of four
abelian currents in four dimensions. It is based on Paper I and Paper IV . First we do the
three-point function analysis, then we study the four-point function hJJJJi , and �nally
we show the computation of the conformal and superconformal blocks.

7.1 Non-supersymmetric operator product expansion

An abelian current is a primary operator of spin (1, 1) with conformal dimension DJ = 3.
It therefore satis�es a shortening condition

¶h¶x¶h̄ J(x) = 0 , J(x) := hah̄ �a Ja�a(x) . (7.1)

It is called abelian because it is associated to aU(1) global symmetry. If we are consid-
ering a superconformal theory then this is precisely the R-symmetry and J represents
the superprimary of the Ferrara-Zumino multiplet. This multiplet was introduced in
Subsection 2.1.3 and it satis�es the shortening condition (2.13a).

The four-point function under study is

hJ(x1) J(x2) J(x3) J(x4)i . (7.2)

Associativity of the OPE requires that the crossing equations (6.2)hold. The two relations
are, in fact, not independent. It suf�ces therefore to impose

hJ(x1) J(x2) J(x3) J(x4)i = hJ(x1) J(x2) J(x3) J(x4)i . (7.3)
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The contractions represent the OPE as in (6.1), which, for the case at hand, reads

J(x1) J(x2) := å
r

nJJr

å
a= 1

l (a)
JJOr

jx12j6+ D C(a)
r (¶m, x12, ¶h, ¶h̄)Or � (0,h, h̄) , (7.4)

where Or � = Or is the hermitian conjugate operator (or, equivalently, the CPT conju-
gate). The allowed values for r = ( D, ` , ¯̀) in the sum are

D = ` = ¯̀ = 0 or D > Dunitarity (` , ¯̀) :=

(
2 + 1

2(` + ¯̀) ` ¯̀ 6= 0 ,

1 + 1
2(` + ¯̀) ` ¯̀ = 0 ,

(` , ¯̀) 2 f (` , ` ), (` , ` + 2), (` + 2,` ), (` , ` + 4), (` + 4,` ) : ` 2 N g .

(7.5)

where Dunitarity is given in (1.7) but was reproduced here for convenience. We also
introduce the parameter p as

p := j` � ¯̀j , (7.6)

as we did in Subsection 6.4.2. The allowed values of p are therefore 0, 2and 4. For p > 0
there are two types of operators related by conjugation. We will refer to (` , ` + p) as the
primal and to (` + p, ` ) as thedual. In this section we will consider all operators Or that
may appear in the OPE of two currents and study the three-point functions with two J's
and one O and the two-point functions of Or and Or � . In doing so we will make use of
the embedding formalism described in Subsection 1.2.2.

7.1.1 Two-point functions

We start by choosing the basis of local operators which appear in the OPE (7.4). First we
name all the operators with ` > ¯̀ as1

O(` ,` )
D , O(`+ 2,̀ )

D , O(`+ 4,̀ )
D . (7.7)

All the operators with ` 6 ¯̀ are obtained by hermitian conjugation of the ones in (7.7).
They read

O
(` ,` )
D , O

(`+ 2,̀ )
D , O

(`+ 4,̀ )
D . (7.8)

In the traceless symmetric (p = 0) case the local operators are chosen to be hermitian or

in other words O(` ,` )
D = O

(` ,` )
D . Secondly, we can assume that the two-point functions are

diagonal in this basis. This means that the only non-vanishing two-point functions are

1 In principle there can be operators which cannot be fully speci�ed by dimension and spin alone. For
example, there could be degeneracies given by additional global symmetries that were not taken as an
assumptions. We can ignore this detail as it is irrelevant for our purposes.
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7.1. Non-supersymmetric operator product expansion

those of an operator and its conjugate

hO
(` , ¯̀)
D (x1)O

(` , ¯̀)
D (x2)i =

i ` � ¯̀

(x2
12)

D+ 1
2 (`+ ¯̀)

(I 12) ` (I 21) ¯̀
. (7.9)

See(A.22) for the de�nition of the invariants I i j . The choice of normalization implicitly
made in (7.9)is the standard one for generic operators. On the other hand, for conserved
currents we will use a different normalization, as we are going to discuss now.

