
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. W. Zwaenepoel, président du jury
Prof. A. Ailamaki, directrice de thèse

Dr F. Özcan, rapporteuse
Prof. L. Fegaras, rapporteur
Prof. K. Aberer, rapporteur

Just-in-time Analytics Over Heterogeneous
Data and Hardware

THÈSE NO 8077 (2017)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 8 DÉCEMBRE 2017

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

LABORATOIRE DE SYSTÈMES ET APPLICATIONS DE TRAITEMENT DE DONNÉES MASSIVES

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2017

PAR

Manolis KARPATHIOTAKIS

The struggle itself toward the heights
is enough to �ll a man�s heart.

One must imagine Sisyphus happy.
� Albert Camus

To Eleni, who had to survive life with a PhD candidate.
To my parents and to my sister.

Acknowledgements
Putting together this thesis required the support and feedback of numerous people; without
them, neither my PhD journey nor its destination would have been the same.

I would like to thank my advisor, Anastasia (Natassa) Ailamaki, for her guidance and advice.
Natassa always looks out for her students. From my very �rst meeting with her, I realized two
undisputed facts: She has an infectious enthusiasm, and she would do anything to ensure
that her students can utilize their PhD to pursue a happy life. At the same time, she urges her
students to never settle for mediocrity, but instead strive for excellence in all aspects of their
research and life. I thus strongly believe that Natassa�s guidance has shaped me professionally.

I would also like to thank the members of my thesis committee, both for �nding the time to
serve in my committee, as well as for their constructive comments throughout my PhD life.
Speci�cally, I would like to thank Fatma Ozcan, who acted as my mentor during an internship
at IBM and helped shape a signi�cant part of my thesis, Leonidas Fegaras, whose own work
was highly in�uential in my thesis, Karl Aberer, who has provided feedback to me ever since
my �rst year at EPFL, and Willy Zwaenepoel, who accepted to act as the thesis jury president
and encouraged me during the thesis exam.

Through the years of my PhD, I have been fortunate to collaborate with a stellar group of
people, namely Miguel Branco, Ioannis Alagiannis, Matt Olma, Stella Giannakopoulou, Manos
Athanassoulis, Raja Appuswamy, Danica Porobic, Thomas Heinis, Benjamin Gaidioz, Avrilia
Floratou, and Periklis Chrysogelos, and learn new skills from every one of them; I thank you
all for our collaboration. Besides the direct collaborators, I have to thank the entire DIAS lab
family for making life on the 2nd �oor of the EPFL BC building enjoyable: Adrian, Angelos, Ben,
Cesar, Danica, Darius, Diane, Dimitra, Eleni, Erietta, Erika, Farhan, Fotini, George, Ioannis,
Iraklis, Lionel, Manos, Matt, Miguel, Mirjana, Odysseas, Panagiotis, Periklis, Pinar, Radu, Raja,
Rakesh, Renata, Satya, Snow, Stella, Tahir, Thomas, and Utku were always there to provide
feedback / chat / gossip. Likewise, Amir, Mohammed, and Yannis have been great friends
during and after our EPFL BC 2nd �oor tenure. Ioannis, Manos, and Matt (to his dismay)
formed the Greek �frappe coffee / pop culture� group. Matt is the most creative researcher /
entrepreneur / handyman / person I know. Iraklis was the Thai cuisine a�cionado, and Raja
the Justin Bieber one. Mirjana had to listen to my made-up Serbian phrases. Danica and Pinar
are my academic big sisters, always looking out for me; I thank you all.

i

Acknowledgements

Numerous people helped make Lausanne feel like home. Alex, Christos, Stefanos, Natassa,
and Ioannis are the loudest of them; Pavlos, Nathalie, and Danae are the kindest; Matt and
Stella are the jolliest. Panagiotis and Onur are the human dynamos. Stavros is the go-to guy for
bitter beer and for football; Javier the one for random drunken discussions. Katerina, Loukia,
Kyveli, Evi, Giannis, Apostolis, George (multiple of you!), Vasilis (also multiple!), Rafa, Farah,
Goran, and many more � thank you all for being there.

My parents and my sister have always supported me unconditionally through my N years of
studies. My father repeatedly tried to convince me to pursue a PhD, and is the only person
more anxious than me during my deadlines; my mother balances him (and me) out; my sister
forwards me Internet memes to relieve my stress. Your support has been invaluable.

Last but certainly not least, I�d like to thank my wife Eleni. In the past 5 years, Eleni has had to
endure living in a tiny apartment with a workaholic, acting as comic relief to raise my spirits in
times of failure, and baking insane amounts of cookies for similar reasons, all while being an
in�nite source of positive energy. This thesis is for you.

This research has been supported by grants from the School of Computer and Communication
Sciences, EPFL, the Swiss National Science Foundation, project No. CRSII2 136318/1, �Trust-
worthy Cloud Storage�, the European Union Seventh Framework Programme (ERC-2013-CoG),
under grant agreement no 617508 (ViDa), and an IBM PhD Fellowship Award.

Lausanne, 1 November 2017 M. K.

ii

Abstract
Industry and academia are continuously becoming more data-driven and data-intensive, rely-
ing on the analysis of a wide variety of datasets to gain insights. At the same time, data variety
increases continuously across multiple axes. First, data comes in multiple formats, such as
the binary tabular data of a DBMS, raw textual �les, and domain-speci�c formats. Second,
different datasets follow different data models, such as the relational and the hierarchical
one. Data location also varies: Some datasets reside in a central �data lake�, whereas others
lie in remote data sources. In addition, users execute widely different analysis tasks over all
these data types. Finally, the process of gathering and integrating diverse datasets introduces
several inconsistencies and redundancies in the data, such as duplicate entries for the same
real-world concept. In summary, heterogeneity signi�cantly affects the way data analysis is
performed.

In this thesis, we aim for data virtualization: Abstracting data out of its original form and
manipulating it regardless of the way it is stored or structured, without a performance penalty.
To achieve data virtualization, we design and implement systems that i) mask heterogeneity
through the use of heterogeneity-aware, high-level building blocks and ii) offer fast responses
through on-demand adaptation techniques.

Regarding the high-level building blocks, we use a query language and algebra to handle multi-
ple collection types, such as relations and hierarchies, express transformations between these
collection types, as well as express complex data cleaning tasks over them. In addition, we
design a location-aware compiler and optimizer that masks away the complexity of accessing
multiple remote data sources.

Regarding on-demand adaptation, we present a design to produce a new system per query.
The design uses customization mechanisms that trigger runtime code generation to mimic the
system most appropriate to answer a query fast: Query operators are thus created based on
the query workload and the underlying data models; the data access layer is created based on
the underlying data formats. In addition, we exploit emerging hardware by customizing the
system implementation based on the available heterogeneous processors � CPUs and GPGPUs.
We thus pair each workload with its ideal processor type. The end result is a just-in-time
database system that is speci�c to the query, data, workload, and hardware instance.

iii

Acknowledgements

This thesis redesigns the data management stack to natively cater for data heterogeneity and
exploit hardware heterogeneity. Instead of centralizing all relevant datasets, converting them
to a single representation, and loading them in a monolithic, static, suboptimal system, our
design embraces heterogeneity. Overall, our design decouples the type of performed analysis
from the original data layout; users can perform their analysis across data stores, data models,
and data formats, but at the same time experience the performance offered by a custom
system that has been built on demand to serve their speci�c use case.

Keywords: data management, database management systems, data analytics, analytical
processing systems, query processing, query compilation, code generation, heterogeneous
data, data variety, data virtualization, hybrid transactional/analytical processing, real-time
analytics, data lakes, ETL, GPU databases

iv

RØsumØ
Les secteurs industriel et universitaire continuent de devenir de plus en plus data-driven
and data-intensive, dØpendant de l�analyse d�une grande variØtØ de donnØes pour faire de
nouvelles dØcouvertes. En mŒme temps, la variØtØ des donnØes augmente continuellement,
et ce, sur plusieurs axes. Tout d�abord, les donnØes existent en plusieurs formats, comme
les SGBD, dont les donnØes sont enregistrØe sous forme de tables binaires, les �chiers textes
purs et les formats spØci�ques au domaine. En second lieu, diffØrents set de donnØes suivent
diffØrents modŁles de donnØes, par example relationnels ou hiØrarchiques. L�emplacement
des donnØes varie Øgalement : certains datasets rØsident dans un �lac de donnØes� central,
tandis que d�autres rØsident dans des sources de donnØes distantes. En plus, les utilisateurs
exØcutent des tâches d�analyse largement diffØrentes sur tous ces types de donnØes. DerniŁre-
ment, la procØdure pour collecter et intØgrer ces sets de donnØes variØs introduit plusieurs
inexactitudes dans les donnØes, telles que les entrØes en double pour le mŒme concept rØel. En
rØsumØ, l�hØtØrogØnØitØ affecte de maniŁre signi�cative la façon dont l�analyse des donnØes
est effectuØe.

Le but de cette thŁse et la virtualisation des donnØes : Abstraire les donnØes de leur forme
originale et les manipuler sans affecter les performances. Pour rØaliser la virtualisation des
donnØes, nous concevons et mettons en �uvre des systŁmes qui i) masquent l�hØtØrogØnØitØ
en utilisant des blocs de construction de haut niveau, qui prennent en compte cette hØtØro-
gØnØitØ, et ii) qui offrent des rØponses rapides grâce aux techniques d�adaptation à la demande.

En ce qui concerne les blocs de construction de haut niveau, nous utilisons un langage de
requŒte et une algŁbre pour gØrer plusieurs types de collection, comme les relations et les
hiØrarchies, pour exprimer des transformations entre ces types de collection, ainsi que pour
exprimer des tâches de nettoyage de donnØes complexes sur eux. En plus, nous concevons un
compilateur sensible au placement et un optimisateur qui amØliore la complexitØ de l�accŁs à
plusieurs sources de donnØes distantes.

En ce qui concerne l�adaptation à la demande, nous prØsentons un design pour produire
un nouveau systŁme par requŒte. La conception utilise des mØcanismes d�adaptation qui
dØclenchent la gØnØration de code d�exØcution pour imiter le systŁme le plus appropriØ pour
rØpondre rapidement à une requŒte : Les opØrateurs de requŒte sont ainsi crØØs en fonction de
la charge de travail de la requŒte et des modŁles de donnØes sous-jacents ; la couche d�accŁs

v

RØsumØ

aux donnØes est crØØe en fonction des formats de donnØes sous-jacents. En plus, nous ex-
ploitons les matØriels Ømergents en personnalisant l�implØmentation du systŁme en fonction
des processeurs hØtØrogŁnes disponibles - CPU et GPGPUs. Nous combinons donc chaque
charge de travail avec son type de processeur idØal. Le rØsultat �nal est un systŁme de base de
donnØes just-in-time, spØci�que à la requŒte, aux donnØes, à la charge de travail et au matØriel
disponible.

Cette thŁse redØ�ni la pile de gestion des donnØes pour couvrir nativement l�hØtØrogØnØitØ
des donnØes et exploiter l�hØtØrogØnØitØ du matØriel informatique. Plutôt que de centraliser
tous les sets de donnØes, les transformer en une seule reprØsentation, et les charger dans
un systŁme monolithique, statique, sous-optimal, notre design embrasse l�hØtØrogØnØitØ.
En general, notre design dØcouple le type d�analyse effectuØ de la disposition de donnØes
originale ; les utilisateurs peuvent effectuer leur analyse dans des data stores, des modŁles de
donnØes, et des formats de donnØes diffØrents, tout en pro�tant des performances offertes par
un systŁme qui a ØtØ construit à la demande pour servir leur cas d�utilisation spØci�que.

Mots clefs : gestion de donnØes, systŁmes de gestion de base de donnØes, analyse de don-
nØes, systŁme de traitement de requŒtes analytiques, traitement de requŒtes, compilation
de requŒtes, gØnØration de code, donnØes hØtØrogŁnes, variØtØ de donnØes, virtualisation
de donnØes, traitement transactionnel / analytique hybride, analyse en temps rØel, lacs de
donnØes, ETL, bases de donnØes GPU

vi

Contents
Acknowledgements i

Abstract (English/Français) iii

List of �gures xi

List of tables xv

1 Introduction 1
1.1 Motivating Applications . 2
1.2 Pitfalls of heterogeneity . 2
1.3 Thesis Statement and Contributions . 4

1.3.1 The end goal: Data virtualization . 4
1.3.2 Thesis Roadmap . 6

2 Background 7
2.1 Raw Data Analytics . 7

2.1.1 Traditional: Loading and Accessing Data 7
2.1.2 Accessing Data through External Tables . 8
2.1.3 Querying Data In Situ . 8

2.2 Query Languages for Diverse Data Models . 9
2.3 Analytical Query Processing . 13
2.4 Query Processing on Emerging Server Hardware 14

2.4.1 Generalization of GPGPUs . 14
2.4.2 Specialization of CPUs . 16

2.5 Data Cleaning . 17
2.5.1 Data Cleaning Operations . 17
2.5.2 Data Cleaning Systems & Techniques . 18

3 Just-in-time Access Paths 21
3.1 Introduction . 21
3.2 Preliminaries: Accessing Data through Positional Maps 24
3.3 The RAW Query Engine . 25
3.4 Adapting to raw data . 27

3.4.1 Just-In-Time Access Paths . 27

vii

Contents

3.4.2 Evaluating raw data access strategies . 30
3.5 When To Load Data . 33

3.5.1 Shredding Columns . 34
3.5.2 Full Columns vs. Column Shreds . 35
3.5.3 Column Shreds Tradeoffs . 37

3.6 Use Case: The Higgs Boson . 41
3.7 Summary . 45

4 Just-in-time Query Engines 47
4.1 Introduction . 47
4.2 Related Work . 49
4.3 An expressive query algebra . 51
4.4 The Architecture of Proteus . 53
4.5 On-demand query engines . 54

4.5.1 An Engine per Query . 55
4.5.2 A Custom Data Access Layer per Query . 57

4.6 Adapting storage to workload . 62
4.7 Experimental Evaluation . 64

4.7.1 Specializing the Query Engine on Demand 65
4.7.2 Adapting to a Real-world Workload . 71

4.8 Summary . 74

5 Big Data Virtualization 77
5.1 Introduction . 77
5.2 Related Work . 80
5.3 Motivation and Background . 81
5.4 System-PV . 84
5.5 Compiling Cross-store Queries . 85

5.5.1 Exposing a Virtual Schema . 86
5.5.2 Querying over a Virtual Schema . 88

5.6 A Two-phase Optimizer for Cross-store Analytics 89
5.6.1 Phase I: SQL Optimization . 90
5.6.2 Phase II: Source-aware Optimization . 91

5.7 Experimental Evaluation . 94
5.7.1 Experimental Setup . 95
5.7.2 System-PV vs. Spark . 96
5.7.3 System-PV Performance . 98

5.8 Perspectives . 99
5.8.1 System-PV for enterprise workloads . 100
5.8.2 Optimizing SQL-on-Hadoop performance over multiple sources 100

5.9 Summary . 101

viii

Contents

6 Uni�ed Scale-Out Data Cleaning 103
6.1 Introduction . 103
6.2 A uni�ed representation . 105

6.2.1 Data cleaning operations . 106
6.2.2 From data cleaning operations to code . 106

6.3 Cleaning data using monoids . 107
6.3.1 Optimizations at the monoid level . 107
6.3.2 Expressive Power:

Mapping cleaning building blocks to the monoid calculus 109
6.3.3 The CleanM language . 111

6.4 Uni�ed algebraic optimization . 114
6.5 Executing data cleaning tasks . 115
6.6 CleanDB: A data cleaning system . 117
6.7 Experimental Evaluation . 118

6.7.1 Optimizations at the monoid level . 119
6.7.2 Optimizations at the algebra level . 121
6.7.3 Optimizations at the physical level . 123

6.8 Summary . 127

7 Looking forward:
HTAP on Heterogeneous Hardware 129
7.1 Introduction . 129
7.2 Database engines on emerging hardware . 130
7.3 The case for H2TAP . 131
7.4 CALDERA: An H2TAP query engine . 134
7.5 Evaluation . 138

7.5.1 HTAP with software snapshotting . 138
7.5.2 OLTP with message passing . 140
7.5.3 Data sharing with PAX . 141

7.6 Summary . 143

8 The Big Picture 145
8.1 Unconditional data virtualization: What we did 146
8.2 Unconditional data virtualization: Next steps . 146

A 151
A.1 Spam Analysis Queries . 152

Bibliography 175

Curriculum Vitae 177

ix

List of Figures
1.1 The data analysis stack, and the heterogeneity-related challenge in each layer. . 3

2.1 Scan execution time under Fermi/Maxwell GPUs. 15

3.1 JIT access paths vs. In Situ and DBMS approaches: Cold and warm run of a query
over CSV data. 32

3.2 JIT access paths vs. In Situ and DBMS approaches: For binary �les, JIT access
paths outperform traditional in situ query processing. 33

3.3 Bene�ts from adapting to data: Unrolling the main loop, simplifying parsing and
data type conversions reduce the time spent �preparing� raw data. 33

3.4 �Full columns� vs. �Column Shreds�. �Full columns�: all column values are
pre-loaded into columnar structures. �Column shreds�: column pieces are only
built as needed: in the example, Col2 is only loaded with the rows that passed
the �lter condition on Col1. 34

3.5 �Full columns� vs. �Column Shreds� - CSV. For the 2nd query over a CSV �le,
column shreds are always faster or exactly the same as full columns, as only
elements of column 11 that pass the predicate are loaded from the �le. 35

3.6 �Full columns� vs. �Column Shreds� - Binary. For the 2nd query over a binary
�le, we see the same behavior as for CSV: use of column shreds is always faster
than use of full columns or exactly the same for 100% selectivity. 35

3.7 �Full columns� vs. �Column Shreds�. CSV �les with �oating-point numbers carry
a higher data type conversion cost. The DBMS case is signi�cantly faster. 37

3.8 �Full columns� vs. �Column Shreds�. The binary format requires no conversions,
so the absolute difference between DBMS and column shreds is very small. . . 37

3.9 Shredding Policies: Creating shreds of requested nearby columns in one step is
bene�cial when accessing raw data in multiple steps is costly. 38

3.10 Shredding Policies: Possible points of column population based on join side. . 39

3.11 Shredding Policies: If the column to be projected is on the �pipelined� side of
the join, then delaying its creation is a better option. 40

3.12 Shredding Policies: If the projected column is on the �breaking� side, picking its
point of creation depends on the join selectivity. 40

3.13 Simpli�ed version of the ROOT query plan. The overall query is depicted in steps. 43

xi

List of Figures

3.14 Data representation in ROOT and RAW. The representation that RAW uses allows
vectorized processing. 44

4.1 Query involving unnest operators: Without them, the operators higher in the
tree would have to process BLOBs repeatedly every time they need a nested value. 52

4.2 The architecture of Proteus. 53
4.3 Example of a query plan and of the generated (pseudo-) code. Once the scan

operator places needed �elds in virtual buffers, they are used to evaluate the
�ltering expression. 57

4.4 Example of a structural index for a JSON object. 59
4.5 Projection-intensive queries over JSON data. 66
4.6 Projection-intensive queries over binary relational data. 66
4.7 Selection queries over JSON data. 67
4.8 Selection queries over binary relational data. 67
4.9 Join and unnest queries over JSON data. 69
4.10 Join and unnest queries over binary relational data. 69
4.11 Aggregate queries over JSON data. 70
4.12 Aggregate queries over binary relational data. 70
4.13 Effect of caching on i) a projection query and on b) a selection query over JSON

data. 71
4.14 For a spam analysis workload, Proteus outperforms the other systems in the

majority of queries due to i) its lightweight, specialized-on-demand code paths,
and ii) the caches it builds as a side-effect of query execution. 72

5.1 Typical scenario in a data lake: Analyzing recent, actively updated data along
with historical data. 82

5.2 Architecture of (a) Spark SQL and of (b) System-PV. Dotted boxes in (b) represent
extensions. 84

5.3 System-PV Pipeline. 88
5.4 Virtual plan of our running example (a), and its corresponding grounded plan (b). 89
5.5 Query plan simpli�cation during source-aware optimization. 92
5.6 Join pushdown rewriting during source-aware optimization. 93
5.7 Range query rewriting during source-aware optimization: Data accesses become

parallelizable. 94
5.8 Query Plan Quality: The SQL Optimizer of System-PV picks the best candidate

plan (No. 1), whereas Spark�s Catalyst optimizer picks plan No. 9. 96
5.9 Spark vs. System-PV: Spark is unable to keep up with System-PV even for very

selective queries. 97
5.10 System-PV performance for various data placement con�gurations and query

selectivities. 98

6.1 Algebraic plans for our running example, and optimized rewritten plans that
coalesce operators and share work. 115

xii

List of Figures

6.2 The architecture of CleanDB. 117
6.3 Different con�gurations of CleanDB for term validation. 120
6.4 Accuracy of term validation as the noise increases. 120
6.5 Uni�ed data cleaning: CleanDB rewrites three cleaning operations into a single

one, and avoids duplicate work. 122
6.6 Cost of checking for violations of functional dependencies over TPC-H. 124
6.7 Cost of checking for violations of functional dependencies over Tax. 125
6.8 Duplicate elimination over simpli�ed representations of DBLP: Spark SQL was

unable to terminate when cleaning the original dataset. 126
6.9 Duplicate elimination over Customer and MAG. 126

7.1 H2TAP deployed over emerging server hardware. 132
7.2 The hierarchical data organization of Caldera for a columnar data layout, and

the in-memory state after a transaction has updated table T a . Superscripts
represent epochs. 135

7.3 GPU-powered Caldera vs. CPU-powered columnar engines for Q6 of TPC-H.
Time for Caldera includes data transfer costs. 138

7.4 OLTP transaction throughput in the presence of OLAP queries as we vary the
OLTP working set and the degree of data freshness. 138

7.5 Execution time of OLAP queries in the presence of OLTP queries. All OLAP
queries share a single snapshot, but OLTP-triggered copy-on-write stresses mem-
ory bandwidth. 139

7.6 Execution time of OLAP queries and throughput of OLTP queries. We increase
the number of queries that share a snapshot from 10 to 100. Increasing snapshot
sharing improves performance. 139

7.7 TPC-C scalability as the number of cores increase. 140
7.8 Throughput as the percentage of multi-site transactions increases. 140
7.9 Comparing the ef�ciency of different data layouts for GPU-based computations. 142
7.10 Comparing different data layouts when all data is GPU resident. 142

xiii

List of Tables
2.1 The monoid comprehension calculus . 11
2.2 The operators of the nested relational algebra. 12
2.3 Processing power, memory capacity, and interconnection bandwidth of consumer-

grade NVIDIA graphics cards across generations 15

3.1 Hardware setup for experiments evaluating RAW. 30
3.2 Execution time of the 1st query over a table with 120 columns of integers and

�oating-point numbers. A traditional DBMS is signi�cantly slower in the 1st
query due to data loading. 36

3.3 Comparison of hand-written C++ Higgs Analysis with the RAW version. 44

4.1 The input plug-in API of Proteus. 58
4.2 Execution time per Symantec workload phase. 74

5.1 Operators used in the view de�nitions of System-PV. 86

6.1 Translation of algebraic operators to Spark operators. Bold parts introduce
new Spark operators or deviate from the translation that Spark SQL would have
performed. 116

6.2 Accuracy of term validation approaches over the DBLP dataset. 121
6.3 Overhead introduced by performing syntactic transformations in a plain query.

The optimizer of CleanDB applies both operations in one go and reduces over-
head by � 2×. 123

6.4 Denial constraints involving inequalities as the dataset size increases. All systems
beside CleanDB fail to terminate. 124

xv

1 Introduction

Whether in business or in science, the driver of many big data applications is the need for
analyzing vast amounts of heterogeneous data to develop new insights. Examples include
analyzing medical data to improve diagnosis and treatment, scrutinizing work�ow data to
understand and optimize business processes, analyzing stock market tickers to support �nan-
cial trading, etc. Yet, as different as these examples are, their core challenges revolve around
providing uni�ed access to data from heterogeneous sources, which remains a formidable
challenge today [34, 65, 99, 118, 129, 245] because the datasets to be analyzed typically come
in a variety of formats and models, and can reside in a variety of locations / data stores.

State-of-the-art approaches for data analysis have relied on placing all data, originally stored
in heterogeneous �le formats located at different sources, in one data warehouse. In this
process, semantic integration approaches [97] help to map semantically equivalent data from
different data sources on a common schema. Physical integration, on the other hand, is
commonly addressed by �rst transforming all heterogeneous data into a common format
and then copying and integrating it into a data warehouse. Transforming and integrating all
data into a warehouse, however, is no longer an option for a growing number of applications.
For example, in many scenarios, institutions owning the data want to retain full control
of data, for legal or ethical reasons. In addition, transforming and loading the data into a
warehouse is a considerable time investment that is unlikely to pay off as not all data may
be accessed, while it bears the risk of vendor lock-in; migrating datasets from a proprietary
system to another entails a substantial switching cost in terms of human and computational
resources [191]. Furthermore, statically transforming all data into one common format and
relying on a single, general-purpose query engine impedes query execution, because different
query classes bene�t from class-speci�c i) execution engines and ii) data layouts for ef�cient
query processing. Finally, for applications that opt to operate over a single, aggregating
data warehouse, preserving data freshness requires a continuous synchronization effort to
propagate updates on the original data sources to the data warehouse in a timely manner;
applications thus often ignore the fresh tail end of data that resides in the original sources and
operate over stale data.

1

Chapter 1. Introduction

1.1 Motivating Applications

One of the key visions of the Human Brain project (HBP [175]) is to improve diagnosis and
treatment of brain related diseases. De�ning sound disease characterizations of brain diseases
shared by patients is a necessary �rst step that requires a representative and large enough
sample of patient data. Researchers in the HBP consequently must access data from mul-
tiple hospitals in order to perform their analysis over a large sample. Enabling access to
heterogeneous data at different hospitals, however, is a massive integration challenge.

Integrating all patient data into one warehouse, i.e., transforming it physically and semantically
into the same representation and moving it into one administrative location, seems to be the
most straightforward approach to enable data analysis. Nevertheless, patient data appears
in multiple, heterogeneous data formats; results from various instruments or processing
pipelines are stored as JSON, CSV, medical image formats containing arrays, etc. Also, frequent
updates occur over medical records. In addition, practitioners launch different types of
analysis over the same data. Thus, importing all data into a warehouse is impractical, as many
database researchers have recognized [29, 36, 78, 135, 141, 144, 145]. Instead, data remain in
their original sources, regardless of whether these sources are loaded databases or raw �les. In
summary, the major data management challenge lies in optimizing the physical integration
of data stored in heterogeneous formats (e.g., database tables, CSV, JSON, etc.) to ef�ciently
support heterogeneous queries.

Similar challenges are common in other applications as well. Banks, for example, operate
large numbers of databases and data processing frameworks. The banking sector thus requires
a single data access layer that different functional domains (e.g., Trading, Risk, Settlement)
can manage, but no such data access layer is available. Existing data processing systems
are impractical to use across such a heterogeneous, complex data ecosystem. Furthermore,
regulations require banks to keep raw data and correlate it directly with the trade life cycle.
Accessing all data in its original form, on the other hand, allows different functional domains
in banks to easily interface with the data from others without having to share a common
system, and independently of data models or formats. This form of �ad hoc� data integration
would allow different communities to create separate �just-in-time� databases, each re�ecting
a different view/area of interest over the same data. To address the challenges of these use
cases as well as many other examples stemming from today�s and future applications, we
clearly have to move beyond the state of the art.

1.2 Pitfalls of heterogeneity

Database architects typically de�ne every layer of the data analysis stack a priori, having a
speci�c use case scenario in mind. The presence of heterogeneity, however, complicates the
way practitioners perform data analysis. Speci�cally, as depicted in Figure 1.1, different types
of heterogeneity affect each step of data analysis:

2

1.2. Pitfalls of heterogeneity

Data Analysis

Query Processing

Data Access

Query Formulation &
Optimization

Result
interpretation

Challenge

Diverse data formats

Data quality

Diverse
workloads

Diverse data
models

Diverse
data sources / stores

Figure 1.1 � The data analysis stack, and the heterogeneity-related challenge in each layer.

� Data Access of Heterogeneous Formats. Data volume has been increasing exponentially
and data variety increases, with an escalating number of new formats. Still, database systems
only operate ef�ciently over loaded data, i.e., data converted from its original raw format
into the system�s internal data format. As a consequence, there is a growing impedance
mismatch between the original structures holding the data in the raw �les and the structures
used by query engines for ef�cient processing.

� Query Processing over Heterogeneous Models. Besides tabular, relational representations,
practitioners model data as hierarchies, arrays, etc. Thus, evaluating queries over diverse
datasets is non-trivial. In addition, practitioners launch different types of queries over the
same data. For example, even if a dataset is stored in JSON representation, the analysis over
it can resemble typical OLAP queries. Thus, data analysis solutions over heterogeneous data
models have always involved a trade-off: be �exible and accommodate multiple diverse data
models at the cost of performance, or be rigid and specialized for a speci�c scenario [233],
thus leading users to employ a different system per use case.

� Query Processing for Heterogeneous Workloads. Organizations increasingly require an-
alytics on fresh operational data to derive timely insights. To meet these requirements,
database engines have to ef�ciently support hybrid transactional and analytical workloads
(HTAP) over shared data. Designing a database engine that can serve mixed workloads
ef�ciently is challenging, because besides the diverse requirements and characteristics
of OLTP and OLAP workloads, the workloads negatively interfere with each other due to
hardware resource contention [210].

� Query Optimization over Heterogeneous Sources. The typical enterprise data architecture
consists of several actively updated data sources (e.g., NoSQL systems, data warehouses),
and a central data lake, such as HDFS, in which all the data is periodically loaded through
ETL processes. To simplify query processing and optimization, state-of-the-art data analysis
approaches solely operate on top of the local, historical data in the data lake, and ignore the

3

Chapter 1. Introduction

fresh tail end of data that resides in the original remote sources. However, as many business
operations depend on real-time analytics, this approach is no longer viable. The alternative
is hand-crafting the analysis task to explicitly consider the characteristics of the various data
sources and identify optimization opportunities, rendering the overall analysis convoluted.

� Interpreting dirty data. The process of gathering, storing, and integrating heterogeneous
datasets introduces several inaccuracies in the data. For example, the presence of duplicate
entries is a typical issue when integrating multiple datasets. Analysts spend 50%-80% of their
time preparing dirty data before it can be used for information extraction [172]. Therefore,
data cleaning is a major hurdle for data analysis.

1.3 Thesis Statement and Contributions

Heterogeneity, both in data and in query workload, signi�cantly affects the way practitioners
perform data analysis. This thesis redesigns the data analysis stack so that every layer of
the stack natively caters for heterogeneity in terms of input datasets and query workloads.
The end goal is decoupling the type of analysis that a user performs from the original data
representation / location.

Thesis Statement

Big data is increasingly heterogeneous, nevertheless data management systems must assume
homogeneity to provide ef�cient data analysis. As data sizes grow exponentially, data harmo-
nization overheads are often prohibitive to business applications. To analyze heterogeneous
data ef�ciently, data management architectures must rely on unifying abstractions to manage
and mask heterogeneity, and generate customized analysis engines just-in-time to fully adapt
to the use case at hand.

1.3.1 The end goal: Data virtualization

A change of paradigm is required for data analysis processes to address data diversity and
volume. Database systems must become dynamic entities whose construction is lightweight
and fully adaptable to the datasets and the queries. Data virtualization [259], i.e, abstracting
data out of its form and manipulating it regardless of the way it is stored or structured, is
necessary. To offer unconditional data virtualization, database systems must abolish static
decisions like pre-loading data and using �pre-cooked� query operators; such operators are too
generic to cope with multiple types of inputs, making them inef�cient. In addition, database
systems must allow users to use the query language of their choice and express data cleaning
tasks declaratively, while masking heterogeneity through the use of heterogeneity-aware,
high-level building blocks. In this thesis, we argue that data management must become a
lightweight, �exible service, instead of a monolithic software centering around the status quo
of static operators and growing obese under the weight of new requirements.

4

1.3. Thesis Statement and Contributions

To this end, this thesis makes the following key contributions:

� Adapting a query engine to data formats. Traditionally, data has always had to �adapt� to
the query engine of a system. We propose a reverse, novel approach: Dynamically adapting
a query engine to the underlying raw data �les. Thus, we introduce JIT access paths, which
de�ne access methods through generation of �le- and query-speci�c scan operators, using
information available at query time.

� Customizing a query engine based on the underlying data models. We present a system
design that bridges the con�icting requirements for generality in analysis and minimal
response times. This design supports both relational as well as nested data by using an
expressive, optimizable query algebra that is richer than the relational one. We couple this
powerful query algebra with on-demand adaptation techniques to eliminate numerous
query execution overheads. To overcome the complexity of the broad algebra, we avoid the
use of general-purpose abstract operators. Instead, we dynamically create an optimized
engine implementation per query using code generation.

� Customizing a query engine based on the underlying hardware. We present the blueprint
of a new architecture for designing database engines that target mixed transactional and
analytical workloads. The architecture explicitly targets emerging server hardware, which
incorporates accelerators like GPGPUs.

� Optimizing queries across diverse data sources. We show how to perform real-time ana-
lytics over a data lake ecosystem, while simultaneously masking the complexity of dealing
with multiple data sources and offering fast response times. We design a data virtualization
module which is pluggable to modern scale-out data processing systems and which provides
a uni�ed view over multiple systems that are heterogeneous in terms of i) data model, ii) up-
date rates, and iii) query capabilities. Besides facilitating querying, the data virtualization
module optimizes the overall analysis by considering both established cost-based query
optimization techniques as well as the properties of the underlying data sources to generate
an ef�cient execution plan.

� Cleaning data in declarative fashion. We address the coverage and ef�ciency problems
of data cleaning by introducing a language that can express multiple types of cleaning
operations. The language serves a purpose similar to that of SQL for data management
in terms of expressivity and optimization: First, SQL allows users to manage data in an
organized way and is subjective to how each user wants to manipulate the data. Similarly,
data cleaning is a task that is subjective to the user�s perception of cleanliness and therefore
requires a language that allows users to express their requests in a simple yet ef�cient way.
Second, SQL is backed by the highly optimizable relational calculus. Our proposed language
thus is backed by an optimizable underlying representation as well, and goes through
a three-level translation and optimization process; a different family of optimizations is
applied at each abstraction level.

5

Chapter 1. Introduction

1.3.2 Thesis Roadmap

This thesis is organized as follows:

� Chapter 2 provides the necessary background on concepts we utilize and extend in the
context of this thesis.

� Chapter 3 shows how a query engine can adapt to heterogeneous data formats, instead of
vice versa. Speci�cally, the chapter introduces Just-In-Time (JIT) access paths, which are
generated dynamically per �le and per query instance.

� Chapter 4 presents a system design principle for analytical query engines that serve queries
over data of varying models. The system design offers i) generality in analysis and ii) minimal
response times. To achieve this, the design couples i) a query algebra that supports both
relational and nested data with ii) on-demand customization mechanisms that collapse all
layers of the system architecture at query time.

� Chapter 5 describes how to perform data analysis declaratively over numerous actively
updated data sources. This chapter describes a data virtualization module that employs a
location-aware compiler and a powerful two-phase optimizer, and is pluggable to scale-out
computational frameworks; it supports and optimizes diverse analytics over a global virtual
schema that masks data source variety and complexity.

� Chapter 6 introduces an all-purpose data cleaning query language, which models both
straightforward cleaning operations, such as syntactic checks, as well as complex clean-
ing building blocks, such as clustering algorithms, while being naturally extensible and
parallelizable.

� Chapter 7 presents the vision of Heterogeneous-HTAP (H2TAP), a new architecture for
database engines that fully utilize emerging server hardware (i.e., machines with heteroge-
neous parallelism) to serve both transactional and analytical workloads.

� Chapter 8 concludes the thesis and presents future directions.

6

2 Background

This chapter presents a brief overview of topics that are central to this thesis. Speci�cally, we
�rst discuss and motivate analysis over raw data. Then, we discuss about algebras that are
powerful enough to accommodate the analysis of diverse data models. We also present the
state-of-the-art in terms of query execution, i.e., how numerous database systems rely on code
generation and compilation to minimize query execution overheads, and how one can utilize
modern hardware accelerators. Finally, we provide background on numerous data cleaning
techniques.

2.1 Raw Data Analytics

Ideally, analyzing data in disparate sources would begin with ad hoc querying of the data.
Instead, databases are designed to query data stored in an internal data format, which is tightly
integrated with the remaining query engine and, hence, typically proprietary. Thus, if users
wish to query raw data, they traditionally �rst load it into a database. A recent alternative
to blindly loading data into a database involves asking queries directly over raw data. This
section provides the necessary background on the alternative ways of accessing data.

2.1.1 Traditional: Loading and Accessing Data

Relational database systems initially load data into the database and then access it through
the scan operators in the query plan. Each scan operator is responsible for reading the data
belonging to a single table. Following the Volcano model [117], every call to the next()
method of the scan operator returns a tuple or batch of tuples from the table. The scan
operator in turn retrieves data from the buffer pool � an in-memory cache of disk pages.

In modern column-stores [58] the implementation details differ but the work�ow is similar. A
call to the next() method of a column-store scan operator returns a chunk of a column or
the whole column. In addition, the database �les are often memory-mapped, relying on the
operating system�s virtual memory management instead of relying on a buffer pool internal to
the database.

7

Chapter 2. Background

A major overhead in this method is loading the data in the �rst place [36, 100]. Queries may
also trigger expensive I/O requests to bring data into memory but from there on, accessing
data does not entail signi�cant overheads. For instance, a database page can be type-cast
to the corresponding C/C++ structure at compile time. No additional data conversion or
re-organization is needed.

2.1.2 Accessing Data through External Tables

External tables allow data in external sources to be accessed as if it were in a loaded table.
External tables are usually implemented as �le-format-speci�c scan operators. MySQL, for
instance, supports external tables through its pluggable storage engine API [187]. The MySQL
CSV Storage Engine returns a single tuple from a CSV �le when the next() method is called:
it reads a line of text from the �le, tokenizes the line, parses the �elds, converts each �eld
to the corresponding MySQL data type based on the table schema, forms a tuple and �nally
passes the tuple to the query operators upstream.

The ef�ciency of external tables is affected by a number of factors. First, every access to a
table requires tokenizing/parsing a raw �le. For CSV, it requires a byte-by-byte analysis, with a
set of branch conditions, which are slow to execute [59]. Second, there is a need to convert
and re-organize the raw data into the data structures used by the query engine. In the case of
MySQL, every �eld read from the �le must be converted to the equivalent MySQL data type
and placed in a MySQL tuple. Finally, these costs are incurred repeatedly, even if the same raw
data has been read previously.

