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Abstract. We introduce, analyze, and experimentally examine co-solva-
bility, an ability of a solution to solve a pair of fitness cases (tests). Based
on this concept, we devise a co-solvability fitness function that makes
solutions compete for rewards granted for solving pairs of tests, in a
way analogous to implicit fitness sharing. We prove that co-solvability
fitness function is by definition synergistic and imposes selection pressure
which is qualitatively different from that of standard fitness function or
implicit fitness sharing. The results of experimental verification on eight
genetic programming tasks demonstrate that evolutionary runs driven by
co-solvability fitness function usually converge faster to well-performing
solutions and are more likely to reach global optima.

1 Introduction

Fitness function in evolutionary algorithms is a technical means to express exper-
imenter’s expectations with respect to the final outcome of the search process. It
is typically designed so as to return a maximum value for an optimal design – an
ideal solution. Unfortunately, a definition of fitness function that is appropriate
from experimenter’s viewpoint is not necessarily also the best one for guiding
the search in solution space.

This issue becomes more evident when one confronts the concept of fitness
in evolutionary computation to its counterpart in natural evolution. In biology,
fitness is an artificial gauge introduced to model the a posteriori probability
of individual’s reproduction or the changes in relative frequencies of genotypes.
The particular value of such an indicator stems from innumerable interactions
between the organism and its environment, including other co-evolving individu-
als. As such, it is inevitably a very crude derivative of individual’s characteristic
and cannot fully reflect the richness of all its aspects.

By an analogy to the aforementioned multiple interactions, in evolutionary
computation one often simulates the behavior of a solution (its phenotype) in
multiple ‘environmental conditions’. This can boil down to, for instance, testing
an evolved machine learning classifier on various examples, simulating an evolved
robot controller in different settings, or querying an evolved function on different
combinations of inputs. Each such environment, typically referred to as fitness
case or test, verifies the solution on a single instance or aspect of the problem.
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The outcomes of interactions with particular tests are usually additively aggre-
gated into scalar fitness value. Analogously to natural evolution, also here such
aggregation is usually simplistic and implies inevitable loss of information.

Theoreticians and practitioners of evolutionary computation have been long
aware of this problem and observed its aftermaths in various undesirable phe-
nomena, including loss of diversity and premature convergence. Diverse coun-
termeasures has been proposed, some of which avoid aggregation into scalar
fitness measure by resorting to multiple objectives, either defined explicitly by
a human (evolutionary multi-objective optimization [3]), or automatically de-
rived from problem structure (multi-objectivization [5] and underlying objec-
tives [2]). Switching to multi-objective perspective brings however other prob-
lems, like weakened selection pressure resulting from solution incomparability
(mutual non-dominance).

The method proposed in this paper relies on scalar fitness and tries to improve
search convergence by adjusting the rewards assigned to solutions for coping
with particular fitness cases, in a way related to implicit fitness sharing [11].
In particular, our contribution is a method that focuses on individual’s ability
to properly handle pairs of fitness cases, and treats such pairs as elementary
competences (skills) for which solutions can be awarded.

2 Preliminaries

We consider here the class of iterative search problems in which solutions are
evaluated on a fixed set of fitness cases. This setup is typical for, among others,
genetic programming (GP), where individuals are programs (procedures) that
cannot be assessed otherwise than by applying them to some external input
data. This mode of evaluation can be considered as a special case of a test-based
problem. This term has been introduced in [1] to delineate a class of coevolution-
ary algorithms, particularly two-population coevolution, where a population of
solutions co-evolves along the population of tests. A test in such scenario corre-
sponds to a fitness case in genetic programming, with the major difference being
that in GP tests typically do not evolve. Because of this analogy, we will identify
these notions in the remaining part of this paper and borrow some terminology
from coevolutionary algorithms.

The implementation of a single act of confronting a solution s with a test t,
termed interaction in coevolution, is problem-dependent, and can boil down to
testing an evolved entity s in particular environmental conditions t, testing an
evolved logical or arithmetic expression s on a specific input-output pair t, or
testing a machine learning classifier s on a specific training example t. Clearly,
this class of problems pertains to a great share of real-world applications.