Operators with ` ¯̀ 6= 0 saturating the unitarity bound Dunitarity de�ned in (7.5) are
necessarily conserved currents.2 The cases with spin (1, 1) and (2, 2) are the well known
Noether current and stress tensor

J := O(1,1)
3 , T := O(2,2)

4 . (7.10)

A natural normalization for J and T is one that makes their Ward identities follow
the de�nitions in Section 1.4. This choice is not necessarily the one that makes their
two-point functions unit normalized. Thus, instead of (7.9) one has to write

hJ(x1) J(x2)i =
CJ

(x2
12)

4
I 12I 21 , hT(x1)T(x2)i =

CT

(x2
12)

6
(I 12I 21)2 , (7.11)

for some numbers CJ and CT which are called the central charges. When we are consid-
ering the supersymmetric setup, Jand T live in the same multiplet. As a consequence
CT and CJ are related [156]. The precise relation can also be inferred from n(QQJ)++ in
Table 3.2.

Csusy
T = 5Csusy

J . (7.12)

7.1.2 Three-point functions

We can study the OPE (7.4) by looking at three-point functions 3

hJ(x1) J(x2)O(` , ¯̀)
D (x3)i . (7.13)

The allowed values for ` and ¯̀ are given in (7.5). The three-point function satis�es the
permutation constraint

hJ(x1) J(x2)O(` , ¯̀)
D (x3)i = p 12hJ(x1) J(x2)O(` , ¯̀)

D (x3)i , (7.14)

2Operators saturating the unitarity bound for ` ¯̀ = 0 can only appear in free theories [173].
3Indeed, by multiplying (7.4)by the conjugated operator Or and taking the vacuum expectation value,

we obtain an equality between the three-point function and the function Cr .
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due to the presence of the identical operators J. Here the permutation operation p i j is
de�ned by

p i j : xi $ xj . (7.15)

The correlator also satis�es the conservation constraints

¶i � hJ(x1) J(x2)O(` , ¯̀)
D (x3)i = 0 , i = 1, 2 . (7.16)

Both (7.15)and (7.16)are constraints that must be imposed the three-point function. In
order to do that, we �rst consider a more general correlator, by assuming only conformal
invariance

hV1(x1)V2(x2)O(` , ¯̀)
D (x3)i , Vi (x) := O(1,1)

D (x) . (7.17)

Here Vi is a generic vector operator. We then impose the constraints (7.15)and (7.16)to
obtain the �nal form of (7.13)at the end. The three-point function under study can be
expanded as (1.16)

hV1(x1)V2(x2)O(` , ¯̀)
D (x3)i =

n(` , ¯̀)

å
a= 1

l (a)

V1V2O(` , ¯̀)
D

ta
V1V2O(` , ¯̀)

D

(x1, x2, x3) , (7.18)

where n(` , ¯̀) is a shorthand for n(V1V2O(` , ¯̀)
D ) de�ned in (1.40)and it counts the number

of tensor structures. For these correlators the values are given by

n(` , ` ) =

8
>><

>>:

5+ + 1� ` > 2

4+ + 1� ` = 1

2+ ` = 0

n(` + 2,` ) =

(
4 ` > 1

3 ` = 0
n(` + 4,` ) = 1 , (7.19)

with the superscripts plus and minus denoting the eigenvalue of the structure under a P
parity transformation. The tensor structures ta

V1V2O depend on the scaling dimensions
through the kinematic factor K3 de�ned in (1.27). In this case it reads

K � 1
3 = x

D1+ D2� D� ` � p
2 + 2

12 x
D1� D2+ D+ `+ p

2
13 x

D2� D1+ D+ `+ p
2

23 . (7.20)

Di being the dimension of Vi , which will be set to three at the end.

