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Image Registration with Sparse Approximations in Parametric Dictionaries∗

Alhussein Fawzi† and Pascal Frossard†

Abstract. We examine in this paper the problem of image registration from the new perspective where images
are given by sparse approximations in parametric dictionaries of geometric functions. We propose a
registration algorithm that looks for an estimate of the global transformation between sparse images
by examining the set of relative geometrical transformations between the respective features. We
propose a theoretical analysis of our registration algorithm, and we derive performance guarantees
based on two novel important properties of redundant dictionaries, namely the robust linear inde-
pendence and the transformation inconsistency. We propose several illustrations and insights about
the importance of these dictionary properties and show that common properties such as coherence
or the restricted isometry property fail to provide sufficient information in registration problems.
We finally show with illustrative experiments on simple visual objects and handwritten digit images
that our algorithm outperforms baseline competing methods in terms of transformation-invariant
distance computation and classification.

Key words. image alignment, sparse approximation, parametric dictionary, dictionary properties

AMS subject classifications. 68U10, 94A08, 68T10, 90C59

DOI. 10.1137/130907872

1. Introduction. With the ever-increasing quantity of information produced by sensors,
efficient processing techniques for identifying meaningful information in high-dimensional data
sets become crucial. One of the key challenges is to be able to identify relevant objects captured
at different times, from various viewpoints, or by different sensors. Sparse signal representa-
tions, which linearly decompose signals into key features, have recently been shown to be a
powerful tool in image analysis tasks [35, 20, 8]. In general, it is, however, necessary to align
signals a priori in order to derive meaningful comparisons or distances in the analysis. Image
alignment or registration thus represents a crucial yet nontrivial task in many image process-
ing and computer vision applications, such as object detection, localization, and classification,
to name a few.

In this paper, we propose a registration algorithm for sparse images that are given as a
linear combination of geometric features drawn from a parametric dictionary. The estimation
of the global geometric transformation between images is performed first by building a set of
candidate transformation solutions with all the relative transformations between features in
each image. The transformation that leads to the smallest transformation-invariant distance
is finally selected as the global transformation estimate. While image registration is generally
a complex optimization problem, our algorithm offers a low complexity solution when the im-
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ages have a small number of constitutive components. We analyze its theoretical performance,
which mainly depends on the construction of the dictionary that supports the sparse image
representations. We introduce two novel properties for redundant dictionaries, namely the
robust linear independence (RLI) and transformation inconsistency, which permit us to char-
acterize the performance of the registration algorithm. The benefits of these properties are
studied in detail and compared to common properties such as the coherence or the restricted
isometry property (RIP). We finally provide illustrative registration and classification exper-
iments, where our algorithm outperforms baseline solutions from the literature, particularly
when relative transformations between images are large.

The image registration problem has been widely investigated from different perspectives
in the literature, but not from the point of view of sparse image approximations as studied
in this paper. Image registration algorithms are usually classified into direct (pixel-based)
methods and feature-based methods [30]. We review these two classes of methods, and refer
the reader to [37, 30] for a general survey on image alignment.

Direct pixel-based methods simply consist in trying all candidate transformations and
seeing how much the pixels agree when the images are transformed relative to each other. A
major drawback of these methods is their inefficiency when the number of candidate trans-
formations becomes large. Therefore, hierarchical coarse-to-fine techniques based on image
pyramids have been developed [1, 34] to offer a compromise between accuracy and computa-
tional complexity. In a different approach, the authors of [27, 36] formulate the registration
problem as a low-rank matrix recovery problem with sparse noise and leverage the recent ad-
vances in convex optimization to find the optimal transformation that best aligns the images.
The approaches developed in [28, 11] map the images to a canonical space where deformations
take a simple form and thus allows easier registration.

The popular feature-based approaches [31] represent a more efficient class of methods
for image registration. They are usually built on several steps: (i) feature detection, which
searches for stable distinctive locations in the images, (ii) feature description, which provides
a description of each detected location with an invariant descriptor, (iii) feature matching
between the images, and (iv) transformation estimation, which estimates the global trans-
formation by looking at matched features. Note that it is crucial in this class of methods to
describe the features in a transformation-invariant way for easier matching. We refer the reader
to [23] for a comparison of the main different methods. A popular example of the feature-
based approach relies on the scale invariant feature transform (SIFT) [19] that combines the
difference-of-Gaussian (DoG) detector with a descriptor based on image gradient orientations
around the keypoint. The SIFT method is invariant to rotation, scaling, and translation,
and some of its extensions achieve invariance to affine transformations [25]. Moreover, the
SIFT descriptors are often used in combination with affine-invariant detectors such as those
proposed in [22, 24, 16, 2] for affine image registration. Even though SIFT has been very
successful in many computer vision applications, it is built mostly on empirical results, and
several parameters need to be set manually. Feature-based methods in general are not well
suited for estimating large transformations between target images, as the matching accuracy
and keypoint localization degrade for large transformations.

Finally, we mention some recent advances in transformation-invariant distance estimation,
which is closely related to image registration. The transformation-invariant distance is defined
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as the minimum distance between the possible transformations of two patterns. In general,
the signals generated by the possible transformations of a pattern can be represented by a
nonlinear manifold. Computing the transformation-invariant distance between two patterns
or, equivalently, the manifold distance is thus a difficult problem in general. The authors in
[29] locally approximate the transformation-invariant distance with the distance between the
linear spaces that are tangent to both manifolds. Vasconcelos and Lippman [33] go beyond the
limitations of local invariance in tangent distance methods by embedding the tangent distance
computation in a multiresolution framework. Kokiopoulou and Frossard in [17] achieve global
invariance by approximating the original pattern with a linear combination of atoms from
a parametric dictionary. Thanks to this approximation, the manifold is given in a closed
form, and the objective function becomes equal to a difference of convex functions that can
be globally minimized using cutting plane methods. Unfortunately, this class of optimization
methods has a slow convergence rate with complexity limitations in practical settings.

In this paper, we propose to examine the image registration problem from a novel perspec-
tive by building on our earlier work [9] where we consider that images are given in the form
of sparse approximations. Unlike the existing methods, this approach guarantees invariance
to transformations of arbitrary magnitude and is generic with respect to the transformation
group considered in the registration problem. The detailed analysis of our new framework
further provides useful insights on the connections between image registration problems and
sparse signal processing.

The rest of this paper is organized as follows. In section 2, we formulate the problem of
registration of sparse images and present our registration algorithm. Section 3 proposes a the-
oretical performance analysis of our algorithm and introduces two new dictionary properties.
We finally present illustrative experiments in section 4.

2. Registration of sparse images.

2.1. Preliminaries. We first define the notation and conventions used in this paper. We
denote, respectively, by R, R+, R+

∗ the set of real numbers, the set of nonnegative real numbers,
and the set of positive real numbers. We consider images to be continuous functions in
L2 = {f : R2 → R :

∫ +∞
−∞ |f(x)|2dx < ∞}. We denote the scalar product associated with L2

as 〈f, g〉 =
∫ +∞
−∞ f(x)g(x)dx, and the norm by ‖f‖2 =

√∫ +∞
−∞ |f(x)|2dx. Then, we define T to

be a transformation group and denote by ◦ its associated composition rule. We consider that
the group T includes the transformations between pairs of images in our registration problem.
We represent any transformation η ∈ T by a vector in R

P (where P denotes the dimension of
T ) containing the parameters of the transformation.

Alternatively, we represent a transformation η ∈ T with its unitary representation U(η)
in L2. Therefore, for any η ∈ T , U(η) is the function that maps an image f to its transformed
image U(η)f ∈ L2 by η. Moreover, as U(η) is a unitary operator, we have ‖U(η)f‖2 = ‖f‖2.
In order to avoid heavy notation, we also use fη to denote U(η)f . We give in Table 1 some
examples of transformation groups and their unitary representation in L2.

The group R
2 is the group of translations in the plane. The special Euclidean group

SE(2) is the group of translations and rotations in the plane. Its dimension is equal to
3 (two degrees of freedom are associated with the translation, and one is associated with
rotation). The similarity group SIM(2) of the plane is the set of transformations consisting
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Table 1
Examples of transformation groups and their unitary representation in L2. Parameters with a prime are

associated with a secondary transformation η′, and Rθ denotes the rotation matrix with angle θ.

Group Parameters Composition Unitary representation

η η ◦ η′ U(η)f = fη

R
2 b b+ b′ f(x1 − b1, x2 − b2)

Special Euclidean group SE(2) (b, θ) (b+Rθb
′, θ + θ′) f (R−θ(x− b))

Similarity group SIM(2) (b, a, θ) (b+ aRθb
′, aa′, θ + θ′) a−1f(

R−θ

a
(x− b))

of translations, isotropic dilations, and rotations. This group plays a particular importance
in transformation-invariant image processing since it contains the basic transformations to
which we usually want to be invariant.

Finally, if c ∈ R
n and 1 ≤ p < ∞, we denote by ‖c‖p the �p norm of c defined by

‖c‖p = (
∑n

i=1 |ci|p)
1/p. Note that the notation ‖ · ‖2 is overloaded since it denotes either the

continuous L2 norm or the discrete �2 norm. However, the distinction between both cases will
be clear from the context.

2.2. Problem formulation. We formulate now the registration problem that we consider
in the paper. Let I1 and I2 be two images in L2. We are interested in computing the optimal
transformation between images I1 and I2. Hence, we formulate the original alignment problem
as follows:

(P′): Find η′0 = argmin
η∈T

‖U(η)I1 − I2‖2 .

We denote by d(I1, I2) = ‖U(η′0)I1 − I2‖2 the transformation-invariant distance between I1
and I2. It corresponds to the regular Euclidean distance when the images are aligned optimally
in the L2 sense. Unfortunately, computing the transformation η′0 and the transformation-
invariant distance d(I1, I2) is a hard problem since the objective function is typically nonconvex
and exhibits many local minima.

In order to circumvent this problem, we consider that the images are well approximated
by their sparse expansion in a series of geometric functions. Specifically, let D be a parametric
dictionary of geometric features constructed by transforming a generating function φ ∈ L2 as
follows:

D = {φγ : γ ∈ Td} ⊂ L2,(2.1)

where Td ⊂ T is a finite discretization of the transformation group T and φγ = U(γ)φ denotes
the transformation of the generating function φ by γ. We denote by p and q the respective
K-sparse approximations of I1 and I2 in the dictionary D:

p =

K∑
i=1

ciφγi ,

q =
K∑
i=1

diφδi .(2.2)
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Since the dictionary D contains features that represent potential parts of the image, we assume
that coefficients ci and di are all nonnegative so that the different features do not cancel each
other.