2.1.3 Querying Data In Situ

Abolishing the data loading phase has the potential to facilitate data exploration. At the same
time, accessing data using external tables fails to leverage the effort spent by previous queries.
An alternative for accessing data advocates treating �raw� data as a �rst-class citizen of a
DBMS [36, 132, 145, 144, 197, 41, 78, 79, 219, 80, 80, 55, 255, 81, 135, 141]. The scan operators
of such systems must be able to handle not only the binary data format that is understandable
by the database, but also raw data. In addition, specialized data structures must facilitate raw
data access by providing indexing support over raw data.

In Situ Access & Databases. The IBM Starburst [123] project on extensible relational database
management systems introduces specialized access paths for external data. The key challenges
in Starburst are to de�ne the interfaces and mechanisms to expose externally-resident data, to
re�ect their added capabilities in the query language, and to make the database components,
such as the query optimizer, aware of their costs and advantages [223].

The �NoDB philosophy� [36] advocates that in many scenarios database systems can treat
raw data �les as �rst-class citizens and operate directly over them. The implementation of
NoDB [36], PostgresRaw, is a DBMS that implements techniques speci�cally designed to

8

2.2. Query Languages for Diverse Data Models

operate over raw data. During query execution, PostgresRaw incrementally builds auxiliary
indexing structures called �positional maps�, which store the position of frequently-accessed
�elds. Future accesses to the raw data use the positional maps to skip tokenizing/parsing �les,
which reduces the overhead in accessing raw data.

Recent work in HyPer [185] also considers querying CSV data. Parallelizing the phases of
loading and utilizing vectorization primitives enables HyPer to bulk load data at wire speed.
Another alternative to �vanilla� in situ processing is invisible loading, developed for MapRe-
duce [29] by piggybacking on MapReduce jobs. Tuples are incrementally loaded and organized
into a database while data is being processed. In a related approach, Polybase [95] treats data
in Hadoop clusters as external tables to a DBMS.

In Situ Access & Cloud Systems. The success of the Map-Reduce paradigm [93] led to a great
number of systems operating over data stored in HDFS [226], built over Hadoop [8], or using
a similar distributed runtime environment to access in situ data at scale [38, 43, 39, 54, 198].
Google Dremel [182] and Apache Drill [5] � Dremel�s open-source variant � also query data in
situ, with data stored in various storage layers.

In Situ Access of Scienti�c data. FastBit [255] is a collection of compressed bitmap indexes
that enable ef�cient exploration of read-only scienti�c data. FastBit is used internally by
FastQuery [81], a framework for posing selection queries over datasets in formats such as
HDF5 and NetCDF [242] that has been shown to scale out. SDS/Q [55] and SCANRAW [78]
perform parallel analysis over a scienti�c �le format. For array data, Data Vaults [135] have
been built on top of MonetDB [58] and offer access to repositories of external �les. They are
equipped with a cache manager and an optimizer for this data format, while enabling queries
using SciQL, a domain speci�c query language.

2.2 Query Languages for Diverse Data Models

Queries targeting heterogeneous data must consider the unavoidable model heterogeneity and
enable the combination of information from diverse data sources. The query language used
must also enable users to �virtualize� the original data, i.e., apply powerful transformations
over the output of a query. The aim of this thesis is to provide native support for non-relational
data sources, therefore the relational calculus is insuf�cient as a base for a query language in
this context.

In the past years, researchers have proposed languages and algebras for rich data models.
The majority of the research efforts centered around ef�cient XML management [26, 27, 68,
106, 180, 203]. Another relevant line of work regarding rich data model support comes from
the programming languages domain: List and monad comprehensions [69, 249] are popular
constructs in (functional) programming languages, and are richer than the relational calculus;
they offer support for query recursion and for arbitrary data nestings. Comprehensions
have been used to iterate through collections in programming languages such as Haskell,
Scala, F#, Python and JavaScript. From a database-oriented perspective, the Kleisli functional

9

Chapter 2. Background

query system [254] uses the comprehension syntax and has been used as a facilitator for data
integration tasks due to its expressive power [67]. RodentStore [89] uses list comprehensions
as the basis for its storage algebra; it manipulates the physical representation of the data by
utilizing the expressive nature of comprehensions to express transformations. LINQ [181]
exposes query comprehension syntax and enables queries over numerous databases.

The works comprising this thesis use the monoid comprehension calculus [104, 105], which we
summarize in the rest of this section.

The monoid comprehension calculus

A monoid is an algebraic construct term stemming from category theory. A monoid of type T
comprises an associative binary operation � and a zero element Z�. The binary operation,
called merge function, indicates how two objects of type T can be combined. The zero element
Z� is the left and right identity of the merge function �; for every object x of type T, the
equivalence Z��x = x �Z� = x is satis�ed.

Monoids can be used to capture operations between both primitive and collection data
types. The latter also require the de�nition of a unit function U�, which is used to construct
singleton values of a collection type (e.g., a list of one element). For example, (+,0) represents
the primitive sum monoid for integer numbers. The pair (�, {}) along with the unit function
x � {x} represent the set collection monoid.

The monoid comprehension calculus is used to describe operations between monoids. A
monoid comprehension is an expression of the form �{e|q1, ...,qn}. The terms qi are called
quali�ers. Each quali�er can either be

� a generator, taking the form v � e �, where e � is an expression producing a collection, and v
is a variable that is sequentially bound to each value of said collection;

� a �lter predicate.

The expression e is called the head of the comprehension, and is evaluated for each value
binding produced by the generators. The evaluation results are combined using the merge
function �, called the accumulator of the comprehension in this context. Table 2.1, originally
from [105], contains the syntactic forms of the monoid comprehension calculus.

The comprehension syntax that this thesis uses is slightly altered but equivalent to the one
presented, and resembles the sequence comprehensions of Scala. The syntax we use is
f or {q1, ...,qn} yield�e. As an example, suppose that we want to pose the following SQL query
counting a department�s employees:

10

2.2. Query Languages for Diverse Data Models

NULL null value
c constant
� variable
e.A record projection
�A1 = e1, ..., An = en� record construction
if e1 then e2 else e3 if-then-else statement
e1 op e2 op: primitive binary function (e.g.,

<,+)
�� : �.e function abstraction
e1(e2) function application
Z� zero element
U�(e) singleton construction
e1 �e2 merging
�{e|q1, ...,qn } comprehension

Table 2.1 � The monoid comprehension calculus

SELECT COUNT(e.id)
FROM Employees e
JOIN Departments d ON (e.deptNo = d.id)
WHERE d.deptName = "HR"

The same aggregate query can be expressed in our version of comprehension syntax as follows:

for { e <- Employees, d <- Departments,
e.deptNo = d.id, d.deptName = "HR"} yield sum 1

This example requires us to use the sum monoid for integers to perform the count required.
Other primitive monoids we can use in our queries include, among others, max and average.
Similarly, queries with universal or existential quanti�ers can use the � and 	 monoids for
boolean types. More complex operations, such as top-k and bloom �lters, can also be treated
as monoids.

Monoid comprehensions also support nested expressions. A query requesting an employee�s
name along with a collection of all the departments this employee is associated with is ex-
pressed as follows:

for { e <- Employees, d <- Departments, e.deptNo = d.id}
yield set (emp := e.name,

depList := for {d2 <- Departments,d.id = d2.id}
yield set d2)

From calculus to (nested) algebra

For each incoming query, the �rst step is translating it to a calculus expression. The calculus
expression is then rewritten to an algebraic tree of a nested relational algebra [105]. This

11

Chapter 2. Background

Operator
Name

Select (Outer)
Join

Reduce Nest (Outer)
Unnest

Operator
Symbol

� p (X) X � p Y
X � p Y

� � /e
p � � /e / f

p / g µpath
p (X)

µpath
p (X)

Superscript p: Filtering Expression e: Output Expression

& Subscript f : Groupby Expression g: Non-nullable Expression

path : Field to unnest � : Output Collection/Aggregate

Table 2.2 … The operators of the nested relational algebra.

algebra resembles the relational one, and relational optimization techniques are applicable to

it. On top of that, it offers “rst-class support for operations related to unnesting of queries

over nested data. The operators of the nested relational algebra are depicted in Table 2.2.

The selection, join , and outer join operators are identical to their relational counterparts.

The subscript p represents the expression based on which “ltering occurs (e.g., x < 5 for

a selection, t 1.id = t 2.id for a join, etc.). Reduceand nest are overloaded versions of the

relational projection and the grouping operator respectively. The symbols e, f , p , and g

correspond to algebraic expressions that are used during operator evaluation (e.g., f represents

the expression to group results by). The symbol � represents the type of collection/aggregate

to be output. Finally, the unnest and outer unnest operators •unrollŽ a collection “eld path

that is nested within an object. The subscript p indicates that an expression is used to “lter out

the results of this operator, and the superscript path speci“es which is the nested (collection)

“eld to be •unrolledŽ.

Expressive Power. Monoid comprehensions bear similarities to list and monad comprehen-

sions [69, 249], which are constructs popular in functional programming languages. This thesis

opts for monoid comprehensions as a •wrappingŽ layer for a variety of languages because

they allow inputs of different types (e.g., sets and arrays) to be used in the same query. Query

results can also be •virtualizedŽ to the layout/ collection type requested; different applications

may require different representations for the same results. Examples include, among others,

representing the same original data either as a matrix or by using a relational-like tabular

representation, and exporting results as bag collections while the original inputs are lists. This

capability aids in •virtualizingŽ the original data as per the user•s needs.

Crucially, a query language based on monoid comprehensions lends itself perfectly to trans-

lation to other languages. Support for a variety of query languages can be provided through

a •syntactic sugarŽ translation layer, which maps queries written in the original language

to the internal notation. Doing so enables users to formulate queries in their language of

choice. Speci“cally, monoid comprehensions are a theoretical model behind XQuery•s FLWOR

expressions, and also an intermediate form for the translation of OQL [105]. The monoid com-

prehension calculus is also suf“cient to express relational SQL queries. SPARQL queries over

data representing graphs can also be mapped to the monoid comprehensions calculus [87].

12

2.3. Analytical Query Processing

2.3 Analytical Query Processing

The works in this thesis heavily rely on runtime code generation to accelerate query execution.

This section thus discusses different query execution techniques, before focusing on runtime

code generation.

The Volcano iterator model. When a query is posed in a database system, it is generally

processed by a query planner / optimizer, resulting in an algebraic plan. This plan, expressed

in the form of a tree, is traditionally interpreted using the Volcano iterator model [117]. Every

operator of the plan exposes a general API, consisting of open(), next() and close()function

calls. Whenever an operator•s next() method is called, a request for a new tuple is sent to the

operator•s children operators. While being a simple and intuitive interface, its very generality

actually penalizes performance. The fact that the next() function will be called for every tuple

leads to increased costs, considering that function calls will take place even for very simple

operations. In addition, as these function calls are typically virtual, they lead to frequent

branch mispredictions. Finally, the constant changes in control ”ow lead to poor code locality.

Block-oriented query processing. To address these performance concerns, approaches have

appeared suggesting block-oriented query processing, i.e. generating more that one tuple with

every next() call of an operator ([201, 58, 59]). For such approaches, the costs resulting from

the multiple calls of functions are signi“cantly reduced. In addition, this type of processing

also allows exploitation of modern hardware, such as vectorized execution by using SIMD

instructions. On the other hand, by processing blocks, the output of operators needs to be

materialized before being provided as input to a subsequent operator. Thus, the pipelining

capabilities of the iterator model are no longer fully exploited, leading to increased memory

bandwidth consumption.

Runtime code generation. In an attempt to keep the best of both worlds, namely both pipelin-

ing capabilities and better utilization of modern hardware without sustaining interpretation

overheads, HyPer [190] introduces a novel execution model, based on the following guidelines:

€ The query execution needs to be data-centric instead of operator-centric. Execution revolves

around data that are kept in the CPU registers as long as possible, even if it means deviating

from the traditional operator model [117].

€ By using push-based execution instead of the traditional pull-based Volcano execution [117],

the resulting query engine bene“ts from better code and data locality.

€ Compile queries to low-level machine code that is optimized to fully exploit modern hard-

ware.

Query compilation (i.e., runtime code generation) results in minimal code, with the majority

of work taking place in •tight loopsŽ over tuples. Such a code pattern facilitates prefetching

and accurate branch prediction. In addition, the code generated contains fewer branches than

the ones encountered in static systems, given that the information known at compile time

13

Chapter 2. Background

about a query can be injected into the generated code. The alternative would be •interpretingŽ

the query plan during query evaluation, and complicating the control ”ow.

In general, the use of just-in-time code generation to answer database queries has re-gained

popularity, years after its initial application in System R [73]. Recently, code generation has

been realized using highly ef“cient code templates and dynamically instantiating them to

create query- and hardware-speci“c code [159]. HyPer [190], Impala [250], and Tupleware [88]

employ the LLVM JIT compiler infrastructure [162] to generate and compile code. Other

approaches have a high-level language as a starting point to generate code for queries [153,

188, 213, 224, 91]. A prominent example of the other side of low-level code generation, LegoB-

ase [153] advocates •abstraction without regretŽ and staged compilation; its query engine and

its optimization rules are both written in the high-level language Scala. Different optimizations

can be applied in every query translation step from the original Scala representation to the

C code that is eventually generated. Finally, hybrid storage layouts can also bene“t by applying

code generation to increase CPU ef“ciency [206] or to adapt the data layout at runtime [37].

2.4 Query Processing on Emerging Server Hardware

The hardware landscape exhibits two major trends to which the data management sector must

adapt, namely, the generalization of GPGPUs and the specialization of multisocket CPUs. This

section presents the characteristics of emerging hardware and their mismatch with modern

database engines.

2.4.1 Generalization of GPGPUs

Traditionally, GPGPUs suffered from two major limitations. First, applications that used

GPGPUs had to manage host (CPU) and device (GPU) memory separately, thus complicat-

ing programmability. Second, GPU device memory capacity was too limited to store all

data. Therefore, applications had to manually copy data from system to device memory via

the slow PCIe bus before executing a computation on the GPU. As a result, despite work

that showed that GPGPUs can provide substantial improvement in performance over CPUs

[62, 96, 127, 128, 258], they were not widely used in the industry because analytical queries

running on GPGPUs spent most of their time transferring data. As Table 2.3 shows, however,

GPGPUs are evolving from memory-limited accelerators for niche domains to general-purpose

processors with radical improvements along the dimensions of performance, interfacing, and

programmability 1.

Performance. The latest Pascal GPUs offer 16× higher processing power and 13.3 × more

memory capacity than their Tesla counterparts. GTX 1080 Ti will have an order of magnitude

more cores and 4 × higher memory bandwidth than even state-of-the-art multi-core CPUs.

Furthermore, GPU cards which are customized for compute acceleration typically pack 2 ×

more memory capacity and processing power over these consumer-grade graphics cards.

1 While this section uses NVIDIA terminology, all concepts apply to AMD GPGPUs as well.

14

2.4. Query Processing on Emerging Server Hardware

GPU Architecture Cores FP32 Power Mem cap Mem b/w I/f type I/f b/w

(GFlops) (MB) (GB/s) (GB/s)

GeForce 8800 Tesla 128 345.6 768 103.7 PCIe 1.0 4

GTX 580 Fermi 512 1581.1 1536 192.3 PCIe 2.0 8

GTX 780 Ti Kepler 2304 3976.7 3072 288.4 PCIe 3.0 16

GTX 980 Ti Maxwell 2816 5632 6144 336 PCIe 3.0 16

GTX 1080 Ti Pascal 3328 10696 10240 400 NVLink 80-200

Table 2.3 … Processing power, memory capacity, and interconnection bandwidth of consumer-
grade NVIDIA graphics cards across generations

0
0.5

1
1.5

2
2.5

3

memcpy uva memcpy uva um

fermi maxwell

E
xe

cu
tio

n
T

im
e

(s
ec

)

Q1 Q2 Q3 Q4 Q5
2.15

5.33

1.02 0.87
0.52

Figure 2.1 … Scan execution time under Fermi/Maxwell GPUs.

Interfacing. PCIe 3.0 already offers 4× higher bandwidth compared to PCIe 1.0, and PCIe

4.0 is expected to double the bandwidth again. In addition, NVIDIA has recently announced

NVLink [193], an energy-ef“cient, high-bandwidth GPU-CPU or GPU-GPU interconnect that

will offer at least 5 × the bandwidth of the current PCIe 3.0 bus. NVLink is already being used to

interconnect IBM Power CPUs and NVIDIA GPUs in Summit and Sierra, two supercomputers

commissioned by the U.S DoE [195].

Programmability. Since CUDA 4.0, NVIDIA Fermi GPUs have supported Uni“ed Virtual

Addressing (UVA) [192], which enables GPUs and CPUs to share a single address space. The

Kepler architecture added support for Uni“ed Memory (UM) in CUDA 6.0 [192]. UM enables

applications to of”oad memory management entirely to the CUDA runtime, which tracks

memory accesses and migrates data to host or device memory depending on the access

patterns to improve locality. With CUDA 8.0, the Pascal architecture extends UM with support

for virtual memory-based page faulting in GPU; data allocated on the CPU is automatically

faulted in and moved to the GPU one page at a time, only when accessed. Applications can

thus oversubscribe GPU memory, i.e., allocate a chunk of memory larger than the GPU device

capacity and access it using the same address pointer across CPUs and GPUs.

Figure 2.1 quanti“es the net effect of some of these improvements by showing the results from

a microbenchmark that executes “ve “lter queries over a 2GB column of integers using an

15

Chapter 2. Background

M2090 Fermi GPU and a GTX 980 Maxwell GPU. Each query launches a kernel … a function

that all the threads of a GPU device execute in parallel. The three cases in the graph present

scenarios where memory is allocated separately on device and host, requiring an explicit copy

operation (•memcpyŽ), or memory is allocated using UVA/UM and requires no copying. In

the memcpy case, we report the total time taken to perform the host-to-device input copy,

kernel execution, and device-to-host output copy. For UVA and UM, we report the time to

execute the kernel.

There are four important observations to be made: First, the memcpy case shows a 2 × im-

provement because of the improvement in bandwidth from 8 GB/s under PCIe 2.0 (Fermi) to

16 GB/s under PCIe 3.0 (Maxwell). Second, while UVA was 2.5 × slower than memcpy under

Fermi, it is 1.18 × faster under Maxwell, indicating that UVA enables ef“cient CPU…GPU data

sharing. Third, under UM, the “rst query takes 0.24 seconds and is 1.5 × slower than under

UVA. The remaining queries, however, execute in 0.07 seconds, and are 2.5 × faster. After

the “rst query, the CUDA runtime migrates the input array allocated in UM over to the GPU.

Thus, subsequent queries are unaffected by the PCIe bandwidth limitation. This performance

improvement required no programming effort and shows the locality bene“t of using UM.

Finally, comparing Fermi UVA and Maxwell UVA/UM, execution time gets a 6 × reduction

with UM, and a 2.46 × reduction with UVA. All these speedups are noteworthy because i) they

purely stem from improvements in interfaces and programmability, as the kernel does little

computation, and ii) they show that ef“cient CPU…GPU data sharing is possible.

2.4.2 Specialization of CPUs

In stark contrast to the generalization of GPGPUs is the increasing specialization of com-

modity multi-socket multi-cores. An aspect of specialization which is particularly relevant

to database designers is the design of hardware cache coherence (CC). All widely used multi-

cores provide CC-shared memory to ensure that memory store operations performed by

one core are visible to load operations performed by another core despite multiple levels of

caching. CC also forms the framework for features like atomics on shared memory words and

Hardware Transactional Memory. However, as the number of cores increases, the cost and

complexity needed to maintain coherence across all core-private caches is also increasing

dramatically [178, 257]. Research has also shown that CC presents scalability challenges for

latency-sensitive workloads [178,183].

While designing scalable CC protocols for multi-cores continues to be a challenging topic [176],

hardware vendors have started investigating alternative multi-core architectures that vary

widely with respect to CC support. The latest Haswell processors support three modes of CC;

choosing the right mode impacts the latency and bandwidth of both core-to-core data transfers

and memory accesses [183]. SoCs like TI OMAP4, OMAP5, and Samsung Exynos, which are

based on the ARM v8 speci“cation, group cores into multiple domains such that coherence is

maintained within but not across domains. Intel SCC [131] is a 48-core processor that provides

16

2.5. Data Cleaning

non-CC shared memory with core-to-core message passing capability. IBM Cell Broadband

Engine [121] is a single-chip multiprocessor with eight non-CC Synergistic Processor Elements

(SPE) optimized for data processing. Given such variation among processors in providing

CC, several researchers argue that system-wide CC may no longer be available in the near

future [49, 50, 169], and are building software such as operating systems [47, 49, 169, 253], “le

systems [133], memory management libraries [50], and runtime libraries [70, 163], explicitly

targeted at emerging non-CC systems.

2.5 Data Cleaning

Cleaning dirty data has been an omnipresent data management challenge. This section

surveys i) frequently-required data cleaning operations, and ii) data cleaning frameworks and

techniques [25, 83, 113, 134, 139, 149, 212, 235, 246] used to perform said cleaning operations.

2.5.1 Data Cleaning Operations

In the following we describe a set of popular data cleaning operations.

Denial Constraints (DC). The family of denial constraints [102] contains universally quan-

ti“ed “rst order language sentences that represent data dependencies, such as functional

dependencies (FD) and conditional functional dependencies. DCs have the following form:

 t1, ...,tk ¬(p(x1) 	 p(x2)	... p(xn)). If a dataset contains one or more tuples for which the

predicates p(x1)...p(xn) hold, it is considered to be inconsistent.

Duplicate Elimination. Duplicate elimination involves the discovery of tuples that refer to

the same real-world entity [158]. The most straightforward way to detect similar tuples is a

self-join that discovers identical tuples. A lighter duplicate detection form is to consider an

attribute or a set of attributes that should be unique; if two tuples have the same values for

that particular set of attributes, then they are considered to be duplicates. A more challenging

scenario involves the case where a dataset does not contain completely identical pairs of

tuples/attribute sets, but might contain similar pairs. In this case, the self-join predicate needs

to calculate similarity instead of equality, and thus requires the user to choose an appropriate

similarity metric.

Transformations & Term Validation. Transformations involve applying a formula to a set

of values, or mapping values to a set of semantically related values [25], such as mapping

a column with airport names to the corresponding cities. Semantic transformations are

challenging because they require consulting auxiliary data. Term validation is a popular

category of semantic transformations: It focuses on detecting values that are seemingly

correct, but fail to adhere to a speci“c terminology because of, for example, a misspelling.

A common technique for detecting misspellings is using a dictionary for validation. The

dictionary can be, among others, a dictionary of english words or scienti“c terms, or even the

result of a query to a portal with geographic data.

17

Chapter 2. Background

2.5.2 Data Cleaning Systems & Techniques

In the following we survey multiple categories of data cleaning techniques.

Interactive Data Cleaning. Potter•s Wheel [212], OpenRe“ne [246], and Trifacta … the com-

mercial version of Data Wrangler [139] … are established interactive data cleaning systems.

Potter•s Wheel [212] provides an interface via which the user gradually repairs her dataset.

The user performs transformations, such as merging columns, and at the same time, a back-

ground daemon detects potential syntactic errors. For the daemon to detect any errors, a

user has to specify patterns to which values must adhere, a set of domains to which data

entries must belong, and the constraints of each domain. Pentaho [17], Knime [13] and Pax-

ata [16] allow for more complex operations, which they express with the use of black-box

user-de“ned-functions (UDFs).

(Semi-)Automatic Cleaning. Besides interactive cleaning toolkits, other systems attempt to

detect and repair data errors automatically, asking a human for guidance when necessary.

DataXFormer [25] tackles semantic transformations, such as mapping a column containing

company names to a column with the stock symbols of those companies, by exploiting

information from the Web or from mapping tables. Tamr [235] focuses on repairing data

duplicates. Tamr maps records to corresponding blocks, and then trains classi“ers within

each block that decide whether a pair of records corresponds to a duplicate, a non-duplicate,

or a possible duplicate. Finally, Tamr produces groups of values that represent the same entity,

and suggests a representative value per group using rules and feedback from experts. Dedoop

[154] allows specifying entity resolution work”ows through a web-based interface and then

translates them into MapReduce jobs. Each Dedoop operator is a standalone, black-box UDF.

SampleClean [252] and Wisteria [122] extract a sample out of a dataset, employ users to clean

it, and utilize this sample to answer aggregate queries; their focus is on data transformations,

deduplication, and denial constraints.

NADEEF [82, 90] manages a set of denial constraints, and tries to update erroneous values

in a way that all the rules are satis“ed [82]. BigDansing [149] ports the insights of NADEEF

in a distributed setting by extending MapReduce-like frameworks with support for duplicate

elimination and denial constraints. BigDansing takes as input a dirty dataset along with a

quality rule that is either declarative or has the form of a UDF. Then, BigDansing detects

and repairs violations in a scale-out fashion. BigDansing performs a nuber of logical-level

optimizations over input cleaning scripts; the optimizations focus on projection push down

and blocking in the case of functional dependencies. BigDansing also focuses on physical-

level optimizations, such as offering a custom join implementation. Speci“cally, since denial

constraints often involve inequality joins, BigDansing provides a custom theta join operator.

Declarative Cleaning. The FUSE BY[56] operator is an extension of SQL that resolves dupli-

cates by allowing various con”ict resolution strategies, such as choosing the most common

value or preferring one source over another. FRAQL[221] follows a similar approach by pro-

viding SQL extensions that allow transformations, duplicate elimination, and outlier detection.

18

2.5. Data Cleaning

All con”ict resolution operations in FRAQLare expressed as standalone, opaque UDFs. QuERy

[40] integrates deduplication with query processing by focusing on the optimizations that

allow cleaning only the parts of the data that are needed by a given query. Ajax [110] separates

the logical and physical level of the data cleaning process. At the logical level, Ajax uses a data

”ow graph to represent the steps of a cleaning operation. Then, at the physical level, each

logical operator gets translated into an optimized implementation. Like FRAQL, Ajax provides

a UDF for each operator, and therefore treats each data cleaning task as a black box.

Quantitative Data Cleaning (QDC). QDC [51, 92] discovers the best data repairing strategy

using statistical methods, such as the cost of each strategy, the quality of the resulting dataset,

and the statistical distortion against the original dataset. QDC focuses on discovering the

optimal repair method given a set of detected errors. Statistics are also employed to measure

the accuracy of error detection methods and how each method behaves in the existence of

multiple types of errors; whether a method fails to detect an error due to the presence of

another type of error [52]. Finally, the authors of [209] combine statistics with qualitative

methods to perform data cleaning.

SQL for cleaning. SQL can express some cleaning tasks, e.g., the ones that correspond to “rst

order logic statements [102]. SQL, however, is overall inappropriate and insuf“cient for data

cleaning: First, SQL lacks “rst-class support for rich data types (e.g., JSON); one might need

to convert a dataset to another format in order to clean it. A change in the intended format

can be inconvenient for the user, or might complicate the cleaning process, e.g., ”attening a

dataset can increase data volume. In addition, relational algebra … the backend of SQL … lacks

“rst-class support for operations from the machine learning and data mining domains.

It typically takes a combination of vanilla SQL, UDFs, extra operators, and external programs

to express rich operations in SQL [84]. UDFs, however, increase complexity; each UDF appears

as a black-box to the system optimizer, which is unable to optimize the entire task as a

whole. Adding extra operators in the database core [204] requires coding in an operator per

algorithm, which is a tedious process. As for frameworks such as Spark [260], which support

both relational and iterative processing, they apply only relational optimizations [43]. The

reason is that the •relational partŽ of Spark is engineered similarly to a DBMS with columnar

storage and is equipped with an optimizer, whereas the •procedural partŽ executes arbirary

code over BLOB-like data (RDDs [260]). Given the split Spark architecture, the Spark SQL

Catalyst optimizer treats the procedural parts of an analysis script as black boxes. In summary,

both for traditional RDBMS and modern scale-out frameworks, while a relational optimizer

can perform rewrites based on the physical properties of the extra operators, it is non-trivial

to reason about them on an algebraic level, because they fall outside of the relational logic

based on which the system has been engineered.

In conclusion, SQL is designed to manipulate relational data, and is unable to express domain-

speci“c optimizations required for data cleaning.

19

3 Just-in-time Access Paths

Database systems deliver impressive performance for large classes of workloads as the result

of decades of research into optimizing database engines. High performance, however, is

achieved at the cost of versatility. In particular, database systems only operate ef“ciently

over loaded data, i.e., data converted from its original raw format into the system•s internal

data format. At the same time, data volume continues to increase exponentially and data

varies increasingly, with an escalating number of new formats. The consequence is a growing

impedance mismatch between the original structures holding the data in the raw “les and the

structures used by query engines for ef“cient processing. In an ideal scenario, the query engine

would seamlessly adapt itself to the data and ensure ef“cient query processing regardless of

the input data formats, optimizing itself to each instance of a “le and of a query by leveraging

information available at query time. Today•s systems, however, force data to adapt to the query

engine during data loading.

This chapter proposes adapting the query engine to the formats of raw data. It presents RAW, a

prototype query engine that enables querying heterogeneous data sources transparently. RAW

employs Just-In-Time (JIT) access paths, which ef“ciently couple heterogeneous raw “les to

the query engine and reduce the overheads of traditional general-purpose scan operators.

3.1 Introduction

Over the past decades, database query engines have been heavily optimized to handle a variety

of workloads to cover the needs of different communities and disciplines. What is common in

every case is that regardless of the original format of the data to be processed, top performance

requires data to be pre-loaded: Database systems always require the original user•s data to be

reformatted into new data structures that are exclusively owned and managed by the query

engine. These structures are typically called database pages and store tuples from a table in a

database-speci“c format. The layout of pages is hard-coded deep into the database kernel

and co-designed with the data processing operators for ef“ciency. Therefore, this ef“ciency

was achieved at the cost of versatility; keeping data in the original “les was not an option.

21

Chapter 3. Just-in-time Access Paths

Two trends that now challenge the traditional design of database systems are the increased

variety of input data formats and the exponential growth of the volume of data, both of which

belong in the •Vs of Big DataŽ [160]. Both trends imply that a modern database system has to

load and restructure increasingly variable, exponentially growing data, likely stored in multiple

data formats, before the database system can be used to answer queries. The drawbacks of

this process are that i) the •pre-queryingŽ steps are a major bottleneck for users who want

to quickly access their data or perform data exploration, and ii) databases have exclusive

ownership over their ingested data; once data has been loaded, external analysis tools cannot

be used over it any more unless data is duplicated.

Flexible and ef“cient access to heterogeneous raw data remains an open problem. NoDB [36]

advocates in situ query processing of raw data and introduces techniques to eliminate data

loading by accessing data in its original format and location. However, the root cause of the

problem is still not addressed; there is an impedance mismatch, i.e., a costly adaptation step

due to differences between the structure of the original user•s data and the data structures

used by the query engine. To resolve the mismatch, the implementation of NoDB relies on

“le- and query-agnostic scan operators, which introduce interpretation overhead due to their

general-purpose nature. It also uses techniques and special indexing structures that target

textual ”at “les, such as CSV. As its design is hard-coded to CSV “les, it cannot be extended to

support “le formats with different characteristics (such as ROOT [63]) in a straightforward way.

Finally, NoDB may import unneeded raw data while populating caches with recently accessed

data. Therefore, even when accessed in situ as in the case of NoDB, at some moment, data

must always •adaptŽ to the query engine of the system.

In this chapter, we propose a reverse, novel approach. We introduce RAW, a ”exible query

engine that dynamically adapts to the underlying raw data “les and to the queries themselves,

rather than adapting data to the query engine. In the ideal scenario, the impedance mismatch

between the structure in which data is stored by the user and by the query engine must

be resolved by having the query engine seamlessly adapt itself to the data, thus ensuring

ef“cient query processing regardless of the input data formats. RAW creates its internal

structures at runtime and de“nes the execution path based on the query requirements. To

bridge the impedance mismatch between the raw data and the query engine, RAW introduces

Just-In-Time (JIT) access pathsand column shreds. Both methods build upon in situ query

processing [36], column-store engines [59] and code generation techniques [159] to enable

ef“cient processing of heterogeneous raw data. To achieve ef“cient processing, RAW delays

work to be done until it has suf“cient information to reduce the work•s cost, enabling one to

access and combine diverse datasets without sacri“cing performance.

JIT access paths de“ne access methods through generation of “le- and query-speci“c scan op-

erators, using information available at query time. A JIT access path is dynamically-generated,

removing overheads of traditional scan operators. Speci“cally, multiple branches are elimi-

nated from the critical path of execution by coding information such as the schema or data type

conversion functions directly into each scan operator instance, enabling ef“cient execution.

22

3.1. Introduction

The ”exibility that JIT access paths offer also facilitates the use of query processing strategies

such as column shreds. We introduce column shreds to reduce overheads that cannot be

eliminated even with JIT access paths. RAW creates column shreds by pushing scan operators

up the query plan . This tactic ensures that a “eld (or “elds) is only retrieved after “lters or

joins to other “elds have been applied. Reads of individual data elements and creation of

data structures are delayed until they are actually needed, thus creating only subsets (shreds)

of columns for some of the raw data “elds. The result is avoiding unneeded reads and their

associated costs. Column shreds thus ef“ciently couple raw data access with a columnar

execution model.

Motivating Example. The ATLAS Experiment of the Large Hadron Collider at CERN stores over

140 PB of scienti“c data in the ROOT “le format [63]. Physicists write custom C++ programs

to analyze this data, combining them with other secondary data sources, such as CSV “les.

Some of the analysis implies complex calculations and modelling, which is impractical on

a relational database system. The remaining analysis, however, requires simple analytical

queries, e.g., building a histogram of •events of interestŽ with a particular set of muons,

electrons or jets. A DBMS is desirable for this latter class of analysis because declarative queries

are signi“cantly easier to express, to validate and to optimize compared to a C++ program.

Loading, i.e., replicating, 140 PB of data into a database, however, would be cumbersome and

costly. Storing this data at creation time in a database would constrain the use of existing

analysis tools, which rely on speci“c “le formats. Therefore, a query engine that queries the

raw data directly is the most desirable solution. To process ROOT and be useful in practice,

a system must have performance competitive to that of the existing C++ code. RAW, our

prototype system, outperforms handwritten C++ programs by two orders of magnitude. RAW

adapts itself to the ROOT and CSV “le formats through code generation techniques, enabling

operators to work over raw “les as if they were the native database “le format.

Contributions. Our contributions are as follows:

€ We design a query engine which adapts to raw data “le formats and not vice versa. Based

on this design, we implement a data- and query-adaptive engine, RAW, that enables

querying heterogeneous raw data ef“ciently.

€ We introduce Just-In-Time (JIT) access paths, which are generated dynamically per

“le and per query instance. Besides offering ”exibility, JIT access paths address the

overheads of existing scan operators for raw data. JIT access paths are 1 .3× to 2× faster

than state-of-the-art methods [36].

€ We introduce column shreds, a novel execution method over raw data to reduce data

structure creation costs. With judicious use of column shreds, RAW achieves an ad-

ditional 6 × speedup for highly selective queries over CSV “les; for a binary format, it

approaches the performance of a traditional DBMS with fully-loaded data. Column

shreds target a set of irreducible overheads when accessing raw data (e.g., data conver-

sion). In our experiments these reach up to 80% of the query execution time.

23

Chapter 3. Just-in-time Access Paths

€ We apply RAW in a real-world scenario that cannot be accommodated by a DBMS. RAW

enables the transparent querying of heterogeneous data sources, while outperforming

the existing hand-written approach by two orders of magnitude.

Outline. The rest of this chapter is structured as follows: Section 3.2 reviews existing meth-

ods to access in situ data. Section 3.3 brie”y describes RAW, our prototype query engine.

Section 3.4 introduces Just-In-Time access paths. Section 3.5 introduces column shreds.

Sections 3.4 and 3.5 also evaluate our techniques through a set of experiments. Section 3.6

evaluates a real-world scenario enabled through the application of our approach. Section 3.7

concludes the chapter.

3.2 Preliminaries: Accessing Data through Positional Maps

Positional maps are data structures that the implementation of NoDB [36] uses to optimize

in situ querying. They are created and maintained dynamically during query execution to track

the (byte) positions of data in raw “les. Positional maps, unlike traditional database indexes,

index the structure of the data and not the actual data, reducing the costs of tokenizing and

parsing raw data sources.

Positional maps work as follows: When reading a CSV “le for the “rst time, the scan operator

populates a positional map with the byte location of each attribute of interest. If the attribute

of interest is in column 2, then the positional map will store the byte location of the data in

column 2 for every row. If the CSV “le is queried a second time for column 2, there is no need

to tokenize/parse the “le. Instead, the positional map is consulted and we jump to that byte

location. If the second query requests a different column, e.g., column 4, the positional map

is still used. The parser jumps to column 2, and incrementally parses the “le until it reaches

column 4. The positional maps involve a trade-off between the number of positions to track

and future bene“ts from reduced tokenizing/parsing.

Positional maps outperform external tables by reducing or eliminating tokenizing and parsing,

yet still lead to a number of inef“ciencies. First, positional maps carry a signi“cant overhead

for “le formats where the location of each data element is known deterministically, such as

cases when the location of every data element can be determined from the schema of the data.

For instance, the FITS “le format, widely-used in astronomy, stores “elds in a serialized binary

representation, where each “eld is of “xed size. Additionally, there are costs we cannot avoid

despite using positional maps, such as the costs of creating data structures and converting

data to populate them with. For every data element, the scan operator needs to check its data

type in the database catalog and apply the appropriate data type conversion.

24

3.3. The RAW Query Engine

3.3 The RAW Query Engine

RAW is a prototype query engine that adapts itself to the input data formats and queries,

instead of forcing data to adapt to it through a loading process. RAW offers “le format-agnostic

querying without sacri“cing performance. To achieve this ”exibility, it applies in situ query

processing, columnar query execution and code generation techniques in a novel query

engine design. The design can be extended to support additional “le formats by adding

appropriate “le-format-speci“c plug-ins. Because RAW focuses on the processing of read-only

and append-like workloads, it follows a columnar execution model, which has been shown

to outperform traditional row-stores for read-only analytical queries [24, 58, 233, 234], and

exploits vectorized columnar processing to achieve better utilization of CPU data caches [59].

Additionally, it applies code generation techniques to generate query access paths on demand,

based on the input data formats and queries.

RAW Internals. We have built RAW on top of Google•s Supersonic library of relational operators

for ef“cient columnar data processing [116]. The Supersonic library provides operators that

apply cache-aware algorithms, SIMD instructions, and vectorized execution to minimize

query execution time. Supersonic does not, however, have a built-in data storage manager.

RAW extends the functionality of Supersonic to enable ef“cient queries over raw data by

i) generating data format- and query-speci“c scan operators, and ii) enabling scan operators

to be pushed higher in the produced query plan, thus avoiding unnecessary raw data accesses.

A typical physical query plan, therefore, consists of the scan operators of RAW for accessing

the raw data and the Supersonic relational operators.