Generic constraints on (7.18)come from parity symmetry, time-reversal and complex
conjugation. We do not require explicitly neither parity nor time-reversal. Besides the
attempt of being more general, the requirement of these symmetries does not give any
sizable constraints on the setup. We deduce the constraints from complex conjugation
by applying it to (7.18). We get the relation 4

hV1(x1)V2(x2)O(` , ¯̀)
D (x3)i � = hV1(x1)V2(x2)O( ¯̀,` )

D (x3)i . (7.21)

4We work in equal time quantization in Lorentzian signature, and hence for a generic correlator
hO1(x1)O2(x2)O3(x3)i � = hO3(x3)O2(x2)O1(x1)i .
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7.1. Non-supersymmetric operator product expansion

The tensor structures ta
V1V2O have well de�ned transformation properties under complex

conjugation. The condition (7.21)then translates into relations between the OPE coef-
�cients. In what follows we will de�ne the basis of tensor structures for the operators
with ` > ¯̀ only. The basis for the conjugate operators with ` < ¯̀ is chosen in such a way
that the associated OPE coef�cients are related through (7.21)to the ones with ` > ¯̀ in
the following simple way

l (a)�

V1V2O(`+ p,` )
D

= l (a)

V1V2O(` ,`+ p)
D

. (7.22)

Since thep = 0 operators are hermitian and the three-point function is mapped to itself,
the relation above implies that all p = 0 OPE coef�cients are real.

In order to obtain the conformal partial waves we also need to de�ne the three-point
functions related to (7.18) by a p 13 permutation

hO(` , ¯̀)
D (x1)V2(x2)V1(x3)i =

n(` , ¯̀)

å
a= 1

l (a)

O(` , ¯̀)
D V2V1

ta
O(` , ¯̀)

D V2V1
(x1, x2, x3) . (7.23)

We choose their basis in such a way that

l (a)

O(` , ¯̀)
D V2V1

= l (a)

V1V2O(` , ¯̀)
D

. (7.24)

Together with (7.22)this implies that there is the following relation between the OPE
coef�cients

l (a)

O(` , ¯̀)
D V2V1

= l (a)�

V1V2O( ¯̀,` )
D

. (7.25)

This relation will be crucial for setting up the semide�nite problem.

Now we impose conservation (7.16) and permutation symmetry (7.14). These two
requirements lead to a system of linear equations on the OPE coef�cients entering (7.18).
We solve them in terms of a smaller set of independent OPE coef�cients l̂ and plug
the solution back in (7.18). This de�nes in turn a basis of conserved and p 12-symmetric
tensor structures that we denote as t̂ a

JJO . As a result we get

hJ(x1) J(x2)O(` , ¯̀)
D (x3)i =

n̂(` , ¯̀)

å
a= 1

l̂ (a)

JJO(` , ¯̀)
D

t̂ a
JJO(` , ¯̀)

D
(x1, x2, x3) , (7.26)

where n̂(` , ¯̀) is the new number of independent OPE coef�cients l̂ . The values of n̂(` , ¯̀)
are given by

n̂(` , ` ) =

(
2 ` > 2 even

1 else
n̂(` + 2,` ) =

(
0 `= 0 and

D6= 2

1 else
n̂(` + 4,` ) =

(
0 ` odd

1 ` even
(7.27)

129



Chapter 7. Conformal blocks

The associated conserved andp 12-symmetric tensor structures can be related to the old
ones through a rectangular matrix. More speci�cally we can de�ne the n̂ � n matrix M
as follows

t̂ a
JJO(`+ p,` )

D
(x1, x2, x3) =

n(`+ p,` )

å
a= 1

(M p,` )abtb
V1V2O(`+ p,` )

D

(x1, x2, x3) . (7.28)

It is important to check that these matrices are always non-singular for any unitary
values of D. In what follows we will precisely de�ne the basis of tensor structures
in (7.18) and specify the matrices M for p = 0, 2 and 4.

7.1.3 Basis for p = 0

In the p = 0 case there are six independent tensor structures which we choose to be

t1
V1V2O(` ,` )

D

(x1, x2, x3) := I 12I 21(J3
12)

` , (7.29a)

t2
V1V2O(` ,` )

D

(x1, x2, x3) := J1
23J2

13(J
3
12)

` , (7.29b)

t3
V1V2O(` ,` )

D

(x1, x2, x3) := I 13I 31J2
13(J

3
12)

` � 1 , (7.29c)

t4
V1V2O(` ,` )

D

(x1, x2, x3) := I 23I 32J1
23(J

3
12)

` � 1 , (7.29d)

t5
V1V2O(` ,` )

D

(x1, x2, x3) := I 13I 31I 23I 32(J3
12)

` � 2 , (7.29e)

t6
V1V2O(` ,` )

D

(x1, x2, x3) := i
�

I 12I 23I 31 + I 21I 13I 32
�

(J3
12)

` � 1 . (7.29f)

The tensor structures (7.29)have simple transformation properties under parity. More
precisely, the �rst �ve structures (7.29a)–(7.29e)are parity even and the last one (7.29f) is
parity odd. As we already mentioned, we do not require parity symmetry in our setup.

