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Abstract—The development of software models of Phasor
Measurement Units (PMUs) within Real-Time Simulators (RTSs)
represents a promising tool for the design and validation of
monitoring and control applications in electrical power networks.
In this sense, it is necessary to find an optimal trade-off between
computational complexity and estimation accuracy. In this paper,
we present the design and implementation of two new PMU
models within the Opal-RT eMEGAsim RTS. The synchrophasor
estimation algorithm relies on a Compressive Sensing Taylor-
Fourier Model (CS-TFM) approach, and enables us to extract the
dynamic phasor associated to the signal fundamental component.
The estimation accuracy of the proposed models is characterized
with respect to the compliance tests of the IEEE Std. C37.118.1.

Index Terms—Real-Time Simulator (RTS), Synchrophasor,
Taylor-Fourier Transform, Phasor Measurement Unit (PMU)

I. INTRODUCTION

In recent years, Phasor Measurement Units (PMUs) have

become an effective and reliable solution for the monitoring

and control of electrical power networks [1], [2]. In this

context, the IEEE Std C37.118.1 [3] and its recent amendment

[4] (briefly IEEE Std) define PMUs as high-accuracy devices

for synchronized phasor and frequency measurements. In

particular, PMUs are required to characterize the fundamental

tone in terms of phasor amplitude and phase, frequency, and

Rate-of-Change-of-Frequency (ROCOF). Furthermore, PMU

measurements are phase-aligned to a common time-reference

synchronized with Universal Time Coordinates (UTC).

Before the actual deployment into the field, PMUs have

to be thoroughly validated and characterized in terms of

estimation accuracy and reporting latency with respect to

both IEEE Std tests and expected operating conditions. Also,

before their deployment into real power networks, PMU-

based control and protection schemes have to be validated in

terms of reliability and effectiveness. Since an experimental

validation might be partially uncontrollable or even unfeasible,

the employment of a Real Time Simulator (RTS) enables us to

reproduce a wide range of realistic operating conditions and

therefore evaluate the reliability of PMU-based applications

even during critical scenarios [5], [6]. In this context, the

development of PMU software models might become a

promising solution as they allow for reproducing large-scale

applications involving multiple PMUs.

Once defined the electrical network under investigation, the

RTS reproduces the system behavior in terms of nodal voltages

and currents. In this context, the integration of PMUs can be

carried out according to two alternative options.
In the first option, the RTS is interfaced with real PMUs

by means of analog output channels, capable of reproducing

power signals. Through a Local Access Network (LAN),

PMUs are connected to a Phasor Data Concentrator (PDC) that

collects the measurement data and aligns them based on the

corresponding time-stamp [7]. This option enables us to test

the actual device (not limited to the synchrophasor extraction

algorithm) and to reduce significantly the complexity of the

RTS model. However, this approach is characterized by several

drawbacks: (i) the uncertainty characterization of the RTS

power signals, (ii) the limited number of available analog

output channels, (iii) the cost of real PMUs, (iv) the amount of

cabling. Due to these limitations, this solution cannot support

large-scale network models.
In the second option, instead, the PMUs are simulated and

included within the RTS model. In this way, the validation

process is independent from the device and accounts also

for the transfer function of the instrument transformers. It

is possible to reproduce large-scale networks and validate

monitoring and control applications relying on numerous (e.g.

hundreds) PMUs. The only limitation is represented by the

computational resources of the RTS. As a consequence, the

complexity of the PMU model should be possibly reduced, in

order to find an optimal trade-off between estimation accuracy

and computational requirements [8].
Inspired by a similar analysis in [8], in this paper, we present

the design, implementation and characterization of two new

PMU models within the Opal-RT eMEGAsim RTS [9]. In

particular, we adopt a synchrophasor estimation algorithm,

that has been derived by the recent Compressive Sensing

Taylor-Fourier Model (CS-TFM) [10]. To the best of Authors’

knowledge, this represents the first attempt to implement a

PMU model relying on a dynamic phasor formulation [11] and

thus capable of tracking the signal time-variations and directly

computing ROCOF as one of the system state variables.
The RTS results rely on the assumption that PMU models

are characterized by the same accuracy and responsiveness of

the actually deployed devices. For this reason, we evaluate

its estimation accuracy in terms of Total Vector Error (TVE),

Frequency Error (FE) and ROCOF Error (RFE), and we assess

its computational complexity in terms of maximum number of

PMUs per RTS core and computation time. For this analysis,



we consider the IEEE Std tests, with specific reference to the

Protection and Measurement class requirements, referred to

as P- and M-class respectively, as well as an off-standard test

inspired by real-world operating conditions [12].