RAW creates two types of data structures to speed-up queries over “les. For textual data formats

(e.g., CSV), RAW generates positional maps to assist in navigating through the raw “les. In

addition, RAW preserves a pool of column shreds populated as a side-effect of evaluating

previous similar queries, to reduce the cost of re-accessing the raw data. RAW considers these

position and data caches for each incoming query when selecting an access path.

Catalog and Access Abstractions. Each “le exposed to RAW is given a name (can be thought of

as a table name). RAW maintains a catalog with information about raw data “le instances such

as the original “lename, the “le format, and the corresponding relational schema. RAW accepts

partial schema information (i.e., the user may declare only “elds of interest instead of declaring

thousands of “elds) for “le formats that allow direct navigation based on an attribute name,

instead of navigation based on the binary offsets of “elds. As an example, for ROOT data, we

could store the schema of a ROOT “le as ((•IDŽ,INT64), (•el_etaŽ,FLOAT), (•el_mediumŽ,INT32))

if only these “elds were to be queried, and ignore the rest 6 to 12 thousand “elds in the “le.

For each •tableŽ, RAW keeps the types of accesses available for its corresponding “le format,

which are mapped to the generic access paths abstractions understood by the query executor,

i.e., sequential and index-based scans. For example, there are scienti“c “le formats (e.g.,

ROOT) for which a “le corresponds to multiple tables, as objects in a “le may contain lists of

sub-objects. These sub-objects are accessible using the identi“er of their parent. For such “le

25

Chapter 3. Just-in-time Access Paths

types, RAW maps this id-based access to an index-based scan. Enhancing RAW with support

for additional “le formats simply requires establishing mappings for said formats.

Physical Plan Creation. The logical plan of an incoming query is “le-agnostic, and consists

of traditional relational operators. As a “rst step, we consult the catalog of RAW to identify

the “les corresponding to tables in the plan•s scan operators. RAW converts the logical query

plan to a physical one by considering the mappings previously speci“ed between access

path abstractions and concrete “le access capabilities. We also check for available cached

column shreds and positional maps (if applicable to the “le format). Then, based on the “elds

required, we specify how each “eld will be retrieved. For example, for a CSV “le, potential

methods include i) straightforward parsing of the raw “le, ii) direct access via a positional map,

iii) navigating to a nearby position via a positional map and then performing some additional

parsing, or iv) using a cached column shred. Based on these decisions, we split the “eld

reading tasks among a number of scan operators to be created, each assigned with reading

a different set of “elds, and push some of them higher in the plan. To push scan operators

higher in the plan instead of traditionally placing them at the bottom, we extend Supersonic

with a •placeholderŽ generic operator. RAW can insert this operator at any place in a physical

plan, and use it as a placeholder to attach a generated scan operator. Code generation enables

creating such custom ef“cient operators based on the query needs.

Creating Access Paths Just In Time. Once RAW makes all decisions for the physical query

plan form, it creates scan operators on demand using code generation. First, RAW consults

a template cache to determine whether this speci“c access path has been requested before.

If not, a “le-format-speci“c plug-in is activated for each scan operator speci“cation, which

turns the abstract description into a “le-, schema- and query-aware operator. The operator

speci“cation provided to the code generation plug-in includes all relevant information cap-

tured from the catalog and the query requirements. Depending on the “le format, a plug-in

is equipped with a number of methods that can be used to access a “le, ranging from meth-

ods to scan “elds from a CSV “le (e.g., readNextField()), up to methods acting as the

interface to a library that is used to access a scienti“c data format, as in the case of ROOT (e.g.,

readROOTField(fieldName, id)).

Based on the query, appropriate calls to plug-in methods are put together per scan operator,

and this combination of calls forms the operator, which is compiled on the ”y. The freshly-

compiled library is dynamically loaded into RAW and the scan operators are used as the leaves

of the remaining query plan / tree. The library is also registered in the template cache to be

reused later in case a similar query is submitted. The generated scan operators traverse the

raw data, convert the raw values, and populate columns.

RAW supports code-generated access paths for CSV, ”at binary, and ROOT “les. Adding access

paths for additional “le formats is straightforward due to the ”exible architecture of RAW.

Sections 3.4 and 3.5 describe how RAW bene“ts from JIT access paths for raw data of different

formats and how it avoids unnecessary accesses to raw data elements, respectively.

26

3.4. Adapting to raw data

3.4 Adapting to raw data

Just-In-Time (JIT) access paths are a new method for a database system to access raw data of

heterogeneous “le formats. We design and introduce JIT access paths in RAW to dynamically

adapt to raw datasets and to incoming queries. JIT access paths are an enabler for workloads

that cannot be accommodated by traditional DBMS, due to i) the variety of “le formats in the

involved datasets, ii) the size of the datasets, and iii) the inability to use existing tools over the

data once they have been loaded. In the rest of this section, we present JIT access paths and

evaluate their performance.

3.4.1 Just-In-Time Access Paths

JIT access paths are generated dynamically for a given “le format and a user query. Their

ef“ciency is based on the observation that some of the overheads in accessing raw data are

due to the general-purpose design of the scan operators used. Therefore, customizing a scan

operator at runtime to speci“c “le formats and queries partially eliminates these overheads.

For example, when reading a CSV “le, the data type of the column being currently read deter-

mines the data conversion function to use. Mechanisms to implement data type conversion

include a pointer to the conversion function or a switch statement. The second case can be

expressed in pseudo-code as follows:

FILE * file
int column // current column

for every column {
char * raw // raw data
Datum * datum // loaded data
//read field from file
raw = readNextFieldFromFile(file)

switch (schemaDataType[column])
case IntType: datum = convertToInteger(raw); break;
case FloatType: datum = convertToFloat(raw); break;
...

}

The switch statement and for loop introduce branches in the code, which signi“cantly

affect performance [190]. Even worse, both are in the critical path of execution. As the

data types are known in advance, the for loop and the switch statement can be unrolled.

Unrolled code executes faster because it causes fewer branches.

Opportunities for Code Generation. JIT access paths eliminate a number of overheads of

general-purpose scan operators. The opportunities for code generation optimizations vary

depending on the speci“cities of the “le format. For example:

€ Unrolling of columns, i.e., handling each requested column separately instead of using a

generic loop, is appropriate for “le formats with “elds stored in sequence, forming a tuple.

Each unrolled step can be specialized based on, for example, the datatype of the “eld.

27

Chapter 3. Just-in-time Access Paths

€ For some data formats, the positions of “elds can be deterministically computed, and

therefore we can navigate for free in the “le by injecting the appropriate binary offsets in the

code of the access paths, or by making the appropriate API calls to a library providing access

to the “le (as in the case of ROOT).

€ File types such as HDF [237] and shape“le [101] incorporate indexes over their contents,

B-Trees and R-Trees respectively. Indexes like these can be exploited by the generated access

paths to speed-up accesses to the raw data.

€ For hierarchical data formats, a JIT scan operator coupled with a query engine supporting

a nested data model could be used to maintain the inherent nesting of some “elds, or

”atten some others, based on the requirements of the subsequent query operators. These

requirements could be based on criteria such as whether a nested “eld is projected by the

query (and therefore maintaining the nesting is bene“cial), or just used in a selection and

does not have to be recreated at the query output.

Generally, for complex “le formats, there are more options to access data from a raw “le.

Our requirement for multiple scan operators per raw “le, each reading an arbitrary number

of “elds, further increases the complexity. Traditional scan operators would need to be too

generic to support all possible cases. Code generation in the context of JIT access paths enables

us to create scan operators on demand, “ne-tuning them to realize the preferred option, and

to couple each of them with the columnar operators for the rest of query evaluation. As we

will see in Section 3.5, this ”exible transition facilitates the use of methods like column shreds.

Example. Consider a query that scans a table stored in a CSV “le. The “le is being read for the

“rst time; thus, a positional map is built while the “le is being parsed. Compared to a general-

purpose CSV scan operator, the generated operator includes the following optimizations:

€ Column loop is unrolled. Typically, a general-purpose CSV scan operator, such as a scan

operator of the NoDB implementation or of the MySQL CSV storage engine, has a for loop

that keeps track of the current column being parsed. The current column is used to verify

a set of conditions, such as •if the current column must be stored in the positional map,

then store its positionŽ. In a general-purpose in situ columnar execution, another condition

would be •if the current column is requested by the query plan, then read its valueŽ. In

practice, however, the schema of the “le is known in advance. The actions to perform per

column are also known. Thus, the column loop and its inner set of if statements can be

unrolled.

€ Data type conversions built into the scan operator. A general-purpose scan operator needs to

check the data type of every “eld being read in a metadata catalog. As the schema is known,

it can be coded into the scan operator code, as illustrated earlier.

28

3.4. Adapting to raw data

More speci“cally, for a memory-mapped CSV “le with 3 “elds of types (int, int, ”oat), with a
positional map for the 2nd column and a query requesting the 1st and 2nd “elds, the generated
pseudo-code for the example query is the following:

FILE * file
while (!eof) {

Datum * datum1, * datum2 // values read from fields 1,2

raw = readNextFieldFromFile(file)
datum1 = convertToInteger(raw)

addToPositionalMap(currentPosition)

raw = readNextFieldFromFile(file)
datum2 = convertToInteger(raw)

skipFieldFromFile()

CreateTuple(datum1, datum2)
}

For this query, the scan operator reads the “rst “eld of the current row. It converts the raw
value just read to an integer and also stores the value of the “le•s position indicator in the
positional map. The operator then reads the next (2nd) “eld of the row, also converting it to
an integer. Because we do not need to process the 3rd “eld, we skip it, and create a result
for the row examined. The process continues until we reach the end of “le. The generated
pseudo-code for a second query requesting the 2nd and 3rd columns is the following:

for (every position in PositionalMap) {
Datum * datum2, * datum3 // values read from fields 2,3

jumpToFilePosition(position)

raw = readNextFieldFromFile(file)
datum2 = convertToInteger(raw)

raw = readNextFieldFromFile(file)
datum3 = convertToFloat(raw)

CreateTuple(datum2, datum3)
}

Improving the Positional Map. Positional maps reduce the overhead of parsing raw “les [36]

but add signi“cant overhead for “le formats where the position of each data element can

be determined in advance. JIT access paths eliminate the need for a positional map in such

cases. Instead, a function is created in the generated code that resolves the byte position of the

data element directly by computing its location. For instance, for a binary “le format where

every tuple is of size tupleSize and every data element within it is of size dataSize , the

location of the 3rd column of row 15 can be computed as 15* tupleSize + 2 * dataSize .

The result of the formula is directly included in the generated code. Different “le formats also

bene“t from different implementations of the positional map; an example is presented in

Section 3.6.

29

Chapter 3. Just-in-time Access Paths

3.4.2 Evaluating raw data access strategies

File formats vary widely, and each format bene“ts differently from JIT access paths. We

examine two “le formats that are representative of two •extremeŽ cases. The “rst is CSV, a

text-based format where attributes are separated by delimiters, i.e., the location of column N

varies for each row and therefore cannot be determined in advance. The second is a custom

binary format where each attribute is serialized from its corresponding C representation. For

this speci“c custom format, we exploit the fact that the location of every data element is

known in advance because every “eld is stored in a “xed-size number of bytes. The plug-in for

this format includes methods to either i) read speci“c datatypes from a “le, without having

to convert this data, or ii) skip a binary offset in a “le. The same dataset is used to generate

the CSV and the binary “le, corresponding to a table with 30 columns of type integer and 100

million rows. Its values are distributed randomly between 0 and 10 9. Being integers, the length

of each “eld varies in the CSV representation, while it is “xed-size in the binary format.

The sizes of the raw CSV and binary “les are 28GB and 12GB respectively. The experiments

are run on a dual socket Intel Xeon, described in the “rst row of Table 3.1. The operating

system is Red Hat Enterprise Linux Server 6.3 with kernel version 2.6.32. The compiler used is

GCC 4.4.7 (with ”ags -msse4 -O3 -ftree-vectorize -march=native -mtune=native). The “les

are memory-mapped. The “rst query runs over cold caches. Intermediate query results are

cached and available for re-use by subsequent queries.

Machine Description

Xeon Dual-Socket 2 x Intel Xeon CPU E5-2660 @ 2.20GHz, 8 cores/CPU

128GB RAM

RAID-0 of 7 250 GB 7500 RPM SATA

64KB L1 cache (32KB L1d, 32KB L1i) per core

256KB L2 cache per core; 20MB L3 shared cache

Xeon Octo-Socket 8 x Intel Xeon CPU E7-28867 @ 2.13GHz, 10 cores/CPU

192GB RAM

1TB 7200 RPM SAS HDD

64KB L1 cache (32KB L1d, 32KB L1i) per core

256KB L2 cache per core; 30MB L3 shared cache

Table 3.1 … Hardware setup for experiments evaluating RAW.

We run the microbenchmarks in RAW. The code generation is done by issuing C++ code

through a layer of C++ macros.

Data Loading vs. In Situ Query Processing. The following experiment compares different

techniques, all implemented in RAW, for querying raw data to establish the trade-off between

in situ query processing and traditional data loading. •DBMSŽ corresponds to the behavior of

a column-store DBMS, where all raw data is loaded before submitting the “rst query. The data

loading time of the DBMS is included as part of the “rst query. •External TablesŽ queries the

raw “le from scratch for every query. •In SituŽ is our implementation of NoDB [36] over RAW,

where access paths arenot code-generated. •JITŽ corresponds to JIT access paths.

30

3.4. Adapting to raw data

The workload comprises two queries submitted in sequence. The two queries are the following:

SELECT MAX(col1) WHEREcol1 < [X]
SELECT MAX(col11) WHEREcol1 < [X]

We report results for different selectivities by changing the value of X.

The “rst experiment queries a CSV “le. •In SituŽ and •JITŽ both utilize positional maps, which

are built during the execution of the “rst query and used in the second query to locate any

missing columns. Because different policies for building positional maps are known to affect

query performance [36], we test two different heuristics. The “rst populates the positional

map every 10 columns; i.e., it tracks positions of columns 1, 11, 21, etc. The second populates

the positional map every 7 columns.

Figure 3.1adepicts the results for the “rst query (cold “le system caches). The response time

is approximately 220 seconds for •DBMSŽ and •External TablesŽ and 170 seconds for •In SituŽ

and •JITŽ. •DBMSŽ and •External TablesŽ do the same amount of work for the “rst query,

building an in-memory table with all data in the “le before executing the query. •In SituŽ

and •JITŽ do fewer data conversions and populate fewer columns (only those actually used

by the query), which reduces the execution time. In the case of JIT access paths, the time to

generate and compile the access path code is included in the execution time of the “rst query,

contributing approximately 2 seconds. In both cases, however, I/O dominates the response

time and the bene“t of JIT access paths is not particularly visible (except that the compilation

time is amortized).

For the second query, the results are depicted in Figure 3.1b. We vary selectivity from 1% to

100% and depict the average response time, as well as deltas for lowest and highest response

time. The execution time for •External TablesŽ is an order of magnitude slower, thus it is not

shown. The •In SituŽ and •JITŽ cases use the positional map to jump to the data in column 11.

The variations •In Situ - Column 7Ž and •JIT - Column 7Ž need to parse incrementally from the

nearest known position (column 7) to the desired column (column 11). In all cases, a custom

version of atoi() , the function used to convert strings to integers, is used as the length of

the string is stored in the positional map. Despite these features, •DBMSŽ is faster, since data

is already loaded into the columnar structures used by the query engine, whereas the •JITŽ

case spends approximately 80% of its execution on accessing raw data. It is important to note,

however, that the extra loading time incurred by the •DBMSŽ during the “rst query may not be

amortized by fast upcoming queries; these results corroborate the observations of the NoDB

work [36].

Comparing •In SituŽ with •JITŽ, we observe that the code generation version is approximately

2× faster. This difference stems from the simpler code path in the generated code. The •In

Situ - Column 7Ž and •JIT - Column 7Ž techniques are slower as expected compared to their

counterparts that query the mapped column 11 directly, due to the incremental parsing that

needs to take place.

31

Chapter 3. Just-in-time Access Paths

0

50

100

150

200

250

DBMS Ext.
Tables

In Situ JIT In Situ
Col.7

JIT
 Col.7

E
xe

cu
tio

n
T

im
e

(s
)

Execution Type

CSV file: Comparing Access Paths
Cold Run

SELECT MAX(col1) WHERE col1 < [X]

(a) Raw data access is faster than loading (I/O masks
part of the difference).

0
1
2
3
4
5
6
7
8
9

10

DBMS In Situ JIT In Situ
Col.7

JIT
Col.7

E
xe

cu
tio

n
T

im
e

(s
)

Execution Type

CSV file: Comparing Access Paths
Warm Run

SELECT MAX(col11) WHERE col1 < [X]

(b) •DBMSŽ is faster, as all needed data is already
loaded. JIT access paths are faster than general-
purpose in situ.

Figure 3.1 … JIT access paths vs. In Situ and DBMS approaches: Cold and warm run of a query
over CSV data.

We now turn to the binary “le. No positional map is necessary now. The •In SituŽ version

computes the positions of data elements during query execution. The •JITŽ version hard-codes

the positions of data elements into the generated code. For the “rst query, both •In SituŽ and

•JITŽ take 70 seconds. The •DBMSŽ case takes 98 seconds. I/O again masks the differences

between the three cases. The results for the second query are shown in Figure 3.2. The trends

of all cases are similar to the CSV experiment. The performance gaps are smaller because no

data conversions take place.

JIT access paths breakdown. To con“rm the root cause of speedup in the •JITŽ case, we pro“le

the system using VTune 1. We use the same CSV dataset as before, and ask the querySELECT
MAX(col1) WHERE col1 <[X] on a warm system. Figure 3.3 shows the comparison

of the •JITŽ and •In SituŽ cases for a case with 40% selectivity. Unrolling the main loop,

simplifying the parsing code and the data type conversion reduces the costs of accessing raw

data. Populating columns and parsing the “le remain expensive though. In the next section

we introduce column shreds to reduce these costs.

Summary. JIT access paths signi“cantly reduce the overhead of in situ query processing. For

CSV “les and for a custom-made binary format, JIT access paths are up to 2 × faster than

traditional in situ query processing techniques. Traditional in situ query processing, adapted

to columnar execution, is affected by the general- purpose and query-agnostic nature of

the scan operators that access raw data. Just-In-Time code generation, however, introduces

1 http://software.intel.com/en-us/intel-vtune-amplifier-xe

32

3.5. When To Load Data

0
0.5

1
1.5

2
2.5

3
3.5

4

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%

E
xe

cu
tio

n
T

im
e

(s
)

Selectivity

Binary file: Comparing Access Paths
SELECT MAX(col11) WHERE col1 < [X]

In Situ JIT DBMS

Figure 3.2 … JIT access paths vs. In Situ
and DBMS approaches: For binary “les, JIT
access paths outperform traditional in situ
query processing.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

In Situ JIT

To
ta

l C
os

t

Breakdown of Query Execution Costs

Main Loop

Parsing

Data Type

Build Columns

Figure 3.3 … Bene“ts from adapting to data:
Unrolling the main loop, simplifying parsing
and data type conversions reduce the time
spent •preparingŽ raw data.

a compilation overhead, incurred the “rst time a speci“c query is asked. Two methods to

address this issue are i) maintaining a •cacheŽ of libraries generated as a side-effect of previous

queries, and re-using when applicable (RAW follows such an approach), and ii) using a JIT

compiler framework, such as LLVM [162], which can reduce compilation times [190].

As we see in the next section, the ”exibility and ef“ciency offered by JIT access paths combined

with column shreds will enable us to further increase the performance of RAW.

3.5 When To Load Data

JIT access paths reduce the cost of accessing raw data. There are, however, inherent costs

with raw data access that cannot be removed despite the use of JIT access paths. These costs

include i) multiple raw data accesses, ii) converting data from the “le format (e.g., text) to the

database format (e.g., C types), and iii) creating data structures to place the converted data.

Use of column shreds is a novel approach that further reduces the cost of accessing raw

data. So far, we have been considering the traditional scenario in which we have one scan

operator per “le, reading the “elds required to answer a query and building columns of values.

Column shreds build upon the ”exibility offered by JIT scan operators. Speci“cally, we can

generate multiple operators for a single data source, each reading an arbitrary subset of “elds

in a row-wise manner from the “le. Our aim is to have each operator read the minimum

amount of data required at the time. To achieve this, based on when a “eld is used by a query

operator (e.g., it is used in a join predicate), we place the scan operator reading the “eld values

higher in the query plan , in hope that many results will have been “ltered out by the time the

operator is launched. As a result, instead of creating columns containing all the values of a

raw “le•s requested “elds, we end up creating shreds of the columns.

In the rest of this section, we present column shreds and evaluate their behavior. We consider

the applicability of using column shreds in different scenarios, gauge their effects and isolate

the criteria indicating when they should be applied.

33

Chapter 3. Just-in-time Access Paths

Scan CSV
Columns

1,2

Filter

Tuple Construction

Col1 Col2

Col1

FULL COLUMNS COLUMN SHREDS

Scan CSV
Column 1

Filter

Scan CSV
Column 2

Tuple Construction

Col1Col2

Col1

Col2

Col1

[1,3,4]

Col1Col2

Figure 3.4 … •Full columnsŽ vs. •Column ShredsŽ. •Full columnsŽ: all column values are pre-
loaded into columnar structures. •Column shredsŽ: column pieces are only built as needed: in
the example, Col2 is only loaded with the rows that passed the “lter condition on Col1.

3.5.1 Shredding Columns

Creating entire columns at startup is a conceptually simple approach. A small experiment,

however, illustrates the potential overhead it carries. Consider the query SELECT MAX(col2)
FROM table WHERE col1 < N. The number of entries from col2 that need to be pro-

cessed to compute the MAXdepends on the selectivity of the predicate on col1. If columns 1

and 2 are entirely loaded, in what we now call •full columnsŽ, then some elements of column 2

will be loaded but never used. If the selectivity of the predicate is 5%, then 95% of the entries

read from column 2 will be unnecessary for the query. This is an undesirable situation, as

time is spent on creating data structures and loading them with data that is potentially never

needed but still expensive to load.

The •column shredsŽ approach dictates creating and populating columns with data only when

that data is strictly needed. In the previous example, we load only the entries of column 2 that

qualify, i.e., if the selectivity of the predicate is 5%, then only 5% of the entries for column 2 are

loaded, greatly reducing raw data accesses.

Figure 3.4 illustrates the difference between the two column creation strategies. In the case of

full columns, a single scan operator populates all required columns. For this example, column

shreds are implemented by generating a columnar scan operator for column 2 and pushing it

up the query plan. In addition, the (Just-In-Time) scan operators are modi“ed to take as input

the identi“ers of qualifying rows from which values should be read. In Figure 3.4, this is the set

of rows that pass the “lter condition. For CSV “les, this selection vector [59] actually contains

the closest known binary position for each value needed, as obtained from the positional map.

The remaining query plan and operators are not modi“ed.

34

3.5. When To Load Data

0

1

2

3

4

5

6

7

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%

E
xe

cu
tio

n
T

im
e

(s
)

Selectivity

Full vs Shredded Columns
CSV file; SELECT MAX(col11) WHERE col1 < [X]

Full Shreds Full - Column 7 Shreds - Column 7 DBMS

Figure 3.5 … •Full columnsŽ vs. •Column
ShredsŽ - CSV. For the 2nd query over a CSV
“le, column shreds are always faster or ex-
actly the same as full columns, as only ele-
ments of column 11 that pass the predicate
are loaded from the “le.

0
0.5

1
1.5

2
2.5

3
3.5

4

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%

E
xe

cu
tio

n
T

im
e

(s
)

Selectivity

Full vs Shredded Columns
Binary file; SELECT MAX(col11) WHERE col1 < [X]

Full Shreds

Figure 3.6 … •Full columnsŽ vs. •Column
ShredsŽ - Binary. For the 2nd query over a
binary “le, we see the same behavior as for
CSV: use of column shreds is always faster
than use of full columns or exactly the same
for 100% selectivity.

It is important for the multiple scan operators accessing a “le to work in unison. For the

majority of “le formats, reading a “eld•s values from a “le requires reading a “le page con-

taining unneeded data. Therefore, when a page of the raw “le is brought in memory due to

an operator•s request, we want to extract all necessary information from it and avoid having

to re-fetch it later. Our operators accept and produce vectors of values as input and output.

After a scan operator has fetched a page and “lled a vector with some of the page•s contents, it

forwards the vector higher in the query tree. Generally, at the time a subsequent scan operator

requests the same “le page to “ll additional vectors, the page is still •hotŽ in memory, so we do

not incur I/O again. If we had opted for operators accepting full columns, we would not have

avoided duplicate I/O requests for pages of very large “les.

RAW maintains a pool of previously created column shreds. A shred is used by an upcoming

query if the values it contains subsume the values requested. The replacement policy we

use for this cache is LRU. Handling the increasing number of varying-length shreds after a

large number of queries and fully integrating their use can introduce bookkeeping overheads.

Ef“cient techniques to handle this issue can be derived by considering query recycling of

intermediate results, as applied in column stores [136,189].

3.5.2 Full Columns vs. Column Shreds

To evaluate the behavior of column shreds, we compare them with the traditional •full columnsŽ

approach. The hardware and workload used are the same as in Section 3.4. We use simple

analytical queries of varying selectivity so that the effect of full vs shredded columns is easily

quanti“able, instead of being mixed with other effects in the query execution time. All cases

use JIT access paths. For CSV “les, a positional map is built while running the “rst query and

used for the second query. As in Section 3.4, we include two variations of the positional map:

one where the positional map tracks the position of a column requested by the second query,

and one where the positional map tracks a nearby position.

35

Chapter 3. Just-in-time Access Paths

System File Format Execution Time (s)

DBMS CSV 380 s

Full Columns CSV 216 s

Column Shreds CSV 216 s

DBMS Binary 42 s

Full Columns Binary 22 s

Column Shreds Binary 22 s

Table 3.2 … Execution time of the 1st query over a table with 120 columns of integers and
”oating-point numbers. A traditional DBMS is signi“cantly slower in the 1st query due to data
loading.

The execution time of the “rst query is not shown because there is no difference between full

and shredded columns: in both cases, every element of column 1 has to be read. Figure 3.5

shows the execution time for the second query over the CSV “le of 30 columns and 100

million rows. For lower selectivities, column shreds are signi“cantly faster (� 6×) than full

columns, because only the elements of column 11 that pass the predicate on column 1 are

read from the raw “le. Compared to the traditional in situ approach evaluated in Section 3.4,

the improvement reaches � 12× . As the selectivity increases, the behavior of column shreds

converges to that of full columns. Column shreds are always better than full columns, or exactly

the same for 100% selectivity. When incremental parsing is needed, then data is uniformly

more expensive to access. In all cases, the extra work in the aggregator operator, which has

more data to aggregate as the selectivity increases, contributes to the gradual increase in

execution time. Compared to the DBMS case, however, the increase in response time for full

and shredded columns is steeper. The reason is that reading the “le and aggregating data

are done at the same time and both actions interfere with each other. For binary “les, the

same behavior is observed (Figure 3.6). Although no data conversion takes place, the other

loading-related costs, e.g., populating columns, still affect the •full columnsŽ case.

The next set of experiments uses “les with wider tables (more columns) and more data types,

including ”oating-point numbers. There are now 120 columns in each “le and 30 million

rows. The sizes of the CSV and binary “les are 45GB and 14GB respectively. In the traditional

DBMS case, all columns in the “le are created before launching queries. In the •full columnsŽ

case, all columns needed by the query are created as the “rst step of a query. In the •column

shredsŽ case, columns are only created when needed by some operator. In the •DBMSŽ case,

the loading time is included in the execution time of the “rst query. Column 1, with the

predicate condition, is an integer as before. The column being aggregated is now a ”oating-

point number, which carries a greater data type conversion cost. The queries and remaining

experimental setup are the same as before.

Table 3.2 shows the execution times for the “rst query. For CSV “les, although I/O masks

a signi“cant part of the cost, the DBMS is 164 seconds slower, as it loads (and converts) all

columns in advance, even those not part of subsequent queries. Full and shredded columns

36

3.5. When To Load Data

0

2

4

6

8

10

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

E
xe

cu
tio

n
T

im
e

(s
)

Selectivity

Full vs Shredded Columns
CSV file with 120 columns, Floating-Point

DBMS Full Columns Column Shreds

Figure 3.7 … •Full columnsŽ vs. •Column
ShredsŽ. CSV “les with ”oating-point num-
bers carry a higher data type conversion cost.
The DBMS case is signi“cantly faster.

0

0.05

0.1

0.15

0.2

0.25

0.3

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

E
xe

cu
tio

n
T

im
e

(s
)

Selectivity

Full vs Shredded Columns
Binary file with 120 columns, Floating-Point

DBMS Full Columns Column Shreds

Figure 3.8 … •Full columnsŽ vs. •Column
ShredsŽ. The binary format requires no con-
versions, so the absolute difference between
DBMS and column shreds is very small.

are the same for the “rst query, as the entire column must be read to answer it. For binary

“les, the “rst query is nearly 2 × slower for the DBMS. Interestingly, we may also compare the

CSV and binary “le formats directly. Both hold the same data, just in different representations.

Querying CSV is signi“cantly slower due to the higher cost of converting raw data into ”oating-

point numbers and the larger “le size.

The execution times for the second query in the case of the CSV “le are shown in Figure 3.7.

Using column shreds is competitive with •DBMSŽ only for lower selectivities. The curve gets

steeper due to the higher cost of converting raw data into ”oating-point numbers.

In the binary case (Figure 3.8), there is no need for data type conversions. Therefore, the use

of column shreds is competitive with the DBMS case for a wider range of selectivities. It is

approximately 2 × slower for 100% selectivities, yet the absolute time differences are small. The

slowdown is due to building the in-memory columnar structures, and could only be resolved

if the entire set of database operators could operate directly over raw data.

3.5.3 Column Shreds Tradeoffs

So far, we examined simple analytical queries with the goal of isolating the effects of shredding

columns of raw data. Intuitively, postponing work as long as possible in the hope that it can be

avoided appears to be always of bene“t. In this section, we examine whether this assumption

is true for other types of queries.

Speculative Column Shreds

For some “le formats, the strict form of using scan operators to create column shreds for a

single “eld each time may not be desirable. For example, when reading a “eld from a “le, it

may be comparatively cheap to read nearby “elds. If these nearby “elds are also needed by

the query - e.g., they are part of a predicate selection to be executed upstream - then it may be

preferable to speculatively read them to reduce access costs (e.g., parsing).

37

Chapter 3. Just-in-time Access Paths

0

2

4

6

8

10

12

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%

E
xe

cu
tio

n
T

im
e

(s
)

Selectivity

Full vs Shreds vs Multi-column Shreds
SELECT MAX(col6) WHERE col1 < [X] AND col5 < [X]

Full Shreds Multi-column Shreds

Figure 3.9 … Shredding Policies: Creating shreds of requested nearby columns in one step is
bene“cial when accessing raw data in multiple steps is costly.

In the next experiment we ask the query SELECT MAX(col6) FROM file1 WHERE
file1.col1 <[X] AND file1.col5 <[X] over a CSV “le. A positional map already

exists (for columns 1 and 10), and the data for column 1 has been cached by a previous query.

We compare the following three cases:

€ full columns for “elds 5 and 6 (column 1 is already cached)

€ a column shred for “eld 5 (after predicate on “eld 1) and a column shred for “eld 6 (after

predicate on “eld 5)

€ column shreds for “elds 5 and 6 after predicate on column 1 (i.e., •multi-column shredsŽ)

using a single operator

As depicted in Figure 3.9, for selectivities up to 40%, creating one column shred each time is

faster because we process less data. After this point, the parsing costs begin to dominate and

override any bene“t. The intermediate case, however, provides the best of both cases: if we

speculatively create the column shred for “eld 6 at the same time as the one for “eld 5, the

tokenizing/parsing cost is very small. Pushing the scan operator for “eld 6 higher means that

the system loses •localityŽ while reading raw data.

Column Shreds and Joins

Column shreds can bene“t for queries with joins, too. For some “le formats, however, we must

consider where to place the scan operator. Intuitively, columns to be projected after the join

operator should be created on demand as well. That is, the join condition would “lter some

elements and the new columns to be projected would only be populated with those elements

of interest that passed the join condition. In practice, there is an additional effect to consider,

and in certain scenarios it is advantageous to create such a column before the join operator.

When considering hash joins, the right-hand side of the join is used to build a hashtable. The

left-hand side probes this hashtable in a pipelined fashion. The materialized result of the join

includes the qualifying probe-side tuples in their original order, along with the matches in the

hashtable.

38

3.5. When To Load Data

Scan File1
Column 1

Scan File2
Columns

1,2

File1.Col1 �¤ File2.Col1

Col2

Col1

File1.Col11
PIPELINED PIPELINE-BREAKING

Filter
Column 2

Col1

File2

File1

Col1Col2

Scan File1
Column 11

Late

Scan File1
Column 1

Scan File2
Columns

1,2

File1.Col1 �¤ File2.Col1

Col2

Col1

File2.Col11

Filter
Column 2

Col1

File2

File1

Col1Col2

Scan File2
Column 11

Late

Figure 3.10 … Shredding Policies: Possible points of column population based on join side.

Let us consider the following query over two CSV “les:

SELECT MAX(col11) FROMfile1, file2
WHEREfile1.col1=file2.col1 AND file2.col2 < [X]

Both “le1 and “le2 contain the same data, but “le2 has been shuf”ed. We examine the cases

in which an additional column to be projected belongs to “le1 (left-hand side of the join) or to

“le2 (right-hand side of the join). We assume that column 1 of “le1 and columns 1 and 2 of

“le2 have been loaded by previous queries, to isolate the direct cost of each case. We change X

to alter the number of rows from “le2 participating in the join.

Both cases are shown in Figure 3.10. The •PipelinedŽ case corresponds to retrieving the

projected column from “le1 and the •Pipeline BreakingŽ to retrieving it from “le2. Both cases

have two common points in the query plan where the column to be projected can be created;

these are called •EarlyŽ and •LateŽ in Figure 3.10. The •EarlyŽ case is before the join operator

(i.e., full columns); the •LateŽ case is after (i.e., column shreds). In the •Pipeline-BreakingŽ

scenario, we also identify the •IntermediateŽ case, where we push the scan of the projected

column after having applied all selection predicates, yet before applying the join. The result is

creating shreds that may carry some redundant values.

The “rst experiment examines the •PipelinedŽ case. Two copies of the original CSV dataset with

100 million rows are used. The second copy is shuf”ed. The results are shown in Figure 3.11,

also including the default •DBMSŽ execution for reference. The behavior is similar to that of

full vs. shredded columns for selection queries: column shreds outperform full columns when

selectivity is low, and the two approaches converge as selectivity increases. The reason of

convergence is that the ordering of the output tuples of the join operator follows the order of

entries in “le1. The pipeline is not broken: therefore, the scan operator for column 11, which

is executed (pipelined) after the join operator, reads the qualifying entries via the positional

map in sequential order from “le1. We also notice that for complex operations, such as joins,

39

Chapter 3. Just-in-time Access Paths

0

5

10

15

20

25

30

35

40

1% 10% 20% 40% 60% 80%100%

E
xe

cu
tio

n
T

im
e

(s
)

Selectivity

Join w/ projected column on the
left-hand side (pipelined)

Early

Late

DBMS

Figure 3.11 … Shredding Policies: If the col-
umn to be projected is on the •pipelinedŽ
side of the join, then delaying its creation
is a better option.

0
5

10
15
20
25
30
35
40
45
50
55

1% 10% 20% 40% 60% 80%100%

E
xe

cu
tio

n
T

im
e

(s
)

Selectivity

Join w/ projected column on the
right-hand side (pipeline-breaking)

Early

Late

Intermediate

DBMS

Figure 3.12 … Shredding Policies: If the
projected column is on the •breakingŽ
side, picking its point of creation depends
on the join selectivity.

the fact that we access raw data is almost entirely masked due to the cost of the operation

itself and the use of column shreds. For small selectivities, we observe little difference.

The second experiment examines the remaining case, which we call •Pipeline-breakingŽ. The

column to be projected is now from “le2. The results are shown in Figure 3.12. DBMS, full

and shredded columns perform worse than their pipelining counterparts. As the selectivity

of the query increases, the performance of column shreds deteriorates, eventually becoming

worse than full columns. The intermediate case exhibits similar behavior, but is not as heavily

penalized for high selectivities as the late case. The reason for this behavior is the non-

sequential memory accesses when reading the data. In the •DBMSŽ and •full columnsŽ cases,

column values are not retrieved in order, as they have been shuf”ed by the join operation.

Even worse, in the case of column shreds it is the byte positions of the raw values stored in the

positional map that have been shuf”ed. This leads to random accesses to the “le (or to the

memory-mapped region of the “le). Pages loaded from the “le, which already contain lots

of data not needed for the query (as opposed to tight columns in the case of •full columnsŽ),

may have to be read multiple times during the query to retrieve all relevant values. This

sub-optimal access pattern ends up overriding any bene“ts obtained from accessing a subset

of column 11 in the case of column shreds.

To con“rm this behavior, we use the perf [18] performance analyzing tool to measure the

number of DTLB misses in the •pipeline-breakingŽ scenario. We examine the two •extremeŽ

cases for an instance of the query with 60% selectivity. Indeed, the •full columnsŽ case has 900

million DTLB misses and 1 billion LLC misses, while the •column shredsŽ case has 1.1 billion

DTLB misses and 1.1 billion LLC misses due to the random accesses to the raw data.

40

3.6. Use Case: The Higgs Boson

Summary. The use of column shreds is an intuitive strategy that can provide performance

gains for both selection queries and joins, where the gains are a function of query selectivity.

Column shreds, however, cannot be applied naively, as loading data without considering

locality effects can increase the per-attribute reading cost. In such cases of higher selectivity,

multi-column shreds for selections and full creation of newly projected columns that break

the join pipeline for joins provide the best behavior in our experiments.

3.6 Use Case: The Higgs Boson

The benchmarks presented in the previous sections demonstrate that JIT access paths com-

bined with column shreds can reduce the costs of querying raw data. In practice, however,

the impact of these methods depends on the speci“cities of each “le format. Because we

cannot possibly evaluate our techniques with the multitude of “le formats and workloads in

widespread use, we instead identify one challenging real-world scenario where data is stored

in raw “les and where DBMS-like query capabilities are desirable.

The ATLAS experiment [22] at CERN manages over 140 PB of data. ATLAS is not using a DBMS

because of two non-functional requirements, namely i) the lifetime of the experiment: data

should remain accessible for many decades; therefore, vendor lock-in is a problem, and ii) the

dataset size and its associated cost: storing over 140 PB in a DBMS is a non-trivial, expensive

task. Speci“cally, for a DBMS to serve the ATLAS experiment, the contents contained in the

ROOT “les “rst have to be converted into a tabular representation. Then, loading the data

is a signi“cant investment both in time and resources that requires duplicating ROOT data

in a vendor-speci“c data format. In addition, ROOT “les contain thousands of attributes.