We refer to any element φγ in D as a feature or atom. We suppose in this paper that
the generating function φ is nonnegative. In addition, we suppose for simplicity that γ �→ φγ

defines a one-to-one mapping. This assumption means that the generating function does not
have any symmetries in T .1 Finally, we suppose without loss of generality that the mother
function φ is normalized so that ‖φ‖2 = 1.

We can now reformulate the registration problem as the problem of finding the optimal
relative transformation between sparse patterns. In particular, we reformulate our registration
problem as follows:

(P): Find η0 = argmin
η∈T

‖U(η)p − q‖2 .

The smallest distance d(p, q) = ‖U(η0)p− q‖2 is the transformation-invariant distance com-
puted between the sparse image approximations p and q. Compared to the original problem,
the images I1 and I2 are replaced by their respective sparse approximations p and q. This
presents some potential advantages in applications where users do not have access to the
original images; more importantly, the prior information on the support of p and q effectively
guides the registration process, as we will see in the next paragraph. We should note that
if the images are not well approximated by their sparse expansions, the solution of (P) may
substantially differ from the true transformation obtained by solving (P′).

2.3. Registration algorithm. Now we propose a novel and simple algorithm to solve the
registration problem for images given by their sparse approximations. The core idea of our
registration algorithm lies in the covariance property of the dictionary D: a global trans-
formation applied on the image induces an equivalent transformation on the corresponding
features.2 Thanks to this covariance property, it is possible to infer the global transforma-
tion between the images by a simple computation of the relative transformations between the
features in both images.

Specifically, let T p,q
a be the set of relative transformations between pairs of features taken,

respectively, in p and q: T p,q
a = {δi ◦ γ−1

j : 1 ≤ i, j ≤ K}. We can thus estimate the relative
transformation between the images by solving the following relaxed problem of (P):

(P̂): Find η̂ = argmin
η∈T p,q

a

‖U(η)p − q‖2 .

The minimum of the objective function da(p, q) = ‖U(η̂)p− q‖2 is defined as the approximate
transformation-invariant distance between I1 and I2.

Even though problems (P) and (P̂) share some similarities, they differ in an important
aspect, the search space. It is reduced from T to the finite set T p,q

a . This constrains the

1We extend this assumption to the more general setting where the stabilizer of φ defined by Sφ = {γ ∈ T :
U(γ)φ = φ} is a finite set in Appendix B.

2The meaning of covariance that is used in this paper is not to be confused with that of covariance used in
statistics.
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estimated transformation to be equal to a transformation that exactly maps two features
taken, respectively, from p and q. The assumption that T can be replaced by T p,q

a originates
from the observation that features are covariant to the global transformation applied on the
original image. Even though this assumption is not necessarily true for all features when
innovation exists between the images (other than a global transformation), we expect to have
at least one feature whose transformation is consistent with the optimal transformation η0.
We analyze in detail the error due to this assumption in section 3. The advantage of replacing
T by T p,q

a is, however, immediate: we have reduced an intractable problem to a problem whose
search space is of cardinality at most K2. Since K is generally chosen to be small enough,
the problem (P̂) can be efficiently solved by a full search over all the elements of T p,q

a . The
registration algorithm is summarized in Algorithm 1.

Algorithm 1. Image registration algorithm.

Input: sparse approximations p =
∑K

i=1 ciφγi and q =
∑K

i=1 diφδi .

1. Construct the set T p,q
a :

T p,q
a = {δi ◦ γ−1

j : 1 ≤ i, j ≤ K}.

2. Estimate the transformation η̂ and da(p, q):

η̂ ← argmin
η∈T p,q

a

‖U(η)p − q‖2 ,

da(p, q)← ‖U(η̂)p − q‖2 .

3. Return (η̂, da(p, q)).

The value of K controls the computational complexity of Algorithm 1: a large value
of K results in a large cardinality of the search space T p,q

a . Furthermore, the value of K
also generally controls the error in the approximation of the original images by their sparse
expansions p and q. We discuss in more detail the influence of K on our registration algorithm
in section 4. Note finally that we have supposed for simplicity that both images I1 and I2
are approximated by the same number of features. However, it is easy to see that one can
generalize it to the case where the numbers of features are different in the two images. In this
case, we have |T p,q

a | = K1K2 instead of K2, where K1 and K2 are the number of features in
I1 and I2, respectively.

In the next section, we analyze the performance of the proposed registration algorithm in
different settings and focus in particular on the influence of the dictionary D on the registration
performance.

3. Theoretical analysis. In this section, we examine the penalty of relaxing the original
problem (P′) into (P̂) in terms of registration performance. We first discuss the framework and
the assumptions used in our analysis. Then, we study a simple case where the image patterns
are exactly related by a (possibly very large) geometrical transformation. We show that
under a mild assumption on the dictionary, our algorithm achieves perfect registration. We
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then extend the analysis to the general case and introduce two key properties of the dictionary
(namely, RLI and transformation inconsistency). We show that under some conditions on
these properties, our algorithm succeeds in recovering the correct relative transformation with
a bounded error in the general case, as long as the innovation between the images (other than
the global geometrical transformation) is controlled. We give at each step of the analysis the
main intuitions and several examples to illustrate the novel notions introduced in our analysis.

3.1. Analysis framework. First we define a performance metric to measure the image
registration accuracy. As we want to capture the performance of our registration algorithm
with respect to the optimal image alignment obtained by solving (P′), a natural metric consists
in computing the difference between the transformation-invariant distance and its approximate
version, i.e., E′(p, q, I1, I2) = |da(p, q) − d(I1, I2)|. We assume in this paper, however, that
the images are given by their sparse expansions. Therefore, we use an alternative registration
performance given by E(p, q) = da(p, q) − d(p, q), where we use the transformation-invariant
distance computed between the sparse image approximations p and q instead of the original
images. Note that E(p, q) ≥ 0 since T p,q

a ⊂ T .
We relate in the following proposition the two registration metrics E(p, q) andE′(p, q, I1, I2)

to the sparse approximation errors ‖I1 − p‖2 and ‖I2 − q‖2.
Proposition 3.1. E′(p, q, I1, I2) ≤ E(p, q) + ‖I1 − p‖2 + ‖I2 − q‖2.
Proof. We have

E′(p, q, I1, I2) = |da(p, q)− d(I1, I2)|
= |da(p, q)− d(p, q) + d(p, q)− d(I1, I2)|
≤ E(p, q) + |d(p, q) − d(I1, I2)|,

using the triangle inequality. We now show that |d(p, q) − d(I1, I2)| ≤ ‖I1 − p‖2 + ‖I2 − q‖2.
Let η ∈ T . We have

‖U(η)I1 − I2‖2 = ‖U(η)(p + I1 − p)− (q + I2 − q)‖2
= ‖U(η)p − q + U(η)(I1 − p)− (I2 − q)‖2.

Using the triangle inequality, we derive a lower and an upper bound as follows:

‖U(η)p − q‖2 − ‖U(η)(I1 − p)‖2 − ‖I2 − q‖2
≤ ‖U(η)I1 − I2‖2 ≤ ‖U(η)p − q‖2 + ‖U(η)(I1 − p)‖2 + ‖I2 − q‖2.

As U is a unitary operator, we have ‖U(η)(I1−p)‖2 = ‖I1−p‖2. Hence, rewriting the previous
equation, we get

(3.1)
‖U(η)p− q‖2−‖I1−p‖2−‖I2− q‖2 ≤ ‖U(η)I1− I2‖2 ≤ ‖U(η)p− q‖2+‖I1−p‖2+‖I2− q‖2.

Recall that d(p, q) = minη∈T ‖U(η)p − q‖2 and d(I1, I2) = minη∈T ‖U(η)I1 − I2‖2. Hence, by
taking the minimum over all η ∈ T , we obtain |d(I1, I2) − d(p, q)| ≤ ‖I1 − p‖2 + ‖I2 − q‖2,
which concludes the proof of the proposition.



IMAGE REGISTRATION WITH SPARSE APPROXIMATIONS 2377

When most of the energy of I1 and I2 is captured by p and q (namely, when ‖I1−p‖2+‖I2−
q‖2 is small), the registration errors E(p, q) and E′(p, q, I1, I2) are equivalent. We suppose in
the rest of this section that this condition is satisfied, and we measure the registration error
with E(p, q) = da(p, q) − d(p, q). Hence we focus exclusively in this analysis on the penalty
induced by restricting the search space T to T p,q

a , that is, the penalty induced by relaxing the
problem (P) into the problem (P̂) in the above section.

Before studying the registration performance, we describe additional assumptions on the
discretization of the transformation group T . Recall that the transformation η0 optimally
aligns p and q in the L2 sense in problem (P). We assume that it satisfies the following
assumptions:

η0 ◦ γi ∈ Td for all i ∈ {1, . . . ,K},(3.2)

η−1
0 ◦ δi ∈ Td for all i ∈ {1, . . . ,K},(3.3)

where Td is the discretization of T used to construct dictionary D as given in (2.1). These
hypotheses state that the atoms of U(η0)p and U(η−1

0 )q belong to the dictionary, where U(η0)p
is the optimal alignment of p with q and U(η−1

0 )q is the optimal alignment of q with p. As
η0 is obviously not known beforehand, it is difficult to verify this assumption in practice.
However, we can assume that (3.2) and (3.3) hold when the parameter space used to design
D is discretized finely.

Finally, the assumptions in our performance analysis can be summarized as follows:

(A1) ‖I1 − p‖2 + ‖I2 − q‖2 ≈ 0,

(A2) η0 ◦ γi ∈ Td,
η−1
0 ◦ δi ∈ Td.

3.2. Registration performance with exact pattern transformation. In our performance
analysis, we first consider the special case where d(p, q) = 0. This means that there exists a
transformation η0 ∈ T for which q = U(η0)p; i.e., the sparse image approximations can be
aligned exactly. We show that in this case, our registration algorithm is able to recover the
exact global transformation between p and q, as long as any subset of size 2K in D is linearly
independent. We have the following proposition.

Proposition 3.2. Suppose that any subset of size 2K in D is linearly independent. In this
case, if d(p, q) = 0, then E(p, q) = 0.