The paper is organized as follows. Section II introduces

the algorithm theoretical background. Section III describes the

implementation within the Opal-RT simulation environment.

Section IV presents a thorough performance characterization.

Finally, Section V provides closing remarks.

II. THEORETICAL BACKGROUND

Let us consider a generic time-varying power signal,

affected by both narrow- and wide-band disturbances:

x(t) = A · (1 + εA(t)) · cos(2πft+ ϕ+ εϕ(t)) + η + ρ (1)

where A, f and ϕ are the amplitude, frequency and

initial phase of the fundamental component, respectively. The

time-varying terms εA and εϕ account for amplitude and

phase modulations, η represents any spurious component,

and ρ models the measurement uncertainty as an additive

uncorrelated Gaussian random variable.

Typically, a PMU considers an observation window of finite

length Nw and computes its Discrete Fourier Transform (DFT)

X(f) in order to extract the synchrophasor associated to

the fundamental component [13]. However, the DFT-based

approach relies on a static signal model and cannot provide an

optimal representation of dynamic conditions. For this reason,

the recent literature has discussed the employment of Taylor

series expansions, whose higher-order derivative terms might

better account for fundamental time-varying parameters [11].

In this context, the CS-TFM algorithm adopts a formulation

of the Taylor-Fourier Transform (TFT) [14], that has been

suitably modified and generalized in order to deal also with

multi-tone power signals. In its original formulation, the TFT

has been presented as a maximally flat differentiator filter,

centered around the nominal system frequency1 [15]. Thanks

to a Taylor series expansion truncated to the second derivative

order, it is possible to include the fundamental frequency

and ROCOF within the estimator state variables as the first

and second time-derivative of the phase angle, respectively.

However, the TFT performance strongly depends on the

spectral support S employed for the filter positioning [16]:

if any significant spectral component is neglected or badly

identified, the TFT results might suffer from uncompensated

spectral leakage and thus lead to inaccurate estimates [17].

For this reason, the identification of the signal spectral

support S becomes one of the most crucial stages of the

entire synchrophasor extraction algorithm. On the other hand,

the processing resources destined to S identification should

comply with the capabilities of the selected implementation

platform. Recent literature has proposed to track the

fundamental frequency by means of a Phase Locked Loop

(PLL) algorithm [18] or a Kalman Filter (KF) [19]. Similar

1Without loss of generality, in this paper we consider a nominal system
frequency of 50 Hz, but similar results can be obtained in a 60-Hz scenario.

solutions, though, are prone to errors since they rely on the

unverified assumption that the fundamental frequency is slowly

varying between two consecutive observation windows. In the

presence of sudden parameter changes, PLL and KF introduce

a filtering effect (with delayed and smoothed transitions) that

might result in a significant accuracy degradation [20].

In this paper, as in [10], we recover the spectral support

S through an Orthogonal Matching Pursuit (OMP) algorithm,

i.e. a greedy selection routine that exploits the assumption that

the signal spectrum is sparse and consists only of a limited

number of narrow-band components. In particular, we apply a

CS-based super-resolution technique to improve the frequency

resolution associated to short observation intervals by almost

one order of magnitude (further details in [21]).

Given the recovered support S , we design the corresponding

TFM model M and we compute the dynamic synchrophasor

p that consists of three Taylor-Fourier series coefficients:

p = {p0, p1, p2} = pinv(M) · x (2)

where the superscript denotes the derivative order. Based on

this, we are able to estimate the fundamental parameters as:

Â = |p0|, Â1 = 2�(p1 · e−jϕ̂)

ϕ̂ = ∠p0, ϕ1 =
�(p1 · e−jϕ̂)

Â
(3)

f̂ = f̂0 +
ϕ̂1

2π
, R̂f =

�(p2 · e−jϕ̂)− Â1 · ϕ̂1

2π · Â
where R̂f denotes the ROCOF, and f0 is the fundamental

frequency within the recovered spectral support.