In following, we focus on problems with binary interaction outcomes: a solu-
tion either solves (passes) a test or not, a fact we denote using logical predicate
s(t) that returns true if solution s solves test t, and false otherwise. Given set
T of tests used to evaluate individuals in population, let s(T ) = {t ∈ T : s(t)}
denote the subset of tests solved by s.
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For this class of problems, the most straightforward way of defining fitness of
a solution is to simply count the number of solved tests (a.k.a. hits in GP):

f(s) = |s(T )| (1)

This definition, rational if no extra information on tests is available, suffers from
substantial drawback: all tests contribute equally to fitness, so f can assume at
most |T |+1 distinct values, which can result in numerous plateaus in the fitness
landscape, particularly when T is small. This in turn weakens selection pressure:
two solutions are likely to be indiscernible in terms of f .

A simple way of improving this state of matter is to weigh the rewards granted
for solving particular tests. Such weights can be sometimes provided by a human
expert and express his/her subjective assessment of test difficulty, test impor-
tance, or both. This, however, requires a substantial amount of domain knowl-
edge and an extra effort. Implicit fitness sharing introduced by Smith et al. [11]
and further explored for genetic programming by McKay [10,9] offers a more
appealing alternative, by letting the evolution alone assess the difficulty of par-
ticular tests. Assuming that individual s is a member of population P , its fitness
is here defined as:

fs(s) =
∑

t∈s(T )

1
|P (t)| (2)

where P (t) ⊆ P denotes the set of population members that solve test t. Thus,
implicit fitness sharing simulates limits imposed on resources: individuals share
the rewards for solving particular tests, each of which can vary from 1

|P | to 1
inclusive. Higher rewards are provided for solving tests that are rarely solved by
population members (small P (t)), while importance of tests that are easy (large
P (t)) is diminished. Additionally, because P (t) typically pertains to the current
population only, the assessed difficulties of tests change with time, which can
help the search process escape local minima (as opposed to fixed weighting).

As such, fitness sharing can be perceived as a simple form of coevolution, where
individuals compete for tests and their fate depends on the performance of other
individuals (though there are no direct, face-to-face interactions between indi-
viduals). From yet another perspective, fitness sharing is a diversity maintenance
technique: an individual that solves a low number of tests can still survive if its
competence is rare. In this way, implicit fitness sharing helps reducing crowding
and premature convergence; it shares this objective with explicit fitness sharing
proposed in [4], where population diversity is enforced by monitoring genotypic
or phenotypic distances between individuals.

3 Co-solvability

In broader terms, implicit fitness sharing enables an evolutionary process to
assess the relative importance of skills, where skill is identified with the ability
to solve a particular test. In real world however, it is often the combination of
skills that matters. For an animal, the skill of digging and the skill of navigation
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can bring substantial benefits independently. However, when combined, they
enable finding the previously buried prey and survive when food is scarce, a
benefit which can be greater than the sum of benefits of its constituents. As
another example, the overall performance of a mobile robot that is intended
to move around a building depends on multiple skills, like the ability to move
straight, the ability to make precise turns, and the ability to estimate its position.
Again, each of these skills alone is not enough for the completion of the task,
but together they make it possible.

Implicit fitness sharing cannot model such nonlinear accumulation of skills:
the reward for simultaneous mastering of two or more skills amounts to the
sum of rewards obtained for each skill individually. To enable synergy between
pairs of skills, we introduce the notion of co-solvability. We call a pair of tests
(ti, tj) co-solvable by s if and only if s(ti) ∧ s(tj). The co-solvability matrix for
a population P evaluated on set of tests T is a |T | × |T | matrix, with elements
defined as

cij =

{
|{s ∈ P : s(ti) ∧ s(tj)}|, i ≤ j

0, otherwise

This matrix allows us to define the co-solvability fitness function fc that rewards
individuals for solving pairs of distinct tests:

fc(s) =
∑

ti,tj∈T :s(ti)∧s(tj),i<j

1
cij

(3)