Proof. If d(p, q) = 0, then we have
∑K

i=1 ciφη0◦γi −
∑K

i=1 diφδi = 0. Thanks to the linear
independence of any subset of size 2K in D, for any γi there exists δj such that φη0◦γi = φδj .
Indeed, if this is not the case, we could write φη0◦γi as a linear combination of 2K − 1
atoms in D that are all different from φη0◦γi and that all belong to D thanks to assump-
tion (A2). This contradicts the assumption that any subset of 2K atoms in D is linearly
independent. Then, since the mapping γ �→ U(γ)φ is a one-to-one function thanks to our
dictionary design assumption, we have η0 ◦ γi = δj . Thus, η0 = δj ◦ γ−1

i ∈ T p,q
a , and

da(p, q) = minη∈T p,q
a
‖U(η)p − q‖2 = d(p, q) = 0.

We can make the following remark about the design of the dictionary. The linear indepen-
dence assumption guarantees that, when two K-sparse signals are equal, they have at least
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one atom in common.3 If this condition is violated, the patterns U(η0)p and q can have several
decompositions in the dictionary with disjoint supports. In this case, all the features of the
transformed patterns U(η0)p and q are distinct, which generally lead to da(p, q) �= d(p, q).
Note that this assumption appears in many problems related to overcomplete dictionaries
since it guarantees the uniqueness of K-sparse decompositions [6, 4, 32].

Finally, since Proposition 3.2 ensures that E(p, q) = 0 for an exactly transformed pattern,
and we have E′(p, q, I1, I2) ≈ E(p, q) when the sparse approximation errors are not too large
(assumption (A1)), we can guarantee that the registration error E′(p, q, I1, I2) is small in this
case.

3.3. Registration performance in the general case.

3.3.1. Bound on the registration error. We now study the performance of our registra-
tion algorithm in the general case. The previous result applies only to an ideal scenario since
the condition d(p, q) = 0 is rarely satisfied in practice. There is usually some slight innovation
between the images (other than a transformation in T ), which results in a distance d(p, q)
that is nonzero. In addition, even when the original images are exactly related by a global
transformation (i.e., d(I1, I2) = 0), there is no guarantee that the sparse approximations can
be perfectly aligned (i.e., d(p, q) = 0), due to the discretization of the dictionary.

We study the general case where the sparse image approximations p and q have differences
that cannot be explained by a global geometric transformation in T . In more detail, when
c and d denote, respectively, the coefficient vectors for patterns p and q following (2.2), we
suppose that there exists a real number ε > 0 such that d(p, q) < ε

√
‖c‖22 + ‖d‖22. The quantity

ε therefore measures the normalized innovation between p and q.

We now turn to the main result of our paper, which is formulated in Theorem 3.3. This
result relates the error of the registration algorithm in Algorithm 1 to the properties of the
dictionary, namely RLI and the transformation inconsistency. It reads as follows.

Theorem 3.3. If d(p, q) < ε
√
‖c‖22 + ‖d‖22 with ε > 0, then

E(p, q) ≤ αρmin (‖c‖1, ‖d‖1) ,

when D is (2K, ε, α)-robustly linearly independent (RLI) for some α ∈ [0,
√
2), and ρ is the

transformation inconsistency of D.
Theorem 3.3 shows that RLI with a small α and a small transformation inconsistency

are key properties of the dictionary in order to guarantee the success of our algorithm. The
RLI property can be thought of as an extension of the linear independence assumption to the
case where d(p, q) �= 0. Specifically, it guarantees the existence of two approximately similar
features in U(η0)p and q when d(p, q) is small. The transformation inconsistency captures the
fact that geometrical transformations have a different effect on distinct atoms in the dictionary.
We defer the proof of Theorem 3.3 to Appendix A, and we study in detail in the rest of this
section the novel RLI and transformation inconsistency properties.

3The linear independence of any subset of size 2K in the dictionary actually guarantees a stronger result:
it guarantees that any K-sparse signal has a unique decomposition in D [7]. In other words, it guarantees that
when two K-sparse signals are equal, all the atoms are equal.
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Figure 1. Example of a linearly independent dictionary D that induces a large registration error da(p, q)−
d(p, q), when p = 1/2(φγ1 +φγ2 +φγ3 +φγ4) and q = φγ5 . We note that for ε >

√
κ, this dictionary is not RLI

unless α ≥ 1. Note that ε can be made very small since κ can be chosen to be any positive real number.

3.3.2. Robust linear independence. We study now in more detail the novel dictionary
properties. We first show that the linear independence assumption introduced in section 3.2
is no longer sufficient to bound the registration performance in the case where d(p, q) �= 0
(but close to zero). To see this, we construct a linearly independent dictionary D and two
sparse patterns p and q for which d(p, q) can be made arbitrarily close to zero (i.e., ε → 0)
yet the registration error is large. As illustrated in Figure 1, we consider a dictionary D
containing four square atoms and an additional big square atom parametrized by its position
κ with respect to φγ1 . Clearly, when κ �= 0, the dictionary D is linearly independent since
one cannot write an atom as a linear combination of the four other atoms. We consider the
patterns p = 1

2

∑4
i=1 φγi and q = φγ5 . When κ is small, the transformation that best aligns

p and q is the identity transformation.4 All relative transformations between features in p
and q are, however, combinations of dilations and translations, which result in an estimated
transformation η̂ in our algorithm that is significantly different from the identity. Hence we
obtain a large registration error da(p, q)−d(p, q) in this example. This example shows that the
linear independence assumption defined in section 3.2 is fragile: it does not allow us to bound
the registration error even when d(p, q) is very small. One needs a more robust condition
in order to guarantee a small registration error even in cases where the innovation between
images is small (but nonzero).

Therefore, we propose to extend the notion of linear independence to a novel property
called robust linear independence (RLI) to characterize sets of vectors. It is formally defined
as follows.

Definition 3.4. Let (H, ‖ · ‖) be a normed space and K ≥ 1. A family of vectors (v1, . . . , vK) ∈
HK is (ε, α)-robustly linearly independent (RLI) if the following implication holds for any
vector a ∈ R

K:∥∥∥∥∥
K∑
i=1

aivi

∥∥∥∥∥ < ε‖a‖2 =⇒ ∃i, j with ai, aj �= 0 such that

∥∥∥∥ aivi
‖aivi‖

+
ajvj
‖ajvj‖

∥∥∥∥ ≤ α.(3.4)

In other words, when ε and the parameter α are small, any linear combination of vectors
that nearly vanishes in an RLI vector set contains at least two vectors that approximately

4If we look among all possible transformations, the optimal transformation η0 is a translation that exactly
aligns p and q. However, this transformation does not satisfy the assumptions in (3.2) and (3.3). To illustrate
the main issue here, we consider only transformations that satisfy these assumptions. For small κ, the optimal
transformation is therefore the identity.
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cancel each other.
We now discuss the relation between RLI and linear independence. While linear indepen-

dence prevents having collinear vectors, it is natural in our registration framework to allow
collinear vectors in the dictionary since they represent essentially the same feature. Specif-
ically, as the underlying transformation parameter of collinear atoms is the same, selecting
one atom or the other is not important for the purpose of registration.5 The notion of linear
independence where collinear vectors are allowed can be written as follows. For any a ∈ R

K

such that a �= 0,∑
i

aivi = 0 =⇒ ∃i, j with ai, aj �= 0 such that
aivi
‖aivi‖

+
ajvj
‖ajvj‖

= 0.

Note that this essentially corresponds to the notion of RLI in the case where α, ε = 0. Since
we want to study the behavior of the algorithm for nonzero innovation between the images,
we naturally extend the notion of linear independence (where collinear vectors are allowed) to
Definition 3.4; if a linear combination of vectors has a small magnitude (where ε quantifies the
magnitude), there exist two vectors that approximately cancel each other (where α quantifies
this approximation). Note that, for a fixed α, the RLI gets harder to satisfy for a larger ε. In
addition, for a fixed ε, the condition is harder to satisfy for a smaller α.

The following toy example illustrates the notion of RLI in R
3.

Figure 2. Illustration of RLI property in R
3.

Example 1. Consider the setting of Figure 2 with θ = ϕ = π/20. Then, for ε = 0.2, we
have the following:

1. (e1, e2, v) is RLI with α = 0.2.
2. (e1, e2, v

′) is not RLI unless α ≥ 0.78.
The proof of Example 1 is straightforward from simple trigonometry. The set of vectors

(e1, e2, v) has a better behavior in terms of RLI than (e1, e2, v
′). The underlying reason is

that v is very close to the vector e2 (i.e., ‖e2− v‖2 is close to zero), while v′ is close to a linear
combination of e1 and e2 (but not to e1 or e2). While it is acceptable to have vectors that
are close to each other, the RLI property prevents having a vector that is close to a linear
combination of the other vectors. This can also be readily seen in the example of Figure 1.

5Note that this is in contrast to recovery problems (e.g., compressed sensing) where collinear vectors (in
the measurement matrix) are not allowed, since it will not be possible then to recover the active component of
the signals.
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The definition of RLI can be extended to dictionaries as follows.

Definition 3.5. A dictionary D is (K, ε, α)-RLI if any subset of size K in D is (ε, α)-RLI.

The dictionary in the example of Figure 1 is not K-RLI for K = 5, with small ε (un-
less α is large). Indeed, by choosing a vector of coefficients a = [0.5, 0.5, 0.5, 0.5,−1]T , we
obtain ‖

∑
i aivi‖2 ≈ 0, yet α = 1. Note that the RLI property on the dictionary has to be

satisfied in order to obtain a good registration performance, as it ensures the existence of two
approximately similar features (in the L2 sense) in U(η0)p and q, when d(p, q) is small.

We study now in more detail the RLI property on dictionaries. In particular, we examine
the main difference between RLI and the well-known RIP [4]. The restricted isometry condi-
tion assumes that a collection of vectors behaves almost like an orthonormal system but only
for sparse linear combinations. Specifically, the RIP with constant δK implies that any linear
combination of K elements in the dictionary satisfies

∥∥∥∥∥
K∑
i=1

aivi

∥∥∥∥∥
2

≥ (1− δK) ‖a‖22 .