A. Modulated Sliding DFT

In terms of measurement reporting latency, the DFT

computation requires a significant amount of processing time,

as its complexity O(N2
w) can be reduced up to O(Nw logNw)

with the Fast Fourier Transform algorithm [22]. Nevertheless,

the synchrophasor analysis does not consider the entire

spectrum, but focuses on a narrow bandwidth centered around

the nominal system frequency. Therefore, it is possible to limit

the number of DFT bins to be computed. In particular, the

proposed algorithm restricts its analysis up to the out-of-band

(OOB) frequency range, i.e. from 5 to 100 Hz (see Sec. II.B)2.

In this context, an effective solution for the DFT bins’

computation is represented by the Modulated Sliding DFT

(MSDFT) algorithm [24], a recursive routine for computing

DFT bins on a sample-by-sample basis. In order to resolve

multiple spectral tones, we apply a Hanning weighing function

through a frequency-domain convolution that results in a linear

combination of adjacent DFT bin values:

Xk = −0.25 ·Xk−1 + 0.5 ·Xk − 0.25 ·Xk+1 (4)

2Given a system frequency of 50 Hz, we adopt the inter-harmonic group
formulation as defined in [23]. Nevertheless, according to IEEE Std, PMUs
should not consider the DC component, and the lowest sub-harmonic group
is typically centered around 5 Hz.



where the subscript k denotes the bin index. In this way, we

are able to significantly reduce the computational effort as well

as to guarantee the DFT stability and accuracy [25], [26].

B. Taylor-Fourier Model Algorithm

As known, the IEEE Std introduces two PMU performance

classes: the P-class is intended for protection applications

and favors fast responsiveness rather than high accuracy,

conversely M-class is intended for measurement applications

and requires high accuracy also in distorted conditions [3].

In order to cope with these contrasting requirements, we

develop two models specifically designed for P- and M-class

compliance, whose main processing steps are reported in

Algorithm 1 and 2, respectively.
a) P-class Model: The P-class PMU adopts a window

length of 60 ms, i.e. equal to three nominal cycles at 50 Hz

and corresponding to a frequency resolution of 16.67 Hz.

In P-class configuration, we are not interested in detecting

and compensating possible inter-harmonic components. The

spectral analysis can be limited to the expected variation range

of the fundamental component, i.e. [45, 55] Hz. To this end,

the MSDFT provides a DFT representation X consisting of

just 3 bins, centered at 33.33, 50 and 66.67 Hz, respectively.

As shown in Algorithm 1, the first step consists in enhancing

the frequency resolution by projecting X over the vector space

spanned by matrix Df . In more detail, the matrix columns are

designed to account for leakage effects over a super-resolved

grid, whose bin spacing is set to 1.515 Hz (line 3).

We associate the fundamental frequency f̂0 to the maximum

bin of the super-resolved spectrum (line 4), and we include into

the spectral support S the first four harmonic terms (line 5).

Based on this information, we construct the TFM matrix (line

6) and compute the corresponding dynamic phasor coefficients

(line 7). Finally, by applying (3), we extract the fundamental

synchrophasor, frequency and ROCOF (line 8).

Algorithm 1 P-class Model

1: P-class → window length 60 ms, 3 DFT bins

2: input: x, X , Df , output: Â, f̂ , ϕ̂, R̂f

3: Y = D†
f ·X � super-resolved spectrum

4: f̂0 = max(Y ) � fund. frequency estimate

5: S = {f̂0 · [1, 2, 3, 4]} � spectral support definition

6: M = TFM(S) � TFM matrix computation

7: p = (M†M)−1M† · x � dynamic phasor extraction

8: f̂0, p → {Â, f̂ , ϕ̂, R̂f} � final parameter estimates

b) M-class Model: Differently from P-class scenario, M-

class PMUs are intended for higher accuracy and robustness in

the presence of harmonic and out-of-band disturbances, even if

this means larger response time and reporting latency. To this

end, the M-class model adopts a window length of 100 ms,

i.e., equal to five nominal cycles at 50 Hz and corresponding

to a frequency resolution of 5 Hz.