Similarity of this formula to Formula (2) is not coincidental: co-solvability can be
viewed as second-order fitness sharing. Let us notice that sharing of rewards for
co-solving particular pairs of tests is an essential component here: simply count-
ing the co-solvable tests (|{(ti, tj) : s(ti) ∧ s(tj), i < j}|) orders solutions in the
same way as the standard fitness measure (Formula (1)), yielding precisely the
same proceeding of evolution under any rank-based selection (e.g., tournament
selection).

4 Properties of Co-solvability

Let us start from noticing that co-solvability fitness function fc, similarly to f
and fs, fulfills the fundamental property we expect from any test-based fitness
function, i.e., it is monotonous with respect to inclusion of sets of tests solved:
for any s1, s2, s1(T ) ⊂ s2(T ), it holds that fc(s1) < fc(s2).

Let us consider four solutions s1, s2, s3, s4 such that when tested on four tests
t1, t2, t3, t4, they perform as shown in Table 1a. Next, let us assume that the
population contains a copies of s1, b copies of s2, c copies of s3, and d copies of
s4

1. The co-solvability matrix C for this population is shown in Table 1b.

1 In other words, we work here with equivalence classes of solutions rather than with
single solutions.
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Table 1. An exemplary problem: the performances of solutions on tests (a) and the
corresponding co-solvability matrix (b). Empty cells denote zeroes.

(a)

t1 t2 t3 t4

s1 1 1 0 0
s2 0 0 1 1
s3 0 1 1 0
s4 1 0 0 1

(b)

t1 t2 t3 t4

t1 a+d a d
t2 a+c c
t3 b+c b
t4 b+d

Table 2 presents the fitness values for solutions s1 . . . s4 as assigned by partic-
ular fitness functions: standard fitness f (Eq. (1)), fitness sharing fs (Eq. (2)),
and co-solvability fitness function fc (Eq. (3)). We note that f does not discern
any pair of solutions, no matter how often they occur in population. The ability
of fs and fc to discern solutions depends on the actual values of a, b, c and d.

Let us use the solutions s1 and s3 from the above example to demonstrate that
fc can produce different ordering of individuals than fitness sharing. Technically,
we want to check whether it is possible for fs(s1) < fs(s3) and fc(s1) > fc(s3) to
hold simultaneously. As it follows from Table 2, these two conditions are respec-
tively equivalent to a+d > c+b and a < c, which are fulfilled by infinitely many
quadruples of a, b, c, d ≥ 0. Therefore, fc is able to order solutions differently
from fs. Quite interestingly, it can be proven that four is the minimal number
of tests required to produce such difference.

Let us now translate this observation into evolutionary context and give ex-
amples of scenarios when fc produces substantially different results than fs:

1. Consider two individuals s1, s2 such that s1(T ) ∩ s2(T ) = ∅. Assume they
undergo crossover and produce offspring s such that s(T ) = s1(T )∪s2(T ). Under
fc it has to hold fc(s) > fc(s1) + fc(s2), whereas for f and fs equalities would
hold. Thus, co-solvability is not additive and enforces synergy: for parents that
exhibit mutually exlusive skills, their offspring that adopts all their skills is by
definition better than both of them taken together. Also, fc can be considered
non-Markovian with respect to the changes observed in s(T ) as s undergoes
evolutionary modifications: the increase of individual’s fitness resulting from
acquiring an ability of solving another test depends on the set of tests already
solved by that individual.

2. Consider two individuals s1, s2 such that s1(T ) �= s2(T ) and fc(s1) > fc(s2),
and a test t such that t /∈ s1(T )∪ s2(T ). Then, let us assume that, as a result of
genetic modification both s1 and s2 acquire the skill of solving t, so that for the
resulting solutions s′1 and s′2 it holds s′1(T ) = s1(T )∪{t} and s′2(T ) = s2(T )∪{t}.
As a conclusion from the above analysis, it is possible that fc(s′1) < fc(s′2). In
other words, s2 can gain more from the same modification than s1. Neither
standard fitness nor implicit fitness sharing allow such possibility (the offspring
of s1 would be better than the offspring of s2).