By imposing an RIP property on the dictionary D with δK � 1, the norm of any sparse
linear combination of atoms is guaranteed to be large (i.e., larger than

√
(1− δK)‖a‖2). In

our case, contrary to the RIP, we are interested in linear combinations of atoms that nearly
vanish. The RLI property imposes in this case the existence of two atoms that approximately
cancel each other in the signal support. Consequently, RLI can be seen as a weak form of RIP,
where we allow the norm of linear combinations to be close to zero, provided that two atoms
approximately cancel each other in the sense of (3.4). In particular, any dictionary D that
satisfies the RIP property with a parameter δK will be (K,

√
1− δK , 0)-RLI. Indeed, since

‖
∑K

i=1 aivi‖ ≥
√
1− δK‖a‖2 holds for any subset of K dictionary elements, the left-hand side

of (3.4) cannot be satisfied when ε =
√
1− δK .

Let us consider a simple example to compare the new RLI property with the common
ways of characterizing dictionaries, namely, the coherence [32] and the RIP [4].6

Example 2 (dictionary of translated box functions). Let H = L2(R), and define the box
function

v(t) =

{
1 if t ∈ [0, 1],

0 otherwise.

We consider the infinite-size dictionary Dbox = {Tτv = vτ : τ ∈ R}, where Tτ is the translation
operator by τ . The dictionary has the following properties:

• Dbox is RIP with a constant δK(Dbox) equal to 1 for any K ≥ 2.
• The coherence of Dbox is equal to 1.
• Dbox is (K, ε, ε

√
2
3(4

K − 1))-RLI for K ≥ 1 and ε ∈ (0,
√

3
4K−1

).

We give in the following a brief overview of the proof of the RLI of D. The interested
reader can find the complete proof in our technical report [10].

6Even though the definitions of RIP and coherence are originally for vectors in R
N , we consider here a

straightforward extension of the definitions of RIP and coherence to the case where vectors are in L2.
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Sketch of the proof. Without loss of generality, suppose that a is a vector in R
K of unit

�2 norm such that ‖
∑

i aivτi‖2 < ε with ε < Y =
√

3
4K−1

. Let i∗ be the smallest integer that
satisfies |ai∗ | ≥ 2i

∗−1Y . Note that such an index always exists, as it would contradict ‖a‖2 = 1
otherwise. Let j∗ be the smallest integer larger than i∗ that satisfies ai∗aj∗ < 0. Using the
definition of i∗, one can show that, for t in (τj∗−1, τj∗), we have |

∑
i aivτi(t)| ≥ Y . We can

therefore show that the box functions vτj∗−1
and vτj∗ cancel each other: ε2 > ‖

∑
i aivτi‖

2
2 ≥

Y 2(τj∗ − τj∗−1), which leads to (τj∗ − τj∗−1) ≤ ε2/Y 2. By relating the quantity (τj∗ − τj∗−1)
to ‖vτj∗ − vτj∗−1

‖2, we finally obtain the value of α for the specified value of ε.
The RIP constant δK(Dbox) is 1 for anyK ≥ 2 as two box functions can be made arbitrarily

close to each other. Similarly, the coherence of this dictionary is equal to 1. Nevertheless,
the dictionary Dbox is RLI with a coefficient α that is proportional to ε. One can understand
the fact that Dbox is RLI intuitively; if a linear combination of box functions has a small
norm, there exist at least two box functions that nearly cancel each other. Note, however,
that α = ε

√
2
3(4

K − 1) grows very fast with K for a fixed ε.
Even if the dictionary Dbox hardly satisfies the RIP and is highly coherent, it is still an

interesting one in our framework. Indeed, it satisfies the key property that two sparse signals
that are close in the L2 sense have at least two approximately similar features. When applied
to our registration problem, this guarantees the existence of two features that are related
approximately by a transformation η0 in the L2 sense7 when d(p, q) remains small. This
property is at the core of our registration algorithm since we infer the global transformation
by looking at the relative transformations between the features.

We finally stress the differences between the proposed RLI property and other dictionary
properties such as the RIP, coherence, or, more recently, the properties introduced in [3, 14, 26].
While the latter properties are specifically designed for the task of signal recovery, the proposed
RLI property is introduced in the context of image registration. This explains in particular
why a dictionary can be well behaved in terms of the RLI property despite having coherent
atoms. In contrast, coherent columns are forbidden in the context of recovery problems (e.g.,
compressed sensing) as it is then difficult to distinguish between similar components in the
signal reconstruction.

3.3.3. Transformation inconsistency. We now introduce a second dictionary property, the
transformation inconsistency, that is key to studying the performance of our algorithm. The
transformation inconsistency measures the difference in the effect of the same transformation
on distinct atoms in the dictionary. It is formally defined as follows for parametric dictionaries
given by (2.1).

Definition 3.6. The transformation inconsistency ρ of a parametric dictionary D is equal
to

ρ = sup
γ,γ′∈Td

sup
η∈T \{I}

{‖U(η)φγ′ − φγ′‖2
‖U(η)φγ − φγ‖2

}
,

where I is the identity transformation.
The transformation inconsistency ρ is always greater than or equal to 1. Furthermore,

when T is commutative, the transformation inconsistency takes its minimal value and is equal

7More precisely, this means that there exist a γi and a δj such that ‖U(η0)φγi − φδj ‖2 is small.
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to 1. Indeed, for any γ, γ′ in Td and η ∈ T , we have

‖U(η)φγ′ − φγ′‖2
‖U(η)φγ − φγ‖2

=
‖U(γ′)(φη − φ)‖2
‖U(γ)(φη − φ)‖2

=
‖φη − φ‖2
‖φη − φ‖2

= 1.

Hence, taking the supremum over all η ∈ T and atoms γ, γ′ ∈ Td results in having ρ = 1. This
is expected since when T is commutative, a fixed transformation acts on all atoms similarly.

On the other hand, a large value of the transformation inconsistency ρ (i.e., ρ� 1) means
that there exist two atoms in the dictionary that are affected in a very different way when
they are subject to the same transformation. The transformation inconsistency plays a key
role in our registration algorithm. Indeed, as the global transformation between two sparse
patterns is estimated from one of the relative transformations between features, it is preferable
that transformations act in a similar way on all the features of the sparse patterns for more
consistent registration. That means that dictionaries with small transformation inconsistency
provide better registration performance.

In order to outline the importance of this novel property in our registration framework,
we give a few illustrative examples of dictionaries with different transformation inconsistency
parameters.

Example 3 (dictionary with quasi-isotropic mother function, T = SE(2)). We consider T to
be the special Euclidean group (T = SE(2)). That is, T accounts for translations, rotations,
and combinations of those. We consider an ellipse-shaped mother function φ as shown in
Figure 3(a) with anisotropy r = l

L . Then, we suppose for the sake of simplicity that Td = T
(i.e., the dictionary is built by applying all transformations γ ∈ T to the generating function
φ).

We illustrate in Figure 3(b) the effect of transformation η, which is a simple rotation,
on two different atoms with parameters γ and γ′ positioned at different points in the two-
dimensional (2D) plane. While the rotation of the atom parametrized by γ induces a very
slight change on it (when r ≈ 1), the same rotation applied on the atom φγ′ completely
changes its position. This is due to the fact that translations and rotations do not commute.
Hence, the transformation η has a very different impact on atoms φγ and φγ′ , and we get
ρ → ∞ from Definition 3.6. Therefore, when the generating function φ approaches isotropy,
the transformation inconsistency grows to infinity.

In this example, our registration algorithm is not guaranteed to have a small error. To
illustrate it, let us consider the patterns p and q illustrated in Figure 3(c), which are each
composed of two atoms whose coefficients are all equal. The distance d(p, q) between the
patterns can be made arbitrarily small with a generating function that is close to isotropic (i.e.,
r→ 1), while the minimal distance da(p, q) in our algorithm remains large. Indeed, since our
algorithm considers only relative transformations between pairs of atoms, the estimated global
transformation between the patterns can only be equal to a combination of a translation and a
rotation of π

2 . However, when r ≈ 1, the optimal transformation is clearly the identity, which
cannot be selected with our algorithm: this results in a large registration error da(p, q)−d(p, q).
Note that the error here is entirely related to the fact that the transformation inconsistency
ρ is large, and not to the RLI property since the dictionary under consideration here is RLI
for small values of the sparsity K.
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Figure 3. Example of a dictionary where the transformation inconsistency ρ is large. (a) Mother function
of the dictionary with anisotropy r = l

L
. (b) Atoms φγ , φγ′ and a transformation η that leads to a large

transformation inconsistency ρ. (c) Examples of patterns p (atoms represented with solid line) and q (atoms
represented with dashed line), where our algorithm has a large registration error da(p, q)− d(p, q).

To be complete, we should note that the one-to-one mapping assumption defined in section
2.2 for the function γ �→ U(γ)φ is not satisfied in Example 3, since φ has a rotational symmetry
of π. In this case, a slightly more complicated definition of the transformation inconsistency
ρ has to be made to avoid having ρ =∞ (with the definition of ρ given in Definition 3.6, we
obtain ρ = ∞ by setting η to be a rotation of π and γ to be the identity and choosing any
γ′ different from γ). The main intuitions of the transformation inconsistency ρ, as defined in
Definition 3.6, however, hold when φ has a finite number of symmetries. We study in detail
the generalization of the transformation inconsistency ρ to the case where φ has symmetries
in T in Appendix B.

Example 4 (dictionary built with translation and isotropic dilations, T = Td = R
2 × R

+
∗ ). In

this example, we let T be the group of translations and isotropic dilations. The generat-
ing function of the dictionary can have any form, as long as its support is much smaller than
the dimension of the image. For example, we can choose a circle-shaped mother function,
as depicted in Figure 4(a). Then, we consider the scenario where the two atoms φγ and φγ′

are separated by z (where z is considered to be very large), as illustrated in Figure 4(b). A
transformation η that consists of a small isotropic dilation has a very different effect on both
atoms since translations and dilations do not commute. In particular, the transformation η
applied to φγ′ results in an atom that has no intersection with φγ′ , while the same transfor-
mation has almost no effect on φγ ; i.e., U(η)φγ ≈ φγ . Thus, the transformation inconsistency
is very high and ρ ≈ ∞ according to Definition 3.6. In Figure 4(c), we illustrate why this
may cause a problem in our registration algorithm: we consider the two sparse patterns p
and q composed of two features each, where the coefficients of all the atoms are equal. It is
not hard to see that the optimal global transformation between both patterns is the identity.
At the same time, our algorithm can only estimate a global transformation that is a dilation
(combined possibly with a translation) since all transformations between pairs of atoms in p
and q consist of combinations of dilation and translation.