The ` = 0 and ` = 1 are special cases since not all the six structures exist. In particular
(7.29d) is absent for` 6 1 and (7.29c)–(7.29f) are absent for̀ = 0.

We will now provide the matrices M appearing in (7.28). There are three different cases
to be considered. When ` = 0 there is a single structure therefore the matrix is 1 � 2 and
it reads

M0,0 = (2(3 � D) D) . (7.30)

When ` > 1 and is odd again we have a single structure and the matrix can be written
as

M0,̀ odd = (0n 1) , (7.31)

where 0n is a row of n(` , ` ) zeros, which means a row of length four for ` = 1 and of
length �ve for ` > 3. In the very special case of the conserved current Jwhen ` = 1 and
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7.1. Non-supersymmetric operator product expansion

D = 3 all the additional constraints are satis�ed automatically. We can however use in
addition the Ward identities to relate the OPE coef�cient to the two-point normalization
of the conserved current J given in (7.11). Since J has no U(1) charge and its only
three-point tensor structure is parity odd while its two-point function is parity even,
both sides of the the Ward identity vanish and therefore there are no further constraints.

The case for even` > 2 is the only one with two independent structures. The associated
matrix M is therefore 2 � 6 and it reads

M0,̀ even =
�

2(4 + ` � D)(D � 3) � (4 + ` � D)(D + `) 0 0 4̀ (D � 3) 0
4(D � 2)(D � 3) 2` (` + 8) � 2D(D + 2` � 2) � 4` (D � 3) 4` (D � 3) 0 0

�
.

(7.32)

A very special situation is given by the stress tensor T when ` = 2 and D = 4. No further
constraints appear on (7.28). However, due to the Ward identities, we can relate the OPE
coef�cients to the two-point function normalization of two currents Jgiven in (7.11)as

l̂ (2)
hJJTi =

1
2

l̂ (1)
hJJTi �

CJ

8p 2 . (7.33)

This computation follows from the discussion in Section 1.4. However, in this chapter
we have made a minor change in the conventions. Namely we do not include the factor
of two in the right hand sides of (1.45)and, of course, due to the normalization of J, the
two-point functions nJJ take an overall CJ factor.

The Hofman-Maldacena bounds [136] impose an inequality on a combination of these
coef�cients. Following [84] we can de�ne a parameter g as follows

l̂ (1)
hJJTi =

CJ(1 � 32g)
36p 2 , l̂ (2)

hJJTi = �
CJ(1 + 4g)

9p 2 . (7.34)

Then g needs to satisfy the inequality

�
1
16

6 g 6
1
32

. (7.35)

The two extremes of this window are associated to free theories. More speci�cally
g = � 1/ 16 corresponds to the free complex boson and g = 1/ 32 corresponds to the
free fermion.

7.1.4 Basis for p = 2

The second class of three-point functions is given by p = 2 operators. The number of
independent structures is summarized in (7.19). For general ` > 1 the basis is taken to
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be

t1
V1V2O(`+ 2,̀ )

D

(x1, x2, x3) := I 12I 23K 13
2 (J3

12)
` , (7.36a)

t2
V1V2O(`+ 2,̀ )

D

(x1, x2, x3) := I 13I 21K 23
1 (J3

12)
` , (7.36b)

t3
V1V2O(`+ 2,̀ )

D

(x1, x2, x3) := I 13I 31I 23K 23
1 (J3

12)
` � 1 , (7.36c)

t4
V1V2O(`+ 2,̀ )

D

(x1, x2, x3) := I 23I 32I 13K 13
2 (J3

12)
` � 1 . (7.36d)

In the special case for ` = 0 we can only write three independent structures, which are
given by

t1
V1V2O(2,0)

D

(x1, x2, x3) := I 12I 23K 13
2 , (7.37a)

t2
V1V2O(2,0)