Using Co-solvability to Model and Exploit Synergetic Effects in Evolution 497

Table 2. Fitness values assigned to individuals from Table 1 by particular fitness
functions

Fitness definition s1 s2 s3 s4

Standard fitness f 2 2 2 2
Implicit fitness sharing fs

1
a+d

+ 1
a+c

1
b+c

+ 1
b+d

1
a+c

+ 1
b+c

1
a+d

+ 1
b+d

Co-solvability fitness fc
1
a

1
b

1
c

1
d

Co-solvability fitness is usually less discrete than f and fs. For n = |T | tests,
standard fitness function f can return only n + 1 distinct values. For the fitness
sharing method, that number amounts to n|P | if the population is sufficiently
large (precisely: if |P | is greater than the nth prime number2). For co-solvability,
[n(n−1)

2 ]|P | distinct values are possible.
In [7], Lasarczyk et al. proposed a method for selection of fitness cases based on

a concept similar to co-solvability. The method maintains a weighted graph that
spans fitness cases, where the weight of an edge reflects the historical frequency
of a pair of tests being solved simultaneously. Fitness cases are selected based on
a sophisticated analysis of that graph. Compared to that, our co-solvability is
a simpler, parameter-free approach, which does not select the fitness cases but
weighs pairs of them, individually for each solution (in [7], the same selected
subset of fitness cases is used for all solutions).

5 The Experiment

The above analysis proves that co-solvability measure can produce different or-
derings of solutions and thus potentially steer evolution in other directions than
conventional fitness measure f and fitness sharing fs. It is however far from ob-
vious whether this change is beneficial for effectiveness of search. In this section,
we verify whether the fitness pressure imposed by co-solvability improves the
performance of an evolutionary run applied to typical problems of logical func-
tion synthesis: multiplexer, parity, and two types of comparators. To this aim,
we apply the approach of genetic programming (GP), with individuals being
programs (procedures) encoded as expression trees.

For each problem, we prepared two instances, small and large, differing in
the number of inputs. Table 3 summarizes the four considered problems, listing
for each problem instance the number of inputs (independent variables, bits),
the number of tests (|T |), and the proportion of tests for which the output of
the program should be 1 and such for which the output should be 0. In the
Parity-odd problem, the task is to evolve an expression that returns true if an
odd number of ones appears on its inputs. Multiplexer should return the same
value as the state of the addressed input (6-bit multiplexer uses two inputs to
2 Sketch of proof: if |P (t)| is a distinct prime number for each t, every combination of

rewards received for particular tests yields a unique value of fitness fs (Formula 2).
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Table 3. The summary of problems and problem instances

Small instance Large instance

Problem Inputs Tests Proportions Inputs Tests Proportions

Parity-odd 5 32 16:16 6 64 32:32
Multiplexer 6 64 32:32 11 2048 1024:1024
Eq 6 64 8:56 8 256 16:240
Cmp 6 64 28:36 8 256 120:136

Table 4. Success rates of best-of-run individuals produced by the methods, defined as
the probability of run producing an ideal solution estimated from the total of 30 runs

Small instance Large instance

Problem f fs fc f fs fc

Parity-odd 0.133 0.800 0.967 0.000 0.000 0.067
Multiplexer 1.000 1.000 1.000 0.433 0.700 0.567
Eq 0.000 1.000 1.000 0.000 0.700 0.933
Cmp 0.633 1.000 1.000 0.133 0.800 0.933

address the remaining four inputs, 11-bit multiplexer uses three inputs to address
the remaining eight inputs). m-bit comparator Eq returns one if the m

2 least
significant input bits encode a number that is equal to the number represented
by the m

2 most significant bits. The Cmp comparator does the same but only
when the former of these numbers is smaller than the latter.