Relational databases generally apply much lower restrictions on the number of columns that a

table can contain. For example, PostgreSQL allows for 250-1600 columns per table depending

on the data type, while DB2 allows for 500-1012 columns per table. SQL Server•s •wide tablesŽ

allow for 30000 columns per table, but only if the data is very sparse (i.e., the contents of the

table are mostly null values); the maximum size in bytes of a wide table row remains the same

as in traditional SQL Server tables. Finally, as loading the whole dataset is a complex task,

physical partitioning of the original data can be required.

The ATLAS experiment built a custom data analysis infrastructure instead of using a traditional

DBMS. At its core is the ROOT framework [63], widely used in high-energy physics, which in-

cludes its own “le format and provides a rich data model with support for table-like structures,

arrays or trees. ROOT stores data in a variety of layouts, including a columnar layout with

optional use of compression. The framework also includes libraries to serialize C++ objects to

disk, handles I/O operations transparently, and implements an in-memory •buffer poolŽ of

commonly-accessed objects.

41

Chapter 3. Just-in-time Access Paths

To analyze data, ATLAS physicists write custom C++ programs, extensively using ROOT li-

braries. Each such program •implementsŽ a query, which typically consists of reading C++

objects stored in a ROOT “le, “ltering its attributes, reading and “ltering nested objects, pro-

jecting attributes of interest, and usually aggregating the “nal results into a histogram. ROOT

does not provide declarative querying capabilities; instead, users code directly in C++, using

ROOT to manage a buffer pool of C++ objects transparently.

In an ideal scenario, physicists would write queries in a declarative query language, such as

SQL. Queries are easier to express in a declarative query language for the average user. Query

optimization also becomes possible, with the query engine determining the most appropriate

way to execute the query.

We implement a query of the ATLAS experiment (•Find the Higgs BosonŽ) in RAW to test the

real-world applicability of querying raw data based on JIT access paths and column shreds.

The JIT access paths in RAW emit code that calls the ROOT I/O API, instead of emitting code

that directly interprets the bytes of the ROOT format on disk. The emitted code calls ROOT•s

getEntry() method to read a “eld instead of parsing the raw bytes, as the ROOT format is

complex and creating a general-purpose code generator for ROOT would have been beyond

the scope of this work.

ROOT is a binary format where the location of every attribute is known or can be computed

in advance. Therefore, processing ROOT “les does not require a positional map. Instead,

the code generation step queries the ROOT library for internal ROOT-speci“c identi“ers that

uniquely identify each attribute. These identi“ers are placed into the generated code. In

practice, the JIT access path knows the location and can access each data element directly.

We utilize the ROOT I/O API to generate scan operators that are performing identi“er-based

accesses (e.g., leading to the call of readROOTField(name,10) for a “eld•s entry with ID equal

to 10), thus pushing some “ltering downwards, avoiding full scans and touching less data.

For this experiment, each ATLAS ROOT “le contains information for a set of events, where an

event is an observation of a collision of two highly energized particles. The Higgs query “lters

events where the muons, jets, and electrons in each event pass a set of conditions, and where

each event contains a given number of muons/jets/electrons. In the hand-written version,

an event, muon, jet, or electron is represented as a C++ class. A ROOT “le contains a list of

events, i.e., a list of C++ objects of type event, each containing within a list of C++ objects for its

corresponding muons, jets, and electrons. In RAW, these are modelled as the tables depicted

in Figure 3.14. Therefore, the query in RAW goes through the following steps:

€ Reading CSV data to obtain the numbers of •good runsŽ of the experiment along with other

useful information (GoodRuns_CSV).

€ Filtering ROOT data concerning events. A disjunctive predicate over 6 “elds is used. The

result is joined with the information obtained from the CSV data (GoodEvents).

42

3.6. Use Case: The Higgs Boson

Events_
ROOT

GoodRuns_
CSV

�Œ
Good Events

Good
Events

Electrons_
ROOT

�1

�+
Good Electrons

Good
Events

Muons_
ROOT

�Œ

�1

�+
Good Muons

�1

�Œ

�ë

�1

�Œ

Jets

Good
Electrons

Good
Muons

Good
Muons

Good
Electrons

Figure 3.13 … Simpli“ed version of the ROOT query plan. The overall query is depicted in steps.

€ Joining the qualifying events with ROOT data concerning electrons, performing additional

“ltering using both conjunctive and disjunctive predicates involving 5 “elds, and calculating

an aggregate (GoodElectrons).

€ Joining the qualifying events with ROOT data concerning muons, performing additional “l-

tering using both conjunctive and disjunctive predicates involving >10 “elds, and calculating

an aggregate (GoodMuons).

€ Performing two anti-joins between the previous two results.

€ Computing the union of the two anti-joins, and performing a join with ROOT data concern-

ing jets. Finally, the query “lters the result; the remaining events are the Higgs candidates.

A simpli“ed version of the overall query plan is depicted in Figure 3.13.

The dataset used is stored in 127 ROOT “les, totaling 900 GB of data. Additionally, there is a

CSV “le representing a table, which contains the numbers of the •good runsŽ, i.e., the events

detected by the ATLAS detector that were later determined to be valid. Traditionally, a separate

DBMS would maintain this list of •good runsŽ. RAW, however, transparently queries and joins

data in different “le formats, so the CSV “le with •good runsŽ is queried directly and joined

with the ROOT “les. The experiments are run on an octo socket Intel Xeon (Table 3.1) using

the same operating system and compiler as before. We use a single core as each event is

processed independently. The number of cores does not change the behavior of either system.

In practice, events would be partitioned and assigned to different cores, but the dataset would

also be signi“cantly larger. We run the same query twice with cold and warm caches.

43

Chapter 3. Just-in-time Access Paths

Jet
eventID INT

eta FLOAT

pt FLOAT

Event
eventID INT

runNumber INT

Electron
eventID INT

eta FLOAT

pt FLOAT

Muon
eventID INT

eta FLOAT

pt FLOAT

class Event {
class Muon {

float pt;
float eta;
…

}
class Electron {

float pt;
float eta;
…

}
class Jet {

float pt;
float eta;
…

}
int runNumber;
vector<Muon> muons;
vector<Electron> electrons;
vector<Jet> jets;

}

ROOT - C++ RAW

Figure 3.14 … Data representation in ROOT and RAW. The representation that RAW uses allows
vectorized processing.

First Query (Cold Caches) Execution Time (s)

Hand-written C++ 1499 s

RAW 1431 s

Second Query (Warm Caches) Execution Time (s)

Hand-written C++ 52 s

RAW 0.575 s

Table 3.3 … Comparison of hand-written C++ Higgs Analysis with the RAW version.

As shown in Table 3.3, we compare the execution time of the Higgs query in RAW with that

of the existing hand-written C++ code. In the “rst query, the execution time of RAW and of

the C++ program are in the same order of magnitude. I/O is the bottleneck in both cases.

RAW, however, utilizes JIT access paths to generate code similar to the hand-written C++.

The important observation is that no performance is lost when querying raw data. In fact,

RAW is slightly faster than the hand-written C++ due to its columnar execution model. The

hand-written C++ code does not employ columnar execution; writing vectorized code by hand

is dif“cult in practice and more so for the average user. Instead, the C++ code processes one

event at a time followed by its jets/electrons/muons. This processing method also leads to

increased branches in the code.

After the “rst query, both RAW and the hand-written C++ have populated an in-memory cache

with the events of interest. In the hand-written case, this cache is ROOT•s internal buffer pool,

which stores previously loaded, i.e., hot, objects. In the case of RAW, the in-memory cache is

built as a side effect of the column shreds strategy. Therefore, the in-memory tables of RAW

are not fully populated. Instead, only attributes requested by the query exist in each table.

Moreover, for a given attribute, data is only available for those rows that were actually needed

during the query execution; the remaining rows that were not read - because a previous “lter

condition in a different attribute failed - are marked as not loaded.

44

3.7. Summary

In the second query, RAW is two orders of magnitude faster than the hand-written C++ code.

The reason for this speedup is that all data of interest is cached in-memory in columns, which

achieve better cacheline utilization and allow for vectorized operators that have code paths

with fewer branches. More interesting, however, is the aggregate behavior for both queries.

In the “rst query, RAW loses no performance even though it queries data directly from the

raw “les. In the second query, RAW performs as if the data had been loaded in advance, but

without any added cost to actually load the data.

Discussion. The results show how adapting a query engine to the underlying raw “le formats,

realized using JIT access paths and column shreds, is feasible in practice and performs well in

a scenario where using a relational database, which requires data loading, would be cumber-

some. Besides duplicating a great amount of data in a vendor-speci“c format, the restrictions

that relational DBMS place on a table•s number of columns hinder loading data “les that

potentially include tens of thousands of attributes, and introduce non-trivial decisions on

table partitioning. With RAW, data does not have to be loaded. In addition, analysis using RAW

is faster compared to using existing hand-written algorithms.

3.7 Summary

Databases deliver impressive performance for large classes of workloads, but require data

to be loaded to operate ef“ciently. Data loading, however, is a growing bottleneck as data

volumes continue to grow exponentially and data is becoming more varied with a proliferation

of new data formats. In an ideal scenario, the database query engine would seamlessly adapt

itself to the data and ensure ef“cient query processing regardless of the input data formats.

This chapter proposes the adaptation of a query engine to the underlying data formats and

incoming queries. We implement RAW, a prototype query engine manifesting this design.

RAW employs a novel data access method, Just-In-Time access paths, enabling it to adapt to

data formats seamlessly. JIT access paths are faster than traditional in situ query processing

and competitive with DBMS for some “le formats, whilst having no data loading overhead.

There are inherent overheads to raw data access even with JIT access paths, such as the cost of

converting data between the raw data representation and the query engine representation.

RAW uses columns shreds, a novel method that reduces these inherent overheads by pushing

scan operations up in the query plan so that data is only loaded when it is strictly needed.

RAW has been successfully applied to a real-world example for which using a traditional DBMS

is problematic, achieving a two-order of magnitude speedup against the existing solution,

which is based on hand-written C++ code.

45

4 Just-in-time Query Engines

Industry and academia are continuously becoming more data-driven and data-intensive,

relying on the analysis of a wide variety of heterogeneous datasets to gain insights. The

different data models and formats pose a signi“cant challenge on performing analysis over

a combination of diverse datasets. Serving all queries using a single, general-purpose query

engine is slow. On the other hand, using a specialized engine for each heterogeneous dataset

increases complexity: queries touching a combination of datasets require an integration layer

over the different engines.

This chapter presents a system design that natively supports heterogeneous data models and

formats, and also minimizes query execution times. For multi-model support, the design uses

an expressive query algebra which enables operations over various data models. For minimal

execution times, it uses a code generation mechanism to mimic the system and storage most

appropriate to answer a query fast. We validate our design by building Proteus, a query engine

that natively supports queries over CSV, JSON, and relational binary data, and specializes itself

to each query, dataset, and workload via code generation.

4.1 Introduction

The ongoing data explosion is leading to a major overhaul in a range of scienti“c and business

domains. Practitioners have evolved into data scientists, relying heavily on data analysis over

an increasing number of datasets. Besides relational tables, semi-structured hierarchical

data formats have become the state of the art for data exchange. In addition, scientists use

domain-speci“c formats and external structured “les containing data modeled as tables,

hierarchies, and/or arrays. Users execute widely different analysis tasks over all these data

types. Heterogeneity, both in data and in query workload, signi“cantly affects the way data

analysis is performed.

Meaningful data analysis depends on combining information from numerous heterogeneous

datasets: data-intensive domains, such as sensor data management and decision support

47

Chapter 4. Just-in-time Query Engines

based on web clickstreams, involve queries over data of varying models and formats. Users that

want to perform analysis over heterogeneous datasets can use a database engine that supports

multiple use cases, but this approach is expensive because such engines are typically overly

generic and hard to optimize for all cases. Therefore, users typically settle for a dedicated,

specialized system for each of their use cases [233]. Each of these two extremes either offers

i) extensive functionality and expressiveness, or ii) minimizes response times in a particular

scenario, but not both. Hence, performing analysis effortlessly and ef“ciently remains an

open problem.

One proposed solution is to ”atten the different datasets into the relational model and load

them in an RDBMS [225]. Data types such as hierarchies, however, are not a natural “t for

tables. Another alternative is the data federation of heterogeneous data sources [65, 99]. The

dominant approach in this case is packaging together multiple query engines, using the

appropriate one for each specialized scenario, and relying on a middleware layer to integrate

data from different sources. Thus, besides the challenge of data integration, users face a system

integration issue, which increases complexity. Alternately, data analysis frameworks [43, 238]

keep data in a •data lakeŽ regardless of its format. Native support for rich data models in these

systems is typically limited because it complicates system architecture and query optimization.

Queries over complex data therefore incur a performance penalty. An encompassing design

choice of the previous approaches is that all datasets have to be fully ingested and converted

into a default format per system, either as a pre-loading step or during query answering. This

process adds an additional upfront cost per query.

This chapter presents a system design that bridges the con”icting requirements for generality

in analysis and minimal response times. The design supports both relational as well as

nested data by using an expressive, optimizable query algebra that is richer than the relational

one. The algebra allows combining data of heterogeneous models and produces data-model-

conscious query plans. We couple this powerful query algebra with on-demand adaptation

techniques to eliminate numerous query execution overheads. Speci“cally, our design is

modular, with each of the modules using a code generation mechanism to customize the

overall system across a different axis. First, to overcome the complexity of the broad algebra,

we avoid the use of general-purpose abstract operators. Instead, we dynamically create an

optimized engine implementation per query using code generation. Second, to treat all

supported data formats as native storage, we customize the data access layer of the system

based on the underlying data at query time. Finally, to mimic the storage that better “ts

the current workload, we materialize in-memory caches and treat them as an extra input.

The shape of each cache is speci“ed at query time, based on the types of data accessed and

the query workload trends. Overall, the originally distinct modules collapse into a uni“ed,

specialized query engine at runtime.

48

4.2. Related Work

We validate the proposed design by building Proteus, an analytical query engine that queries

heterogeneous datasets without converting them to a homogeneous form. Proteus couples

a general query interface with the execution times of a system that has been specialized for

a speci“c query, data, and workload instance. Proteus currently supports CSV, JSON, and

relational binary data; adding support for more formats is straightforward.

Contributions. The contributions presented in this chapter are the following:

€ We present a system design principle that offers i) generality in analysis and ii) minimal

response times. To achieve this, the design couples i) a query algebra that supports both

relational and nested data with ii) on-demand customization mechanisms that collapse

all layers of the system architecture at query time. The “nal result is a highly-optimized

specialized engine per query.

€ Based on our design, we implement Proteus, a full-”edged analytical query engine that

queries CSV, JSON, and relational binary data transparently and ef“ciently. Proteus uses

code generation to specialize its entire architecture per query and to craft caching structures

of different shapes to adapt to the workload.

€ We show that Proteus outperforms state-of-the-art open-source and commercial solutions

in a mix of workloads. We perform a “ne-grained evaluation over TPC-H data using multiple

data representations; Proteus performs as if it has been designed for each use case. We also

execute a challenging real-world workload over a mix of diverse datasets, in which Proteus

is � 3× to 9× faster than the state-of-the art alternatives.

Outline. The rest of this chapter is structured as follows: Section 4.2 presents related work.

Section 4.3 presents the rich query algebra that Proteus uses. Section 4.4 introduces the high-

level architecture of Proteus. Section 4.5 details how Proteus customizes itself on-demand to

“t the requirements of each query, and Section 4.6 presents its adaptive caching capabilities.

Section 4.7 experimentally validates Proteus. Finally, Section 4.8 concludes the chapter.

4.2 Related Work

A large body of work proposes a variety of solutions for the problem of querying heterogeneous

data and ef“cient query processing in general. This section surveys related work and highlights

how Proteus pushes the state-of-the-art even further.

Data Federation. To cope with data heterogeneity, data federation approaches perform

analysis over diverse data sources without placing all data in a single system [30, 71, 75, 217,

239]. In recent years, the dominant approach has become bundling together multiple systems,

each with a different query engine, and using the most appropriate engine for each scenario.

These polystore systems initially combined Hadoop with an RDBMS [28, 95]. Newer proposals

bundle more engines to better “t more use cases, each with a different query engine, and

use the appropriate one for each specialized scenario [65, 99]. To treat multiple engines

49

Chapter 4. Just-in-time Query Engines

as one, the overall solution uses middleware to perform cross-system query optimization,

query splitting, data exchange between systems, etc. Thus, besides data integration, system

integration becomes a concern which complicates data analysis.

To address this concern, ViDa [144] envisions effortlessly abstracting data out of its form and

manipulating it regardless of its structure. This chapter describes how to realize the goals of

ViDa by materializing a modular system design for queries over heterogeneous data formats.

The distinct modules of the design fuse at query time, eventually resulting in a specialized

implementation per query. We couple this architecture with ad hoc storage structures to adapt

to the query workload.

Native Engine Support for Heterogenous Models. Commercial systems like System RX and

XML DB are hybrids offering native support for both relational and XML data. System RX [53]

uses XML-speci“c storage, an XQuery compiler, and XML indexes. XML DB [186] calibrates

XML storage between CLOBs and objects •shreddedŽ to rows. Recently, Oracle proposed

extending an RDBMS with a JSON datatype [171]. SAP also discusses hierarchical data support

in HANA [64], proposing language constructs, a new data type to mask the data complexity,

and an indexing scheme. The processing primitives of these approaches target particular

formats (e.g., relations and XML), while Proteus customizes itself for a multitude of formats

on demand; its operators are by design agnostic to the underlying data for extensibility.

Encoding Schemes for Heterogenous Models. Various works advocate •shreddingŽ: ”atten-

ing hierarchies and storing them in one [76, 77] or (typically) multiple relational tables (a

technique called •shreddingŽ) [57, 109, 225, 66]. MonetDB [57] uses specialized data encod-

ings, join methods, and storage for XML data. Argo [74] proposes similar encoding schemes for

JSON. Shredding approaches pay a penalty to reconstruct complex objects because multiple

joins are required to re-stitch an object. Finally, Sinew [236] and PostgreSQL use a custom

binary serialization for JSON. Instead of “tting data to the query engine, Proteus specializes

itself based on the data and query types. It operates natively over the original data instead

of loading data using complex encodings. If needed, Proteus can materialize data subsets of

interest into caches to emulate different encodings dynamically.

(SQL-on-)Hadoop & Cloud Systems for Heterogeneous Models. Multiple systems have been

built over Hadoop or a similar distributed runtime environment to query heterogeneous

datasets [39, 43, 54, 198]. Jaql [54] and Pig Latin [198] are query languages for semi-structured

nested data, and both get translated to MapReduce jobs. SQL ++ [199] is a recent data model

and query language proposal for relational and semi-structured data, which is gradually

adopted by numerous scale-out data stores. Spark SQL [43] introduces relational processing

support over (semi-) structured data. Nested datatypes are again treated as objects that

are opaque to the optimizer. Finally, Dremel [182] ”attens nested data into columns and

allows queries using an extension of SQL. This columnar representation led to the popular

Parquet “le format [9]. Dremel also in”uenced the creation Drill [5], an open-source scale-out

analytical engine with Dremel-like architectural design choices.

50

4.3. An expressive query algebra

Our work is applicable to the engines of these frameworks. For example, most of these systems

use data serializers, such as Avro, to fully transform input datasets into a format they can

process. Proteus, however, relies on input plug-ins that process only the data needed, and

calls them at different steps of execution to judiciously convert input values, unnest nested

structures, etc. Using plug-ins that are tightly integrated with the rest of the engine instead of

•black boxesŽ that blindly ingest data can bene“t these systems.

Code Generation. Runtime code generation is an established mechanism, used by several rela-

tional engines [153, 159, 190, 213]. HIQUE [159] generates cache-conscious code via templates.

HyPer [190] uses the LLVM compiler [162] to generate machine code. LegoBase [153] goes

through numerous rewriting (•stagingŽ) steps to generate C code. Proteus follows the HyPer

paradigm and relies on LLVM too. Proteus is more expressive than relational code-generation

engines because it supports multiple data models and transformations between them. More-

over, Proteus treats each supported data format as its native storage and adapts to incoming

queries better because it makes dynamic decisions about its data access mechanisms, •tupleŽ

structure, and cache organization, all of which are prede“ned in other systems.

4.3 An expressive query algebra

We want to enable queries over a multitude of data models, hiding the underlying heterogene-

ity. Thus, our query algebra must treat all supported data types as “rst-class objects in terms

of both expressive power and optimization capabilities, instead of considering richer types as

BLOB-like values which are opaque to the query optimizer. Existing approaches follow two

main directions to deal with the data model variety. Each of them, however, sacri“ces either

generality or query performance.

The “rst approach involves building an entire system with a speci“c data model in mind and

specialized to the use case at hand. A prominent example is the use of column-oriented DBMS

for analytical relational workloads. Following the same trend, systems like CouchDB and

MongoDB emerged for semi-structured data. Given that they are optimized for non-relational

cases, they impose a number of restrictions for more •traditionalŽ, relational-like workloads.

For example, data entries are assumed to be de-normalized as self-contained objects, so joins

are challenging to express. Because each specialized system supports only a speci“c type of

input ef“ciently, users resort to system integration, i.e., having a dedicated system for each of

their dataset types and using a mediation layer over them to handle cross-dataset queries.

The second approach is to extend an established system with support for additional data

types, e.g., adding support for JSON to an RDBMS. The extension is typically inef“cient: A

proper extension would add explicit query operators to support the new types of data, which

requires signi“cant engineering effort, as well as extending the (relational) model to which

every system component adheres. Due to these constraints, commonly only functions that

access and manipulate the new complex data are introduced, and the system•s optimizer

remains unaware of the new data type particularities.

51

Chapter 4. Just-in-time Query Engines

�

� �� � ��

�

	
 � � �

	 � ��� � � 	 ���� �

�

���� ��

�

�

� �� � �

!

"

$ % & ' () * +

$ # ,- * . / 0

1

�2� 3

�

4

!

5

6 *) ! 7 ++ *'

� � 8 � 9

�

�

: ;< = 9 : ;<

Figure 4.1 … Query involving unnest operators: Without them, the operators higher in the tree
would have to process BLOBs repeatedly every time they need a nested value.

We use a third, different approach to allow queries across data of various models: We leverage

a unifying data model and a powerful query language internally. Speci“cally, Proteus is built

around the monoid comprehension calculus [105] because this calculus supports various data

collections (e.g., bags, sets, lists, arrays) and arbitrary nestings of them. The monoid calculus

and its corresponding algebra are optimizable and allow transformations across data models,

hence Proteus can produce multiple types of output. The calculus is also expressive enough

for other query languages to be mapped to it as syntactic sugar: For relational queries over

”at data (e.g., binary and CSV “les), Proteus supports SQL statements, which it desugarizes to

comprehensions. For more powerful manipulations of ”at data (e.g., outputting results that

contain nestings) and for queries over datasets containing hierarchies and nested collections

(e.g., JSON arrays), Proteus currently exposes a query comprehension syntax to the user;

Example 4.1 presents a query using this syntax.

Example 4.1: Suppose we have a dataset comprising sailors and a dataset comprising ships.

Each sailor has an id “eld and a children “eld which contains a list of (name,age)pairs for the

sailor•s children. Each ship entry has a name “eld and a personnel “eld, which contains a list

of sailor identi“ers. The query •For each Sailor, return his id, the name of the Ship on which

he works, and the names of his adult childrenŽ is expressed in the calculus as follows:

for { s1 <- Sailor, c <- s1.children, s2 <- Ship,
p <- s2.personnel, s1.id = p.id, c.age > 18 }
yield bag (s1.id, s2.name, c.name)

As described in Section 2.2, for each incoming query, the “rst step is translating it to a calculus

expression. The calculus expression is then rewritten to an algebraic tree of a nested relational

algebra [105]. The resulting plan for the query of Example 4.1 is depicted in Figure 4.1. Two

unnest operators deal with the nestings in the data explicitly.

Overcoming Complexity. Using a rich data model and language/algebra for queries over

complex data was proposed when OODBs and XML appeared [105, 106, 240, 203]. Rich

models and algebras, however, lost traction due to their complexity. The more complex an

algebra is, the harder it becomes to evaluate queries ef“ciently: Dealing with complex data

leads to complex operators, sophisticated yet inef“cient storage layouts, and costly pointer

chasing during query evaluation. To overcome all previous limitations, we couple a broad

algebra with on-demand customization.

52

4.4. The Architecture of Proteus

Figure 4.2 … The architecture of Proteus.

4.4 The Architecture of Proteus

Proteus is a query engine designed to enable fast queries over heterogeneous datasets. To

provide generality, Proteus uses an algebra that can model operations across different types of

data, thus offering expressive power and rewriting opportunities for queries targeting complex

data. To also minimize response time, Proteus creates a new query engine instantiation on-

demand per query via code generation. Furthermore, Proteus customizes its storage structures

to adapt them to the workload. The result is a custom, highly-optimized engine, expressed in

machine code and operating over a data representation that suits user analysis.

Figure 4.2 depicts the components of Proteus. The Query Parserhandles incoming queries,

which are then rewritten to a physical plan by the Query Optimizer . Algebraic Operators

encapsulate data model heterogeneity; they express the plan of a query and coordinate code

generation. Expression Generatorsgenerate code for expression evaluation when requested

by an operator. Input Plug-ins encapsulate data format heterogeneity; they consider source-

speci“c optimizations and generate code that accesses any required data. They also provide

statistics and costing formulas per data source. Output Plug-ins generate code that handles

operator output and cache creation along with the Memory & Caching Managers .

Query Optimization. Systems that process heterogeneous data face the following challenges:

First, queries over hierarchical data typically involve many levels of nesting, which increases

execution overheads. Second, unless an optimizer has access to data statistics, it may produce

suboptimal plans. Proteus uses a three-step approach to address these issues: First, when a

user asks a query, Proteus parses and normalizes it, performing operations such as selection

pushdown and unnesting multiple types of nested queries. Then, Proteus rewrites the query

to a nested relational algebra. The algebraic representation is amenable to relational-like

optimizations and further unnesting. Finally, after a number of rule-based rewrites, the

optimizer considers cost-based transformations; it follows a bottom-up strategy and relies on

gathered statistics to perform access path selection and join re-ordering. Its difference from

traditional optimizers is that statistics and costing of data accesses are provided by the input

plug-ins relevant per query.

53

Chapter 4. Just-in-time Query Engines

On-demand Query Engine. The operators of traditional query engines are hard-coded to

a database-speci“c input data format for ef“ciency. Proteus is designed to treat each data

format as native storage. To cope with data heterogeneity, Proteus masks data complexity

from the operators by using an input plug-in per data format. Each plug-in exposes a uniform

interface that the rest of the engine uses to consume data values. The algebraic operators

process input either by calling expression generators or via direct interaction with an input

plug-in. This separation of concerns makes Proteus extensible: adding a plug-in suf“ces to

support a new data format.

The operators of Proteus call output plug-ins to handle the creation of output and the materi-

alization of any required intermediate results during query execution. Proteus also uses the

output plug-ins to de“ne caching structures, which it populates as a side-effect of execution

to adapt to the overall workload. Once materialized, Proteus treats caches as an additional

input dataset.

For each query, Proteus uses a code generation mechanism to collapse the layered architecture

of the engine … the dashed part of Figure 4.2 … into a specialized piece of code. Each of the

components produces low-level machine code that Proteus combines to form a program

serving the currently processed query. Speci“cally, once the optimizer has produced a physical

plan, Proteus traverses it recursively until it “nds the datasets to access (i.e., the leaf nodes). It

then triggers the appropriate input plug-ins to generate code accessing data. As the recursion

is returning control to the root node of the plan, Proteus generates code for every visited

operator. Each visited operator may (re-)trigger input and output plug-ins to process its input

and/or materialize its output.

Memory Manager. The Memory Manager handles the request of system components for

memory blocks to read/write. The Manager distinguishes between input “les and caching

structures: It memory-maps input “les, treating all input data as if it is memory-resident, and

delegates paging to the OS virtual memory manager. As for caching structures, Proteus pins

them in a memory pool, and uses an LRU variation to evict them when appropriate.

4.5 On-demand query engines

Ideally, a system must allow diverse queries over heterogeneous datasets, enabling cross-

model and cross-format queries, but also perform as if it has been designed for a speci“c use

case … even better, as if it is hard-coded to serve a speci“c query: For analytical queries over

”at (e.g., binary, CSV) data, the system must be as fast as an analytical relational engine. For

hierarchical data, it must be as fast as a document store.

The nested relational algebra of Proteus enables querying complex data types and considers

them as “rst-class citizens during query optimization. It also facilitates query unnesting … a

common issue when input data is nested. Dealing with complex data and query operators,

however, comes at increased cost.

54

4.5. On-demand query engines

Even when dealing with the strictly relational operators of an RDBMS, interpreting the query

plan is costly. A source of overhead is the ubiquitous Volcano iterator model [117], which

enables pipelining and exposes a single interface for all operators, but complicates control

”ow and introduces multiple function calls per tuple processed (e.g., each operator calling

getNextTuple()). Another factor is the variety of datatypes that each operator must be able to

process: An operator must trigger different code paths depending on whether its arguments

are i) integers, ii) ”oats, iii) some combination, etc. To support this behavior, operators use

control ”ow statements and (virtual) function calls in their code, which leads to increased

branching in the critical path of execution.

This interpretation overhead [159, 190], stemming from function calls and control ”ow state-

ments that disrupt the instruction pipeline, affects pipelined query execution negatively.

Intuitively, the nested relational algebra operators face similar issues. Even worse, they have

to i) support additional, more complex types of input, and ii) perform extra work compared

to their relational counterparts. For example, besides the selection and join operators, many

additional operators of the nested relational algebra have an embedded “ltering step (e.g.,

unnest, reduce). The additional complexity further increases the interpretation overhead.

One way to remove the interpretation overhead is to use a block-oriented, operator-at-a-time

execution model, as columnar engines typically do [58]. The block-oriented model, however,

introduces materialization overhead per operator. This cost would be more severe for Proteus

compared to traditional relational systems because of the more complex datatypes to be

materialized. Even worse, Proteus serves datasets whose contents rarely reside in explicit

data blocks, so every query would pay an upfront cost to materialize input blocks. Instead

of processing data blocks, Proteus pipelines data through its operators, but also minimizes

interpretation overhead by customizing itself when it receives a query based on i) the query

requirements and ii) the datasets the query touches.

4.5.1 An Engine per Query

Traditional pipelined query engines execute a query by interpreting its physical plan and invok-

ing multiple general-purpose operators for each input tuple. Proteus removes interpretation

overhead by traversing the query plan only once and generating a custom implementation of

every visited operator. Proteus thus uses control ”ow mechanisms, such as datatype checks,

only during the single traversal and avoids the per-tuple penalty that a static pipelined engine

incurs. Once all plan operators have been visited, Proteus blends the generated code stubs

into a hard-coded query engine implementation which is expressed in machine code.

Proteus uses LLVM [162] to generate low-level code, which it compiles at runtime. LLVM is a

collection of compiler infrastructure that offers frontends for languages such as C/C++ and

Fortran. In its core, LLVM translates these languages into an intermediate representation (IR)

resembling assembly code: the LLVM IR. LLVM then compiles the IR into actual machine

code based on the underlying hardware. Proteus generates LLVM IR because i) it is strictly-

55

Chapter 4. Just-in-time Query Engines

typed and less error-prone than macro-based C++ code, ii) it compiles much faster than

macro-based C++ code, and iii) LLVM offers rewrite passes such as dead code elimination that

optimize the generated IR. In summary, Proteus uses LLVM as a plan rewriting mechanism,

and performs one extra step compared to traditional query engines: It rewrites the physical

algebraic plan … an abstract, high-level IR … into the imperative, low-level LLVM IR which is

amenable to compiler-centric optimizations [14].

After parsing and optimizing a query, Proteus traverses the physical plan of the query in post-

order depth-“rst-search (DFS). When visiting a node of the plan, Proteus i) visits the node•s

children to produce the code corresponding to their functionality, ii) generates the physical

implementation corresponding to the current node, and iii) returns control to the node•s

parent to continue the code generation process. The recursive traversal terminates when it

reaches a leaf node (a scan operator). Proteus then generates a code stub that, when executed,

will launch a scan over a dataset. In each scan iteration, the generated code will access a

•recordŽ from the data and place the “elds needed for the rest of the plan in virtual memory

buffers. The virtual buffers can be thought of as local variables placed in the stack frame.

To maximize locality, the LLVM compiler promotes buffer contents to CPU registers when

possible. Therefore, subsequent operators referencing values that exist in register-backed

buffers experience minimal access times and fully pipeline data. Once Proteus has generated

code stubs for a leaf node, it shifts control to the node•s parent, also passing along pointers to

the virtual buffers and to the currently •hollowŽ parts of the overall query code that need to be

“lled in next. The same process continues until control returns to the root node.

Figure 4.3 depicts a plan for the query SELECT COUNT(*) FROM A WHERE e, along with

a high-level description of the resulting code. The scan of relation A results in the generation

of a •hollowŽ while-loop. The code for the ending condition of the loop (line 1), as well as for

populating virtual buffers with the “elds necessary to answer the query (line 2), is injected

by an input plug-in that allows the data-format-agnostic scan operator to interface with

dataset A regardless of how it is stored. Then, the selection operator generates a hollow if

block, whose outcome depends on the evaluation of the expression e (line 3) in each iteration.

Proteus retrieves the values required to evaluate e from the virtual buffers. The reduce operator

calculates the “nal result by incrementing a counter, which it then outputs. The result of

the physical plan traversal is not a number of standalone operator implementations: It is a

minimal, specialized piece of code representing an entire query, with operator logic tightly

stitched together to ensure pipelined query execution. This type of execution minimizes

intermediate query results, maximizes code and data locality, and reduces register pressure.

Proteus also uses pre-existing (i.e., not generated) C++ code for some of its functionality.

Proteus wraps these operations in C++ functions and calls them when appropriate from the

generated code. For example, the Memory and Caching Managers do not generate code. In

another case, Proteus uses hash-based algorithms for the join and grouping operators, namely

variations of the radix hash join algorithm [174] adapted from [46]. While parts of the join

implementation are indeed generated at runtime, other parts, like clustering the materialized

56

4.5. On-demand query engines

�

�� � � �

�

�

	
�

�

�K�/�� �W�o�µ�P�]�v

���µ�(�(���Œ�W�o�µ�P�]�v

���µ�(�(���Œ�W�o�µ�P�]�v

�h �™�Š�‹�Ž�‡�•�`�‡�‘�ˆ�•���€�€���‡
�i �ƒ�†�†���‘���—�ˆ�ˆ�‡�”�•

�m�ˆ

�j �‹�ˆ�•�‡�˜�ƒ�Ž�•�‡�€�€�����‡

�l �ˆ

�k �•�—�•���«�°���h

�n �”�‡�–�—�”�•���•�—�•

Figure 4.3 … Example of a query plan and of the generated (pseudo-) code. Once the scan oper-
ator places needed “elds in virtual buffers, they are used to evaluate the “ltering expression.

entries based on their hash values, are wrapped in a C++ function. This function is only called

once per join side, so the overhead of making the function call is minimal.

Implementation. The layers of Proteus that parse, rewrite, and optimize queries are expressed

in Scala and output a physical query plan. The layers that traverse the query plan and trigger

code generation using LLVM are written in C++. When Proteus receives a query, it generates

stubs of LLVM IR, which it stitches together during the traversal of the physical query plan and

puts into a single function. Within milliseconds, LLVM compiles the IR of the function into

actual machine code based on the underlying hardware. The result is a library, which Proteus

calls to serve the query.

4.5.2 A Custom Data Access Layer per Query

The operators of Proteus access a dataset either by triggering an expression generator to pro-

duce code for the evaluation of an algebraic expression, or by directly calling the corresponding

input plug-in. This separation of concerns ensures extensibility.

Expression Generation

Proteus places values from each dataset it touches into virtual memory buffers, which the

query operators use to evaluate expressions of the nested relational algebra. For example,

if Proteus has populated buffers with “elds a.sal and a.bonus, it can evaluate the “ltering

expression of the operator � sal+bonus <3000. The physical operators assign the evaluation of

algebraic expressions to an expression generator. In the example of Figure 4.3, an expression

generator produces the code to calculate the result of eval (e) at line 3, and injects it as the

condition in the if statement. Similar generators are used when hashing an expression and

when ”ushing out the query output. A useful property of this separation is that the operators

are agnostic to the underlying data models/formats/properties. The operators are oblivious to

whether a value in the memory buffers belongs to an array, is nested, or is not fully materialized

yet; all they require is that the expression generators inject the appropriate code for expression

evaluation at the code spots they designate.

57

Chapter 4. Just-in-time Query Engines

Input Plug-in Methods

generate() hashValue() unnestInit()

readValue() ”ushValue() unnestHasNext()

readPath() unnestGetNext()

Table 4.1 … The input plug-in API of Proteus.

Input Plug-ins

Proteus masks the details of the underlying data values from the query operators and the

expression generators. To interpret data values and generate code evaluating algebraic ex-

pressions, Proteus uses input plug-ins. Each input plug-in is responsible for generating data

access primitives for a speci“c “le format. Proteus currently uses input plug-ins for CSV, JSON,

and relational binary data (both row-oriented or column-oriented).

Table 4.1 lists the API that every input plug-in exposes. Calls to a plug-in can be made by i) a

scan operator populating virtual memory buffers (the generate()call), ii) an unnest operator

looping through a nested collection (unnestInit() etc.), or iii) an expression generator produc-

ing the code to calculate the result of an expression. In the third case, readValue() provides a

“eld•s value to the expression generator, and readPath() returns a pointer to a data object•s

“eld. Consecutive calls to readPath() are used to access nested “elds.

When a scan operator calls an input plug-in, the plug-in generates code that customizes the

data access layer of Proteus based on i) the current query requirements and ii) the characteris-

tics of the dataset to be accessed: its schema,format, and contents. Using this information,

Proteus generates code that performs fewer and more ef“cient data accesses than a general-

purpose scan operator. An example of exploiting the query requirements is the following:

During query rewriting, Proteus pushes “eld projections down to the scan operators so that it

extracts only the “elds necessary. To perform these selective accesses, a general-purpose scan

operator would use a loop that checks whether each “eld is needed for the query, thus intro-

ducing branches in the critical path of execution. Instead, Proteus generates code processing

only the required data “elds. Proteus also uses the dataset schema to avoid unnecessary

control logic, such as datatype checks … it generates speci“c access primitives for integer

“elds, nested “elds, etc. The overall code generated for scanning data resembles a hard-coded

program.