D

(x1, x2, x3) := I 13I 21K 23
1 , (7.37b)

t3
V1V2O(2,0)

D

(x1, x2, x3) := I 13I 23K 12
3 . (7.37c)

The conservation and permutation conditions are very restrictive for ` = 0 and happen
to not only �x the OPE coef�cients but the dimension D as well. We have

D = 2 , M2,0 = (1 1 0) . (7.38)

For this reason, only the operators saturating the unitarity bound Dunitarity in (7.5)are
allowed. According to [173] such operators can only belong to a decoupled free subsector
of the theory. The conservation condition for ` > 1, on the other hand, has a nontrivial
solution. We obtain a 1 � 4 matrix which, if ` is even, reads

M2,̀ even = (x x � z z) , x := ` + 6 � D, z := 2(D � 2) , (7.39)

whereas if ` is odd it reads

M2,̀ even = ( � x x y y) , y := 2(` + 2) . (7.40)

7.1.5 Basis for p = 4

The last case to be considered is that ofp = 4. Luckily there are no special cases to be
treated separately. We only have one allowed structure which reads

t
V1V2O(`+ 4,̀ )

D
(x1, x2, x3) := I 13I 23K 13

2 K 23
1 (J3

12)
` . (7.41)
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This structure is automatically conserved and p 12-permutation symmetry forces ` to be
even. Thus M is a very simple 1 � 1 matrix that reads

M4,̀ even = ( 1) , M4,̀ odd = ( 0) . (7.42)

7.2 Four-point tensor structures

We now perform a detailed analysis of the four-point function (7.2)and the kinematic
constraints that it must satisfy. Then in Section 8.1 we will analyze the constraints due to
crossing. First, we need to de�ne a basis of tensor structures for the four-point function
of four generic vectors

hV1(x1)V2(x2)V3(x3)V4(x4)i . (7.43)

Then we proceed by studying its properties under complex conjugation, permutation
and conservation and its analytic properties. Contrary to Section 7.1 we will work in
conformal frame. This formalism has been introduced in Section 1.3 and then specialized
for four-point functions in Section 6.3.

The four point function (7.43)can be expanded in a basis of70structures, before imposing
any kinematic constraint

hV1(x1)V2(x2)V3(x3)V4(x4)i =
70

å
i= 1

T 0
i f 0

i (z, z̄) . (7.44)

This is going to be just an interim basis, hence the superscript “0”. The explicit de�nition
of all 70 structures can be found in Appendix D.2 and it uses the conformal frame
notation given in (6.34). The cross ratiosz, z̄ have been de�ned in (6.13). Analogously to
the p = 0 three-point structures in (7.29), the four-point structures T 0

i have well de�ned
transformation properties under P parity. It could be convenient to label them according
to these properties even if we do not require parity symmetry in our setup. However
here we decided not to do so. The 70 structures split into

n(V1V2V3V4) = 70 = 43+ + 27� , (7.45)

where + stands for parity even and � for parity odd. Using complex conjugation 5,6 one
can write the following identity

hV1(x1)V2(x2)V3(x3)V4(x4)i � = hV4(x4)V3(x3)V2(x2)V1(x1)i . (7.46)

The �rst 16 functions f 0
i are real and the remaining ones come in complex conjugate

5Similar to the three-point unction case, see 4, for a generic four-point function we have
hO1(x1)O2(x2)O3(x3)O4(x4)i � = hO4(x4)O3(x3)O2(x2)O1(x1)i

6We work in Lorentzian signature. In particular, Hermitian conjugation does not act on the coordinates
to the local operators and the cross ratios z, z̄ are real.
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pairs. In the basis that we will de�ne later the associated functions will be all real.