We refer the reader to our technical report [10] for more examples. Overall, the above
examples suggest that, whenever the transformation inconsistency of the dictionary is large,
one may construct an example where our registration algorithm poorly approximates the
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Figure 4. Example of a dictionary where the transformation inconsistency ρ is large. (a) Mother function
of the dictionary. (b) Atoms φγ , φγ′ and transformation η that causes ρ to be large. (c) Examples of patterns
p (atoms represented with solid line) and q (atoms represented with dashed line), where our algorithm has a
large registration error da(p, q)− d(p, q).

transformation-invariant distance. It is worth mentioning that even though the previous
examples consider localized atoms with finite support, our approach is not constrained to
such atoms. In the general setting where T is any transformation group (and Td = T for
the sake of simplicity), an example of failure could be constructed as follows. The basic idea
is to build two patterns p and q of the form p = φγ + φγ′ and q = U(η1)φγ + U(η2)φγ′

for which (i) p ≈ q, and (ii) ‖U(η1)p − q‖2 and ‖U(η2)p − q‖2 are large (with respect to
‖p − q‖2). The optimal transformation between p and q is then simply the identity, whereas
the transformations considered in our algorithm (namely η1 and η2, along with η1 ◦ γ ◦ γ′−1

and η2 ◦ γ′ ◦ γ−1) result in a poor registration performance as they all differ from the identity
transformation.

In more detail, when ρ� 1 we know that there exist two atoms φγ and φγ′ with γ ∈ T and
γ′ ∈ T , along with a transformation η1 for which ‖U(η1)φγ−φγ‖2 ≈ 0, while ‖U(η1)φγ′−φγ′‖2
is large. By setting η2 = (γ′ ◦ γ−1) ◦ η1 ◦ (γ ◦ (γ′)−1), we get that ‖U(η2)φγ′ − φγ′‖2 =
‖U(η1)φγ − φγ‖2 ≈ 0. Hence, the norm ‖p − q‖2 is necessarily small since ‖p − q‖2 = ‖φγ +
φγ′ − U(η1)φγ − U(η2)φγ′‖2 ≤ ‖φγ − U(η1)φγ‖2 + ‖φγ′ − U(η2)φγ′‖2. Besides, we know by
construction that ‖U(η1)φγ′ − φγ′‖2 is large and ‖U(η2)φγ − φγ‖2 is also generally large since
the group T is noncommutative. This gives us, in general, large values of ‖U(η1)p − q‖2 and
‖U(η2)p − q‖2. This construction shows that, when the dictionary has a large inconsistency
parameter, one can find patterns for which the registration algorithm fails to recover the right
global transformation.

In general, the above examples show that it is better to choose a dictionary with a small
transformation inconsistency (i.e., ρ small) to have good registration performance irrespective
of the patterns to be aligned.

The performance of the registration algorithm depends on the transformation inconsis-
tency as well as on the RLI of the dictionary, as shown in Theorem 3.3. The success of our
registration algorithm for all sparse signals in the dictionary is guaranteed when the RLI
and transformation inconsistency conditions are satisfied. Note that the conditions on the
dictionary properties are essentially tight, as one can construct an example where our algo-
rithm fails whenever one of the parameters is large enough. The performance bound should
be interpreted more in a qualitative way than in a quantitative way. It provides two rather
intuitive conditions for our algorithm to provide low registration error. In order to use this
bound quantitatively, however, one has to be able to compute explicitly the newly defined
properties on generic dictionaries. We outline here the fact that such a bound could not have
been established with traditional measures for characterizing dictionaries, namely coherence
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or the RIP constant. Finally, we remark that the result in Theorem 3.3 can be used to bound
the registration error E′(p, q, I1, I2) thanks to Proposition 3.1. The price to pay in this case
is the approximation error ‖I1 − p‖2 + ‖I2 − q‖2.

4. Image registration experiments. In this section, we evaluate the performance of our
algorithm in image registration experiments. First we describe the implementation choices
in our registration algorithm. Then we study its performance for different dictionaries and
put the results in perspective with the theoretical guarantees in section 3. Finally, we present
illustrative image registration and classification experiments with simple test images and hand-
written digits.

4.1. Algorithm implementation. In all the experiments of section 4.3, we focus on achiev-
ing invariance to translation, rotation, and scaling. Invariance to these transformations is
indeed considered to be a minimal requirement in invariant pattern recognition. These three
operations generate the group of similarities that we denote by T = SIM(2). Any element
in T is therefore indexed by four parameters: a translation vector b = (bx, by), dilation a, and
rotation θ. We now describe the sparse approximation algorithm and the dictionary design
used in our experiments.

4.1.1. Sparse approximation algorithm. There are many methods for constructing sparse
approximations of images. In our experiments, we use a modified implementation of the match-
ing pursuit (MP) [21] algorithm, as MP is a pretty simple algorithm that works relatively well
in practice. It is an iterative algorithm that successively identifies the atoms in D that best
match the image to be approximated. More precisely, MP iteratively computes the correlation
between the atoms in D and the signal residual, which is obtained by subtracting the contri-
butions of the previously chosen atoms from the original image. At each iteration, the atom
with the highest correlation is selected, and the residual signal is updated. While the stan-
dard MP algorithm solves the sparse approximation problem without positivity constraint on
the coefficients, we propose a slightly modified algorithm (that we call nonnegative matching
pursuit (NMP)) in order to select atoms that have the highest positive correlation with the
residual signal. This choice is driven by the objective of having a part-based signal expansion,
where each feature participates in constructing the signal representation. The NMP algorithm
is formally defined in Algorithm 2.

One way to choose the sparsity K consists in controlling the approximation error of I1
and I2. Specifically, we can impose a stopping criterion in the NMP algorithm of the form
‖rK‖2 ≤ e, where rK is the residual at iteration K and e is a fixed threshold controlling the
approximation error. When e is chosen to be small enough, this guarantees a relatively small
sparse approximation error.

Note that the complexity of NMP is governed by the selection step; hence O(K|D|) op-
erations need to be performed. In addition, the complexity of solving (P̂) using Algorithm 1
is O(K2N) with N = max(N1, N2) with N1 and N2, respectively, the dimensions of the dis-
cretized images corresponding to p and q. Therefore, if the sparse approximation step is nec-
essary for registration, the complexity of the overall registration algorithm is O(K|D|+K2N).

Depending on the factor |D|
KN , the complexity of the global registration algorithm might be

governed by either the sparse approximation step or the registration step. Overall, the choice
of K results from a trade-off between approximation error (hence registration performance)
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Algorithm 2. Nonnegative matching pursuit (NMP) for feature extraction.

Input: image I, sparsity K, dictionary D.
Ensure: coefficients c, support Γ.

1. Initialization of the residual: r0 ← I and support: Γ← ∅.
2. While 1 ≤ i ≤ K, do:
2.1. Selection step:

γi ← argmax
γ∈Td

〈ri−1, φγ〉 ,

Γ← Γ ∪ {γi}.

2.2. If 〈ri−1, φγi〉 ≤ 0, go to 3.
2.3. Update step:

ci ← 〈ri−1, φγi〉 ,
ri ← ri−1 − 〈ri−1, φγi〉φγi .

3. Return c, Γ.

and computational complexity. Finally, note that in applications involving the registration of
a test image with possibly many training images, the sparse approximations of the training
images are computed offline. Hence, only the sparse approximation of the test image needs to
be computed during the test phase.

4.1.2. Choice of the dictionary. We now discuss the choice of the dictionary D that is
used in our experiments. As pointed out in (2.1), the dictionary D is simply constructed by
applying geometric transformations γ ∈ Td to a mother function φ. We thus need to choose
appropriately the mother function φ as well as the discretization for constructing the subset
Td of T . In light of the derived analytical results, ideally we would like to design a dictionary
that satisfies the following constraints:

• Images should have a good sparse approximation in the dictionary (assumption (A1)
of the analysis).

• The dictionary should be RLI (Theorem 3.3).
• The transformation inconsistency parameter of the dictionary should not be too large

(Theorem 3.3).
We propose using an anisotropic Gaussian generating function, as it has been shown to

provide good approximation results in natural images [12]. It is defined as follows:

φ(x, y) =
1

ξ
exp

(
−
(x
ν

)2
− y2

)
,

where ν > 1 controls the anisotropy and the normalization factor ξ is chosen to have ‖φ‖2 = 1.8

The choice of ν ≈ 1 results in an isotropic mother function that causes the transformation

8Formally, the Gaussian mother function does not satisfy the one-to-one mapping assumption of γ �→ U(γ)φ.
We circumvent this by slightly modifying the definition of T p,q

a . We define the stabilizer of φ to be the set that
keeps the mother function unchanged: Sφ = {γ : U(γ)φ = φ}. Then we define T p,q

a = {δi ◦ π ◦ (γj)
−1 : 1 ≤

i, j ≤ K,π ∈ Sφ}. For more details, we refer the reader to Appendix B.
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inconsistency ρ to be very large (see Example 3). The transformation inconsistency is also
large when the value of ν is chosen to be large [10]. In our experiments, we have generally
chosen an intermediate value ν = 4 as a compromise between the two extreme values.

The dictionary D is built by transforming the generating function φ with all transforma-
tions in Td. In our experiments, we consider the following discretization:

• The translation parameters can take any positive integer value smaller than the image
dimension.

• The rotation angles are uniformly discretized in [0, π) with a step size of π
8 . We have

seen experimentally that this step size results in a good directional accuracy. A denser
discretization comes at the expense of higher computational cost.

• The scaling parameters are sampled uniformly on a logarithmic scale with a step
size of half an octave. This step size results in a compromise between the sparse
approximation error and an oversampling of the scale space that might lead to wrong
registration (and a too high computational complexity). We set the minimum scale to
1, and the maximum scale is designed to have 99% of the energy of a centered atom
inside the image domain.

Figure 5 illustrates several examples of part-based representations obtained with NMP
and a dictionary of Gaussian atoms, as described above. We observe that the part-based
decomposition manages to approximate well the main geometric characteristics of the im-
age. Furthermore, the same features are used in the different approximations, up to some
geometrical transformation that corresponds to the relative transformation between the dif-
ferent versions of the original image. This is exactly the property that is at the core of our
registration algorithm.

(a) (b) (c)

(d) (e) (f)

Figure 5. Sparse approximations of transformed versions of the Car image, computed with NMP and a
dictionary constructed from a Gaussian generating function, with ν = 4. The first row shows the original
images, size 75 × 75 pixels. The second row shows the corresponding sparse approximations with a sparsity of
K = 15 atoms.