In order to mitigate the leakage effects due to spurious

components, we need to identify their frequency and include

it into the spectral support S . For this reason, the MSDFT

computes 14 bins as representative of the fundamental

variation range [45, 55] Hz and the out-of-band3 frequency

range [5, 25] ∪ [75, 95] Hz. As shown in Algorithm 2, we first

project the signal spectrum over a finer grid whose resolution

is of 0.909 Hz (line 3). Then, we identify the fundamental

component as the maximum spectral bin (line 4). Based on its

amplitude, frequency and phase, we subtract its contribution

from the original spectrum (line 5) and we apply the super-

resolution routine over the OOB range (line 6).

Within the residual spectrum, we select the maximum bin

(line 7): if its amplitude exceeds the significance threshold

θi, the corresponding frequency is included in the spectral

support, otherwise S accounts only for the first four harmonic

terms (lines from 8 to 12). In concordance with the IEEE Std

requirements for the Out-of-Band interference test, we set θi
equal to five percent of fundamental amplitude. In practice,

though, this parameter has to be set according to the desired

sensitivity to spurious tones and the expected noise level, in

order to avoid the inclusion of negligible components into S .

Finally, based on the recovered spectral support, we

construct the TFM matrix (line 13), we compute the dynamic

phasor coefficients (line 14), and we extract the fundamental

component parameters (line 15).

Algorithm 2 M-class Model

1: M-class → window length 100 ms, 11 DFT bins

2: input: x, X , Df , Di, θi, output: Â, f̂ , ϕ̂, R̂f

3: Y = D†
f ·X � super-resolved spectrum

4: (f̂0, Â0, ϕ̂0) = max(Y ) � fund. parameter estimates

5: R = Y − Â0e
j2(πf̂0+ϕ̂0) � residual OOB spectrum

6: Y = D†
i ·R � super-resolved spectrum

7: (f̂i, Âi) = max(Y ) � inter-harmonic selection

8: if Âi ≥ θi
9: S = {f̂0 · [1, 2, 3, 4], f̂i} � spectral support def.

10: else
11: S = {f̂0 · [1, 2, 3, 4]} � spectral support def.

12: end if
13: M = TFM(S) � TFM matrix computation

14: p = (M†M)−1M† · x � dynamic phasor extraction

15: f̂0, p → {Â, f̂ , ϕ̂, R̂f} � final parameter estimates

III. OPAL-RT IMPLEMENTATION

a) Real-Time Simulator (RTS): The development of a

PMU model within a RTS requires the implementation of two

main functionalities: the synchrophasor estimation algorithm,

and the synchronization to a UTC-traceable time-source.

For this analysis, we employed the Opal-RT eMEGAsim

PowerGrid Real-Time Digital Simulator [9], whose block

scheme is presented in Fig. 1. In more detail, the RTS consists

of three main operational blocks: an industrial PC with 12

cores, a Dolphin DXE410 PCI Express Expansion Chassis

3The IEEE Std defines the out-of-band frequency range based on the
nominal system frequency and the adopted reporting rate. For this analysis, we
set both these parameters equal to 50 Hz, as typical of M-class applications.



Fig. 1. Block scheme of the eMEGAsim PowerGrid RTS adapted from [8].

TABLE I
PMU MODELS’ COMPUTATIONAL COMPLEXITY

PMU Model PMUs per Core Computation Time [μs]

P-class 5 16
M-class (no OOB) 2 42

M-class (with OOB) 1 56

[27], and a Spartan-3 Field Programmable Gate Array (FPGA)

board [28]. The industrial PC runs the RTS model with an

integration time-step of 100 μs, the FPGA board locks the

internal time-base to a more stable clock, and the DXE410

module enables the communication between the other two

blocks. In this regard, the alignment to UTC is provided by

the Spectracom Tsync-PCIe Express board [29]. This hardware

module employs a Global Positioning System (GPS) antenna

to provide the UTC timestamp for the PMU data-frames, and

the Pulse-per-Second (PPS) signal for the internal time-base.

b) Computational Complexity: The simulation of a large-

scale PMU-based application depends on the adopted model

complexity. In this sense, Table I reports the computational

requirements of the P- and M-class models. For this analysis,

we consider two performance indexes: the number of PMUs

that we can include in a single RTS processing core, and the

computation time given an integration time of 100 μs.