Specializing per Dataset Format. Proteus generates code that considers the particularities

of each data format. For binary relational data, an input plug-in generates code reading the

memory positions of the required data “elds. For more verbose or richer formats, Proteus uses

more sophisticated access methods. The common denominator of all input plug-ins is that

for every data object / •tupleŽ they access, they produce an object identi“er (OID), which they

forward to the query operators. As an example, for ”at data the OID is a row counter. Using

an entry•s OID, an expression generator can invoke the corresponding input plug-in at a later

point in execution to access a value needed for an expression•s evaluation.

58

4.5. On-demand query engines

Figure 4.4 … Example of a structural index for a JSON object.

Apart from creating an OID, Proteus calibrates how eager / lazy the generated access primitives

are (i.e., which values to place in memory buffers apart from the OID, whether to eagerly

convert a value to a binary serialization, etc.). Proteus supports lazy plug-in behavior because

eagerly populating memory buffers may prove unnecessarily expensive. When performing a

path query over nested objects or data unnesting, Proteus avoids eagerly serializing a complex

object only to process a subset of it: Instead, Proteus uses structural information for the

data to navigate in the dataset and to access only the values necessary to provide a result. In

addition, in many cases Proteus delays data conversion because it may prove to be unnecessary

(e.g., because of some selection “ltering out results). Another scenario is applying different

materialization policies in relational workloads. To allow for this ”exible behavior and enable

a “eld•s reconstruction at any point, Proteus maintains plug-in information for each “eld value

in its memory buffers. For every such value, the corresponding plug-in uses rules to specify

how lazily to process it based on criteria such as its data type and at which point of the query

it is used, and generates appropriate code.

Structural Indexes. The input plug-ins of Proteus use auxiliary structures to reduce the navi-

gation cost associated with verbose data formats, for which every access requires substantial

parsing effort. These structural indexes store positional information about “elds in the datasets

instead of actual data values. Their entries are addressable by OID, so that all plug-ins have

uniform behavior.

For CSV datasets, structural indexes store the binary positions of a number of data columns in

each row [36]. Proteus stores the position of every Nth “eld of the “le (e.g., if N=10, it stores

the positions of the 1st, 11th, ... “elds). When looking for a “eld, Proteus locates the closest

indexed “eld position and starts seeking from that point.

Structural indexes for JSON require a more involved process because of the inherent complex-

ity of the JSON format, which allows arbitrary levels of nesting and “eld order. In addition,

some (optional) “elds may be present in a subset of a JSON document•s objects. Overall,

the semi-structured nature of JSON “les complicates their validation and processing. When

Proteus accesses a JSON “le for the “rst time, it validates the input. During validation, Proteus

populates an index per JSON object with structural information. The resulting structural

index serves two goals: It reduces the parsing effort for subsequent accesses to the “le, and

minimizes the interpretation overhead stemming from the schema ”exibility of JSON data.

59

Chapter 4. Just-in-time Query Engines

Each entry of a JSON structural index captures information about a token (e.g., a “eld name,

an array, etc.) contained in a JSON object: its binary starting and ending positions in the “le, as

well as its type. To serve requests for a data “eld, the JSON input plug-in “nds its corresponding

token entry in the structural index instead of re-parsing the “le from scratch. The plug-in then

forwards the entry identi“er … which acts as an OID … to the operator / expression generator

that requested it. Then, the OID is either dereferenced to access and convert the JSON value,

or kept as is for subsequent processing … a case of lazy evaluation.

The structural index described so far corresponds to •Level 1Ž of the example in Figure 4.4.

The “rst index entry, labeled •{}Ž, keeps the starting and ending positions of the overall JSON

object, the second entry keeps the positions of token a, and so on. Intuitively, if a dataset

contained multiple objects similar to the one depicted and a query requested “eld a from

each one, the JSON plug-in would follow the same process for each object: Return the second

entry of the object•s corresponding structural index. Nevertheless, there is no guarantee that

“eld a comes before “eld b, b before c, etc. in every object of the dataset. Thus, Proteus would

have to sequentially scan each object•s index and compare the label of the wanted “eld with

the one currently visited.

Proteus removes this overhead which stems from JSON schema ”exibility by introducing an

additional •Level 0Ž to the structural index. • Level 0Ž comprises an associative array which

maps “eld names to their corresponding positions in •Level 1Ž of the index. The shaded values

in Level 1 are now redundant and thus removed. Proteus performs dictionary encoding over

the input “eld names: Each name is assigned a number representing its position in Level 0.

The JSON plug-in therefore “nds a “eld•s position by “rst calculating its encoded value, and

then performing a lookup to the associative array. The use of Level 0 reduces data access costs

and offers determinism despite the semi-structured JSON nature.

Proteus also registers nested records in Level 0. In Figure 4.4, by storing pointers to “eld c.d .d1,

dereferencing occurs in one step instead of multiple ones. Nested collections are treated

otherwise: Notice that “elds e and f , which correspond to the contents of a nested (array)

collection, are omitted from Level 0. JSON structural indexes opt against maintaining pointers

to array contents because Proteus has an explicit Unnest operator to handle nested collections.

The code path of Unnest applies the same action to every nested element, therefore it is

unaffected by schema ”exibility.

Specializing per Dataset Contents. The more information Proteus obtains about a dataset,

the more aggressive optimizations it performs. Given its code generation capabilities, an

input plug-in can craft an optimized code path suitable only for a speci“c “le instance. In

the case of JSON data, schema ”exibility introduces overhead even when using a structural

index, because Proteus has to store more bookkeeping information per indexed entry, and

generate more complex code to process it. There are many scenarios, however, such as the

case of machine-generated data, where every object in a dataset has the same “elds in the

same order. Proteus can verify whether this case holds while creating a structural index, and

60

4.5. On-demand query engines

drop Level 0 because the lookup process is now more deterministic: It is suf“cient to maintain

the sizes of any variable-length structures (i.e., JSON arrays) met and combine them with “xed

schema information to deterministically compute the exact positions of relevant structural

index entries. The result is a more compressed structural index and an ef“cient code path

for lookups to the JSON dataset. In a similar optimization, if a CSV “le contains “xed-length

entries, Proteus deterministically computes every position and injects it in the generated code

instead of using a structural index.

Enabling Cost-based Optimizations. Proteus uses a metadata store to maintain statistics per

data source, namely dataset cardinalities and min/max values per attribute, and delegates

statistics collection to each input plug-in. The statistics collection process is “ne-tuned to

avoid introducing execution overheads. Speci“cally, Proteus refrains from generating code for

statistics gathering in every query to avoid bloating the minimal generated code. Instead, it

collects statistics in three ways: First, Proteus collects statistics during the “rst (cold) access

to a dataset, because I/O masks the overhead of statistics gathering. Second, when the

plan contains a blocking operator (e.g., a join), the relevant input plug-in injects code that

pro“les the materialized values all at once. Finally, a daemon process periodically triggers

statistics-gathering queries when the system is idle … a methodology followed by multiple

DBMS. Regarding costing, each input plug-in uses different cost formulas, which it instantiates

with data statistics to provide cost estimates to the query optimizer. Delegating source-speci“c

work to a •wrapperŽ per source is also popular with federated systems [216, 217].

Proteus allows plug-in developers to calibrate statistics gathering and costing. The baseline

option is to use prede“ned, hard-coded estimates in place of statistics-based computations

(e.g., assume that the default selectivity of a predicate is 10%), as well as textbook cost formulas.

Proteus offers such a skeleton for every input plug-in by default because it has been shown to

have satisfying results [216]. Regarding statistics, Proteus allows developers to adjust/change

the sampling function to be called during cold queries and result materialization. The func-

tion speci“es the type of sampling to be used, and on which “elds the statistics-gathering

mechanism should focus on. Regarding costing, the developer can change the provided cost

formulas with more suitable ones for her needs.

Adding More Inputs. Adding support for more inputs is straightforward. For each new input,

what is required is to code in an input plug-in which implements the methods of Table 4.1. A

developer can use plain C++ instead of the lower-level LLVM API, since Proteus can directly

call C++ functions, or even call sophisticated libraries for JSON parsing [11, 12, 19, 168]. The

plug-in developers decide how to calibrate ease of development and high performance based

on their requirements. The same trade-off applies when integrating Proteus with existing data

stores such as an RDBMS: A plug-in can either i) issue SQL queries to the DBMS, or ii) directly

access the proprietary binary data format that the DBMS uses internally.

61

Chapter 4. Just-in-time Query Engines

4.6 Adapting storage to workload

Proteus dynamically populates data caches as a side-effect of query execution to adapt to the

workload trends. These caches can be viewed as dynamic materialized views [157], following

the data recycling principle [136, 189] of automatically caching results during query evaluation

for possible reuse in the future. Proteus deals with complex models and formats, so the

importance of reuse is even higher because of the effort needed to re-access the data involved

and recompute the expressions that queries require. Since users express a range of queries

over a variety of data, the caches must facilitate each diverse workload, adapting to serve it

ef“ciently. Therefore, instead of having a prede“ned structure, the caches adapt to the types

of queries asked. Depending on the query workload, the caching structures can resemble

i) pages “lled with tuples in a system•s buffer pool, ii) binary columns accessed by a columnar

engine, iii) nested objects serialized in a binary format, etc.

Proteus can cache any expression supported by the nested relational algebra. Each query may

trigger the population of caches of different shapes … caches of different shapes can even be

built at different phases of the same query. For example, a query sub-tree processing hierar-

chical data may bene“t from a different cache type than the query part touching relational

tables. Some expression types that Proteus can cache are the following:

€ Field projections (rel .at t r A).

€ Arithmetic expressions ((rel 1.salar y + rel 2.bonus) � 12).

€ New record constructions (< rel .at t r A , t ree.at t r B .at t r B 1 >).

Proteus uses caching primarily to bene“t queries over non-binary, verbose sources such as CSV.

By caching data entries in a more compact binary format, neither parsing nor data conversions

are required to access them. Caching is also bene“cial when a different data layout is more

suitable for the workload than the one currently used by a dataset [120]. Proteus is ”exible

enough to allow different caching policies depending on the expected workload type.

Implementation. The algebraic operators are oblivious to which expressions are to be cached

and which of the input values they process is actually served from caches. When Proteus has to

materialize data (e.g., during a join), or the physical plan contains a caching operator, Proteus

assigns the task to an output plug-in that speci“es i) the expression to be cached, ii) what the

serialization format will be, and iii) the •degree of eagernessŽ to be used during caching. For

example, when dealing with variable-length string entries, it might be suf“cient to cache their

binary starting positions, or even the OID of the entry to which they belong. Different types of

workloads bene“t from different policies across these axes.

Output plug-ins trigger cache construction similarly to expression evaluation: For each data

entry, an expression generator produces code which evaluates the expression to be cached

and places the result in a consecutive memory block. Proteus exposes the data cache as an

additional input. As with the rest of the datasets, Proteus accesses the cached data using a

dedicated input plug-in.

62

4.6. Adapting storage to workload

Building Caches. Proteus triggers cache creation i) implicitly, as a by-product of an operator•s

work, or ii) explicitly, by introducing caching operators in the query plan. Implicit caching

exploits that some Proteus operators materialize their inputs: nest and join are blocking and

do not pipeline data. Especially for joins, Proteus uses a radix hash-join variation, which

materializes both input sides. It is thus important to re-use populated data structures and

avoid re-building them, especially if the data originated in a verbose data format for which

accesses are expensive.

For explicit caching, Proteus can place buffering operators at any point in the query plan. An

explicit caching operator calls an output plug-in to populate a memory block with data. Then,

it passes control to its parent operator. Creating a cache adds an overhead to the current query,

but it can also bene“t the overall query workload: When accessing verbose data formats like

JSON, it is advisable to avoid re-accessing the original data whenever possible. Even when

using auxiliary structures to navigate in the “le, there are still additional costs. After locating a

required “eld, the input plug-in typically needs to convert it to a binary form. In addition, in

the case of JSON, verbose objects pollute CPU caches with unneeded information. Each “eld

that Proteus needs is located at an arbitrary position in the “le. Every time Proteus places it in a

CPU cache line, the rest of the line is typically “lled with an unneeded part of the overall JSON

object. Dealing with compact, packed binary caches greatly improves data locality. Therefore,

if a cached “eld ends up being re-used, the bene“t from avoiding these data accesses and

computations is signi“cant.

Cache Matching. For every cache that Proteus populates, the Caching Manager stores the

physical plan corresponding to the cache and uses it as a search key during cache matching.

Proteus considers the available caches right before generating code. The cache/view match-

ing process resembles that of [189, 218]. Proteus treats the physical plan as a DAG, where

each node corresponds to a physical operator, and traverses it in bottom-up fashion. The

Caching Manager traverses each stored plan simultaneously with the traversal of the query

plan currently examined. For every node of the DAG visited, Proteus probes the Caching

Manager for nodes in the cached plans that can be used instead. For a node in the current

query to fully match a node in a cached plan, i) they must both perform the same operation

(e.g., selection), ii) have the same arguments (i.e., evaluate the same algebraic expressions),

and iii) their children nodes must match each other respectively. Whenever the Manager “nds

a match, Proteus applies the same process recursively until it reaches the root of a cached

plan. If successful, Proteus rewrites the plan to use the cache. Besides full matches, Proteus

considers partial matching. Speci“cally, if Proteus has implicitly cached the intermediate

results (i.e., the hash tables) of A �� B, then the newly arrived query A �� C can re-use the

hashtable built for A if it uses the same join key. Future work includes adding support for

subsumption [107, 218], i.e, identifying that the cached tree � x>0 (A) can replace the current

sub-tree � x>10 (A) as long as we re-apply the x > 10 predicate.

In summary, rewriting scenarios include replacing i) a sub-tree of the plan (e.g., a scan and a

subsequent unnest operator), ii) a single operator (e.g., a scan), or iii) a part of an operator

63

Chapter 4. Just-in-time Query Engines

(e.g., one of the already materialized sides of a radix hash join). Code generation is an enabler

for such rewrites of varying granularity because it allows Proteus to generate code only for the

necessary operations.

Cache Policies. Selecting which views to materialize is a well-studied research problem [125].

Proteus applies different materialization policies depending on the workload characteristics.

Proteus bene“ts signi“cantly when it places caching operators close to the leaf nodes of the

plan in order to convert input (raw) values to a binary format. A reason is that raw data

access is a major overhead when querying heterogeneous datasets. In addition, the simpler

an operator tree corresponding to a materialized result is, the more upcoming queries will

be able to re-use it and bene“t from it. Therefore, the Caching Manager currently focuses

on ways to fully replace a costly access path instead of materializing the result of a complex

query sub-tree; applying more sophisticated policies and studying their effect [32, 125] is

part of our future work. Proteus thus opts for straightforward “rst-come-“rst-served caching

policies and eagerly caches values read from CSV and JSON “les. Proteus caches primitive

values found in “les containing hierarchies to avoid re-navigating through them, especially if

the involved objects are deeply nested. Proteus also caches “elds used as “ltering predicates.

On the contrary, Proteus avoids caching variable-length string “elds from CSV and JSON

“les, which can be verbose and pollute the caches. Regarding cache eviction, Proteus uses a

data-format-biased version of LRU, favoring data from inputs that are more costly to access

(where JSON� CSV � Binar y).

4.7 Experimental Evaluation

We evaluate Proteus using i) synthetic benchmarks to isolate the performance of common

query operations, and ii) a real-life spam email analysis workload provided by Symantec.

Experimental Setup. We compare Proteus against a) systems that at some point were ex-

tended to support richer data models, and b) systems specialized for a speci“c scenario by

design. Speci“cally, we compare i) PostgreSQL 9.4.1, ii) commercial DBMS X, iii) MonetDB

11.19.9, iv) commercial DBMS C, and v) MongoDB 3.0.3. PostgreSQL and DBMS X are row

stores that support both relational and JSON data; they showcase how a generic system per-

forms in the two diverse cases. We con“gure DBMS X to use its •main memory acceleratorŽ,

which keeps data in memory using a custom memory-friendly layout. MonetDB and DBMS C

are read-optimized column stores, designed to ef“ciently support relational analytical queries,

which recently added JSON support. Finally, MongoDB is a specialized system for JSON data,

for which it uses a binary serialization (BSON). PostgreSQL supports both a binary (jsonb) and

a character-based JSON serialization; we use jsonb because of its ef“ciency. The other systems

treat JSON as a subtype of VARCHAR. Neither the systems we compare against nor Proteus

make assumptions about “eld order in the JSON “les.

We run all experiments on a dual socket Xeon Haswell CPU E5-2650L (12 cores per socket

@ 1.80 GHz), equipped with 64 KB L1 cache and 256 KB L2 cache per core, 30 MB L3 cache

64

4.7. Experimental Evaluation

shared, 256 GB RAM, and 2TB 7200 RPM SATA 3 disk storage. The operating system is Red Hat

Enterprise Linux 7.1. Proteus uses LLVM 3.4 to generate custom code with the compilation

time being at most � 50 ms per query. We run all systems in single-threaded mode.

4.7.1 Specializing the Query Engine on Demand

This experiment isolates the performance of typical query operations over both hierarchies

and relations. We use JSON and relational binary data, and examine a range of query templates

with 10%, 20%, 50%, and 100% selectivity.

We use the TPC-H lineitem and order tables as input, using scale factors 10 (SF10 - 60M

lineitem tuples, 15M order tuples) and 100 (SF100- 600M lineitem tuples, 150M order tuples).

We shuf”e each “le•s contents to avoid potential optimizations that exploit interesting orders

and can introduce noise to the experiments. To test performance over JSON data, we convert

the TPCH-SF10 tables into a 20GB JSON “le for lineitems and a 3.5GB “le for orders, and

load them in all the systems we compare against. As an indication of storage size, PostgreSQL

requires 27GB to store the JSON version of lineitem, and MongoDB requires 30GB. Proteus

natively operates over the JSON “les and builds a structural index during the “rst data access.

Index size is � 21% of the JSON “le for lineitems and � 15% for orders, and its construction is

signi“cantly faster than loading the data in the other systems (e.g., � 4× faster than MongoDB).

For experiments over binary data, we load the TPCH-SF100 version in PostgreSQL, DBMS X,

MonetDB, and DBMS C. Proteus operates over binary column “les similar to the ones of

MonetDB. All systems operate over warm OS caches. Unless otherwise speci“ed, the adaptive

caching of Proteus is deactivated. The data types are numeric “elds (integers and ”oats).

Projections. For queries projecting a varying number of “elds, we use three variations of the

following query template:

SELECT AGG(val1), ..., AGG(valN)
FROM lineitem
WHEREl _orderkey < [X]

The “rst two variations compute COUNT and MAX respectively. The third variation computes

four aggregations (COUNT and MAX). Figure 4.5 plots results for the JSON version (SF10).

Proteus is the fastest system because its lightweight generated code path makes it more

ef“cient for the CPU-intensive task of processing JSON entries. In addition, contrarily to

PostgreSQL, Proteus does not treat JSON objects as bulky BLOB data; it uses the structural

index to retrieve the information it needs from each object, which it then feeds in the query

pipeline without •pollutingŽ the CPU caches with the verbose JSON object any further. As

for the other systems, JSON access is expensive for DBMS X because it uses a character-

based encoding. MongoDB is competitive with PostgreSQL only for the COUNT query. As the

number of aggregates to compute increases, PostgreSQL outperforms MongoDB. JSON support

65

Chapter 4. Just-in-time Query Engines

10

100

1000

10 20 50 100 10 20 50 100 10 20 50 100

Q: 1 Aggr. (Count) Q: 1 Aggr. (MAX) Q: 4 Aggr.

E
xe

cu
tio

n
T

im
e

(s
ec

)

Selectivity Factor (%)

JSON Projections: SF10

PostgreSQL DBMS-X MonetDB DBMS-C MongoDB Proteus

Figure 4.5 … Projection-intensive queries over JSON data.

0.1

1

10

100

1000

10 20 50 100 10 20 50 100 10 20 50 100

Q: 1 Aggr. (Count) Q: 1 Aggr. (MAX) Q: 4 Aggr.E
xe

cu
tio

n
T

im
e

(s
ec

)

Selectivity Factor (%)

Binary Projections: SF100

PostgreSQL DBMS-X MonetDB DBMS-C Proteus

Figure 4.6 … Projection-intensive queries over binary relational data.

is still immature in MonetDB, which results in suboptimal performance. Similarly, DBMS C

underperforms in all our experiments over JSON data. For this reason, and because some of

the benchmarked operators are either work-in-progress (e.g., unnest) or not yet supported

ef“ciently (e.g., using a JSON “eld in a GROUP BY clause requires a costly workaround for

MonetDB), we exclude MonetDB and DBMS C from the other experiments with JSON data.

Figure 4.6 presents results for the queries over binary data (SF100). MonetDB and DBMS C are

faster than PostgreSQL and DBMS X because the analytical query template we study is suitable

for column-oriented engines (i.e., a small subset of the relation is accessed). For selective

COUNT queries, DBMS C is the fastest system because it sorts the input during data loading;

given that the query has a predicate on the sorting key, DBMS C exploits it to skip many data

entries while answering the query. In addition, this query does not project any attributes,

therefore DBMS C does not incur any tuple reconstruction cost. For less selective instances of

the COUNT query and for the other more complex queries, Proteus is faster than DBMS C and

MonetDB; their columnar operators produce intermediate results (i.e., fully materialize their

66

4.7. Experimental Evaluation

10

100

1000

10 20 50 100 10 20 50 100 10 20 50 100

Q: 1 Predicate Q: 3 Predicates Q: 4 Predicates

E
xe

cu
tio

n
T

im
e

(s
ec

)

Selectivity Factor (%)

JSON Selections: SF10

PostgreSQL DBMS-X MongoDB Proteus

Figure 4.7 … Selection queries over JSON data.

0.1

1

10

100

1000

10 20 50 100 10 20 50 100 10 20 50 100

Q: 1 Predicate Q: 3 Predicates Q: 4 PredicatesE
xe

cu
tio

n
T

im
e

(s
ec

)

Selectivity Factor (%)

Binary Selections: SF100

PostgreSQL DBMS-X MonetDB DBMS-C Proteus

Figure 4.8 … Selection queries over binary relational data.

output), thus paying a materialization cost for the columns involved. The materialization cost

increases further as queries become less selective; Proteus pipelines data instead. In addition,

the resulting code of Proteus is a tight, minimal while-loop which only contains an if block

evaluating the selection condition. The importance of generating minimal code is highlighted

in the COUNT query (left side of Figure 4.6). The code is minimal enough for the effect of the

branch predictor to be visible. When selectivity reaches 100%, very few mispredictions occur,

therefore the query becomes faster for Proteus, although intuitively Proteus does more work

to calculate the aggregate value.

Selections. To test queries with multiple selection predicates, we use three variations of

SELECT COUNT(*) FROMlineitem
WHEREval1 < [X] AND ... AND valN < [Z]

The queries include one, three, and four predicates in the WHERE clause respectively. Fig-

ure 4.7 presents the results over JSON data (SF10). Proteus has to convert the values it needs

67

Chapter 4. Just-in-time Query Engines

on the ”y, whereas PostgreSQL and MongoDB operate over a binary serialization. Still, Proteus

is faster than the other systems across the whole experiment because once it has extracted

the values it needs, it reduces the rest of the CPU overheads signi“cantly. Besides pipelining,

Proteus consults its structural index to pinpoint needed “elds, thus reducing navigational

cost in the “le. These bene“ts become more apparent for less selective queries. DBMS X is

the slowest system because of its character-based JSON encoding. Compared to Figure 4.5,

MongoDB closes the gap on PostgreSQL and Proteus because the current query template

projects out a count instead of more complex aggregates which MongoDB does not compute

as ef“ciently.

In the case of binary data presented in Figure 4.8, the outcome is similar to the one for

projection queries. Proteus is faster in the majority of cases because it pipelines data through

all operators. MonetDB and DBMS C operators materialize their output, which becomes more

expensive as selectivity moves towards 100%.

Joins & Unnests. To test joins, we use three variations of the following template:

SELECT AGG(o.val1),...,AGG(o.valN)
WHEREval1 < [X] AND ... AND valN < [Z]
FROMorders o
JOIN lineitem l ON (o _orderkey = l _orderkey)
WHEREl _orderkey < [X]

The “rst two variations compute one aggregation, COUNT and MAX respectively, while the

third variation computes two aggregations (COUNT and MAX).

Document stores such as MongoDB do not offer “rst-class support for join operations, under

the assumption that JSON data is typically denormalized (i.e., any joins are pre-materialized).

We therefore include one more variation of a COUNT query over denormalized JSON data;

each order object now contains an array with the lineitems that correspond to it, so the query

has to unnest these JSON arrays instead of performing a join.

Figure 4.9 plots the results for the JSON case. Proteus is faster than the other systems because

of i) its minimal generated code, ii) its lightweight JSON access path, and iii) the ef“ciency

of the radix hash join algorithm it uses, which explains the larger performance gap from

PostgreSQL compared to the previous query types. For MongoDB, we implement the join logic

in a map-reduce-like query. MongoDB is unsuitable for such operations, which explains its

poor performance; we only list its results for the “rst query as an indication. On the other

hand, in the •UnnestŽ case, MongoDB outperforms PostgreSQL and DBMS X, which rely on

built-in functions to perform data unnesting instead of an explicit query operator. Proteus is

faster because its generated code involves almost no data conversions; besides evaluating a

predicate, the code only increments a counter for each element of the nested lineitem arrays.

68

4.7. Experimental Evaluation

1

10

100

1000

10 20 50 100 10 20 50 100 10 20 50 100 10 20 50 100

Q: 1 Aggr. (COUNT) Q: 1 Aggr. (MAX) Q: 2 Aggr. Q: UnnestE
xe

cu
tio

n
T

im
e

(s
ec

)

Selectivity Factor (%)

JSON Joins: SF10

PostgreSQL DBMS-X MongoDB Proteus

Figure 4.9 … Join and unnest queries over JSON data.

1

10

100

1000

10 20 50 100 10 20 50 100 10 20 50 100

Q: 1 Aggr. (COUNT) Q: 1 Aggr. (MAX) Q: 2 Aggr.E
xe

cu
tio

n
T

im
e

(s
ec

)

Selectivity Factor (%)

Binary Joins: SF100

PostgreSQL DBMS-X MonetDB DBMS-C Proteus

Figure 4.10 … Join and unnest queries over binary relational data.

For joins over binary data, the query template is ideal for DBMS C and DBMS X. As seen in

Figure 4.10, DBMS C is the fastest system for selective queries because it exploits the fact that

it sorts the data on the “ltering key at loading time and thus skips multiple entries. In addition,

it performs sideways information passing: it applies the “lter on orderkey to both sides of the

join, thus reducing the pairs to be joined. DBMS X also performs sideways information passing,

thus closing the gap with the column stores and Proteus, compared to previous queries. For

less selective queries, Proteus is the fastest system because DBMS X and DBMS C prune fewer

tuples. To further study performance, we measure performance counter statistics for MonetDB

and Proteus because they use the same query plan without the additional optimizations. For

a join with 20% selectivity, Proteus had 40 × fewer dTLB (data Translation Lookaside Buffer)

misses, 10× fewer last-level-cache (LLC) misses, and 2 × fewer branches encountered, leading

to fewer branch mispredictions. These factors contribute to faster response times for Proteus.

69

Chapter 4. Just-in-time Query Engines

1

10

100

1000

10 20 50 100 10 20 50 100 10 20 50 100

Q: 1 Aggr. Q: 3 Aggr. Q: 4 Aggr.E
xe

cu
tio

n
T

im
e

(s
ec

)

Selectivity Factor (%)

JSON GroupBys: SF10

PostgreSQL DBMS-X MongoDB Proteus

Figure 4.11 … Aggregate queries over JSON data.

1

10

100

1000

10 20 50 100 10 20 50 100 10 20 50 100

Q: 1 Aggr. Q: 3 Aggr. Q: 4 Aggr.E
xe

cu
tio

n
T

im
e

(s
ec

)

Selectivity Factor (%)

Binary GroupBys: SF100

PostgreSQL DBMS-X MonetDB DBMS-C Proteus

Figure 4.12 … Aggregate queries over binary relational data.

Aggregations. To test queries that group results, we use three variations of the following

template:

SELECT AGG(val1), ..., AGG(valN)
FROMlineitem WHEREl _orderkey < [X]
GROUP BYl _linenumber

Figures 4.11 and 4.12 present results for queries calculating one, three, and four aggregate

values. Proteus uses a radix-hash-based grouping implementation, so the results for JSON

data (SF10) are similar to the join use case, with Proteus outperforming the rest. For the “rst

query over binary data (SF100), MonetDB exploits an optimization to perform the grouping

without explicitly calculating a count: It calculates the count by returning the size of each

corresponding bucket in the hashtable it populates to perform the grouping. Therefore, it

gradually becomes faster than Proteus when only a count is computed. DBMS C also has a

headstart because it skips data based on the orderkey value. For queries with additional

aggregates, Proteus is the fastest system.

70

4.7. Experimental Evaluation

0
5

10
15

10 20 50 100 10 20 50 100

Projection Template Selection Template

S
pe

ed
up

Selectivity Factor (%)

Cached Predicate

Baseline

Figure 4.13 … Effect of caching on i) a projection query and on b) a selection query over JSON
data.

Gauging the Effect of Caches. In the previous experiments, the caching feature of Proteus

was deactivated. To quantify the speedup that Proteus can achieve by enabling caching, we

instantiate the previous •projectionŽ and •selectionŽ templates for JSON and vary selectivity

from 10% to 100%. Figure 4.13plots the results. The “rst query applies a selection predicate

and projects four “elds. The •BaselineŽ dotted line is the Proteus con“guration used in the

previous experiments. In its •Cached PredicateŽ variation, the values used in the query•s

selection predicate are already cached by a previous query. The second query evaluates four

predicates and then calculates a count. Its •Cached PredicateŽ version reads the values to

evaluate the most selective predicate from the caches. In both queries, cache size is � 1.2% of

the JSON “le.

For the projection template, caching JSON values brings a high bene“t. By touching the JSON

“le only to access the qualifying values to be projected, Proteus achieves a speed-up of up to

15× for selective queries. As selectivity reaches 100%, Proteus avoids fewer accesses of the

JSON “le, therefore the speedup is lower. We observe signi“cant speedup for the selection

template as well. The speedup is smaller than in the case of the projection query, because even

though the projection-intensive query is more expensive than the selection-intensive one

in its baseline version, both of them end up having the same execution time under •Cached

PredicateŽ. In other words, there are some constant costs (e.g., structural index navigation)

which de“ne the minimum execution time.

Summary. Proteus is competitive with specialized systems for different operations regardless

of the underlying data models and formats. We also saw the additional bene“ts brought by

caching, which we investigate further in the next section.

4.7.2 Adapting to a Real-world Workload

We now evaluate Proteus using a workload obtained from Symantec, which performs analysis

over data derived from spam e-mails. The data silo of Symantec periodically receives batches

of JSON “les, collected through worldwide-distributed spam traps. Each “le contains infor-

mation about spam e-mails, such as the mail body and its language, its origin (IP address,

71

Chapter 4. Just-in-time Query Engines

0.01

0.1

1

10

100

1000
Q

1
Q

2
Q

3
Q

4
Q

5
Q

6
Q

7
Q

8
Q

9
Q

10
Q

11
Q

12
Q

13
Q

14
Q

15
Q

16
Q

17
Q

18
Q

19
Q

20
Q

21
Q

22
Q

23
Q

24
Q

25
Q

26
Q

27
Q

28
Q

29
Q

30
Q

31
Q

32
Q

33
Q

34
Q

35
Q

36
Q

37
Q

38
Q

39
Q

40
Q

41
Q

42
Q

43
Q

44
Q

45
Q

46
Q

47
Q

48
Q

49
Q

50

BIN CSV JSON BinCSV BinJSON CSVJSON BINCSVJSON

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

PostgreSQL DBMS-C & MongoDB Proteus

Figure 4.14 … For a spam analysis workload, Proteus outperforms the other systems in the
majority of queries due to i) its lightweight, specialized-on-demand code paths, and ii) the
caches it builds as a side-effect of query execution.

country), and the bot responsible for it. These “les are the input to the data mining work”ows

of Symantec; classi“cation and clustering are performed over them, through which each mail

is assigned to a class per classi“cation criterion. In every iteration of the work”ow, output is

stored in comma-separated-values (CSV) “les containing an identi“er of each e-mail, various

assigned classes, etc. Finally, data is transformed and loaded in an RDBMS, with the use of

which further calculations are made. This process is repeated for every new batch of JSON

“les: In each repetition, •freshŽ JSON and CSV “les have to be loaded in a DBMS and queried

along with pre-existing data.

Analyzing this data involves queries over combinations of the datasets. We compare three

possible solutions, for which we use i) an RDBMS that has been extended to support richer

data models, ii) an RDBMS for ”at data and a document store for hierarchies, and iii) Proteus,

which reshapes itself based on each query. For approach I, we use PostgreSQL because it

utilizes the most ef“cient JSON encoding out of the general-purpose systems we tested. For

approach II, we use the combination of the specialized systems DBMS C and MongoDB, along

with a mediating layer on top of them to facilitate cross-format queries and data exchange.

The input comprises a 20GB JSON “le of 28M objects with arbitrary “eld order, a 22GB CSV

“le of 400M records, and a 95GB database table of 500M records. PostgreSQL and MongoDB

load the JSON data prior to querying it. PostgreSQL requires 22GB to store the binary JSON

encoding, and MongoDB requires 30GB. Proteus builds a structural index during its “rst access

to the JSON “le; its size is � 24% of the “le. DBMS C and PostgreSQL load the CSV data prior to

querying it. Proteus again builds a structural index during the “rst access, storing the position

of every 5th “eld; its size is � 17% of the “le. Regarding binary storage, Proteus operates

over binary column “les similar to the ones of MonetDB. Proteus caching is enabled in this

experiment. The experiment starts with the OS cache containing the binary table, and none of

the systems having accessed the CSV nor the JSON data yet.

We launch a workload of 50 queries sequentially, and progressively query a variety of the

datasets. The queries perform selections, 2- and 3-way joins, unnests of JSON “elds, result

groupings, and aggregate computations; Appendix A.1 has more details on the queries. Projec-

tivity ranges from 1 to 9 “elds, and selectivity from � 1% to 25%. We group together queries

accessing the same datasets. We show the results in Figure 4.14.

72

4.7. Experimental Evaluation

Q1-Q8 touch the binary dataset. For Q1-Q7, Proteus is the fastest approach, which corrobo-

rates the “ndings for selection and grouping queries over TPC-H data. Q8 has a very selective

predicate on the “eld used by DBMS C to sort the input data, therefore DBMS C skips a large

part of the dataset and is slightly faster than Proteus.

Q9-Q15 touch the CSV dataset. For DBMS C and PostgreSQL, the execution time of Q9

includes the loading time of the CSV dataset. Proteus answers queries over the original data,

also building a structural index during Q9 and caching any “elds it converts to answer the

query. Q9 takes Proteus 440 seconds less than DBMS C, and 880 seconds less than PostgreSQL.

DBMS C is faster than Proteus in Q11 because it operates over binary data, whereas Proteus

converts data “elds on-the-”y and pays to cache them for further use. Indeed, Proteus partially

serves Q12 from its caches. On the other hand, Q12 also has a “ltering predicate on a string

“eld. Proteus opts not to cache string “elds, whereas DBMS C performs dictionary encoding of

string values during loading and exploits it in Q12; still, both systems have similar performance.

Q13 is also heavy on string-based operations, which explains why DBMS C is faster. For Q14

and Q15, Proteus is the fastest approach because of the binary caches it populates and its

minimal generated engine.

Q16-Q25 touch the JSON dataset, so MongoDB becomes active. For Q16, all systems behave

as in Q9: Proteus exploits that the JSON dataset is accessed for the “rst time and caches data

aggressively since the caching cost is masked by I/O and the structural index construction.

Q16 takes Proteus 600 seconds less than MongoDB, and 800 seconds less than PostgreSQL.

For Q17, Proteus uses its caches to speed-up execution signi“cantly. For Q18 and Q21, caches

are less useful because the queries involve string “elds, which Proteus extracts and processes

from the JSON “le at query time. Using a policy of caching strings would bene“t Proteus in

the short term, but it would also pollute the caches with string objects. Still, Proteus is slightly

faster than the other systems. For the rest of the queries, custom code generation combined

with judicious data conversions and adaptive caching make Proteus faster.

Q26-Q30 join binary and CSV data. The materialization overhead of DBMS C is insigni“cant

because these queries are very selective. Still, Proteus is faster for Q26 and Q27. Likewise, it

is barely noticeable for Proteus that Q28 includes predicates on string “elds of the CSV “le.

DBMS C is faster for Q29 because Proteus again has to access a string “eld in the CSV “le,

and at the same time DBMS C skips multiple data entries because of a “ltering predicate

on its sorting key. In general, both DBMS C and Proteus offer competitive performance for

this query range. Finally, Q31-Q35 join binary and JSON data, Q36-Q40 join CSV and JSON,

and Q41-Q50 join all three datasets. Q39 is very expensive for PostgreSQL because it picks

a sub-optimal, nested-loop-based plan. Proteus is consistently the fastest system for two

reasons: First, as discussed in Section 4.7.1, customizing the query engine gives signi“cant

performance bene“ts. Second, Proteus adaptively caches accessed values, thus after some

point it largely operates over its binary caches, instead of the verbose CSV and JSON datasets.

73

Chapter 4. Just-in-time Query Engines

Load
CSV

Load
JSON

Middle-
ware

Q39 Queries
(Rest)

Total

PostgreSQL 1019 792 0 2226 7468 11505

DBMS-C & MongoDB 711 1067 43 29 1810 3660

Proteus 0 0 0 17 1231 1248

Table 4.2 … Execution time per Symantec workload phase.

At the end of the workload, the cache size for the CSV data is � 30% of the CSV “le. The cache

size for the JSON data is only � 2.5% of the JSON “le. JSON caches are more compact because

although the number of CSV and JSON “elds of interest is almost the same, the JSON “le

contains 28 million verbose JSON objects to be partially cached, whereas the CSV “le contains

400 million narrow tuples. Interestingly, the JSON caches are more impactful for the workload

because of the increased access cost for the JSON dataset. Therefore, if we were to drop any

caches to adhere to a tighter memory budget, we would start from the ones for CSV data.

Aggregate Performance. Table 4.2 presents the accumulated execution time spent in each

workload step. Proteus is 9 .12× faster than using an RDBMS with added support for richer data

models (PostgreSQL) and 2.9× faster than the approach of packaging together multiple query

engines and using the appropriate one for each specialized scenario (DBMS C & MongoDB).

We isolate Q39 because it is an outlier for PostgreSQL that highlights the problem of extending

existing systems without deeply integrating support for the added data models and formats.