4.1.3. Registration refinement. Our registration algorithm estimates a transformation
in the set T p,q

a ⊂ {γ ◦ δ−1 : γ, δ ∈ Td}, where Td is the chosen discretization of the parameter
space T . In order to reduce the registration error that is due to the discretization of the
dictionary, we have chosen in the experiments to extend our registration algorithm with a
gradient descent technique that refines the estimated transformation. Hence, even if the
optimal transformation η0 is not located on the lattice formed by the discretization of the
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Figure 6. Gaussian mother functions with different values of the anisotropy ν.

transformation parameter space, the additional local optimization step allows us to converge
to the optimal transformation if it lies close to the estimation computed by our registration
algorithm.

Specifically, the problem consists in minimizing the objective function J(η) = ‖U(η)p−q‖22,
where the unknown transformation η is constrained to be in T . Following the same approach
as the authors in [15], we consider the gradient descent induction given by

τi+1 = τi − w∇J(τi) for i ≥ 0,

where the gradient is defined by

∇J(τi) = G−1
τi

⎡
⎢⎣
∂1J(τi)

...
∂PJ(τi)

⎤
⎥⎦ ,

with Gγ = (〈∂iφγ , ∂jφγ〉)1≤i,j≤P (for any γ ∈ T ), and w defines the step size. For more details
on the derivation of this gradient descent scheme, we refer the reader to [10].

4.2. Influence of the dictionary on the registration performance. In a first set of exper-
iments, we examine the influence of the dictionary choice on the registration performance.9

Here we fix here the transformation group T to be the special Euclidean group SE(2) (con-
taining translations and rotations). We consider that the dictionary mother function is a 2D
anisotropic Gaussian function. We vary the anisotropy parameter ν of the mother function
to generate a class of different dictionaries. Several generating functions obtained by varying
the anisotropy parameter ν are illustrated in Figure 6. Note that the discretization of the pa-
rameter space Td is kept fixed for all dictionaries. We now study the registration performance
of each of these dictionaries.

In the first experiment, we test our registration algorithm with the images I1 and I2 illus-
trated in Figure 7 for our class of dictionaries. We first represent in Figure 8 the mean sparse
approximation error 1

2 (‖I1 − p‖2 + ‖I2 − q‖2) for decompositions with K = 3 atoms, when
the anisotropy parameter ν in the dictionary mother function varies. For the same class of
dictionaries, we also measure the registration performance |‖U(η0)I1 − I2‖2 − ‖U(η̂)I1 − I2‖2|,
where η0 and η̂ are, respectively, the optimal transformation (namely a rotation of π/4) and
the estimated transformation. Note that we used this notion of error instead of E′(p, q, I1, I2)
in order to focus exclusively on the error due to a wrong estimate of the transformation.
The registration performance is illustrated in Figure 8. One can see clearly that the sparse
approximation error is increasing with the anisotropy of the mother function. Indeed, when

9In this set of experiments, we apply our registration algorithm without the gradient descent refinement.
We do so in order to focus exclusively on the performance of Algorithm 1 in terms of the considered dictionary.
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(a) I1 (b) I2

Figure 7. Original images used in the first experiment.
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Figure 8. Approximation error (solid) and registration error (dashed) for images in Figure 7 as a function
of the anisotropy of the dictionary generating function. The sparsity K is fixed to 3. The sparse approximation
error is given by 1

2
(‖I1 − p‖2 + ‖I2 − q‖), and the registration error by |‖U(η0)I1 − I2‖2 − ‖U(η̂)I1 − I2‖2|.

the mother function approaches isotropy, the dictionary approximates well the tennis balls in
images I1 and I2. The registration performance, however, has an opposite behavior: the error
decreases with increasing values of the anisotropy. This suggests that the sparse approxima-
tion error is not the only quantity controlling the performance of the registration algorithm,
as predicted by our theoretical performance analysis. Indeed, using the same arguments as in
Example 3, we know that the transformation inconsistency parameter goes to infinity when
the mother function is isotropic: this explains the poor registration performance for generating
functions that are close to isotropic.

As the transformation inconsistency parameter looks crucial in the registration perfor-
mance, we estimate its value for the same class of dictionaries. This estimation is performed
by applying the definition of the transformation inconsistency,10 where the infinite set T is
finely discretized. In a final step of the estimation, the transformation η ∈ T that maxi-
mizes the transformation inconsistency is refined with a local gradient descent search. Figure
9 shows the estimated value of the transformation inconsistency parameter with respect to
the anisotropy of the generating function. One can see that the evolution of the transfor-
mation inconsistency parameter is consistent with the theoretical analysis in section 3. For
near-isotropic atoms, the parameter ρ is large (Example 3). Similarly, when ν is large, the

10Note that we applied the definition in (B.1) since these atoms have a rotational symmetry of π.
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Figure 9. Estimation of the transformation inconsistency parameter for dictionaries built on Gaussian
mother functions with different anisotropy ν.

(a) Original image I1 (b) Transformed image I2

Figure 10. Original images used in the second experiment.

transformation inconsistency increases as shown in [10]. Even though our estimation of the
transformation inconsistency may not be perfectly accurate (due to the discretization of T ), it
confirms the tendencies described earlier in the theoretical analysis. It further contributes to
explaining the trade-off between approximation and registration error that has been illustrated
in Figure 8.

We now study a second experiment where we consider that the transformation group is
T = R

2 × R
+
∗ . That is, T contains transformations that can be written as combinations

of translation and isotropic dilation. We construct another class of dictionaries by fixing the
generating function to be an isotropic Gaussian (as shown in Figure 6, ν = 1), but we vary the
step size that is used for the discretization of the dilation parameter. More precisely, the set
of transformations Td that is used to build the dictionary is constructed from T by imposing
a fixed uniform discretization of the translation parameter and a uniform discretization of the
dilation parameter whose step size Δs can take different values. Note that the minimum and
maximum scales are kept fixed in all dictionaries and only the space Δs between two consec-
utive scale parameters is varied. We finally measure the sparse approximation performance
with K = 3, as well as the registration accuracy that can be obtained with this second class
of dictionaries for the images I1 and I2 shown in Figure 10. Both sparse approximation and
registration errors are computed similarly to the previous experiment. They are illustrated in
Figure 11 as a function of the different values of the scale step size Δs.

We observe in Figure 11 that the sparse approximation and registration errors have oppo-
site behaviors with respect to the scale space discretization. This is in line with our observa-
tions on the first experiment above. Indeed, a fine discretization leads to a small approxima-
tion error. At the same time, the registration is less accurate when the discretization is fine.
Conversely, coarser discretization of the scale parameter results in a less compact dictionary,



2392 ALHUSSEIN FAWZI AND PASCAL FROSSARD

−4 −3 −2 −1 0 1 2
0

0.5

1

Scale stepsize Δ
s
 (log scale)

A
pp

ro
xi

m
at

io
n 

er
ro

r
−4 −3 −2 −1 0 1 2

0.5

1

1.5

R
eg

is
tr

at
io

n 
er

ro
r

Figure 11. Approximation error (solid line) and registration error (dashed line) for images in Figure 10
as a function of the scale step size used for constructing the dictionary. The sparsity K is fixed to 3.

(a) Duck (b) Car (c) Bear

Figure 12. Test images [13]. All images are resized to be of dimension 75× 75 pixels.

hence in larger approximation errors but better registration performance. These tendencies
can be explained using the arguments developed in Example 4.

In summary, these two experiments show that constructing a dictionary that guarantees a
small approximation error of the images is not enough to have a low registration error. As we
have seen earlier in section 3, crucial parameters such as RLI and transformation inconsistency
have to be taken into account in the design of the dictionary in order to reach good registration
performance.

4.3. Illustrative examples. In this section we propose some illustrative experiments that
study the performance of our registration algorithm for determining the transformation be-
tween pairs of images, or for image classification. We further compare the properties of our
registration algorithm to other baseline solutions for computing transformation-invariant dis-
tances.

In our first set of experiments, we consider the test images shown in Figure 12, which
have been collected from the Amsterdam Library of Object Images (ALOI) dataset [13].
We generate 100 random transformations and apply them to the test images. Each of the
transformations belongs to T and consists of a combination of translation, rotation, and
isotropic scaling. Both components of the translation vector are smaller than half the image
size, and the isotropic scaling parameter is constrained to be in [0.5, 1.5]. These restrictions
guarantee that most of the image energy lies in the image space, possibly with some occlusions.
We put no specific restrictions on the rotation angle. Figure 13 illustrates some examples of
transformed images.

We first examine the accuracy of our algorithm in estimating the correct global trans-
formation between pairs of images. We register each of the transformed test images with
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Figure 13. Sample set of test images built by applying random geometric transformations to the Duck image.
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(a) Translation error: ‖b̂− b′0‖2
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(c) Rotation error: min(|θ̂ − θ′0|,
180− |θ̂ − θ′0|)

Figure 14. Errors in translation, scaling, and rotation (in degrees) versus the sparsity K in the approxi-
mation of Duck images. The parameter of the optimal transformation obtained by solving (P′) is denoted with
η′
0 = (b′0, a

′
0, θ

′
0), and the estimated transformation with η̂ = (b̂, â, θ̂). The results are averaged over 100 tests.

the original image and compute the average registration accuracy over 100 such operations.
Figure 14 shows the average error in the translation, scaling, and rotation parameters when
registering pairs of Duck images for different numbers of features K in the sparse image ap-
proximations. We see that for K ≥ 10 our algorithm determines a very good approximation
η̂ = (b̂, â, θ̂) of the optimal transformation η′0 = (b′0, a

′
0, θ

′
0). That is, we have on average a

translation error of approximately 1 pixel, a scaling error of 0.02, and an angle error of 10
degrees.