7.2.1 Kinematic permutations

Let us now discuss the constraints due to permutation symmetry. As we said earlier, we
are going to discuss crossing symmetry in Section 8.1. Here we are only interested in
the permutations that map the cross ratios to themselves, so that they imply constraints
for the functions f 0

i that hold for each z, z̄, instead of relating the functions at different
points. The permutations that leave z, z̄ invariant are called kinematic and they have
been introduced in (6.6). We �nd that by imposing

hV (x1)V (x2)V (x3)V (x4)i = p hV (x1)V (x2)V (x3)V (x4)i , p 2 (6.6) , (7.47)

the number of independent structures is reduced to

n(VVVV ) = 22 = 19+ + 3� . (7.48)

Furthermore we want to make sure that the functions have de�nite properties under the
exchangez : z $ z̄. This can be achieved by studying a rotation in the plane 0–2, as one
can see from (6.31). On the conformal frame structures the transformation amounts to

z :

"
q1 q2 q3 q4

q̄1 q̄2 q̄3 q̄4

#

f (z, z̄) ! i å i ` i � ¯̀
i

"
� q1 � q2 � q3 � q4

� q̄1 � q̄2 � q̄3 � q̄4

#

f ( z̄, z) . (7.49)

After taking the appropriate linear combinations of structures that diagonalize z we can
write

hV (x1)V (x2)V (x3)V (x4)i =
22

å
i= 1

T i fi (z, z̄) . (7.50)

These new structures are de�ned in Appendix D.2 in terms of the structures T 0
i de�ned

in the previous subsection. This result can be obtained by acting with the permutations p
in (6.6)and with z in (7.49)on the conformal frame structures. The factors of z, z̄ appear
because the permutations do not leave the conformal frame unchanged. Therefore one
has to act with a transformation rp to restore the points to the original frame. Since the
four operators lie on a plane, the transformation rp can be taken to be an element of the
two dimensional conformal group SL(2,C). More details can be found in Appendix B
of [93].

The functions fi are all real and the structures T i are CPT invariant. They also have
de�nite properties under P parity and z $ z̄ parity: the �rst 14 are P and z $ z̄ even,
the structures T 15,16,17are P odd and z $ z̄ even and the remaining ones are P even and
z $ z̄ odd.
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7.2.2 Smoothness atz = z̄

As discussed in Subsection 6.3.2, the pointz = z̄ is a point of enhanced symmetry and
this implies that the functions fi (z, z̄) must satisfy some smoothness condition as z ! z̄.
By diagonalizing the action of the O(3) Casimir operator on the fi 's we can de�ne a new
basis of functions, where the smoothness properties become manifest

f O(3)
J, i (z, z̄) , f O(3)

J, i (z, z̄) µ (z � z̄) J . (7.51)

We can use the formula (6.39)to predict the number of functions in each spin sector. 7

However, now we need to restrict the counting to only those structures that are permu-
tation symmetric. In order to do that, it suf�ces to take the singlets under the group of
kinematic permutations Z 2 � Z 2. All in all we get

 

ResO(4)
O(3)

4O

k= 1

(1, 1)

! Z 2� Z 2

= 7 � 0+ � 0� � 4 � 1+ � 6 � 2+ � 8 � 2� � 3+ � 4+ , (7.52)

where we indicated the O(3) representation of spin Jand parity p by Jp . In particular, the

number of independent functions f O(3)
0,i (z, z̄) is eight and the non singlets are fourteen.

We will not reproduce here explicitly the Casimir operator in the basis (D.11), nor the
de�nition of the functions (7.51) in terms of the fi . Before studying the smoothness
conditions we introduce a modi�cation of our basis fi so that all functions are even
under z $ z̄. As a consequence, the constraints of spin1 will be automatically satis�ed,
since the formerly odd functions now vanish as (z � z̄). The only orders on which the
regularity condition is not trivial are the order (z � z̄)2 at spin 2, 4, order (z � z̄)3 at spin
3 and order (z � z̄)4 at spin 4. At the end it will turn out that all these constraints are
redundant when combined with conservation. This fact is nontrivial and we checked it
explicitly by doing a Taylor expansion of the functions. We will discuss this in the next
subsection.

7.2.3 Conservation

Finally we address the most important issue of this analysis: conservation. We have to
impose in the four-point function basis that the current J is a short multiplet, satisfying
¶mJm = 0. Unlike the case of three-point functions, where this constraint simply results
in a system of linear relations, now we are dealing with a system of linear differential
equations. We do not need to explicitly solve this system, but we want to study it in
order to understand which functions are left unconstrained and which can be obtained
by integrating a suitable set of initial data.

7In this subsection we also take into account the parity of the structures for completeness. Therefore in
the formula SO is replaced by O.
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