Q39 performs a join between the CSV and JSON datasets. PostgreSQL, however, treats JSON

data as a BLOB-like datatype, which is essentially opaque to its optimizer. The result is that

the optimizer chooses an expensive nested-loop join. If we exclude Q39 from the aggregated

execution time, Proteus is still 7 .4× faster than PostgreSQL. Finally, even if we focus completely

on execution time and exclude any other overheads from the work”ow (e.g, data loading cost,

overhead of middleware layer), Proteus still is the fastest system overall.

In conclusion, Proteus ”exibly accesses a real-life workload of heterogeneous datasets while

being as fast as a specialized system per use case. Besides being fast regardless of its input, Pro-

teus achieves an additional speed-up by adapting to the workload through caching structures

built as a side-effect of querying.

4.8 Summary

Data analysis solutions over heterogeneous data have always involved a trade-off: be ”exible

and serve diverse datasets at the cost of performance, or be rigid and specialized for a speci“c

scenario, thus leading users to employ a different system per use case.

This work presents a system design that offers ”exibility to users, exposing heterogeneous

datasets under a single interface, while also exhibiting the response times of a system spe-

cialized per use case. The design couples i) an expressive query algebra that masks data

heterogeneity with ii) on-demand customization mechanisms that produce a new system

74

4.8. Summary

implementation per query. Based on this design, we build Proteus, a query engine that natively

supports CSV, JSON, and relational binary data, and also specializes its entire architecture

to each query and the data that it touches via code generation. Proteus also customizes its

caching component, specifying at query time how these caches should be shaped to better “t

the overall workload.

Proteus serves synthetic and real-world workloads ef“ciently: it outperforms state-of-the-

art open-source and commercial approaches without being tied to a single data model or

format, all while operating transparently across heterogeneous data. The ability of Proteus to

dynamically specialize itself opens multiple opportunities for further optimizations.

75

5 Big Data Virtualization

The typical enterprise data architecture consists of several actively updated data sources (e.g.,

NoSQL systems and data warehouses), and a central data lake such as HDFS, in which all the

data is periodically loaded through ETL processes. To simplify query processing, state-of-the-

art data analysis approaches solely operate on top of the local, historical data in the data lake,

and ignore the fresh tail end of data that resides in the original remote sources. However, as

many business operations depend on real-time analytics, this approach is no longer viable.

The alternative is hand-crafting the analysis task to explicitly consider the characteristics of the

various data sources and identify optimization opportunities, rendering the overall analysis

non-declarative and convoluted.

We design System-PV, a real-time analytics system that masks the complexity of dealing with

multiple data sources while offering minimal response times. System-PV extends Spark with

a sophisticated data virtualization module that supports multiple applications … from SQL

queries to machine learning. The module features a query compiler that considers source

complexity and location (i.e., •localŽ and •remoteŽ sources), and a two-phase optimizer that

produces and re“nes the query plans, not only for SQL queries but for all other types of

analysis as well.

5.1 Introduction

In the past decade, there has been an explosion in terms of data volume and variety, as well

as in terms of demand for data-driven insights. Daily business operations are supported by

a diverse set of applications, each with its own characteristics. Therefore, different parts of

the same organization end up using different systems depending on their application require-

ments. NoSQL stores and OLTP systems are widely used as operational stores that store the

most recent data as generated by customer transactions, user tweets, etc. ETL processes are

periodically run over each operational data source to extract the data, transform it appropri-

ately, and load it in a unifying data lake, such as HDFS, or a relational data warehouse, on top

of which various types of analytics are performed. Querying data in such complex ecosystems

is a signi“cant challenge.

77

Chapter 5. Big Data Virtualization

SQL-over-Hadoop: Ignore problem, or hand-code solution. Data analysts typically use a

scale-out processing system, such as Spark [260], to run analytics over the data portion stored

in the data lake. A major problem of accessing only the data lake is staleness, as the tail end of

data (i.e., most recent and interesting data [23]) in the operational sources is ignored. Data

staleness is often unacceptable because many applications require analysis of the tail end of

the data, as well as the historical data.

To facilitate analysis over multiple data sources, engines such as Spark [260] and Hive [238]

offer connectors [43, 198] to provide access to data sources that are external to the data lake.

Although the connectors provide the basic mechanism to access external sources, the data

analysts carry the burden of ef“ciently using them.

SQL-over-Hadoop: Example. A user who creates a Spark job to process both the historical

data in the data lake and the most recent data in the external sources has to hand-code her

analysis using low-level logic that considers the following factors: 1) the location of data as well

as recent data updates in the external sources, 2) potential ETL invocations to ingest data into

the lake, 3) the data overlap between the external sources and the data lake, 4) potential schema

mediation between data sources, 5) optimization opportunities for the overall analysis. Going

through multiple steps and writing boilerplate code before launching any type of analysis is a

non-sustainable, complicated process.

Data federation systems are an established alternative for queries over multiple sources, yet

they have two shortcomings that hinder their use in modern applications: First, traditional

federation systems focus solely on SQL analytics. Second, they encounter dif“culties optimiz-

ing queries over logical datasets that are physically spread across the data lake and an external

source, and therefore exhibit suboptimal performance [35]. Thus, users end up compromising

data freshness by operating only over the historical data in the data lake and ignoring the tail

end of data in external sources.

Traditional Data Federation: Complexity leads to compromise. Data federation systems are

an established alternative for queries over multiple sources, yet they have two shortcomings

which hinder their use in modern applications: First, traditional federation systems focus

solely on SQL analytics. Second, they encounter dif“culties optimizing queries over logical

datasets that are physically spread across the data lake and an external source, and therefore

exhibit suboptimal performance [35]. Thus, users end up compromising data freshness by

operating only over the historical data in the data lake and ignoring the tail end of data in

external sources.

Polymorphic Virtualization. This work designs a data virtualization module that provides

a uni“ed view over multiple data stores that are heterogeneous in terms of i) data model,

ii) update rates, and iii) query capabilities. The design enables polymorphic virtualization ,

i.e., masking the complexity of dealing with multiple stores, while offering minimal response

times [144].

78

5.1. Introduction

To abstract away the complexity stemming from data source variety, the data virtualization

module exposes a global schema on top of logically contiguous datasets that are physically

partitioned across systems. The module then uses a location-aware compiler to map the

analysis from the global virtual schema to the actual sources.

The module additionally uses a two-phase optimizer to optimize the overall analysis and

offer minimal response times. The optimizer operates in two phases to optimize both SQL

and general analysis tasks, and to reduce the overall complexity of query optimization over

multiple sources. Phase I considers established cost-based query optimization techniques for

complex SQL queries, without being cluttered by the details of dispersed data sets. Phase II

optimizes all types of data analysis by considering the properties of the underlying data sources

to generate an ef“cient execution plan.

We validate our design by coupling the data virtualization module with the Spark framework to

implement System-PV. System-PV maintains all the Spark APIs and thus can support all types

of Spark applications (e.g., OLAP, machine learning, etc) over a virtual, simpli“ed schema. The

location-aware compiler of System-PV rewrites a data analysis program into a Spark script

over the actual physical schema. The two-phase optimizer rewrites the resulting script using

the sophisticated IBM Big SQL ’ [119] query optimizer for its SQL-oriented Phase I, and the

Spark SQL Catalyst optimizer [43] for its universal Phase II. As a result, System-PV ef“ciently

serves a spectrum of choices for enterprise applications, from operating on stale data that is

in the data lake, to accessing data remotely in place, as well as a combination of the two by

allowing data sets to be split between the data lake (i.e., the historical part) and a remote data

source (i.e., the tail end of fresh data), all while masking the actual data source and schema

complexity from the users.

Overall, the work in this chapter makes the following contributions:

€ We identify shortcomings of the state-of-the-art systems when deployed on top of data lake

environments and accessing fresh data in external data sources (Section 5.3).

€ Motivated by the challenges that users face, we design System-PV, a real-time analytics

system that extends Spark by introducing a data virtualization module that employs a

location-aware compiler and a powerful two-phase optimizer. System-PV supports and

optimizes diverse analytics over a global virtual schema that masks data source variety and

complexity (Sections 3-5).

€ We evaluate System-PV using the TPCx-BB [20, 114] dataset appropriately extended to in-

corporate non-relational data, and show that System-PV is faster than Spark when accessing

multiple data sources, often by more than an order of magnitude. Further, System-PV con-

siders fresh data in external data sources at negligible performance overhead compared to

operating solely on top of the data lake, while abstracting away the complexity from the user

(Section 6.7).

€ We provide insights based on our experiences operating in data lake settings (Section 5.8).

79

Chapter 5. Big Data Virtualization

5.2 Related Work

System-PV leverages decades of research in database views, ETL, and data federation sys-

tems [71, 75, 243, 244]. This section surveys these works and highlights how System-PV pushes

the state-of-the-art further.

Querying Multiple Sources. In recent years, scale-out frameworks, such as Spark [43], Pig [198],

and Hive [238], offer specialized connectors to allow queries over multiple data sources that are

•externalŽ to HDFS (e.g., RDBMS), yet lack higher-level abstractions to hide source complexity.

In addition, even when such systems perform cost-based optimizations [2], their optimizers

ignore external source characteristics.

On the contrary, traditional data federation approaches have extensively studied query execu-

tion across multiple data sources [217, 216, 124, 239, 75]. However, these approaches focus

solely on SQL-based data analysis and lack support for iterative or other kinds of analytics (e.g.,

machine learning). In addition, federated optimizers encounter dif“culties when producing

plans for queries that touch datasets split across multiple sources; deciding the optimal way

to execute a query with multiple JOIN and UNION ALL operations over different data sources

is non-trivial [35]. Therefore, users have been avoiding such scenarios.

System-PV introduces a two-phase optimizer to speci“cally target cases with complex relation-

ships between data sources, thus allowing a single logical dataset to be split across different

sources, and handling data overlap. As we show later, such data distributions are frequent

in data lake settings due to the periodic nature of ETL processes. Two-phase optimization

was initially proposed as a way to perform site selection at runtime, and thus balance the

load equally among the execution sites [72]. Then, the XPRS parallel DBMS [130] employed

two-phase optimization to reduce the overall search space of possible parallel query plans.

Garofalakis et al. proceeded to provide a formal framework for reasoning in terms of both

single- and two-phase optimization [112]; the framework uses metrics such as the •critical

path lengthŽ of a parallel query plan, the amount of resources that an operator reserves, and

the estimated execution time of an operator. Two-phase optimization can result in a “nal

physical query plan that is different from the optimal plan [156]; still, combining a two-phase

optimizer with suf“cient information about the overall physical database design generally

results in ef“cient distributed query plans [94].

Polystores. Another method to serve diverse types of queries over heterogeneous data sources

is through polystore systems [28, 65, 95, 99, 164] that bundle together multiple query engines

and use the most appropriate per query type. Polystore systems apply frequent and multi-

directional data migration across the various engines [99]. Data exchange among multiple

systems is challenging because it i) complicates query optimization and ii) requires connecting

each system with every other system via specialized pairwise connectors [177]. The Myria [251]

system uses the architecture of a federated database system as its blueprint and operates over

a polystore environment. Myria uses an extended relational, rule-based optimizer, whose rules

allow expressing complex operations in ways supported by different backends. In addition,

80

5.3. Motivation and Background

Myria uses PipeGen [126] … an underlying communication framework … to facilitate data

transfer between the different backends it supports. PipeGen reduces data transfer cost by

allowing data stores to exchange Apache Arrow [21] binary buffers.

Still, data transfers to and from operational data stores create additional load that can affect

the stability and performance of the data stores: As opposed to polystores, we design System-

PV for scenarios where the majority of data is stored in the data lake and only the tail end

of the data is in external sources. In such environments, data is typically transferred from

the external sources to the data lake; unidirectional communication avoids overloading the

operational stores and reduces the number of plans that the optimizer considers.

ETL. ETL (Extraction, Transformation, Loading) [170, 243] is a process that populates a data

warehouse with data originating in external sources. In recent years, HDFS is frequently

used as the staging/destination area [211]. The popularity of HDFS has led to specialized

tools [7, 10] for data ingestion. System-PV performs ETL on demand when accessing a variety

of external sources and masks ETL costs through data-source-speci“c optimizations.

Database Views. Database views are frequently used to mask the underlying structure of the

data. System-PV supports both lazily evaluated and materialized views depending on the user

requirements and the optimizer guidelines. Views are also extensively used in the domain of

data integration [165], where data sources are mapped to a global schema using local-as-view

(LAV [152]) or global-as-view (GAV [75]) methods. System-PV uses the GAV variation to form a

global virtual schema.

5.3 Motivation and Background

We now use an example to describe the challenges faced by users when developing applications

that access external sources. We use Spark as a representative state-of-the-art framework [260].

Spark is frequently deployed in data lake environments because it supports various types

of data analysis (e.g., OLAP, machine learning, etc.) and is compatible with various types of

external sources. Spark provides both a procedural (e.g., Scala) and a declarative interface

through Spark SQL [43]. Other frameworks (e.g., Hadoop [8], Hive [238], and Flink [38, 6]) have

similar characteristics, and their users face similar challenges.

Motivating Example. Figure 5.1 depicts a modern data analysis scenario: A company uses an

RDBMS to store transactional data about product sales (Sales dataset), and a NoSQL key-value

store to store the shopping cart data of online clients (Shopping Carts dataset). ETL processes

periodically load the data into a central data lake (HDFS), over which users run analysis using

Spark. Thus, the Shopping Carts dataset ends up being stored across the data lake (CartsHDFS

table) and the key-value store (CartsKV table). Similarly, the Salesdataset is spread across the

data lake (SalesHDFStable) and the RDBMS (SalesFact,Products tables). The Products table

is a dimension table, which is frequently updated and thus remains in the RDBMS through

its entire lifetime. On the contrary, the shopping cart data and the fact table of the sales data

81

Chapter 5. Big Data Virtualization

Sales
Fact

Products

RDBMS

Carts
KV

Key-Value Store

HDFS

Sales
HDFS

Carts
HDFS

[Jan. 1990 – Dec. 2016]

HDFS Data Range

[Dec. 2016 – May. 2017)

External Data Range

Figure 5.1 … Typical scenario in a data lake: Analyzing recent, actively updated data along with
historical data.

are periodically loaded to the data lake, while new data is continuously appended into their

RDBMS and key-value store parts, respectively. Thus, the tail end of the data resides in the

external sources.

Listing 5.1 shows a Spark SQL query that computes the number of products that were placed

in customer shopping carts and eventually purchased. The query performs a join between

the Salesand Shopping Carts datasets, followed by an aggregation (Lines 16-18). Putting

together the query script is non-trivial because of numerous reasons. First, a single logical

dataset (Salesand Shopping Carts) consists of subsets that are physically stored across the

data lake and an external data source. Thus, the user needs to be aware of the portions of

these datasets that are present in each source, then manually perform the necessary “lter

operations to extract the correct data from each source (Lines 2, 6, 10, 12), and “nally perform

the appropriate union operations (Lines 8, 14). Second, these subsets might overlap. In our

example, the sales data of December 2016 is stored in the data lake but is still actively updated

in the RDBMS (e.g., for auditing reasons); likewise for the carts data. Thus, the user must

consider her desirable query semantics in order to determine where to read the data from. In

this example, the user wants to get the most recent data values and thus must be careful to

read the data corresponding to December from the external sources instead of HDFS (Lines

2, 6, 10, 12). Third, the physical data layouts of subsets of the same dataset can differ. For

example, the part of the Salesdataset in the RDBMS is normalized across two tables (SalesFact,

Products), whereas the subset stored in the data lake is denormalized (SalesHDFS). Thus, the

user must join the SalesFactand Product tables (Line 6). Note that this is not the case when

retrieving the sales data from the data lake (Line 2). Finally, when loading the data in the lake,

the ETL process might perform lightweight data transformations, which must be taken into

account when querying the data (not shown in this example).

82

5.3. Motivation and Background

1 / * HDFS side of Sales dataset * /

2 SalesHDFS .f i l t e r (" sold_date < 20161201")

3 / * RDBMS, norma lized side of S ales * /

4 SalesDB = SalesFact . jo in (Products ,

5 SalesFact (" s_id ")===Products (" s_id "))

6 SalesDB = SalesDBAll .f i l t e r (" sold_date >= 20161201")

7 / * Unified Sales dataset * /

8 Sales = SalesHDFS .unionAll (SalesDB)

9 / * HDFS side of Carts dataset * /

10 CartsHDFS . f i l t e r (" sold_date < 20161201")

11 / * NoSQL side of Carts dataset * /

12 CartsKV . f i l t e r (" sold_date >= 20161201")

13 / * Unified C arts da taset * /

14 Carts = CartsHDFS .unionAll (CartsKV)

15 / * Get number of products placed in sho pping car ts and event ual ly purchased * /

16 query = Sales .jo in (Carts ,

17 Sales (" user_id ")===

18 Carts (" user_id ")) . count ()

Listing 5.1 … Spark SQL query across multiple sources.

1 query = Vi r tua lSa les . jo in (Vir tualCarts , V i r tua lSa les (" user_id ") ===

2 Vi r tua lCar ts (" user_id ")) . count ()

Listing 5.2 … System-PV query across multiple sources.

As queries become more complex, the burden on the user increases; she has to hand-code

more complex analysis plans, all while considering the desirable query semantics, potential

data overlap, diversity in terms of data layouts, etc. In addition, every time the user wants

to submit a new query, she must consider whether any of her previous assumptions have

changed. Thus, query formulation over intermingled data sources becomes complex and

non-declarative. On the contrary, System-PV masks source complexity by exposing a virtual

schema; Listing 5.2 shows the System-PV query corresponding to the Spark SQL query of

Listing 5.1. The System-PV query is signi“cantly simpler than the Spark SQL equivalent; we

will be discussing this query in detail later.

The Spark Computing Framework. We now provide a brief overview of the Spark computing

framework since System-PV builds on top of it. Spark supports various types of applications

(e.g., OLAP and machine learning) written as Scala, Java, and Python scripts, or as declarative

queries through Spark SQL [43]. The architecture of Spark SQL is depicted in Figure 5.2a.

Spark SQL manipulates DataFrames, which are distributed collections of structured records.

Users express their analysis through a combination of procedural code that invokes the

DataFrame API and declarative SQL queries that are translated to DataFrame API calls by

Spark SQL. Regarding data access, theData Sources APIenables access to common HDFS

formats (e.g, Avro [1], Parquet [9], etc.) and to external sources, such as RDBMSs and key-value

stores. Adding support for an additional data source only requires coding in a plug-in that

implements the Data Sources API.

83

Chapter 5. Big Data Virtualization

SQL/
Spark Program

Data Frame API

Metadata Manager

Catalyst Optimizer

Data Source API

Spark Engine

RDBMS
Engine

NoSQL
Engine

HDFS
Data

...

(a)

Data Frame API

PV Compiler

Data Source API

SQL

SQL
Optimizer

Spark
Program

Catalyst Optimizer

Source-Aware
Optimizer

PV Catalog
Metadata Manager

Spark Engine

RDBMS
Engine

NoSQL
Engine

HDFS
Data

...

(b)

Figure 5.2 … Architecture of (a) Spark SQL and of (b) System-PV. Dotted boxes in (b) represent
extensions.

External tables and user-created DataFrames can be registered in the Metadata Manager (e.g,

Hive Metastore [238]). Once an SQL query arrives, Spark rewrites it to the DataFrame API and

optimizes it using the Catalyst optimizer. Catalyst currently performs logical rewrites (e.g.,

“lter pushdown) and basic cost rewrites (e.g., choosing between a broadcast and a shuf”e join).

Spark pushes computation to external sources when applicable. Finally, the query engine of

Spark executes the resulting physical plan.

5.4 System-PV

System-PV addresses the challenges related to data analysis over multiple data sources by

making the following two key contributions: First, System-PV abstracts away the complexity

of writing data analysis applications through a data virtualization module that exposes a

•virtualŽ schema across heterogeneous data sources while still supporting all types of Spark

applications. Instead of forcing the user to manually deal with data locations, ETL processes,

data overlap, and con”icting schemata across sources, System-PV operates on top of view de“-

nitions that mask the complexity of the underlying data sources. Second, System-PV optimizes

the execution of data analysis scripts using a powerful two-phase optimizer that supports both

84

5.5. Compiling Cross-store Queries

SQL and arbitrary analysis scripts, performs cost-based optimizations, and also considers

the properties of the external sources. As a result, System-PV offers the performance of hand-

coded, “ne-tuned execution plans, while providing a declarative way to perform data analysis

across multiple sources.

We build System PV on top of Spark, because Spark i) supports a wide range of analysis types

and ii) is extensible in terms of supported data sources. System-PV serves both SQL queries

as well as arbitrary data analysis scripts (typically machine learning jobs) expressed using

the Spark DataFrame API over the global virtual schema. Figure 5.2b presents the high-level

architecture of System-PV. The SQL Optimizer optimizes SQL queries. Arbitrary data analysis

scripts are passed directly to the PV Compiler. System-PV uses the IBM Big SQL’ [119] query

optimizer to optimize the incoming SQL queries, which is based on the IBM DB2 ’ query

optimizer, and is more sophisticated than Catalyst as it considers cost-based optimizations as

well as additional query rewrite opportunities. The output of the optimizer is an optimized

SQL query plan over the virtual schema, which is then expressed in the Spark DataFrame API

and routed to the PV Compiler.

The PV Compiler rewrites the query plan in a form that references the original data sources and

is understood by the Spark Engine. The PV Compiler uses the view de“nitions that comprise

the virtual schema and are contained in the PV Catalog. In particular, the PV Compiler replaces

each view occurrence with a sub-plan corresponding to its de“nition, producing an extended

plan over the external data sources.

After the compilation phase, the Source-aware Optimizer performs a series of logical rewrites

to the plan. We implement the Source-aware Optimizer as an extension of the Spark Catalyst

Optimizer. Its responsibility is examining the underlying data sources and producing plans

conforming to their capabilities. For example, the Source-aware Optimizer detects whether

the data source targeted is an RDBMS or a NoSQL key-value store, and rewrites the logical

plan accordingly. The output is a physical plan that the Spark Engine executes.

The following two sections elaborate on the System PV components: Section 5.5 explains how

to express a virtual schema over the different data sources and launch analysis over the schema.

Then, Section 5.6 presents the two-phase optimization process that System PV follows in order

to optimize the overall analysis.

5.5 Compiling Cross-store Queries

System-PV users develop analysis scripts over a global virtual schema that abstracts away

the complexity of the underlying data sources. We now discuss the properties of the virtual

schema and describe how System-PV automatically rewrites user programs over the virtual

schema into specialized programs that reference the external sources.

85

Chapter 5. Big Data Virtualization

Scan(srcName)

Select(expression,view)

Project(expression,view)

Join(expression,view1,view2)

Union(view1,view2)

UDFunc(expression,view)

Materializer(expression,view)

Table 5.1 … Operators used in the view de“nitions of System-PV.

5.5.1 Exposing a Virtual Schema

The virtual schema consists of view de“nitions over datasets that are scattered across various

data sources. A view provides an abstraction over a logical dataset that is physically stored in

one or more data sources. We now discuss the characteristics of the view de“nitions.

Data Sources. System-PV supports views over both •nativeŽ and external sources. Speci“cally,

it supports •nativeŽ Spark storage (i.e., Parquet “les [9], transient in-memory DataFrames, and

DataFrames cached in Tachyon [167]) and external sources such as RDBMSs and key-value

stores. System-PV connects to an external source by invoking the Spark Data Sources API.

View De“nitions. In most System-PV use cases, the view de“nitions that comprise the global

virtual schema are created once; users then submit queries over the virtual schema. Note that

the views need not be materialized.

To express the views, System-PV uses a subset of the relational algebra and a number of

user-de“ned scalar functions (UDFs) that correspond to lightweight ETL primitives. The

algebra, which is presented in Table 5.1, is straightforward and allows composability of view

de“nitions: a view can be de“ned based on a previously de“ned view. The algebraic operations

take as input views and expressions. Theexpressionshave different semantics depending on

the operation. In the case of Select and Join , the expression “lters the result, whereas

in the case of Project , the expression projects certain columns of the dataset. UDFunc
is an aggregating term for the various UDFs that correspond to lightweight ETL processes.

Finally, a Materializer produces a materialized view. Depending on the value of the mode
parameter, the view is cached as a Parquet “le, a DataFrame stored in memory, or a DataFrame

stored in Tachyon [167].

Listing 5.3 shows the view de“nitions for our running example, which are created once.

Using the view de“nitions, the users operate directly on the virtual schema (VirtualCarts,

VirtualSales) and thus can be unaware of the actual data locations. Listing 5.2 shows the

simpli“ed System-PV query over the virtual schema that corresponds to the Spark SQL query

of Listing 5.1.

86

5.5. Compiling Cross-store Queries

1 cKVSel = Select(•t >= 20161201•, Scan(CartsKV))

2 cHDFSSel = Select(•t < 20161201•, Scan(CartsHDFS))

3 Vi r tua lCar ts = Union(cKVSel ,cHDFSSel)

4 SalesDB = SalesFact . jo in (Products ,

5 SalesFact (" s_id ")===Products (" s_id "))

6 sDBSel = Select(•t >= 20161201•, Scan(SalesDB))

7 sHDFSSel = Select(•t < 20161201•, Scan(SalesHDFS))

8 V i r tua lSa les = Union(sDBSel , sHDFSSel)

Listing 5.3 … Views for running example, created once.

Managing Views. System-PV contains a catalog service, namely PV Catalog, to maintain the

virtual schema. Apart from storing the view de“nitions, the PV Catalog captures information

about each data source, such as its type and capabilities (e.g., whether the data source exposes

an index or whether it supports range queries).

Whenever an ETL process loads new data in the data lake, System-PV updates automatically

the view de“nitions in the PV Catalog. For this purpose, System-PV assigns a •watermarkŽ to

the views that capture a certain temporal range (shown in blue in Listing 5.3). Additionally,

System-PV assigns a temporal range to each data batch loaded from the external sources to

the data lake; these data batches are stored as separate HDFS partitions [155]. The range

of a data batch corresponds to the period from the transaction time 1 of the oldest batch

entry to that of the newest batch entry. In the example of Figure 5.1, loading the tail end of

data into the data lake would result in a batch with the range [Dec.2016 - May 2017) .

System-PV supports external sources that handle transactional workloads, such as RDBMSs

or key-value stores. If the last batch ingested into the data lake corresponds to the range [t1,
t2) , then System-PV automatically assigns the range [t2, +
) to the data in the external

source. When an ETL process loads a data batch, it edits the watermarks of the affected views

to incorporate the temporal range of the incoming batch, thus triggering System-PV to update

the view de“nitions.

Data Overlap. A common scenario is to have a large portion of a dataset stored in the data lake

whereas the tail end of the data is stored in an actively updated external source. Depending

on the nature of the application and the periodic ETL processes, it is possible that these two

subsets overlap. In the example of Section 5.3, the sales data corresponding to the period

between 1990 and 2016 is archived in the data lake (HDFS). The data for December 2016,

however, is also stored in the company•s operational data store because updates still occur over

this data. This data will eventually be pushed to the data lake and the stale HDFS counterpart

will be refreshed. Until then, System-PV enables users to de“ne a view that speci“es which

side (HDFS or the RDBMS) should serve the overlapping data. This view is de“ned based on

the application requirements: If data freshness is important, then the data corresponding to

December 2016 must be fetched from the RDBMS as shown in Line 6 of Listing 5.3. Otherwise,

accessing the local HDFS data is prone to be more ef“cient.

1 The time when the fact is (logically) current in the database [229].

87

Chapter 5. Big Data Virtualization

SQL
Query

SQL
Optimizer

Virtual Plan
(DataFrame

API)

PV
Compiler

Source-Aware
Optimizer

Grounded
Plan

Physical
Plan

SQL plan
over virtual

schema

Optimization Hints

Query
Engine

Spark
Script

Figure 5.3 … System-PV Pipeline.

Lightweight ETL. System-PV handles datasets that are physically split across the data lake

and an external source even when the corresponding data subsets have different schemata.

Speci“cally, System-PV offers primitives for expressing lightweight ETL processes. Users can

remap schemata by changing the name, datatype, and the order of “elds. In addition, users

can employ UDFs that transform column values in order to, for example, convert different

units of measurement and handle out-of-bound values (e.g., negative ages). System-PV also

handles more complex cases, such as the one presented in Figure 5.1, where the Salesdata

is normalized in the RDBMS but it is denormalized in the data lake. As shown in Line 4 of

Listing 5.3, users can express views using join operations to denormalize the external data at

query time.

5.5.2 Querying over a Virtual Schema

As shown in the example of Listing 5.2, System-PV users express their scripts directly over

a virtual schema. At some point, System-PV must therefore translate the virtual schema to

the actual heterogeneous data sources. Figure 5.3 shows how PV Compiler performs the

translation: When a user expresses an SQL query or a procedural script, System-PV generates

a logical plan over the virtual schema that is described using the DataFrame API ; we call this

a virtual plan . Then, System-PV feeds the virtual plan to the PV Compiler, which in turn

uses the view de“nitions stored in the PV Catalog to rewrite the plan into a grounded plan ;

the grounded plan references the original data sources and is understandable by the Spark

engine. The virtual and grounded plan corresponding to our running example are depicted in

Figure 5.4.

Speci“cally, the PV Compiler traverses the virtual plan until it locates scan operations cor-

responding to virtual datasets. For each of the virtual datasets, the PV Compiler looks up its

view de“nition in the PV Catalog, and outputs code that describes how to access the corre-

sponding data in the external data sources. The PV Compiler performs the rewriting using two

88

5.6. A Two-phase Optimizer for Cross-store Analytics

�8�E�N�P�Q�=�H
�5�=�H�A�O

�è�Ö�â�è�á�ç

�8�E�N�P�Q�=�H
�%�=�N�P�O

(a)

�è�Ö�â�è�á�ç

�ê

�5�=�H�A�O�Á�½�¿�Ì

�ë

�5�=�H�A�O
�(�=�?�P

�2�N�K�@�Q�?�P�O

�ê

�%�=�N�P�O�Á�½�¿�Ì �%�=�N�P�O�Ä�Ï

�ê
�ë

�ê

(b)

Figure 5.4 … Virtual plan of our running example (a), and its corresponding grounded plan (b).

components: an Algebraic Rewriter and an Expression Rewriter. The Algebraic Rewriter takes

as input a view de“nition, maps the operators of the view into equivalent operations of the

DataFrame API, and calls the Expression Rewriter to transform expressions when necessary.

For a view de“ned as Select(•x < 10•,Scan(table)) , the Algebraic Rewriter invokes

the Spark SQL filter() function, and the Expression Rewriter produces the code for the

predicate evaluation.

Most of the algebraic nodes of Table 5.1 have 1-1 mappings to Spark operations, similar to

the ones of Select . System-PV models UDFunc operations as overloaded versions of a

projection operation. Finally, the Materializer operator is mapped to a different type of

Spark operation (e.g., a persistent ”ush command, transient in-memory caching, etc.) based

on a modeparameter speci“ed at view de“nition time.

Summary. System-PV masks data source complexity by exposing a global virtual schema and

by using a location-aware compiler to generate specialized scripts that access the external

sources. System-PV also alters its view de“nitions to cater for ETL-triggered data updates.

5.6 A Two-phase Optimizer for Cross-store Analytics

System-PV allows users to perform their analysis over a global virtual schema, thus masking

source complexity. Still, by enabling data analysis over a wide combination of heterogeneous

data sources, the query optimization task seemingly becomes harder. Distributed query

optimization is a well-studied problem [156], which is intensi“ed in our case because i) System-

PV supports different types of analysis besides relational queries and ii) heterogeneous data

sources (e.g, NoSQL stores, RDBMSs) are accessed in the same analysis task.

System-PV makes use of a sophisticated two-phase optimizer. As shown in Figure 5.3, System-

PV applies the “rst optimization phase to SQL queries only. System-PV applies the second

phase regardless of whether the data analysis is expressed using SQL or an arbitrary Spark

program. Speci“cally, when receiving an SQL query, System-PV applies the cost-based op-

timizations of a mature SQL optimizer by considering only the virtual schema (Phase I).

89

Chapter 5. Big Data Virtualization

System-PV further optimizes the analysis plan by exploiting the capabilities of the underlying

data sources (Phase II).

The IBM Big SQL optimizer performs numerous cost-based optimizations over an input SQL

query, yet is unable to reason in terms of non-relational types of analysis such as Spark SQL

procedural scripts. On the contrary, the Spark SQL Catalyst optimizer can process any type

of analysis expressed in the Data Frame API … relational or not. Therefore, Phase I uses the

specialized Big SQL optimizer so that it speci“cally target SQL analysis, and Phase II uses the

Catalyst optimizer so that it is compatible and applicable to any type of Spark SQL analysis.

System-PV keeps the two optimization phases separate for two reasons: First, compared to

optimizing procedural data scripts, optimizing declarative SQL queries is a more nuanced pro-

cess, requires examining multiple execution plans, and typically bene“ts more from complex

query optimization. Therefore, System-PV applies Phase I over SQL queries and not arbitrary

data scripts. Second, the separation con“nes the universe of decisions in each phase. Unifying

the two phases complicates plan enumeration: The source-speci“c rewrites of Phase II expand

the query plan and thus increase the optimization space, so exposing the complexity to the

SQL query optimizer would complicate its major task of identifying the appropriate join order.

5.6.1 Phase I: SQL Optimization

Optimizing SQL queries in a distributed setting is a challenging, error-prone task [31, 98, 124,

156, 173, 108]. In the case of Spark, the Catalyst optimizer is a promising “rst step, but at

the time of writing, it mainly focuses on simple rewrites, and it supports very few cost-based

optimizations. System-PV therefore uses the IBM Big SQL federated query optimizer because

it supports sophisticated rewrites and cost-based optimizations.

As depicted in Figure 5.3, when System-PV receives an SQL query over the virtual schema, it

routes the query to the SQL Optimizer. The SQL Optimizer requires data source information

to perform costing and to come up with an ef“cient query plan; System-PV thus exposes

such information for every •virtual tableŽ, based on the metadata and statistics stored in the

PV Catalog.

Speci“cally, when a dataset is split across an external source and the data lake, System-

PV distinguishes between two cases. When the ETL process that loads the data in the data lake

is frequent (i.e., when it exceeds a tunable threshold), the SQL optimizer considers only the

data in the data lake. The tail end of data is thus masked during the Phase I optimizations and

is considered only in Phase II. System-PV masks the tail end during Phase I for the following

reasons: i) the tail end of data is typically small compared to the overall dataset, which is the

default case in data lake environments, and ii) exposing more complex view de“nitions that

capture the full dataset can complicate plan enumeration [35]. On the other hand, when ETL

is sporadic, the SQL optimizer considers only the remote data source, since the remote data

access dominates query execution costs.

90

5.6. A Two-phase Optimizer for Cross-store Analytics

System-PV exposes the local HDFS cluster to Big SQL as the •primaryŽ data source, and the

rest of the data sources as remote data stores. Depending on the data source exposed, the

optimizer identi“es the source capabilities (e.g., ability to perform projection pushdown,

indexes) through specialized source wrappers2 [71, 217]. Each source wrapper exposes data

statistics to Big SQL to compute the overall query cost. Big SQL offers sophisticated, statistics-

aware wrappers for RDBMS. On the other hand, Big SQL lacks a source wrapper for distributed

key-value stores such as Cassandra [3]. System-PV therefore emulates the connection with

an instance of Cassandra by re-using an existing wrapper: Speci“cally, given that Cassandra

is a distributed key-value store, System-PV uses a wrapper designed for a parallel RDBMS,

and informs Big SQL about a hypothetical hash index over the mock RDBMS to emulate

Cassandra•s key-based accesses. In addition, System-PV speci“es a data partitioning scheme

that the mock RDBMS hypothetically uses (e.g., hash partitioning) to emulate the partitioning

scheme employed by Cassandra [4]. Finally, System PV collects statistics over Cassandra and

injects them in the PV Catalog. Overall, System PV uses the different source wrappers of

Big SQL and the accumulated data statistics to make well-informed decisions for SQL query

optimization.

The SQL Optimizer uses the information of the exposed data sources to produce an optimized

logical query plan over the virtual schema . In addition, it produces information about the

corresponding physical plan. For example, the optimizer indicates the physical join algorithms

to be used, and potential intermediate result materializations. System-PV uses the information

about the physical plan as optimization hints during the source-aware optimization that

produces the “nal physical plan (Phase II).

The optimized logical query plan is forwarded to the PV Compiler, which rewrites any occur-

rences of views and generates the grounded plan that references the original data sources.

The grounded plan along with the optimization hints are then passed to the Source-aware

optimizer used in Phase II.

5.6.2 Phase II: Source-aware Optimization

The second optimization phase applies source-speci“c optimizations to all data processing

tasks, regardless of whether they are expressed in SQL or procedural code, through use of the

Source-aware Optimizer.

An issue of Catalyst is that it misses multiple optimization opportunities for queries over

external sources. Speci“cally, Catalyst uses the Data Source API to access external sources.

The Data Source API, however, is meant for single-table accesses. As a result, only selections

2 The data source wrappers of Big SQL are not to be confused with the data source connectors of the Spark Data
Source API; the former are used during query optimization, whereas the latter only perform data access during
query execution.

91

Chapter 5. Big Data Virtualization

�ê�ç�´�6�4�5�:

�5�=�H�A�O�Á�½�¿�Ì

�ë

�5�=�H�A�O�H�F

�ê�ç�¹�6�4�5�:

�‚
Ú

�8�5

�ê�ç�´�6�4�5�9

�Œ�}
Ú

�5�=�H�A�O�Á�½�¿�Ì

�ê�ç�´�6�4�5�9

�Œ�}
Ú
�ñ

�Z���Á�Œ�]�š��

Figure 5.5 … Query plan simpli“cation during source-aware optimization.

and projections are pushed down to the external sources. More complex operators such as

joins are not pushed down, thus often missing opportunities for reducing the network traf“c.

Even worse, when the underlying external source is not an RDBMS, very few operations are

pushed down.

As shown in Figure 5.3, the input of the Source-aware Optimizer comprises i) a grounded plan

that references the original data sources, and ii) the optimization hints produced by the SQL

optimizer. The Source-aware Optimizer extends Catalyst with different categories of rewrite

rules. The “rst category simpli“es the grounded plan and applies the optimization hints

to improve the physical plan quality. The second category maximizes operator pushdown.

Finally, the third category examines each data source type in isolation and applies targeted

optimizations. We now elaborate on each category.

Rewriting Internal Plan Nodes. After the PV Compiler expands view de“nitions, the resulting

grounded plan becomes more complex because additional operations, such as unions and

selection predicates, are exposed. The Source-aware Optimizer simpli“es this plan by pruning

redundant sub-trees and coalescing “ltering expressions into disjunctive normal form.

Figure 5.5 presents an optimization instance over the rolling example of Figure 5.1: V1 is

a view that models a union between HDFS and RDBMS-resident data of the Salesdataset.