We now compare our method with several baseline algorithms for computing distances
that are invariant to transformations. The first of these methods is based on the tangent
distance [29] that approximates the transformation-invariant distance between the images
with the distance between two linear subspaces that can be easily computed. Specifically, the
authors in [29] approximate the distance d(I1, I2) with

dTD(I1, I2) = min
I′1∈T (I1),I′2∈T (I2)

‖I ′1 − I ′2‖2,

where T (I1) and T (I2) are the tangent planes to the manifold of transformed images of I1 and
I2, respectively, evaluated at I1 and I2. The equations of T (I1) and T (I2) can be explicitly
computed, and the original problem of computing the transformation-invariant distance re-
duces to solving a least squares problem [29]. We also compare our method with an approach
that solves the original problem (P′) using a simple gradient descent technique starting from
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Figure 15. Average and standard deviation of intra- and interclass distances for different methods. The
blue color denotes intraclass distance, while the green and red colors refer to the distance between the Duck
and Car images and the Duck and Bear images, respectively. The distance has been computed between one
reference image Duck and 100 randomly generated transformed images in each class. The intraclass distance
should ideally be at zero. For our approach, the transformation-invariant distance da(p, q) is computed based
on the sparse approximations, while the original images are used in the other methods.

the identity transformation. Finally, the last comparative scheme is simply based on the com-
putation of the regular Euclidean distance between the images I1 and I2. Note that in all three
competing solutions, the distances are computed directly on the original images, whereas, in
our approach we use only the sparse image approximations to compute the distance. We
choose to do so since our aim here is to show that our method can be used without explicitly
using the complete images in the transformation estimation: a good sparse approximation is
indeed sufficient to obtain accurate registration results.

We extend the previous experiments to classification of images. In particular, we com-
pare the transformation-invariant distance for images of the same class to the same distance
computed between images of different classes. Ideally, the first one (the intraclass distance)
should be smaller than the latter (the interclass distance) in order to obtain good classifi-
cation performance. We start with a simple scenario where the reference image is chosen
to be the Duck image in Figure 12. We then compute the transformation-invariant distance
between the reference image and the transformed versions of images in the same class (Duck)
and in the other classes (Car and Bear). Figure 15 shows the average of the transformation-
invariant distances computed with the different methods. One can see that the Euclidean
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Figure 16. Evolution of the intraclass and interclass transformation-invariant distance da(p, q) in the
proposed algorithm as a function of the number of features in the sparse images.

distance between images of the same class is not significantly different from the distance be-
tween images of different classes. The tangent distance does not improve the performance
since this method provides only local invariance to transformations. Similarly, the gradient
descent approach converges to the correct transformation only when it is close enough to the
initial transformation. As this happens rarely, this approach does not provide results that
are significantly different for intra- and interclass comparisons. In our method, however, one
can see that the intraclass distance is significantly smaller than the interclass distance. Fig-
ure 16 further shows the evolution of the transformation-invariant distance with respect to
the sparsity of the images. We see that the intraclass distance is always smaller than any of
the interclass distances in our algorithm, even for very small values of the sparsity K. This
provides a confirmation that salient geometric features in sparse images are crucial for proper
registration. Hence, without having a very accurate sparse representation of the patterns, our
registration algorithm succeeds in having an approximation of the distances that allows us to
at least classify the simple patterns under test. Note that this observation does not contradict
the worst-case theoretical analysis in which we assume that the sparse approximation error
is small. We observe in practice that, even when this assumption does not hold, one can still
obtain a good registration accuracy that is sufficient for the classification of simple signals.
Finally, we note that the results are essentially the same if we repeat the same experiments
with a different reference image in our dataset. Overall, our illustrative experiments so far
show that, with a coarse approximation of the original images in the dictionary, our approach
succeeds in obtaining an accurate estimation of the transformation, and the computation of
the distances show that the intra- and interclass images are well distinguished. This is an
interesting property toward the development of registration algorithms in applications where
access to the original (high quality) images is not possible.

We extend the simple classification experiments proposed above and now study the per-
formance of our registration method in a more challenging task of transformation-invariant
handwritten digit classification. We use the digits 0 to 5 from the standard MNIST database
of handwritten digits [18]. We construct the training data by randomly choosing 100 images
for each digit, which results in 600 training images. The test data is constructed similarly: 100
images are taken in each class in order to generate 600 test images. Note that the test data
does not contain any of the training images. Finally, we apply to each test image a random
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transformation built on translation, rotation, and isotropic scaling. Our classifier then works
as follows: each test data is assigned the label of the digit in the training set that best aligns
with it or, equivalently, that minimizes the transformation-invariant distance to the test im-
age. In other words, the label of a test image is chosen to be the label of its nearest neighbor
in the training dataset, up to a geometrical transformation. We compare the classification
results when the transformation-invariant distance is computed with the different methods
proposed above. Moreover, for completeness, we also compare our method to an approach
that first extracts maximally stable extremal regions (MSER) [22], followed by a similar-
ity normalization [5] that transforms the image into a common system of coordinates. The
transformation-invariant distance between two digits is then defined as the distance between
the normalized images.

The classification results are shown in Table 2.

Table 2
Handwritten digit classification accuracy for different approaches in computing transformation-invariant

distances.

Classification accuracy

Euclidean distance 14%

Tangent distance 33%

Gradient descent 62%

MSER + similarity normalization 75%

Proposed registration algorithm (K = 10) 86%

One can see that using the Euclidean distance on the transformed test images results
in a very poor classifier, whose performance is actually close to that of a random classifier.
Using the tangent distance results in some improvement, but it is still far from the desired
performance. This is due to the fact that the tangent distance is appropriate only for local
transformations, while the transformations that we consider are generally of large magnitude.
Similarly, the gradient descent approach does not perform well, since it is only guaranteed
to reach a local minimum. The MSER-based approach outperforms these local methods
and achieves a classification performance of 75%. Using our registration method, however,
we achieve a relatively high classification rate, which is by far the best performance among
the compared methods. It is worth noting that the performance of our algorithm (86% of
classification accuracy) is only slightly worse than the performance of a Euclidean nearest
neighbor classifier with aligned images (i.e., no transformations are applied on the test data),
which reaches a classification accuracy of 94%. The latter classifier provides an upper bound
on the performance that we could achieve in our settings where test images are transformed.

Finally, note that existing methods in the literature achieve close to zero error rate when
applied to the MNIST database [18]. However, unlike the proposed approach, these methods
generally do not support invariance to large transformations. Furthermore, our method is
general in the sense that it is not specific to handwritten digit classification and can be used
in any application involving image alignment.

5. Conclusions. We have proposed in this paper a simple registration algorithm based on
the sparse representation of the input images in a parametric dictionary of geometric func-
tions. Our method is general in the sense that we can achieve invariance to any transformation
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group, provided that the geometric dictionary is properly constructed. We define novel prop-
erties of dictionaries, namely RLI and transformation inconsistency, in order to characterize
the registration performance, which cannot be done with usual properties such as the co-
herence or the RIP. We show that our algorithm has low registration error when RLI and
transformation inconsistency take small values. We also show that the proposed registration
algorithm compares favorably with other baseline registration methods from the literature in
illustrative alignment and classification experiments on simple visual objects and handwritten
digits. To the best of our knowledge, this paper constitutes the first theoretically motivated
work for image registration through sparse approximations in parametric dictionaries. We
plan to extend our study to also account for the information conveyed by the coefficients of
the sparse approximation, to further guide the registration process. Moreover, one future re-
search direction consists in extending the algorithm to a scenario where different parts of the
image can undergo different transformations. Finally, it is interesting to use the theoretical
findings of this paper to study the design of proper dictionaries that behave well with respect
to the newly introduced properties.

Appendix A. Proof of Theorem 3.3.
We recall that η0 denotes the optimal transformation between p and q and that p and q

are given by

p =

K∑
i=1

ciφγi ,

q =
K∑
i=1

diφδi .

We can write

da(p, q)− d(p, q) = min
η∈T p,q

a

‖U(η)p − q‖2 − ‖U(η0)p− q‖2(A.1)

= min
η∈T p,q

a

‖U(η)p − U(η0)p+ U(η0)p− q‖2 − ‖U(η0)p − q‖2(A.2)

≤ min
η∈T p,q

a

‖U(η)p − U(η0)p‖2(A.3)

= min
η∈T p,q

a

∥∥∥∥∥
K∑
i=1

ciφη◦γi −
K∑
i=1

ciφη0◦γi

∥∥∥∥∥
2

.(A.4)

Let (i∗, j∗) be the indices of the most correlated atoms when the two decompositions are
optimally aligned, i.e.,

(i∗, j∗) = argmin
1≤i,j≤K

∥∥φη0◦γi − φδj

∥∥
2
,(A.5)

and let η̃ be the transformation between the corresponding features, i.e.,

η̃ = δj∗ ◦ γ−1
i∗ .
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By definition, η̃ belongs to the set of feature-to-feature transformations T p,q
a .

If ‖φη0◦γi∗ −φδj∗‖2 = 0, then we have φη0◦γi∗ = φδj∗ . Since we suppose that γ �→ U(γ)φ is
a bijective mapping, we have η0 ◦ γi∗ = δj∗ and we finally get η0 = η̃. Hence, we have in this
case a registration error da(p, q)− d(p, q) = 0.

We now focus on the case ‖φη0◦γi∗ − φδj∗ ‖2 > 0. Thanks to (A.4), we have

da(p, q)− d(p, q) ≤
∥∥∥∥∥

K∑
i=1

ciφη̃◦γi −
K∑
i=1

ciφη0◦γi

∥∥∥∥∥
2

(A.6)

=

∥∥∥∥∥
K∑
i=1

ci (φη̃◦γi − φη0◦γi)

∥∥∥∥∥
2

(A.7)

≤
K∑
i=1

|ci|‖φη̃◦γi − φη0◦γi‖2(A.8)

by using the triangle inequality. Since ‖φδj∗ −φη0◦γi∗‖2 > 0, we factorize the previous expres-
sion as follows:

da(p, q)− d(p, q) ≤ ‖φδj∗ − φη0◦γi∗‖2
K∑
i=1

|ci|
‖φη̃◦γi − φη0◦γi‖2
‖φη̃◦γi∗ − φη0◦γi∗‖2

(A.9)

(∗)
= ‖φδj∗ − φη0◦γi∗‖2

K∑
i=1

|ci|
∥∥U(η−1

0 ◦ η̃)φγi − φγi

∥∥
2∥∥U(η−1

0 ◦ η̃)φγi∗ − φγi∗
∥∥
2

(A.10)

≤ ‖φδj∗ − φη0◦γi∗‖2
K∑
i=1

ρ|ci|(A.11)

= ρ‖φδj∗ − φη0◦γi∗‖2‖c‖1,(A.12)

where we have used in (∗) the fact that U is unitary. ρ is the transformation inconsistency
parameter introduced in Definition 3.6.