Concerning GP-specifics, we use the Koza-I-style setup [6] with some modi-
fications. The most important settings include: population of 1024 individuals
initialized using the standard ramped half-and-half method, tournament selec-
tion with tournament of size 7, tree-swap crossover engaged with probability
0.9, subtree-replacing mutation applied with probability 0.1, no elitism. Evolu-
tion lasts for 200 generations. The software testbed has been implemented with
help of ECJ [8] and is available at http://www.cs.put.poznan.pl/kkrawiec.

Table 5. Success effort (the expected number of generations to find the ideal)

Small instance Large instance

Problem f fs fc f fs fc

Parity-odd 1448 159 102 ∞ ∞ 2999
Multiplexer 9 8 8 370 164 224
Eq ∞ 38 33 ∞ 192 121
Cmp 186 32 31 1453 181 136
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Fig. 1. Best-of-generation fitness with ±.95 confidence, averaged over 30 runs
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Table 4 reports the success rates of the best-of-run individuals produced by the
runs that used standard fitness f , implicit fitness sharing fs, and co-solvability
fitness fc (because fitness definition is the only difference between the setups,
in following we refer to them using these symbols). We define success rate as
the estimated probability of run producing an ideal solution estimated from the
total of 30 runs.

The results confirm the common wisdom that Parity problems are the hardest
in the considered group. The function to be learned here exhibits highest possible
input-output sensitivity: the output flips every time a single input changes state.
For the small 5-bit instance, this difficulty seems to be tractable, but the large
instance (only one more input) renders the problem hopelessly difficult for f and
fs. However, we note that co-solvability still manages to find an ideal solution
twice per 30 runs, which is not much, but qualitatively better than f and fs.

It also turns out that, except for Multiplexer-11, fc significantly outperforms
the other approaches on the remaining instances. This happens whenever there
is some space for improvement; otherwise, it does not yield to fs. The gains in
performance appear more convincing when expressed in terms of success effort
reported in Table 5, which we define as the sum of generations in which an ideal
was found divided by the number of successful runs (this is a pessimistic estimate
of the expected number of generations required to find an ideal solution, which
yields ∞ if none of 30 runs succeeds).

Though the failure of fc on the Multiplexer-11 problem requires deeper inves-
tigation, we hypothesize that it is the number of tests that is here the culprit:
2048 tests means over four million elements in the co-solvability matrix.

Figure 1 presents the fitness graphs for all problems averaged over 30 runs.
Because the values of functions that propel evolution in particular methods (f ,
fs, and fc) are mutually incomparable, we plot here fitness defined in the same
way for all approaches, i.e. as f ′(s) = 1/(1 + |T | − |s(T )|), which returns a small
positive number for the worst possible individual (s(T ) = ∅), and 1.0 for an
ideal (s(T ) = T ). Because of nonlinear definition of f ′, the differences observed
in plots mean rather moderate gains in terms of the number of tests solved.
However, the superiority of fc should be judged substantial, as in the domain
of logical function synthesis any deviation from the ideal solution essentially
renders the solution useless.

Most importantly, fc turns out to be never significantly worse than fs ac-
cording to Wilcoxon runk-sum test for equal medians of fitness f ′ applied to
200th generation. And, for both Parity instances and both Eq instances, fc is
significantly better (p < 0.05).

6 Conclusion

We demonstrated here that fitness function based on a simple concept of co-
solvability is qualitatively different from the standard definition of fitness and
implicit fitness sharing and brings in substantial benefits for an evolutionary
search. Though the experimental evaluation comprised only problems from the
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realm of genetic programming, the proposed method abstracts from representa-
tion of solutions and is thus applicable to any test-based search problem. It is
likely then that similar gains could be observed for other classes of problems.

The method is straightforward to implement and its computational overhead
is basically the same as in case of fitness sharing. This extra cost can be consid-
ered negligible when compared to the actual cost of testing a solution on a test
(i.e., determining the outcome of s(t)), which is typically much higher.
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