In the P-class configuration, the estimation process requires

only 16 μs, corresponding to a maximum number of five

PMUs in the same core. The M-class configuration, instead,

involves a higher number of processing steps that results

also in higher complexity. In this regard, we discriminate

the contribution due to the OOB search and compensation.

If we consider only the harmonic terms, the computation time

is limited to 42 μs and we can include two PMUs in the

same core. If we consider also possible OOB components, the

computation time raises up to 56 μs and we can associate a

single PMU to each core.

IV. PERFORMANCE CHARACTERIZATION

In this Section, we report the performance characterization

of P- and M-class models with respect to the corresponding

IEEE Std requirements4 and in a real-world operating scenario.

4A thorough performance assessment of CS-TFM algorithm is available in
[10] where also more realistic test conditions are taken into account.

For this analysis, we set the sampling frequency equal to 5

kHz, and we consider an overall test duration of 2 s (with

the only exception of Frequency ramp test, whose duration

is set equal to 4 and 10 s for P- and M-class, respectively).

The PMU reporting rate is set equal to 50 fps. In order to

model realistic measurement conditions, the test waveforms

are intentionally corrupted by an uncorrelated Gaussian noise

with a Signal-to-Noise Ratio (SNR) of 80 dB.

As performance indexes, we consider five metrics:

Amplitude Error (AE), Phase Error (PE), Total Vector Error

(TVE), Frequency Error (FE) and ROCOF Error (RFE). In this

regard, Table II and III report the worst-case performance as

function of test condition in P- and M-class, respectively, and

compare them with the corresponding IEEE Std limits.

As regards P-class, it is worth noticing how the PMU model

complies with the IEEE Std requirements in all the static and

dynamic tests. In nominal steady-state conditions, the PMU

model provides a worst-case TVE of 0.003%, whereas FE and

RFE do not exceed 0.21 mHz and 0.03 Hz/s, respectively. As

expected, the worst performance is obtained in the Harmonic
distortion test. Indeed, the scarce frequency resolution (just

16.67 Hz) produces significant spectral leakage from harmonic

terms, that results in a performance degradation, e.g. worst-

case FE might achieve 3.88 mHz. Nevertheless, all the

performance metrics comply with the IEEE Std requirements.

Similar considerations hold also for class-M compliance

tests. In nominal steady-state conditions, the estimation

accuracy is comparable with P-class results, thus confirming

that the main limiting factor is represented by the measurement

noise. The Out-of-band interference test proves that it is

possible to mitigate distortion effects coming from inter-

harmonic components, if properly included into the spectral

support S . Once more, the Harmonic distortion test provides

the worst performance, with a TVE in the order of 0.2%, yet

still complies with the IEEE Std limits.

Then, we study the models’ behavior in the presence of

transient events, like amplitude or phase step changes, when

the signal energy is conveyed over the entire spectrum and

the synchrophasor model looses its significance. In this case,

the IEEE Std requires to determine the measurement response

time, i.e. the time interval necessary for TVE and FE to return

within the limits for steady-state test (TVE≤1%, FE≤5 mHz).

In this context, Fig. 2 and 3 represent the evolution of TVE

and FE in the step tests for P- and M-class, respectively,

whereas Table IV reports the measured response times and

compares them with the IEEE Std limits. The compliance is

guaranteed in all the configurations, with the only exception of

the P-class response to Phase step test. In fact, the combination

of Hanning weighing function and spectral energy spreading

produces a fundamental main-lobe that can be hardly modeled

by the super-resolution dictionary Df [30]. As a consequence,

the support recovery fails and the corresponding TFM model is

not properly centered around the fundamental frequency, with

a consequent degradation of the final estimation accuracy. In

this sense, a plausible solution might be the employment of a

narrower weighing window (e.g. Kaiser window) or a shorter



TABLE II
WORST-CASE ESTIMATION UNCERTAINTY FOR P-CLASS IEEE STD COMPLIANCE - THREE-CYCLE WINDOW

Test AE [pu] PE [rad] TVE [%] Std [%] FE [mHz] Std [mHz] RFE [Hz/s] Std [Hz/s]