We now focus on bounding ‖φδj∗−φη0◦γi∗‖2. In order to do so, we note that φδj∗ and φη0◦γi∗
are, respectively, features in q and U(η0)p. Since we assume that d(p, q) = ‖U(η0)p − q‖ <
ε
√
‖c‖22 + ‖d‖22, by appropriately using the RLI property (Definition 3.4), we readily obtain

an upper bound on ‖φδj∗ − φη0◦γi∗‖2. Formally, let e be the vector of length 2K constructed

from the concatenation of the coefficient vectors c and −d, and define {χj}2Kj=1 as follows:

χi = η0 ◦ γi,
χK+i = δi.

Using this definition, we have U(η0)p − q =
∑K

i=1 ciφη0◦γi −
∑K

i=1 diφδi =
∑2K

i=1 eiφχi and

‖e‖2 =
√
‖c‖22 + ‖d‖22. Since d(p, q) < ε‖e‖2 by hypothesis, and D is (2K, ε, α)-RLI with

α <
√
2, there exist i, j for which ∥∥∥∥eiφχi

|ei|
+

ejφχj

|ej |

∥∥∥∥
2

≤ α,(A.13)
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as the atoms in the dictionary are normalized. If both i and j are not larger than K, the
above inequality implies that∥∥∥∥ ci

|ci|
φη0◦γi +

cj
|cj |

φη0◦γj

∥∥∥∥
2

(a)
=

∥∥φη0◦γi + φη0◦γj
∥∥
2

(b)

≥
√
2,(A.14)

where (a) is obtained thanks to the positivity of c and (b) is a consequence of the positivity
of the atoms. Since we assume that α <

√
2, (A.13) and (A.14) cannot hold together. Hence,

we exclude the case where i ≤ K and j ≤ K. For the exact same reasons, it is easy to see
that we cannot have i ≥ K + 1 and j ≥ K + 1. Therefore, the only possibility is i ≤ K and
j ≥ K +1 (or j ≤ K and i ≥ K +1, which is identical up to the relabeling of i and j). Thus,
by rewriting (A.13) we get ∥∥φη0◦γi − φδj−K

∥∥
2
≤ α,

thanks to the positivity of c and d. Since i∗ and j∗ are by definition chosen to minimize
the error between two features in U(η0)p and q (A.5) we have ‖φη0◦γi∗ − φδj∗‖2 ≤ ‖φη0◦γi −
φδj−K

‖2 ≤ α. Plugging this inequality into (A.12), we get

da(p, q)− d(p, q) ≤ αρ‖c‖1.(A.15)

It is not hard to see that da(p, q) = da(q, p) and d(p, q) = d(q, p). Hence, we get

da(p, q)− d(p, q) ≤ αρ‖d‖1.(A.16)

By combining (A.15) and (A.16), we conclude that

da(p, q)− d(p, q) ≤ αρmin (‖c‖1, ‖d‖1) .

Appendix B. Detailed study of the case where γ �→ U(γ)φ is not bijective. We study
in this appendix the case where γ �→ U(γ)φ is not a one-to-one mapping. In other words, we
assume here that the generating function φ has symmetries in T . More precisely, let Sφ be
defined by

Sφ = {γ ∈ T : U(γ)φ = φ}.

In group theory, Sφ is known as the stabilizer of φ in T . Note that Sφ is a subgroup of T .
Moreover, it is easy to see that the stabilizer of any atom φδ can be obtained from Sφ with
Sφδ

= δ ◦ Sφ ◦ δ−1 = {δ ◦ π ◦ δ−1 : π ∈ Sφ}. Hence, given any δ ∈ T , the set of elements γ in
T that satisfy φδ = φγ is equal to δ ◦ Sφ.

When γ �→ U(γ)φ is a bijective mapping, Sφ is equal to the trivial group. When T = SE(2)
and φ is an ellipse-shaped generating function (Figure 3), the stabilizer contains two elements,
namely the identity transformation and the rotation of angle π. Note that when φ is exactly
circular, φ is symmetric with respect to all rotations; we get Sφ = SO(2).

In general, we avoid choosing a generating function whose stabilizer in T is an infinite
subgroup, since the mother function should be discriminative enough for different transfor-
mations if we hope to recover the underlying transformation in T . Our goal in this section
is to show the modifications we need to perform in order to extend the assumption |Sφ| = 1
to |Sφ| < ∞; that is, we need to assume that a limited number of symmetries exist in atom
transformations.
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B.1. Modified algorithm. The main challenge of having |Sφ| > 1 is that several features
can have the exact same appearance although they correspond to different transformations
of the mother function. Clearly, arbitrarily choosing the transformation generally results
in a wrong registration. The only way of solving this problem exactly is to examine all
transformations that potentially generate a feature and test accordingly all feature-to-feature
transformations. Formally, let φγ and φδ be, respectively, arbitrary features in p and q. As we
mentioned earlier, the set of parameters that generate features having the same appearance
as φγ is γ ◦ Sφ. The same result holds for φδ. Hence, the set of transformations that map
features of appearance φγ to features of appearance φδ is given by

{δ ◦ π ◦ (π′)−1 ◦ γ−1 : π, π′ ∈ Sφ} = {δ ◦ π ◦ γ−1 : π ∈ Sφ}.

We thus extend the set of feature-to-feature transformations T p,q
a to

T p,q
a = {δi ◦ π ◦ γ−1

j : 1 ≤ i, j ≤ K,π ∈ Sφ}.

Note that the only difference with respect to the set T p,q
a defined in section 2 is that we

compose in the middle of the expression with all transformations in the stabilizer group of φ.
Hence, the cardinality of T p,q

a is equal to |Sφ|K2. The rest of the algorithm (Algorithm 1)
remains unchanged.

B.2. Modified analysis. We now turn to the analysis of the modified algorithm. First, it
can be shown that in the case where images can be perfectly aligned, Proposition 3.2 holds
for the modified algorithm when |Sφ| <∞, when there is a finite number of symmetries.

We then extend the analysis of the modified algorithm to the case where images cannot
be perfectly aligned, but where the innovation is limited by d(p, q) < ε

√
‖c‖22 + ‖d‖22. The

main difficulty of the analysis lies in the fact that we have the transformation inconsistency ρ
(as defined in Definition 3.6) equal to infinity when the mother function is symmetric (we can
see this, for example, by considering the same setting as in Example 3, which is illustrated
in Figure 3 with η a rotation of π). We take into account the symmetries of the generating
function in the following new definition of ρ:

ρ = sup
η∈T

sup
η′∈Td

η′ /∈η◦Sφ

inf
π∈Sφ

sup
γ∈Td

∥∥U(η ◦ π ◦ (η′)−1)φγ − φγ

∥∥
2

‖U(η)φ − U(η′)φ‖2
,(B.1)

where η ◦ Sφ denotes the set {η ◦ γ, γ ∈ Sφ}. Note that by constraining η′ to be outside
the set η ◦ Sφ, the denominator of the above equation is never equal to zero. Therefore, this
new definition of the transformation inconsistency solves the problem that we have observed
in Example 3 for the particular case of generating functions having a symmetry of π in
T = SE(2).

Note also that when Sφ is the trivial group, the above definition of ρ reduces to Definition
3.6, since it is easy to check that∥∥U(η ◦ π ◦ (η′)−1)φγ − φγ

∥∥
2

‖U(η)φ − U(η′)φ‖2
=

∥∥U(η ◦ (η′)−1)φγ − φγ

∥∥
2∥∥U(η ◦ (η′)−1)φη′ − φη′
∥∥
2

≤ sup
γ,γ′∈Td

sup
η∈T \{I}

{‖U(η)φγ′ − φγ′‖2
‖U(η)φγ − φγ‖2

}
,
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and the reverse inequality also holds. Hence, this definition can be seen as an extension
to the case where the generating function has intrinsic symmetries in T . Intuitively, the
transformation inconsistency ρ is small whenever two transformations η and η′, applied on
the generating function and yielding atoms similar in appearance, are such that η ◦ π ◦ (η′)−1

does not induce a large change in the appearance of any atom in the dictionary D for some
π ∈ Sφ.

Using this new definition of ρ, we obtain the same bound of Theorem 3.3 for the modified
algorithm. In the following, we give the main differences in the proof of this statement with
respect to the proof of Theorem 3.3 given in Appendix A.

Proof. Let (i∗, j∗) be the indices defined in (A.5), and let η̃ = δj∗ ◦π ◦ γ−1
i∗ for any π ∈ Sφ.

Clearly, we have η̃ ∈ T p,q
a .

In the case where ‖φη0◦γi∗ − φδj∗‖2 = 0, there exists π ∈ Sφ such that η0 ◦ γi∗ = δj∗ ◦ π;
thus η0 = δj∗ ◦ π ◦ γ−1

i∗ ∈ T
p,q
a . Hence, in this case da(p, q) = d(p, q).

We now consider the case where ‖φη0◦γi∗ − φδj∗‖2 > 0. By using the same series of
inequalities as in (A.1)–(A.8), we know that

da(p, q)− d(p, q) ≤ ‖φδj∗ − φη0◦γi∗‖2
K∑
i=1

|ci|
‖U(η−1

0 ◦ η̃)φγi − φγi‖2
‖φδj∗ − φη0◦γi∗‖2

≤ ‖φδj∗ − φη0◦γi∗‖2 sup
γ∈Td

{
‖U(η−1

0 ◦ η̃)φγ − φγ‖2
‖φδj∗ − φη0◦γi∗‖2

}
K∑
i=1

|ci|.

Since this inequality is valid for any η̃ of the form δj∗ ◦π ◦γ−1
i∗ , where π ∈ Sφ, we deduce from

the previous inequality that

da(p, q)− d(p, q) ≤ ‖φδj∗ − φη0◦γi∗‖2 inf
π∈Sφ

sup
γ∈Td

{
‖U(η−1

0 ◦ δj∗ ◦ π ◦ γ−1
i∗ )φγ − φγ‖2

‖φγi∗ − φη−1
0 ◦δj∗‖2

}
‖c‖1

≤ ‖φδj∗ − φη0◦γi∗‖2 sup
η∈T

sup
η′∈Td

η′ /∈η◦Sφ

inf
π∈Sφ

sup
γ∈Td

{
‖U(η ◦ π ◦ (η′)−1)φγ − φγ‖2
‖U(η)φ − U(η′)φ‖2

}
‖c‖1

= ‖φδj∗ − φη0◦γi∗‖2ρ‖c‖1.

By using the same upper bound on ‖φδj∗ − φη0◦γi∗‖2 in the exact same way as in Appendix
A (thanks to the RLI property), we obtain the desired result.
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