Both sides of the union have a “ltering predicate applied. When the Source-aware Optimizer

examines the “ltering predicate of Query Q1, it detects that the Salesdata in the RDBMS does

not need to be accessed to answer the query, and thus rewrites the plan to access only the

HDFS-resident data.

After simplifying the plan, if the original analysis task was an SQL query, the Source-aware

Optimizer enforces the optimization hints suggested by the SQL Optimizer during Phase I.

Speci“cally, if the SQL optimizer suggests that a join operation must broadcast the smaller

dataset involved, the Source-aware Optimizer rewrites the plan to use the appropriate Spark

broadcast hash-join operation. The SQL optimizer may also suggest that a sub-tree of the

overall query plan must be materialized and then reused later in the same query. In this case,

the Source-aware Optimizer injects a Mater i al i ze operator in the physical query plan.

Operator Pushdown. When dealing with remote data sources, it is important to reduce the

amount of data movement through the network by pushing down operations to them. The

92

5.6. A Two-phase Optimizer for Cross-store Analytics

JDBC:
CREATE VIEW V1
AS …

�å
�ê�Ô�-

�5�=�H�A�O
�(�=�?�P

�ê�Õ�5

�ê�Ô�¿

�å

�2�N�K�@�Q�?�P�O

�ê�Õ�¿

�ê�Ô�5�è�®�è�Õ�Ç

�8�5

Rewrite
Pull
Filters Up

Rewrite

�5�=�H�A�O
�(�=�?�P

�ê�Ô�5�è�®�è�Õ�Ç

�2�N�K�@�Q�?�P�O

Figure 5.6 … Join pushdown rewriting during source-aware optimization.

Data Source API enables some basic selection and projection pushdown for queries over

external sources. However, Catalyst has two major limitations: First, Catalyst is often unable

to push down more complex “ltering predicates. Second, Catalyst is unable to push down

more complex operators such as joins, because the Data Source API of Spark SQL is restricted

to single-table data accesses. System-PV must thus adress both limitations in a non-intrusive

manner, so that it remains compatible with •vanillaŽ Spark SQL.

First, the Source-aware Optimizer further simpli“es “ltering predicates to push them down

to the external data sources. Second, System-PV performs join pushdown by adding an

optimization pass that proceeds as follows: The pass traverses the query plan and “nds the

largest subtree that contains data accesses to a single data source. If System-PV detects such

a subtree, it makes a call to the underlying source to de“ne a temporary view representing

the subtree. By exposing the subtree as a single table, System-PV supports join pushdown

without harming compatibility with the Data Sources APIof Spark SQL. Figure 5.6 presents an

application of the join pushdown rule over the example of Figure 5.1: Initially, any selection

predicates are pulled above the join operation, so that the optimization pass has simpler tree

patterns to detect. Once a join pattern between two original relations is detected, a temporary

view V1 is created. Finally, selection pushdown is re-applied on the “nal view, which can be

deleted once the query terminates.

Exploiting Source Characteristics. Unlike vanilla Spark, System-PV takes into consideration

the characteristics of the different underlying data sources to further optimize the analysis

plan. Speci“cally, the Source-aware Optimizer rewrites queries that are submitted to external

data sources in a way that masks the data movement costs.

Large-scale applications pay a signi“cant cost to serialize data, transfer it over the network,

and deserialize it [140, 200]. The cost is even more pronounced for Spark when it accesses

external data sources: In case of RDBMSs, Spark blindly submits each query through a single

JDBC connection; a single Spark task executor is responsible for receiving the data through

the network, deserializing it, and shipping results to the other executors to continue query

execution. This single task executor often becomes the bottleneck. System-PV, on the other

hand, masks data movement cost by rewriting the query into a semantically equivalent union

of multiple queries that are concurrently submitted to the RDBMS by multiple Spark task

executors. Speci“cally, the Source-aware Optimizer applies an optimization pass that splits an

93

Chapter 5. Big Data Virtualization

RDBMS scan operation into a union of scan operations. The optimization pass is triggered

when the data to be scanned i) has an index, or ii) is range-partitioned on the query•s predi-

cate(s), which is typical in modern deployments [155]. In these cases, the RDBMS performs

selective data accesses, which further improve execution times.

Rewrite�ê�ç�¹�6�4�5�8�è�ç�´�6�4�5�;

�%�=�N�P�O�-�8
�ê�ç�@�6�4�5�8

�%�=�N�P�O�-�8

�ë

�%�=�N�P�O�-�8

�ê�ç�@�6�4�5�9

�ë

�%�=�N�P�O�-�8

�ê�ç�@�6�4�5�:

Figure 5.7 … Range query rewriting during source-aware optimization: Data accesses become
parallelizable.

System-PV performs a similar optimization when accessing key-value stores, which by design

are optimized for queries requesting a single data item by key. The Source-aware Optimizer

rewrites range queries on the key attribute into a union of equi-predicate selections to paral-

lelize the ingestion on the Spark side, and also better suit the query capabilities of the key-value

store. Figure 5.7 presents an application of said optimization over the example of Figure 5.1:

The range predicate is split into a number of equi-predicate selections, and the results of the

sub-queries are uni“ed.

Summary. System-PV uses a two-phase optimizer to cover both SQL queries and general

analysis tasks, and to reduce the complexity of optimization over multiple data sources. In

Phase I, an SQL Optimizer applies SQL-centric optimizations. In Phase II, the Source-aware

Optimizer considers the properties of the underlying data sources.

5.7 Experimental Evaluation

We experimentally evaluate System-PV by emulating a business intelligence scenario similar

to that of Figure 5.1. The majority of the data is in the data lake (HDFS), whereas the tail end

of the data is in a data warehouse (IBM DB2 ® DPF’) and a key-value store (Cassandra [3]).

Our key results are the following:

1. System-PV is faster than Spark SQL over multiple data sources … often by more than an

order of magnitude … while masking the complexity of accessing multiple data sources

(Section 5.7.2) .

2. The SQL Optimizer of System-PV produces better query plans than Catalyst (Section 5.7.2).

3. The Source-aware Optimizer of System-PV provides signi“cant performance gains by

masking the data transfer costs through better parallelization (Section 5.7.2).

4. System-PV accesses the remote data tail end with small overhead added to the case of

operating solely on top of the historical data in the data lake (Section 5.7.3).

94

5.7. Experimental Evaluation

5.7.1 Experimental Setup

We use the TPCx-BB benchmark [20, 114] data generator at scale factor 1000 to populate the

web_clickstreams table (180 GB) and web_sales table (450 GB). To incorporate non-relational

data, we additionally generate the web_events dataset (90 GB) that contains sales data that

has been produced by mobile devices in JSON format. The web_clickstreams table is entirely

stored in the data lake to emulate the case in which data is directly ingested in HDFS. The

web_sales table is split between HDFS and DB2 DPF. This is because information about sales

is typically inserted in an RDBMS and periodically loaded in the data lake. Similarly, the

semi-structured web_events dataset is split between HDFS and Cassandra.

We use Spark version 1.4.0 on a 10 node cluster, DB2 DPF version 10.1.0 on a 5 node cluster,

and Cassandra version 2.1.7 on a 4 node cluster. All nodes are equipped with two 6-core Intel

Xeon E5-2430 CPU @ 2.20GHz, 96GB RAM, and 11× 2TB SATA disks. The nodes are connected

through a 10 Gbit Ethernet switch.

The experiments compare four data placement con“gurations : In the “rst case, 90% of the Sales

and Events tables reside in HDFS, and the 10% left resides in DB2 and Cassandra, respectively

(90-10). In the second case … the closest to real-world scenarios … 99% of the Sales and Events

tables reside in HDFS, and the 1% left resides in DB2 and Cassandra, respectively (99-1). In

both cases, data is range-partitioned based on a date attribute. Finally, the third and fourth

cases represent baseline extremes: Either all datasets are entirely stored in HDFS (Local), or

each dataset resides in a different data store (Remote). Local represents the scenario where

the users access only the data in the data lake and thus ignore data freshness.

We use a query template that represents a scenario which is frequent in data lake environments:

combining data from all the involved data sources. The template T (X,Y,Z) … shown below …

includes a 3-way join and a number of “ltering predicates with non-“xed selectivities (X ,Y,Z).

The template allows us to generate various types of queries that stress different parts of a

system. By using different combinations of predicate selectivities, we affect the amount of

data to be transferred across sources, and also evaluate the query processing and optimization

capabilities of System-PV, given that different selectivities can trigger different join orders.

1 SELECT AVG(s_sales_pr ice)

2 FROM web_clickstreams c

3 JOIN web_sales ss ON

4 (c_user_sk = s_bil l_customer_sk)

5 JOIN web_events e ON

6 (s_bil l_customer_sk = e_cust_id)

7 WHERE (c_cl ick_date_sk BETWEEN X1 AND X2)

8 AND (s_sold_date_sk BETWEEN Y1 AND Y2)

9 AND (e_session_date BETWEEN Z1 AND Z2)

Listing 5.4 … Query template for analysis across data sources.

95

Chapter 5. Big Data Virtualization

5.7.2 System-PV vs. Spark

We compare System-PV with Spark by quantifying the impact of each of the two System-

PV optimization phases.

System-PV SQL Optimizer vs. Spark Catalyst

�ì

�í�ì

�î�ì

�ï�ì

�ð�ì

�ñ�ì

�ò�ì

� í � î � ï � ð � ñ � ò � ó � ô � õ � í� ì

���
Æ

���
��µ

�š
�]�

}�
v�

��d
�]�

u�
���

�~
�•

���
��X

�•

�Y�µ���Œ�Ç���W�o���v���E�}�X

Figure 5.8 … Query Plan Quality: The SQL Optimizer of System-PV picks the best candidate
plan (No. 1), whereas Spark•s Catalyst optimizer picks plan No. 9.

The goal of this experiment is to validate that the SQL optimizer of System-PV produces

ef“cient plans. We generate the instantiation T (1,5,10) of the query template in Listing 5.4,

namely Q, which selects 1% of the Clickstreams data, 5% of the Sales data, and 10% of the

Events data using the 90-10 data placement con“guration. We compare the query plan

generated by the System-PV SQL optimizer for Q (Query Plan No.1 in Figure 5.8) against various

other plans in the space of all plans for queries generated from the template of Listing 5.4.

We choose not to pick random plans from the plan space for this comparison because they are

highly likely to exhibit dramatically poor performance. Instead, we pick plans that are poten-

tially close to the optimal. One such plan is the one generated by the Catalyst optimizer (Query

Plan No.9). Other selected plans were the ones generated by the System-PV SQL optimizer for

various other template instantiations. These plans are shown in gray in Figure 5.8. We execute

multiple runs of query Q on System-PV , each time hand-coding a different virtual plan corre-

sponding to one of the selected plans, and using the same source-aware optimizations for all

of them.

Different plans lead to different execution times … a fact that further highlights the need for a

cost-based optimizer. System-PV picks plan No.1 ((Sales �� Events)�� Clicks), which builds

hash tables on the Clickstreams and Events datasets (i.e., the right operands of each join) and

probes them using records from the Sales dataset (i.e., the left operand). This plan ends up

being the best choice because the Clickstreams dataset is stored in the data lake and thus

System PV builds a hash table over each node•s local data in parallel. The Catalyst optimizer,

on the other hand, picks plan No.9 ((Clicks �� Sales)�� Events) … the second worst from the

plans tested. Plan No.9 builds hashtables over the Sales and the Events datasets, which it then

probes using the records of the Clickstreams dataset. Both Sales and Events, however, have

a signi“cant portion of data stored in remote sources and thus require additional effort to

96

5.7. Experimental Evaluation

�í�í�ô�ô �í�í�ñ�ð �í�í�ò�ñ�í�ñ �ñ�ì �í�ì�ï
�í

�í�ì

�í�ì�ì

�í�ì�ì�ì

�í�9 �ñ�9 �í�ì�9

���
Æ

���
��µ

�š
�]�

}�
v�

��d
�]�

u�
���

�~
�•

���
��X

�•

���À���v�š�•���^���o�����š�]�À�]�š�Ç
�^�‰���Œ�l �W�s�W���Z���u�}�š��

(a) Clicks and Sales Selectivities kept at 0.1%.

�ð�î �î�í�î �ð�ì�ô�í�ì �í�î �î�ð
�í

�í�ì

�í�ì�ì

�í�ì�ì�ì

�í�9 �ñ�9 �í�ì�9

���
Æ

���
��µ

�š
�]�

}�
v�

��d
�]�

u�
���

�~
�•

���
��X

�•

�^���o���•���^���o�����š�]�À�]�š�Ç
�^�‰���Œ�l �W�s�W���Z���u�}�š��

(b) Clicks & Events Selectivities kept at 0.1%.

Figure 5.9 … Spark vs. System-PV: Spark is unable to keep up with System-PV even for very
selective queries.

build the hashtables. In addition, their corresponding predicates are less selective than the

predicate on the Clickstreams dataset.

Our results show that unlike Catalyst, the System-PV SQL optimizer considers the predicate

selectivities and the location of a dataset over which a hashtable is built to produce an ef“cient

plan. We repeated this analysis using the same protocol but starting with different instantia-

tions of the template T using other selectivity values and data placement con“gurations as

well: We obtained similar results.

Impact of Source-aware Optimizer

We now quantify the performance gains that System-PV has over Spark due to the Source-aware

Optimizer. We make sure that both System-PV and Spark use the same optimal virtual plan by

hand-coding the plan produced by the System-PV SQL optimizer. As shown in Section 5.7.2, in

many cases Spark picks a suboptimal plan, and thus the Spark performance results presented

here are conservatively optimistic.

We test the Remote data placement con“guration … the most challenging of the ones examined

… by instantiating the template T with different selectivity values for the predicates; we generate

6 queries in total. The predicates touching two of the three datasets are kept very selective.

Less selective con“gurations stressed Spark even more; we omit them in the interest of space.

We vary the selectivity of the predicate over the third dataset, so that the amount of data

fetched from the remote source varies too.

Figure 5.9apresents the case in which only 0.1% of the HDFS-resident clickstreams and the

DB2-resident Sales are selected. The selection predicate for the Cassandra-resident Events

ranges from 1% to 10%. In this case, System-PV is 11× to 79× faster than Spark. Note that the

execution time of System-PV increases as the query becomes less selective, and more data has

to be fetched from Cassandra. Spark, on the other hand, shows little variation in execution

time regardless of the amount of data to be fetched. The reason is that Spark attempts to

push a range (sub-)query down to Cassandra, which Cassandra is unable to process. Thus,

Cassandra ships the entire dataset to Spark through a single-threaded connection, and Spark

97

Chapter 5. Big Data Virtualization

0

100

200

300

400

500

600

1% 5% 10%

E
xe

cu
tio

n
T

im
e

(s
ec

.)

Events Selectivity

Remote 90-10 99-1 Local

(a) Clicks: 10%. Sales: 1%.

0

100

200

300

400

500

600

1% 5% 10%

E
xe

cu
tio

n
T

im
e

(s
ec

.)

Events Selectivity

Remote 90-10 99-1 Local

(b) Clicks: 10%. Sales: 5%.

0

100

200

300

400

500

600

1% 5% 10%

E
xe

cu
tio

n
T

im
e

(s
ec

.)

Events Selectivity

Remote 90-10 99-1 Local

(c) Clicks: 10%. Sales: 10%.

Figure 5.10 … System-PV performance for various data placement con“gurations and query
selectivities.

then applies locally the range predicate. On the contrary, System-PV rewrites the range query

into a union of equi-predicate selections that it concurrently submits to Cassandra. These

standalone sub-queries are served in parallel, thus resulting in fast data ingestion rates.

Figure 5.9b presents the case in which 0.1% of the HDFS-resident Clickstreams and the

Cassandra-resident Events are selected. The selection predicate for the DB2-resident Sales

ranges from 1% to 10%. Note that for this experiment, we incorporated the System-PV opti-

mizations targeted for key-value stores into Spark SQL. These optimizations were enabled in

both Spark SQL and System-PV in order to quantify the performance bene“ts attributed to the

database-related rewrites of System-PV in isolation. System-PV is again 4 × to 17× faster than

Spark because it parallelizes data transfer from DB2. Note that Spark SQL doessuccessfully

pushdown the selection predicate to DB2, but retrieves the data through a single-threaded

connection, which ends up being the bottleneck for the entire query.

5.7.3 System-PV Performance

We now evaluate System-PV using all four data placement con“gurations and varying the

amount of fresh data transferred over the network. Our aim is to verify that System-PV per-

formance for split data scenarios is comparable to the scenario of solely operating on top

of the historical, stale data. We exclude Spark from this discussion because its running time

always exceeded 1000 seconds; as Section5.7.2 showed, Spark is unable to keep up with

System-PV even for selective queries that require small network data transfers. The results

show that System-PV uses the optimizations of Section 5.6.2 to mask the cost of remote data

accesses, and thus provides similar performance to solely operating on top of the data lake.

Figure 5.10 presents 9 instantiations of the query template. All of them select 10% of the

HDFS-resident Clickstreams. The queries select either 1% of the Sales dataset (Figure 5.10a),

5% (Figure 5.10b), or 10% (Figure 5.10c). We vary selectivity over the Events dataset in every

query to gauge the effect of accessing the slowest data source (i.e., Cassandra).

As seen in Figure 5.10a, all the data placement con“gurations have similar performance, with

Remote being slightly slower than the others. The performance gap opens in the case of 10%

selectivity; even then, however, the performance observed with the 99-1 con“guration is al-

98

5.8. Perspectives

most identical to the best-case scenario where remote data access does not occur (Local). The

reason is that the source-aware optimizations mask the remote data access cost by overlapping

data transfer with query execution.

The queries shown in Figure 5.10b are more expensive than the ones of Figure 5.10abecause

a bigger subset of the Sales dataset participates in the join. Still, the 90-10 and 99-1 con“g-

urations exhibit execution times similar to the Local con“guration. Even in the case of 10%

selectivity, the execution times corresponding to the 99-1 and Local con“gurations are only 4

seconds apart, thus denoting that System-PV is again able to mask remote data accesses.

Figure 5.10cpresents the least selective version of the experiment. When selectivity over the

Events dataset is 1%, all data placement con“gurations except Remote have almost identical

execution time. Note that although the sub-query pushed down to DB2 is non-selective,

System-PV splits and parallelizes the sub-query, thus hiding the increased data transfer cost.

When selectivity over the Events dataset reaches 10%, the gap between Remote and Local in-

creases. Note, however, that the Local con“guration misses the latest fresh data. The perfor-

mance difference stems from the simultaneous increase of i) remote data accesses, ii) the

amount of data shuf”ed due to the distributed hash join, and iii) the size of intermediate re-

sults, all of which stress the network bandwidth. Finally, the performance of System-PV in the

common split-dataset con“gurations (99-1, 90-10) is similar to that observed when accessing

all the data locally (Local).

Summary. System-PV signi“cantly outperforms Spark, even for the worst-performant sce-

nario of accessing federated data sources (Remote). In addition, when testing System-PV un-

der different data placement con“gurations, the response times for the two extreme cases

(fully local vs. fully remote) start to diverge; still, for the split-dataset cases that System-PV tar-

gets, response times are comparable to that of the best-performant, fully local scenario (Local),

without compromising data freshness.

5.8 Perspectives

Our experience with Spark and other similar frameworks has shown us that although they

support various types of data analysis over historical data in a data lake, they lack the necessary

abstractions to query data sets spread across multiple data sources, thus rendering the overall

analysis complex for the user. At the same time, their performance is suboptimal when

accessing external sources.

System-PV introduces a high-level abstraction in the form of a global virtual schema, which

hides source complexity from users and allows them to seamlessly access both the historical

as well as the latest data. System-PV also optimizes both SQL and procedural analysis tasks

through a unique two-phase query optimization approach. System-PV thus supports a broad

spectrum of data usage patterns: an individual dataset can be accessed in the remote source

completely, can be split between the data lake and the remote source, or can be accessed

locally in the lake (if the application can tolerate data staleness). In addition, splits of a dataset

99

Chapter 5. Big Data Virtualization

can overlap; System-PV chooses from which source to retrieve the overlapping part depending

on the user•s data freshness requirements.

Using System-PV in practice has led us to a number of observations that allow reaching its

full potential, and that can be useful as guidelines to system designers working on split-data

scenarios.

5.8.1 System-PV for enterprise workloads

Enteprise data management architectures typically model data using a variation of the star or

the snow”ake schema, which involve few large fact tables and numerous smaller dimension

tables [151].

Small datasets. System-PV masks the cost of accessing remote datasets of small size, such

as dimension tables of a star schema. Given that dimension tables receive frequent updates,

and that different parts of an organization often join their own versions of dimension tables

against a fact table [151], we propose storing dimension tables only in the original, external

data sources; there is no need to store them in the data lake as well, since accessing them with

System-PV has minimal overhead.

Fact tables. Large fact tables receive append-like updates, and users typically set up an ETL

process to archive the data appends in the data lake. System-PV by default accesses both the

local and the remote part of a fact table. If possible, we suggest running ETL frequently, so that

running analysis with System-PV over both parts of the fact table has comparable performance

to accessing only the local part. In addition, more data accumulates in the lake over time,

whereas the size of the remote delta remains stable, thus the cost of remote accesses appears

small due to the order-of-magnitude difference in local and remote data sizes.

Minimizing data transfers. The source-aware optimizations of System-PV that generate sub-

queries to parallelize external data retrieval provide their maximum bene“t when the external

sources offer a way to reduce the amount of data that each sub-query accesses. For key-value

stores, a query on the key of each object naturally accesses a small amount of data. For RDBMS,

populating indexes on “elds that are popular query predicates, or partitioning the data, is

helpful. Given that primary and foreign keys are typically coupled with indexes, enterprise star

and snow”ake schemata already have useful indexes in place. Therefore, System-PV applies

its rewriting optimizations without requiring an additional indexing storage overhead.

5.8.2 Optimizing SQL-on-Hadoop performance over multiple sources

Apart from the user-friendly virtual schema that System-PV employs, it also makes use of

multiple performance optimizations that improve the performance of Spark scripts over

dispersed datasets. It is worth examining whether these optimizations can also be applied to

existing systems even if said systems currently lack “rst-class support for data virtualization.

100

5.9. Summary

There is a number of ways in which existing SQL-on-Hadoop systems can be adjusted to

improve their performance over diverse data stores. We use Spark SQL as an example and

consider its architecture in a top-down fashion.

Starting from the query optimizer, Catalyst is a signi“cant effort towards performing opti-

mization across multiple types of analysis. However, it is currently not as mature as several

traditional, specialized database optimizers that have been re“ned over multiple years. Thus,

we believe that Catalyst must also introduce interfaces that allow users to •plugŽ their opti-

mizer of choice based on the type of analysis they intend to launch 3. Users can choose among

optimizer modules, such as the one of System-PV, Orca [230], Calcite [2], etc.

Our experience building System-PV showed us that integrating the Source Optimizer•s rewrite

rules into Catalyst is straightforward and would be a valuable addition to Spark. Still, applying

the source-aware rewrites of System-PV requires examining carefully the properties of the

underlying systems, and triggering the rewrites judiciously. For example, triggering the query

rewrite for range predicates that access non-key “elds in a key-value store, or for arbitrary,

non-partitioning / non-indexed “elds in a DBMS table, can signi“cantly penalize performance.

Therefore, Spark must be able to acquire and store information/statistics from the underlying

data stores to make educated rewriting decisions.

Instead of applying some of the source-aware optimizations in Catalyst, one could extend/rewrite

the data connectors of Spark to reduce the cost of accessing and transferring remote data into

the data lake. As shown by this work, one way to reduce the cost is by parallelizing the sub-

query that accesses a remote store. In addition, data connectors can perform data exchange

using a portable, binary wire format such as Arrow [21]; Arrow has the same in-memory and

on-wire representation, and thus reduces the effort spent in data (de)serialization, which is a

major cost in data-center-scale analytics [200, 140].

Summary. System-PV provides a spectrum of choices for data freshness and where to access

the data in complex enterprise data ecosystems. Combined with the guidelines above, System-

PV forms a comprehensive solution for ad-hoc data analysis in enterprise settings, which can

also in”uence the design of state-of-the-art SQL-on-Hadoop systems.

5.9 Summary

We present System-PV, a system that supports various types of analysis over multiple data

sources. System-PV addresses the shortcomings of the state-of-the-art systems by extending

Spark with a data virtualization module that masks data source complexity. It uses a location-

aware compiler and a sophisticated two-phase optimizer to optimize user scripts over a global

virtual schema. Our results show that System-PV is signi“cantly faster than Spark when

querying dispersed datasets, and introduces small overhead for accessing the remote tail-end

of the data compared to operating solely on top of the data lake.

3 Spark appears to be already moving in this direction [214].

101

6 Uni“ed Scale-Out Data Cleaning

Data cleaning is an indispensable part of data analysis due to the increasing amounts of dirty

data. Data analysts spend most of their time preparing dirty data before it can be used for

analysis. At the same time, the existing tools that attempt to automate the cleaning procedure

typically focus on a speci“c use case and operation. Still, even such specialized tools exhibit

long running times or fail to process large datasets. Therefore, from a user•s perspective, one is

forced to use a different, potentially inef“cient tool for each category of errors.

This chapter addresses the coverage and ef“ciency problems of data cleaning. It introduces

CleanM (pronounced clean•em), a language that can express multiple types of cleaning op-

erations. CleanM goes through a three-level translation process for optimization purposes;

a different family of optimizations is applied in each abstraction level. Thus, CleanM can

express complex data cleaning tasks, optimize them in a uni“ed way, and deploy them in a

scaleout fashion. We validate the applicability of CleanM by using it on top of CleanDB, a

newly designed and implemented framework that can query heterogeneous data.

6.1 Introduction

Today•s ever-increasing rate of data volume and variety opens multiple opportunities; crawling

through large-scale datasets and analyzing them together reveals data patterns and actionable

insights to data analysts. However, the process of gathering, storing, and integrating diverse

datasets introduces several inaccuracies in the data: Analysts spend 50%-80% of their time

preparing dirty data before it can be used for information extraction [172]. Therefore, data

cleaning is a major hurdle for data analysis.

Data cleaning is challenging because errors arise in different forms: Syntactic errors involve

violations such as values out of domain or range. Semantic errors are also frequent in non-

curated datasets; they involve values that are seemingly correct, e.g., Beijing is located in the

US. In addition, the presence of duplicate entries is a typical issue when integrating multiple

data sources. Besides requiring accurate error detection and repair, the aforementioned

103

Chapter 6. Uni“ed Scale-Out Data Cleaning

data cleaning tasks also involve computationally intensive operations, such as inequality

joins, similarity joins, and multiple scans of each involved dataset. Thus, it is dif“cult to

build general-purpose tools that can capture the majority of error types and at the same time

perform data cleaning in a scalable manner.

Existing data cleaning approaches can be classi“ed into two main categories: The “rst cat-

egory includes interactive tools through which a user speci“es constraints for the columns

of a tabular dataset or provides example transformations [139, 212]. User involvement in

the cleaning process is intuitive and interactive, yet specifying all possible errors involves

signi“cant manual effort, especially if a dataset contains a large number of discrepancies. The

second category comprises semi-automatic tools that enable several data cleaning opera-

tions [90, 110, 149, 235]. Both categories lack a universal representation for users to express

different cleaning scripts, and/or are unable to optimize different cleaning operations as one

uni“ed task because they treat each operation as a black-box UDF.

Therefore, there is need for a higher-level representation for data cleaning that serves a

purpose similar to that of SQL for data management in terms of expressivity and optimization:

First, SQL allows users to manage data in an organized way and is subjective to how each

user wants to manipulate the data. Similarly, data cleaning is a task that is subjective to the

user•s perception of cleanliness and therefore requires a language that allows users to express

their requests in a simple yet ef“cient way. Second, SQL is backed by the highly optimizable

relational calculus; data cleaning tasks require an optimizable underlying representation too.

This chapter introduces CleanM, a declarative query language for expressing data cleaning

tasks. Based on SQL, CleanM offers primitives for all popular cleaning operations and can be

extended to express more operations in a straightforward way. CleanM follows a three-level

optimization process; each level uses a different abstraction to better suit the optimizations to

be applied. First, all cleaning tasks expressed using CleanM are translated to the monoid com-

prehension calculus [105]. The monoid calculus is an optimizable calculus that is inherently

parallelizable and can also represent complex operations between various data collection

types. Then, comprehensions are translated into an intermediate algebra, which allows for

inter-operator optimizations and detection of work sharing opportunities. Finally, the alge-

braic operators are translated into a physical plan, which is then optimized for factors such

as data skew. In summary, regardless of how complex a cleaning task is, whether it internally

invokes complex operations such as clustering, and what the underlying data representation

is (relational, JSON, etc.), the overall task will be treated as a single query, optimized as a whole,

and executed in a distributed, scale-out fashion.

We validate CleanM by building CleanDB, a distributed data cleaning framework. CleanDB cou-

ples Spark with a CleanM frontend and with a cleaning-oriented optimizer, which applies the

three-level optimization process described above. The end result is a system that combines

data cleaning and querying, all while relying on optimizer rewrites and abundant parallelism

to speed up execution.

104

6.2. A uni“ed representation

Motivating Example. Consider a dataset comprising customer information. Suppose that a

user wants to validate customer names based on a dictionary, check for duplicate entries, and

also check whether a functional dependency holds. We will be using this compound cleaning

task to re”ect the capabilities of CleanM and CleanDB: For example, CleanM enables name

validation via token “ltering [138] … a common clustering-based data cleaning operation … by

representing it as a monoid. Also, CleanDB identi“es a rewriting opportunity to merge the

duplicate elimination and functional dependency checks in one step.

Contributions: Our contributions are as follows:

€ We introduce CleanM, an all-purpose data cleaning query language. CleanM models both

straightforward cleaning operations, such as syntactic checks, as well as complex cleaning

building blocks, such as clustering algorithms, all while being naturally extensible and

parallelizable. We also present a three-level optimization process that ensures that a query

expressed in CleanM results in an ef“cient distributed query plan.

€ We implement CleanDB, a scale-out data cleaning framework that serves as a testbed

for users to try CleanM. CleanDB supports a multitude of data cleaning operations (e.g.,

duplicate elimination, denial constraint checks, term validation) over multiple different

types of data sources (e.g., binary, CSV, JSON, XML data), executed in a distributed fashion

using the Spark platform.

€ We show that CleanDB outperforms state-of-the-art solutions in synthetic and real-world

workloads. CleanDB scales better than Spark SQL [43] and a dedicated scale-out data clean-

ing solution, offers a wider variety of operations, and cleans datasets that its competitors

are unable to process due to performance issues.

In summary, current data cleaning technology lacks a universal representation that is general

and also guarantees scalability out-of-the-box for all the cleaning operations it supports. This

chapter provides a solution through an algebraic abstraction, which allows rich features to

be embedded in a declarative, optimizable, and parallelizable language. The user can thus

intertwine analytics and cleaning using a uni“ed interface over a scale-out system.

6.2 A uni“ed representation

Data cleaning is a computationally intensive process that typically involves multiple iterations

over the same dataset and numerous pairwise comparisons of the data records. In fact, many

data cleaning tasks would bene“t from machine learning operations, such as clustering,

to split a dataset into manageable subsets and minimize the number of required pairwise

comparisons. Therefore, a data cleaning language must be coupled with a calculus that

can support and optimize such operations. At the same time, said calculus must be able to

reason about multiple cleaning operations as a whole, and identify inter- and intra-operation

optimizations. Besides involving complex operations, data cleaning tasks are typically applied

over a variety of data sources and formats. Data that requires curation may be i) relational or

not, ii) stored in a DBMS or kept in “les, etc. Therefore, a data cleaning language and calculus

105

Chapter 6. Uni“ed Scale-Out Data Cleaning

must be able to handle data heterogeneity. Finally, given the ever-increasing data volumes,

explicit support of parallelism is a prerequisite. This section presents i) the cleaning operations

that CleanM supports, and ii) the rationale behind a three-level translation of said cleaning

operations into executable code.

6.2.1 Data cleaning operations

In the following, we revisit the data cleaning operations of Section 2.5 to discuss what is

required to optimize each operation.

Denial Constraints (DC). DC checks involve a selection or a self-join that detects tuples, pairs

of tuples, or groups of tuples that violate the rule. Self-joins are expensive because they involve

multiple traversals of the input. Also, as DCs contain arbitrary predicates, such as inequalities,

theta-joins might be required. Finally, for rules that need to handle non-exact matches, and

thus similarity joins may also be required. Similarity joins are costly operations because they

involve multiple passes over a dataset, as well as a computationally expensive similarity check

per candidate pair.

Duplicate Elimination. Similar to a subset of denial constraints, deduplication involves a

similarity self-join to identify potentially duplicate records [134].

Transformations & Term Validation. Semantic transformations involve an equi-join or a

similarity join with auxiliary data. Speci“cally, term validation requires the discovery of the

most similar words from the dictionary for each word of the dataset. Thus, term validation

relies on the ef“cient computation of similarity checks.

Summary. Ef“cient handling of self-, theta-, and similarity joins can accelerate multiple

cleaning tasks. Besides accelerating standalone operations, having a uni“ed representation for

all operations can help in detecting common patterns and work sharing opportunities. Finally,

having a principled way to simplify an arbitrary data cleaning script (e.g., unnest nested sub-

tasks) makes detection of optimization opportunities over the script more straightforward.

6.2.2 From data cleaning operations to code

This work uses three different abstraction levels to reason about and optimize data cleaning

tasks. In the “rst level, CleanM maps data cleaning operations to the monoid comprehension

calculus. As a result, the operations are “rst-class citizens of the language instead of black-box

UDFs. Such composability means that operations can be explicitly used and stacked with each

other in monoid comprehensions. Transforming the input dataset between different types and

manipulating multiple data types is also possible, a feature exploited by engines that access

raw data [143, 144]. Monoid comprehensions are inherently parallelizable and lend themselves

perfectly to scale-out executio n … a fact that has led existing scale-out approaches to adapt

monoids as a core abstraction for data aggregation and incremental query processing [60, 103].

Section 6.3 elaborates on how cleaning operations are mapped to CleanM.

106

6.3. Cleaning data using monoids

The second abstraction level involves lowering a comprehension into an algebraic form [105],

the nested relational algebra. Nested relational algebra operators resemble relational operators

and are amenable to relational-like optimizations, yet they also explicitly handle complex data

types and queries. For example, a user can issue a query combining relational and hierarchical

data, and rely on the algebraic translation process to simplify the physical query plan and

remove all forms of query nesting. In addition, the algebraic form enables inter-operator

rewrites, which coalesce different cleaning operations into a single one and thus reduce the

overall cost. Section 6.4 discusses the algebraic rewrites.

The “nal level specializes the algebraic expression to the underlying execution engine. CleanM

currently assumes that Spark [260] is the underlying engine; still, it is pluggable to any scale-

out system. This physical level focuses on the particularities of cleaning operations, such as

the presence of expensive theta joins. Also, the physical level addresses the absence of uniform

distribution in the values of real-world datasets … a fact that can cause load imbalance during

data cleaning. Section 6.5 discusses how to generate physical plans that consider both these

complications.

6.3 Cleaning data using monoids

CleanM supports multiple cleaning operations, which it internally maps to monoid com-

prehensions. Still, although a uni“ed representation is important for user convenience, it

is also important to optimize each of the operations. In addition, despite the elegance of

comprehensions, the goal of CleanM is to serve as a SQL-like higher-level representation

that masks the comprehension syntax, given that most users are more familiar with SQL. The

syntax of CleanM extends SQL with constructs that express data cleaning operations and

handle non-relational data types such as hierarchies; this work focuses on the data cleaning

operations. This section presents i) the optimizations that monoid comprehensions allow,

ii) the expressive power of CleanM and how to map the building blocks of data cleaning

operations to monoids, and iii) the syntax and semantics of CleanM .

6.3.1 Optimizations at the monoid level

CleanM follows a layered design approach. Even in its topmost layer, CleanM distinguishes

between high- and low-level operations, both of which are “rst-class citizens and are expressed

using comprehensions. The separation aims at user convenience: High-level operations, such

as denial constraints, map directly to a SQL-like, syntactic sugar representation. Low-level

operations are internal building blocks for the high-level ones and address the optimization

requirements of Section 6.2.1. Both high- and low-level operations go through a rewrite

process that applies general-purpose, domain-agnostic optimizations [105].

107

Chapter 6. Uni“ed Scale-Out Data Cleaning

Domain-agnostic optimizations: Normalization

Regardless of the processing that a comprehension performs, a normalization algorithm [105]

puts it into a •canonicalŽ form.

Normalization applies a series of optimization rewrites. Speci“cally, it applies “lter pushdown

and operator fusion. In addition, it ”attens multiple types of nested comprehensions [150]. It

also replaces any function call that appears in a comprehension, with the call•s result (beta

reduction); a function•s input can be an arbitrary expression (e.g., a constant, a generator•s

variable, etc.). In the case of UDFs that are de“ned as comprehensions themselves, the

rewrite results in their unnesting, and facilitates optimizing the rewritten comprehension as a

whole. Similar to the SQL-based rewriting of EXISTS clause, normalization unnests existential

quanti“cations. Finally, normalization simpli“es expressions that are statically known to

evaluate to true/false or to empty collections.

The result of the normalization process is a simpli“ed comprehension; Section 6.4 explains

how this comprehension is further rewritten into a form more suitable for ef“cient execution.

Domain-speci“c optimizations: Pruning comparisons

Besides domain-agnostic optimizations, the monoid calculus can express operations that

speci“cally target and accelerate data cleaning tasks. A common theme of all the data cleaning

operations mentioned in Section 6.2.1 is the need for fast pairwise comparisons. The rest of

this section discusses how to optimize CleanM expressions on the comprehension level by

pruning comparisons in the cases of self-joins and similarity joins; we discuss the rest of the

optimization requirements of Section 6.2.1 in subsequent sections because they are a better

match for lower abstraction levels.

Self-joins occur in denial constraints (DC) and duplicate elimination. In the case of self-joins

that involve equality conditions, such as in functional dependencies (FD), CleanM avoids

the self-join by grouping the dataset•s entries based on the left hand side of the FD, and

then detects violations (i.e., whether a grouping key is associated with more than one value).

Section 6.5 discusses how CleanM handles the general case of DCs, which may involve non-

equality predicates, in its third abstraction level … the physical one.

Regarding similarity joins, a baseline method to evaluate them would compute the cartesian

product and afterwards apply a “lter that removes the dissimilar pairs. The baseline approach,

however, is very costly, because both the cartesian product and the string similarity computa-

tion are expensive tasks. Thus, CleanM uses a “ltering phase to prune the candidate pairs that

need to be checked. An indicative example of “ltering is the use of a clustering algorithm to

create k clusters, each containing words that are similar. Then, the cleaning operation only has

to perform intra-cluster comparisons. The pre-processing “ltering phase must be lightweight

enough to avoid adding an overhead that reaches the cost of an unoptimized implementation.