nominal 2.36·10−5 2.64·10−5 0.003 1 0.208 5 0.027 0.4
signal freq. (f0 = ±2 Hz) 5.13·10−5 5.62·10−5 0.007 1 3.378 5 0.089 0.4
harm. dist. (THD = 1%) 3.56·10−4 4.19·10−4 0.044 1 3.883 5 0.189 0.4

ampl. mod. (fm = 2 Hz) 4.99·10−5 4.32·10−5 0.006 3 0.183 60 0.073 2.3
phase mod. (fm = 2 Hz) 3.69·10−5 5.37·10−5 0.005 3 2.754 60 0.066 2.3

freq. ramp (Δf = ±2 Hz) 2.16·10−5 3.27·10−5 0.004 1 0.104 10 0.049 0.4

TABLE III
WORST-CASE ESTIMATION UNCERTAINTY FOR M-CLASS IEEE STD COMPLIANCE - FIVE-CYCLE WINDOW

Test AE [pu] PE [rad] TVE [%] Std [%] FE [mHz] Std [mHz] RFE [Hz/s] Std [Hz/s]

nominal 2.67·10−5 5.85·10−6 0.003 1 0.177 5 0.025 0.1
signal (f0 = ±5 Hz) 3.84·10−5 3.83·10−5 0.004 1 0.261 5 0.037 0.1

harm. dist. (THD = 10%) 1.59·10−3 1.84·10−3 0.192 1 17.82 25 1.210 -
out-of-band (TIHD = 10%) 1.73·10−4 1.98·10−5 0.016 1.3 0.307 10 0.041 -

ampl. mod. (fm = 5 Hz) 4.12·10−4 7.66·10−5 0.050 3 2.693 300 0.789 14
phase mod. (fm = 5 Hz) 4.18·10−4 4.28·10−4 0.055 3 38.15 300 1.107 14

freq. ramp (Δf = ±5 Hz) 2.69·10−5 3.11·10−5 0.004 1 1.009 10 0.057 0.2
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Fig. 2. Evaluation of measurement response times for P-class configuration
in the Amplitude step and Phase step tests in blue and red line, respectively.
The dashed black line represents the corresponding IEEE Std limit.

window length (e.g. 40 ms) [31], though it might result in a

performance degradation in the other test conditions.

Finally, we evaluate the PMU models’ performance by using

a synthetic dataset inspired by a real-world network event. In

particular, the test waveform derives from the recording of

TABLE IV
RESPONSE TIME IN IEEE STD STEP CHANGES TESTS

Model Step TVE Std FE Std

P-class
Amplitude (±0.1 pu) 39.2 40 56.4 90
Phase (±π/10 rad) 55 40 56.2 90

M-class
Amplitude (±0.1 pu) 69 140 92 280
Phase (±π/10 rad) 94 140 94.4 280
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Fig. 3. Evaluation of measurement response times for M-class configuration
in the Amplitude step and Phase step tests in blue and red line, respectively.
The dashed black line represents the corresponding IEEE Std limit.

an inter-area oscillation of the Continental Europe electricity

system recorded on December 1, 2016 (further details in [12]).

As shown in Fig. 4(a) the fundamental frequency exhibits a

time-varying trend characterized by superposed modulations

and linear ramps. Even in such a challenging operating

condition, both the PMU models prove to provide accurate

estimates, keeping FE within ±200 and ±75 μrad for P- and

M-class configuration, respectively.

V. CONCLUSIONS

In this paper, we presented the design, implementation and

characterization of two TF-based PMU models within a RTS.

First, we discussed the theoretical background of the

adopted synchrophasor extraction algorithm, i.e., CS-TFM. In

this sense, we focused on the processing routines employed

to compute the DFT bins and the TF expansion coefficients.
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Fig. 4. In (a), the reference value for the fundamental frequency evolution
during an inter-area oscillation event. In (b), the FEs obtained by P- and
M-class PMU model in red and blue line, respectively.

Then, we described the RTS platform and quantified the

models’ computational complexity. Finally, we characterized

their estimation accuracy in all the IEEE Std tests, as well as

in an experimental dataset representative of real-world power

system dynamics. In this context, the PMU models prove to be

compliant with the requirements of both performance classes

(with the only exception of the response time for the P-class

Phase step test). Based on these results, the developed models

might represent a useful tool for investigating the performance

of dynamic phasor estimators also in real-world scenarios.
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