Thus, CleanM considers variations of the approaches suggested in [138, 220], namely k-means

108

6.3. Cleaning data using monoids

and token “ltering, because different clustering/“ltering techniques are more suitable for

different use cases; their ef“ciency in the context of data cleaning depends on several factors,

such as the string length of a dataset•s words and the similarity metric used. Still, to use any

technique, we must be able to express it as a monoid.

6.3.2 Expressive Power:
Mapping cleaning building blocks to the monoid calculus

Expressing an operation over type T as a monoid involves either mapping the operation to

an existing monoid or proving three properties: First, specifying an identity/zero element Z�

such that for any element of type T, x + Z� = Z� + x = x. Second, specifying a unit function

that turns an element into a singleton value of T. Third, showing that the associative property

� holds for it. Multiple operations over collections such as lists, bags, sets, arrays, vectors,

etc., are provably mappable to the monoid calculus [105]. Also, monoid comprehensions are

suf“cient to represent OQL and SQL queries [105]. The rest of this section elaborates on how

to map clustering and “ltering algorithms … which CleanM relies on to re“ne similarity joins …

to the monoid calculus.

Clustering as a monoid

Clustering algorithms can be divided into partitional and hierarchical. Below, we map each

category to the monoid calculus.

Single-pass partitional algorithms. Partitional algorithms split the input into a number of

clusters. Each element of the dataset might belong to exactly one (strict) or more clusters

(overlapping). The assignment of a value to a cluster depends on certain criteria, such as the

distance from the cluster center (k-means) or the distance from the other elements of the

cluster (DBSCAN). In the following, we provide the mapping of k-means … the most popular

partitional algorithm … to the monoid calculus; mapping other partitional algorithms to the

monoid calculus is straightforward by mapping different cluster assignment criteria.

K-means assigns each input element to the cluster that contains values that are similar to it;

thus, when used in the context of similarity joins, only intra-cluster comparisons take place.

CleanM by default uses a variation of k-means inspired by ClusterJoin [220]. The k-means

variation selects k random centers and then assigns each word of the dataset to all centers

whose distance is minimum (or minimum plus a del ta to favor multiple assignments). The

original k-means requires multiple iterations before converging to an optimal set of clusters,

which hurts scalability. The k-means variation avoids scalability issues by only iterating once

over the input, while also achieving a •good-enoughŽ grouping of similar words.

Mapping the k-means single-pass operation over bag collections to the monoid calculus

requires expressing the center initialization and the center assignment steps as monoid opera-

tions; the latter step is the one performing the actual clustering/partitioning.

109

Chapter 6. Uni“ed Scale-Out Data Cleaning

We expresscenter initialization by parameterizing the function composition monoid [105]

instead of de“ning a new monoid. The function composition monoid can compose functions

that propagate a state during an iteration over a collection, as long as the composed functions

are associative. The •propagated stateŽ at the end of the iteration comprises the centers for

k-means.

We can parameterize the function composition monoid to apply randomized algorithms, such

as reservoir sampling [247], to extract k centers. A possible parameterization is the following:
�{�(x, i).(i f i i nN /k ,2N /k , ...,N , then [x] ++ y, i Š 1)|y � Y }.

The formula iterates through collection Y. The state that the formula propagates in each step of

the iteration is the value for i , which initially corresponds to the length of the input collection,

and is decreased by 1 in each step. For every element visited, the formula checks whether

the element•s index in the input collection is N / k ,2N / k , ..., or N . If so, it appends the current

element y to the output list of centers. Extracting items using a “xed step is an associative

operation because it appends speci“c elements to a collection per iteration, thus the overall

parameterization of the composition monoid is a monoid operation too.

Center assignment takes as a parameter the list of centers computed in the “rst step and discov-

ers the closest center for each data item. This operation maps to the Minimum monoid [105].

Multi-pass partitional algorithms. Representing multi-pass partitional algorithms (e.g., the

original k-means, canopy clustering [179], etc.) as monoids is straightforward: The representa-

tion of iterative clustering algorithms implies n equivalent monoid comprehensions, where n

is the number of iterations. Each iteration stores the result of the comprehension into a state

which is then transferred to the next iteration. Alternatively, an iteration monoid can act as

syntactic sugar in place of the n comprehensions; its behavior will resemble foldLeft , and it

will update some state in each iteration.

Hierarchical clustering. Hierarchical clustering generates clusters that can have sub-clusters.

Executing hierarchical clustering involves a set of iterations that gradually build the resulting

clusters by merging or splitting items. In the monoid representation of hierarchical clustering,

each iteration gets as input the previous state or the initial dataset, and computes the items

whose distance from each other is minimum; this operation maps to the Min monoid.

(Token) “ltering as a monoid

Token “ltering [138] is the preferred way to reduce the number of comparisons in similarity

joins when comparing strings of small length, whereas clustering-based “ltering is suitable

for more generic use cases. The algorithm groups the words based on their tokens in order

to avoid comparing all pairs exhaustively. Speci“cally, token “ltering splits each word into

tokens of length q, and then associates each token with the groups of words that contain the

same token. Therefore, similarity checks only take place within each group.

The monoid representation of token “ltering resembles that of k-means, in that k-means

110

6.3. Cleaning data using monoids

groups values based on their common •centerŽ, whereas token “ltering groups them based on

a common token. Below, we provide the mapping of token “ltering into the monoid calculus.

[st ri , st r j , st rk] denotes that at least one of the three strings will be part of the set of values

that contain the token.

Z� : {}, Uni t : st r � {(tokeni , {st r }), (token j , {st r })...}

Associ at i ve proper t y : tokeni ze(st ri , tokeni ze(st r j ,st rk)) =

{(tokeni , {[st ri , st r j , st rk]}), (token j , {[st ri , st r j , st rk]})...} =

tokeni ze(tokeni ze(st ri ,st r j), st rk)

Extensibility and scope of CleanM

Extending CleanM with any operation that obeys the monoid properties is straightforward.

Besides k-means clustering and token “ltering, CleanM can represent any “ltering approach

that groups words into clusters of similar contents (e.g., “ltering based on the length of the

words). Other “ltering approaches, such as applying transitive closure to build the similar

pairs, can be also represented using the monoid calculus.

Future work includes examining operations which lack an associative property (e.g., median),

and which have traditionally been handled by scale-out systems via exponential algorithms

or approximation. Finally, this work focuses on violation detection with minimal user effort;

cleaning-oriented topics such as i) data repairing techniques and ii) techniques that rely on

classi“cation using an of”ine training phase and pre-existing training data are orthogonal

extensions to our declarative language proposal.

6.3.3 The CleanM language

Having de“ned the necessary low-level operations, we describe the high-level cleaning op-

erations of CleanM. CleanM extends SQL with data cleaning operators; its syntax is shown

in Listing 1. The symbols ([]), (*) and (|) denote optional elements, elements that can appear

multiple times, and choice between elements, respectively. The symbol (|) implies arbitrary

order between the options. When multiple cleaning operations appear in the CleanM query,

then the semantics of the query correspond to an outer join that takes as input the violations of

each cleaning operator that appears in the query and outputs the entities that contain at least

one violation. Except for the [FD|DEDUP|CLUSTER BY] part, the syntax and semantics of

the operators are equivalent to that of SQL.

111

Chapter 6. Uni“ed Scale-Out Data Cleaning

SELECT [ALL |DISTINCT] <SELECTLIST>
<FROMCLAUSE>
[WHERECLAUSE][GBCLAUSE[HCLAUSE]][FD|DEDUP|CLUSTER BY]*

FD=FD(attributesLHS, attributesRHS)
DEDUP=DEDUP(<op>[,<metric>, <theta>][,<attributes>])
CLUSTERBY=CLUSTER BY(<op>[,<metric>,<theta>],<term>)

Listing 1 … The syntax of CleanM. CleanM extends SQL with the operators FD, DEDUP, and
CLUSTERBY

We now analyze the syntax of each operator and present the semantics of CleanM using the

monoid calculus. We also go through the running example of the introduction, which checks

the rule address� pre f i x (phone), detects duplicate customers, and validates customer

names using token “ltering and a dictionary. The corresponding CleanM query is the following:

SELECT c.name,c.address, *
FROMcustomer c, dictionary d
CLUSTER BY(token filtering, LD, 0.8, c.name)
FD(c.address, prefix(c.phone))
DEDUP(token filtering, LD, 0.8, c.address)

Denial Constraints. The general category of denial constraints is expressible using vanilla SQL,

thus CleanM reuses SQL syntax to express them. CleanM makes an exception for functional

dependencies … the most popular sub-category of denial constraints … and uses the FD operator

shown in Listing 1. The query result contains the entities that violate the FD rule. LHS and RHS

correspond to the left and right-hand side of the rule. Both LHSand RHScan involve more than

one attribute. The semantics of the FDoperator correspond to the following comprehension:

groups:=for(d<-data) yield filter(d.term,algo),
for(g<-groups,g.count>1) yield bag g

The comprehension groups the input dataset using the “lter monoid based on a term attribute

to reduce the pairwise comparisons required and returns the groups containing more than

one item. The filter monoid is a placeholder for kmeansFilter , tokenFilter , or a

plain groupBy that behaves like its SQL counterpart.

The functional dependency rule address� pre f i x (phone) of the example corresponds to

the following comprehension:

groups:=for(c<-cust) yield groupBy(prefix(c.phone)),
for(g<-groups,g.count>1) yield bag g

Duplicate Elimination. The DEDUPoperator of Listing 1 comprises the <op> “eld that

represents the “lter to use for the similarity join, <metric > , which is the distance metric to be

used (e.g., Jaccard, Euclidean), and < theta> … the similarity threshold. The <attributes > “eld

represents the set of attributes that determine whether two entities are equal. <attributes > ,

<metric > and < theta> are optional … a default value is set if they are missing. The query

result contains the duplicate entities. The semantics of the DEDUPoperator correspond to the

following comprehension:

112

6.3. Cleaning data using monoids

groups := for(d <- data) yield filter(d.terms,algo),
for(g<-groups,p1<-g.partition,p2<-g.partition,

similar(metric,p1.atts,p2.atts, �))
yield bag(p1, p2)

The “lter monoid groups the data based on the speci“ed attributes or by building clusters

based on that attributes. Then, the entries within each group are compared against each

other using a similarity metric. The comprehension outputs pairs that are potential duplicates.

partition is a built-in “eld that represents the set of records that correspond to each group.

LD is a shortcut for the Levenshtein distance (LD) similarity metric. The comprehension of

the deduplication part of the running example is the following:

groups:=for(c<-cust) yield filter(c.address,tf),
for(g<-groups,p1<-g.partition,p2<-g.partition),
LD(p1.atts,p2.atts)>0.8) yield bag(p1, p2)

Term Validation. The CleanM syntax for term validation requires the CLUSTER BYoperator

of Listing 1, which resembles DEDUP. The < term > “eld stands for the attribute(s) based

on which the similarity is measured. CLUSTER BYrequires also an additional table in the

<FROMCLAUSE> that represents the dictionary.

The query result couples each dirty term with the set of dictionary terms that are similar to

it. The similar dictionary terms correspond to the suggested repair of the invalid term. The

semantics of CLUSTER BYcorrespond to the following comprehension:

dataGroup := for(d<-data) yield filter(d.term,algo),
dictGroup := for(d<-dict) yield filter(d.term,algo),
similarTerms := for(d1<-dataGroup, d2<-dictGroup,

d1.key = d2.key,
similar(metric,d1.term,d2.term, �))

yield list(d1.term, d2.term)

First, the input is clustered based on a term attribute whose values potentially contain in-

consistencies. The same process is followed for the entries of the dictionary. Then, the

comprehension tries to “nd similar data-dictionary pairs by comparing only the clusters that

correspond to the same grouping key. The respective validation of the customer name in the

running example is the following:

dataGroup := for(c<-cust) yield filter(c.name,tf),
dictGroup := for(d<-dict) yield filter(d.name,tf),
similarTerms := for(d1<-dataGroup, d2<-dictGroup,
d1.key = d2.key,LD(d1.name,d2.name)>0.8)
yield list(d1.name, d2.name)

Transformations. CleanM differentiates between syntactic and semantic transformations.

Syntactic transformations are lightweight repair operations, such as splitting an attribute,

and thus can be expressed using vanilla SQL. Semantic transformations require an auxiliary

table that contains value mappings. Thus, they reuse the term validation constructs, with the

113

Chapter 6. Uni“ed Scale-Out Data Cleaning

difference that the projection list contains the desirable attribute from the auxiliary table as a

suggested repair. For example, one could map airports to cities using an auxiliary table that

contains airport-to-city mappings.

Summary. CleanM exposes users to a SQL-like extension: Each operator extends the syntax of

SQL based on the functionality it resembles. Every operator is deeply integrated in CleanM in-

stead of being treated as a black-box UDF; all operators end up translated to the monoid

comprehension calculus. Thus, CleanM treats cleaning operations as inherently parallelizable,

offers operation composability, and can operate over non-relational data. The monoid rep-

resentation allows for high-level optimizations, in”uenced by data mining techniques, that

avoid the computation of cross products during data cleaning. The next two sections present

representations that are more suitable for additional optimization tasks.

6.4 Uni“ed algebraic optimization

The optimizations at the monoid comprehension abstraction level result in a rewritten com-

prehension. While the comprehension has undergone optimizations such as “lter pushdown

and partial unnesting, there are still opportunities for optimizing the overall cleaning task.

Therefore, as described in Section 2.2, the second abstraction level translates a comprehension

into a nested relational algebra expression [105], which is more suitable for the next round of

CleanM optimizations. The full algorithm for rewriting a comprehension to an algebraic plan

is presented in [105]; the result is a logical plan that uses the operators of Table 2.2.

There are three major bene“ts from the algebraic representation: First, there exist rules,

that remove any leftover query nestings [105]. Unnesting simpli“cations is useful in data

cleaning, since query and data nestings are inherent in cleaning operations. Second, by

expressing all different monoid types into a common, con“ned algebra, it becomes possible to

detect opportunities for intra-operator and inter-operator optimizations, such as work sharing

between operators. The running example depicted in Figure 6.1 shows the “rst two bene“ts.

Finally, by translating comprehensions into an algebraic form, the optimization techniques

that have been proposed in the context of the established relational algebra become applicable

over an unnested, simpli“ed query representation.

Optimizations at the algebra level

CleanM queries bene“t from many expression simpli“cations that are possible at query rewrite

time [105]. After having removed the nestings of the query, apart from the relational algebra

optimizations, the optimizer can detect common patterns and enable work sharing between

operators. In the following we present the simpli“cations that the query of the running

example goes through.

The query checks for invalid terms, duplicates, and functional dependency violations. A

baseline approach would treat each cleaning operation as a separate task that traverses the

114

6.5. Executing data cleaning tasks

��������

��

���������	�
 >1
�������
������

�� ������

��

������ ���	 �
���� >1
������ �
������

Plan��B

��������

��

�������� >0.8
�������
������

�� ������

��

������������ > 0.8
���� ���
 ������

Plan��C

��������

��

��(���	�
>1 ��
������ >0.8)

�������
������

�� ������

��

��(���	 �
>1 ��
������ > 0.8)

������ �
������

Plan��BC

���
�
����
�
�������	 (�	������)

�������� ��������

���
�
����
�
�������	 (�	������)

���
�������	 (�	������) ���
�������	 (�	������)

��

�� �������������

���
�
����
�
�������	 (�	������)

�� ������ ��������

���
�
����
�
�������	 (�	������)

���
�������	 (�	�� ����) ���
�������	 (�	������)

��

�� ������������ �
Plan��A

�� . ������ = ����������(� . ���!�"��)
��

��������

��

�� ������

Overall��Plan

A BC

�#

Figure 6.1 … Algebraic plans for our running example, and optimized rewritten plans that
coalesce operators and share work.

input and detects violations. Treating each operation on its own results in the plans A, B, C

of Figure 6.1. Plan A performs term validation via token “ltering: It unnests the list of names

in order to compute the tokens of each name, then groups by token to detect similar names.

By injecting explicit unnest operators, CleanM avoids having to access repeating BLOB-like

tuples of the form (tokeni , {names}) for each element of a nested collection to be processed;

it operates over smaller (tokeni ,name j) tuples instead [143]. Plan B checks the functional

dependency: it computes groups of address, and outputs the groups containing more than one

phone pre“x. Plan C checks for duplicates by again building groups of addressand checking

within each group for entities that are more than 80% similar.

The algebraic rewriter of CleanM detects the commonalities of Plan B and C, and instead

produces Plan BC, which coalesces the two grouping passes into one and applies both “lters at

once. In addition, given that all the sub-plans scan the same table, the algebraic rewriter pro-

duces a DAG-like overall plan, which scans the dataset once, performs the cleaning operations

in parallel, and then joins the violating entries of each side using an outer join. In summary,

translating cleaning operations into a unifying algebraic form enables, among others, powerful

forms of query and data unnesting, coalescing operators, and reducing duplicate work.

6.5 Executing data cleaning tasks

The result of optimizations at the algebraic abstraction level of CleanM is a succinct logical

plan. The last step of the rewriting process generates a physical plan that is compatible with

the execution engine that will perform the data cleaning tasks. This work uses Spark [260] as

the scale-out execution substrate; therefore, the algebraic plan gets translated to the operators

of the Spark API.

Why not Spark SQL? Given that Spark is the current execution engine for CleanM queries, an

alternative approach would be to directly map CleanM to the Spark SQL module of Spark [43],

which exposes declarative query capabilities and introduces Catalyst, an optimizer over Spark.

The Catalyst optimizer, however, assumes tabular data and only considers relational rewrites;

it is thus unable to reason about and perform the optimizations suggested so far by this work.

115

Chapter 6. Uni“ed Scale-Out Data Cleaning

Operator Spark Equivalent

� p “lter

� e
p map � “lter

µpath
p ”atmap(x�path.“lter(y � p(x, y)).map(y�(x,y)))

µpath
p

”atmap(x�r=path.“lter(y � p(x, y)),
if(r.empty) (x, null) else r.map(y�(x,y)))

� �/e / f
p aggregateByKey � mapPartitions

� f (A)= g(B) join

� f (A) � g(B) theta join � “lter

� f (A)= g(B) left outer join

� f (A) � g(B) theta join � map

Table 6.1 … Translation of algebraic operators to Spark operators. Bold parts introduce new
Spark operators or deviate from the translation that Spark SQL would have performed.

Also, the physical Spark plans that Catalyst generates are agnostic to characteristics of real-

world data cleaning tasks, namely the facts that i) there is signi“cant skew in the data touched,

and that ii) the tasks executed typically require the computation of expensive theta joins. On

the contrary, in the “nal, third abstraction level, CleanM queries get translated into a physical

execution plan which both considers data skew and explicitly handles theta joins.

From nested algebra to Spark operators. Table 6.1 lists the mapping from the nested re-

lational algebra to Spark operators. The mapping for the selection and reduce operators is

straightforward. The unnest operators iterate through a dataset•s elements and through a

speci“c nested “eld of each element.

The Nest operator, which resembles a SQL Group By, is translated into a combination of

operators: First, aggregateByKeygroups data records based on a key. Then, mapPartitions

applies a function over each partition. Nest optionally evaluates a binary predicate (an

equivalent functionality to the SQL HAVINGclause). In this case, a “lter operation also takes

place per partition. Finally, the Join operator gets translated into the respective Spark equi-

join operator. The handling of other types of joins is more nuanced: By default, Spark SQL

and Spark resort to a cartesian product followed by a “ltering operation. Given the high

frequency of theta joins in the domain of data cleaning, we instead implement an alternative,

statistics-aware theta join [196].

Optimizations at the physical level

When translating nested relational algebra operators into a Spark plan, we explicitly consider

the presence of i) skew in the data, and ii) theta joins as part of the cleaning process.

Handling data skew. Value distribution in real-world data is rarely uniform. In addition,

certain data values can be more susceptible to errors. A cleaning solution must therefore be

116

6.6. CleanDB: A data cleaning system

ParquetParquet CSV JSON

XML ... DBMS
CleanM
Query

Monoid��
Optimizer

Plan��
Rewriter

Code��
Generator

Monoid��
Rewriter

Comprehension
Nested��
Algebra

Physical��
PlanAST

Spark��
Runtime

Parser

Spark��
Script

Figure 6.2 … The architecture of CleanDB.

resilient to data skew. In the context of scale-out processing, skew handling is re”ected by how

one shuf”es data in the context of operations such as aggregations. Spark SQL performs sort-

based aggregation: it sorts the dataset based on a grouping key, different data ranges of which

end up in different data nodes. Then, Spark SQL performs any subsequent computations

locally on each node. When, however, some values occur more frequently, the partitions

created are imbalanced. Thus, the overloaded nodes lag behind and delay the overall execution.

On the contrary, as Table 6.1 shows, CleanM uses the aggregateByKeySpark operator which

performs the aggregate locally within each node and then merges the partial results. Thus,

CleanM i) minimizes cross-node traf“c by forwarding already grouped values, and ii) is more

resilient to skew since popular values have already been partially grouped together.

Handling theta joins. In the general case of a join with an inequality predicate, Spark SQL

generates a plan involving a cartesian product followed by a “lter condition. The result is

suboptimal performance when executing theta joins … one of the most frequent operators

in data cleaning. We thus implement a custom theta join operator based on the approach

of [196]. The new operator represents the cartesian product as a matrix, which it partitions

into N uniform partitions. First, the operator computes statistics about the cardinality of the

two inputs, which it then uses to populate value histograms. Then, assuming the presence of

N nodes, the operator consults the observed value distributions to partition the matrix into

N equi-sized rectangles, and assigns each partition to a Spark node. As a result, the operator

ensures load balancing; each node checks separately the condition on the partition for which

it is responsible.

6.6 CleanDB: A data cleaning system

We validate the three-level design of CleanM by implementing CleanDB, a uni“ed cleaning and

querying engine over Spark [260]. CleanDB serves as a replacement layer of Spark SQL [43];

it exposes the expressive power of CleanM without the compromises that Spark SQL makes.

CleanDB optimizes the cleaning operations in a uni“ed way and executes them in a scale-out

fashion; the “nal physical plan is equivalent to handwritten Spark code. The end result is a

system that can both query and clean input data.

The architecture of CleanDB. Figure 6.2 presents the components of CleanDB. When receiv-

ing a query, the CleanM parser rewrites it into an abstract syntax tree (AST). Then, the Monoid

Rewriter •de-sugarizesŽ the AST into a monoid comprehension, also considering the monoids

presented in Section 6.3. The Monoid Optimizer “rst applies rewrites over the input compre-

hension to simplify it, push down any “ltering expressions, ”atten nested comprehensions,

117

Chapter 6. Uni“ed Scale-Out Data Cleaning

unnest existential quanti“cations, etc. Then, the optimizer rewrites the comprehension into a

nested relational algebra, and performs additional rewrites and optimizations over it, such as

coalescing multiple operators into a single one.

The output of the Optimizer is a nested relational algebra expression, which the Physical

Plan Rewriter translates to a plan of physical operators. We plan to extend this level with

more low-level •building blocksŽ. Finally, the Code Generatordynamically generates the Spark

script that represents the input query to reduce the interpretation overhead that hurts the

performance of pipelined query engines [159]. After the generation of the Spark script, the

Spark Executor deploys the “nal script in scale-out fashion.

Interestingly, Spark by default associates the result of the execution with the DAG of operations

that produced it. We aim to use this built-in data lineage support to incorporate additional

data cleaning functionality that considers data lineage [111] in future work.

6.7 Experimental Evaluation

The experiments examine how CleanDB performs compared to the state of the art, while

demonstrating the bene“ts stemming from the three optimization levels of CleanM.

Experimental Setup. We compare CleanDB against BigDansing [149] because it is, to our

knowledge, the only currently available scale-out system that explicitly targets data cleaning 1.

We also compare CleanDB against an implementation on top of Spark SQL. Spark SQL uses a

relational optimizer to produce query plans, whereas CleanDB uses a monoid-aware, three-

level optimizer; we can thus gauge the quality of the CleanM rewrites.

All experiments run on a cluster of 10 nodes equipped with 2 × Intel Xeon X5660 CPU (6 cores

per socket @ 2.80GHz), 64KB of L1 cache and 256KB of L2 cache per core, 12MB of L3 cache

shared, and 48GB of RAM. On top of the cluster runs Spark 1.6.0 … the latest version for which

BigDansing is intended. Spark launches 10 workers, each using 4 cores and 40GB of memory.

The workload we use involves i) DC checks, ii) duplicate elimination, iii) term validation, and

iv) syntactic transformations. DCs are a concept directly related to database design, thus

we evaluate them over the TPC-H dataset. We use TPC-H for syntactic transformations as

well. We use scale factors 15, 30, 45, 60, and 70 of the lineitem table. Each of the “ve versions

comprises 90M, 180M, 270M, 360M, and 420M records and has size 11GB, 22GB, 34GB, 45GB,

and 52GB respectively. We shuf”e the order of the tuples and produce two different datasets

by adding noise to 10% of the entries of the orderkey and discount column respectively. We

pick the tuples to edit from the domain of the SF15 version, so that we increase the skew as we

increase the dataset size. We also use a dataset which comprises tax information for people

that live in the US [149]. We use the two versions of Tax used to evaluate BigDansing [149];

a 13-column version that contains FD violations, and a 4-column version that contains DC

1 SampleClean [252] only operates over query-speci“c samples.

118

6.7. Experimental Evaluation

violations. Each version has a 100K and a 1M variation: The variations 100K-FD and 100K-DC

have a size of 6.7MB and 2.3MB respectively, and the variations 1M-FD and 1M-DC have a

size of 67MB and 26MB respectively.

We perform duplicate elimination and term validation over the DBLP bibliography hierarchical

dataset, because these error categories occur frequently in semi-structured data. We use a

subset of DBLP that contains information about articles; each entity contains at most 13

attributes. We add noise to 10% of the author names by a factor of 20%, and scale up the

dataset by adding extra entities; we construct new publications by permuting the words of

existing titles and by adding authors from the active domain. The end result is a 1GB, a 5GB,

and a 10GB XML version. We also use the customer table of TPC-H because the implementation

of duplicate elimination in BigDansing is a UDF that is speci“c to customer. We add duplicate

records for 10% of customer entries, where the number of duplicates for each record is a

random value generated using Zipf•s distribution; the number of duplicates belongs to the

intervals [1-50] and [1-100] respectively. We create the duplicate records by randomly editing

the name and phone values. The size of the datasets is 2.2GB and 3.1GB respectively. We also

use the Microsoft Academic Graph (MAG) [227], which is a database of scienti“c publications

stemming from all research areas. We evaluate duplicate elimination over the original version

of MAG, since its main issue is the existence of duplicate publications; the same publication

may appear multiple times, with variations in the title and DOI “elds, or with missing “elds.

We build MAG by joining the Paper, Author and PaperAuthorAf“liation datasets. The resulting

dataset contains 7 columns and has size 33GB.

We use response time and accuracy (when applicable) as metrics. Response time includes the

time taken to read the input, perform a cleaning task, and store the detected violations. In the

case of term validation, the output includes both detected violations and suggested repairs.

We measure accuracy by verifying the correctness of the repairs against a sanitized version of

the dataset.

The rest of this section uses the aforementioned cleaning tasks to visit the CleanM optimization

levels, and examines how each of them contributes to the fast and accurate responses of

CleanDB.

6.7.1 Optimizations at the monoid level

CleanDB is the only scale-out cleaning system that supports term validation; Spark SQL would

compute the cross product of the input and a dictionary, using a UDF to compute the similarity

of each (record, dictionary value) pair, and prune non-similar entries. The overall Spark script

was non-interactive in our experiments. This section demonstrates the bene“ts of monoid-

level optimizations in the context of term validation; we examine clustering and “ltering

operations, and show the effect of calibrating each operation based on dataset characteristics.

119

Chapter 6. Uni“ed Scale-Out Data Cleaning

�ì
�ñ�ì

�í�ì�ì
�í�ñ�ì
�î�ì�ì
�î�ñ�ì
�ï�ì�ì
�ï�ñ�ì

�š�(
�‹�A�î

�š�(
�‹�A�ï

�š�(
�‹�A�ð

�l�u�����v�•
�l�A�ñ

�l�u�����v�•
�l�A�í�ì

�l�u�����v�•
�l�A�î�ì

�d
�]�

u�
���

�~
�u

�]�
v�

µ�
š�

��•
�•

�d���Œ�u���s���o�]�����š�]�}�v�W�������>�W
�'�Œ�}�µ�‰�]�v�P
�^�]�u�]�o���Œ�]�š�Ç

Figure 6.3 … Different con“gurations of Cle-
anDB for term validation.

�ô�ñ

�õ�ì

�õ�ñ

�í�ì�ì

�î�ì�9 �ï�ì�9 �ð�ì�9

���
���

�µ
�Œ

���
��Ç

���
~

�9
�•

�E�}�]�•�����‰���Œ�����v�š���P��

�d���Œ�u���s���o�]�����š�]�}�v�W�������>�W���r �������µ�Œ�����Ç
�l�u�����v�•���l�A�ñ

�l�u�����v�•���l�A�í�ì

�l�u�����v�•���l�A�î�ì

�š�(���‹�A�î

�š�(���‹�A�ï

�š�(���‹�A�ð

Figure 6.4 … Accuracy of term validation as
the noise increases.

Term Validation

Term validation is a resource-intensive, challenging operation. This experiment validates

the author names of the ”at Parquet version of DBLP that contains 6.4M entities using the

Levenshtein distance metric. The dictionary that CleanDB consults to repair author names

comprises 200K names. The experiment launches different k-means con“gurations by chang-

ing the number of centers (k) which it obtains from the dictionary. The same experiment also

launches different token “ltering con“gurations using a different token length parameter (q).

Runtime. Figure 6.3 presents the time taken to clean the author names using k-means and to-

ken “ltering as pruning methods, while also using different parameters for each method. Each

bar comprises the time taken to “lter/block the data and the time to perform the similarity

check within the groups. In the case of k-means, using more centers leads to fewer elements

in each cluster. Thus, the number of similarity checks decreases. In the case of token “ltering,

as q increases, performance improves because the tokenization phase produces fewer groups

with fewer elements in each one, and thus the number of checks decreases. The token “ltering

con“gurations are faster than the k-means ones, except when q=2; the token size proves to be

too small and results in too many groups.

Regarding the pre-“ltering step, since the tokenization process is expensive, grouping by center

is more lightweight than grouping by token. However, the average length of author names

in DBLP is 12.8, which is short enough for the tokenization to proceed without signi“cant

overhead. Regarding similarity checks, token “ltering produces a larger number of smaller-

sized groups compared to k-means, thus the total number of pairwise comparisons is smaller.

K-means is more sensitive to the statically speci“ed centers.

Accuracy. Table 6.2 measures the accuracy of the suggested repairs for the term validation

task examined. The experiment considers precision (i.e., correct updates/total updates

suggested),recall (i.e., correct updates/total errors) and F-score as metrics.

The token “ltering con“gurations are more accurate, because they check the similarity of

two author names whenever they have at least one common token. Thus, even if a name

is dirty, it will contain at least one clean token that will match a token of the correct name

120

6.7. Experimental Evaluation

Type Parameter(s) Precision Recall F-score

tf q = 2 100% 97% 98.5%

tf q = 3 100% 96.8% 98.3%

tf q = 4 99.9% 95.9% 97.9%

K-means k = 5 99.9% 95.7% 97.8%

K-means k = 10 99.9% 94.8% 97.3%

K-means k = 20 99.9% 94% 96.9%

Table 6.2 … Accuracy of term validation approaches over the DBLP dataset.

in the dictionary. Increasing q does not hurt accuracy noticeably. K-means becomes less

accurate as the number of clusters increases, because similar words end up in different

clusters and therefore are not checked for similarity. Still, all the term validation variations of

CleanDB exhibit high accuracy.

Figure 6.4 examines the accuracy of term validation as we vary the noise on the name attribute

from 20% to 40%. To obtain a fair comparison, we lower the similarity threshold as we increase

the noise, so that we isolate the accuracy of the pruning algorithm and avoid missing results

that fail to pass the similarity threshold. The results show that accuracy drops slightly as we

add more noise. The drop stems from both having lower precision and lower recall. Precision

drops because some incorrect matches now pass the low similarity threshold; recall drops

because by increasing the noise, two similar words are more likely to get assigned to different

groups. However, the drop in accuracy is negligible in all cases but the ones where we have a

bigger parameter set for token length q=4 or number of centers k=20; these con“gurations are

more prone to inaccuracies because they produce clusters with fewer items.

Summary. CleanDB can use token “ltering and clustering monoids to reduce term validation

checks. Both methods avoid false positives, and thus the resulting precision is close to 100%.

Calibrating the algorithm parameters enables trading performance for accuracy; still, the

accuracy remains above 90% in most cases.

6.7.2 Optimizations at the algebra level

This section demonstrates the bene“ts of the algebraic optimizations that CleanDB performs.

We focus on how CleanDB optimizes different cleaning operations as a single task.

Uni“ed data cleaning

This experiment resembles our rolling example, and measures the cost of detecting duplicates

and functional dependency violations through a single query on the customer dataset; we

replace the term validation part of the example with an extra functional dependency, because

CleanDB is the only scale-out system supporting term validation. The query in question

examines the rules FD1 :address� pre f i x (phone), FD2 : address� nat ionkey and also

121

Chapter 6. Uni“ed Scale-Out Data Cleaning

�ì
�ñ

�í�ì
�í�ñ
�î�ì
�î�ñ
�ï�ì
�ï�ñ

���o�����v���� �^�‰���Œ�l�^�Y�> ���]�P�����v�•�]�v�P

�d
�]�

u�
���

�~
�u

�]�
v�

µ�
š�

��•
�•

�h�v�]�(�]�����������š�������o�����v�]�v�P�W�����µ�•�š�}�u���Œ

�&���î �&���í �������h�W �������h�W�=�&���í�=�&���î

Figure 6.5 … Uni“ed data cleaning: CleanDB rewrites three cleaning operations into a single
one, and avoids duplicate work.

checks for duplicate customers given that they appear with the same address. We run the

query as i) separate sub-queries and ii) as a single task that also combines the partial results.

Figure 6.5 presents the results.

Results. CleanDB detects that the tasks share a grouping on the address“eld and performs all

operations using a single aggregation step. Unifying the cleaning tasks reduces the execution

time for CleanDB. BigDansing can only apply one operation at a time and lacks support for

values not belonging to the original attributes (i.e., the result of pre“x() in FD1). Spark SQL

is unable to detect the opportunity to group the tasks into one. It starts the cleaning tasks in

parallel since they share a common data scan, but then performs a full outer join to combine

the output of each operation; uni“ed execution ends up being more expensive than the

standalone one. Still, even considering the separate execution, CleanDB outperforms the other

systems because of its explicit skew handling when performing FD checks and deduplication.

Transformations

This experiment measures the cost of applying syntactic transformations over the SF70 Parquet

version of TPC-H. The experiment examines the added cost when performing lightweight

cleaning tasks compared to a traversal of the dataset that projects all its attributes. We consider

“lling missing values and splitting dates. We “ll empty values of the quantity attribute using

the average value of the existing quantities. We split the receipt_date into day, month and year

“elds. We also measure the cost of applying the aforementioned operations using a single

CleanM query.

Results. Table 6.3 shows the slowdown that each cleaning task incurs compared to executing

the plain query. The individual costs of splitting the dates and “lling missing values are almost

masked by the query cost. When applying each cleaning operation one after the other, the

overall slowdown is computed by adding the overall running times for each dataset traversal.

However, CleanDB is able to apply both cleaning operations in one go: The overall cost is then

similar to the cost of only applying a single operation, because the execution plan computes

the average quantity and then performs both the replacement of missing values and the

122

6.7. Experimental Evaluation

Operation Slowdown

Split date 1.15×

Fill values 1.15×

Split date & Fill values (two steps) 2.3×

Split date & Fill values (one step) 1.19×

Table 6.3 … Overhead introduced by performing syntactic transformations in a plain query.
The optimizer of CleanDB applies both operations in one go and reduces overhead by � 2×.

splitting of the receipt column in a single dataset pass. In summary, CleanDB can intertwine

analytics and lightweight cleaning operations, while relying on its optimizer to identify and

prune duplicate work.

Summary. Instead of treating each type of cleaning operation as a standalone implementation,

CleanDB optimizes a cleaning work”ow as a whole, identifying optimization opportunities

even across different operations. CleanM enables such optimizations because it uses a single

abstraction to express all cleaning tasks, and an optimizable algebra as its backend.

6.7.3 Optimizations at the physical level

This section shows how the physical-level optimizations of CleanDB that focus on handling

skew and non-equality predicates accelerate data cleaning and duplicate elimination tasks.

Functional Dependencies & Denial Constraints

This experiment measures the cost of validating four rules; � 1 and � 1 concern TPC-H, while

� 2 and � 2 concern Tax. Rule � 1 is a functional dependency (FD) stating that the order of an

item determines its supplier. Rule � 1 is a denial constraint (DC) stating that an item cannot

have a bigger discount than a more expensive item; the “lter on price has a selectivity of 0.01%.

Rule � 2 is a FD stating that the zip code determines the city and state, and � 2 is a DC stating

that the tax must be analogous to the salary of an employee.

� 1 : orderkey, l inenumber � suppkey, � 2 : zi p � ci t y,state

� 1 :
 t1, t2 t1.pr ice < t2.pr ice & t1.di scount > t2.d i scount

& t1.pr ice < [X]

� 2 :
 t1, t2 t1.salar y < t2.salar y & t1.tax > t2.tax

The straightforward way to detect FD violations using (Spark) SQL is a self-join query. However,

traversing a dataset twice hurts performance. Thus, we benchmark FDs in Spark SQL using a

query that groups the data in a way similar to CleanM. To collect the distinct values per group,

we implement a user-de“ned aggregate function that behaves similar to GROUP_CONCAT.

TPC-H FD Results. Figures 6.6a, 6.6b present the time taken to detect violations of � 1 as we

increase the size of TPC-H. We present the results for both CSV (Figure 6.6a) and Parquet

123

Chapter 6. Uni“ed Scale-Out Data Cleaning

�ì

�í�ì

�î�ì

�ï�ì

�í�ñ �î�ñ �ï�ñ �ð�ñ �ñ�ñ �ò�ñ

�d
�]�

u�
���

�~
�u

�]�
v�

•

�^�����o�����&�����š�}�Œ

�����v�]���o�����}�v�•�š�Œ���]�v�š�•�W���d�W���r�,�����^�s

���]�P�����v�•�]�v�P �^�‰���Œ�l�^�Y�>���o�����v����
(a)

�ì

�î

�ð

�ò

�í�ñ �î�ñ �ï�ñ �ð�ñ �ñ�ñ �ò�ñ

�d
�]�

u�
���

�~
�u

�]�
v�

•

�^�����o�����&�����š�}�Œ

�����v�]���o�����}�v�•�š�Œ���]�v�š�•�W���d�W���r�,
�W���Œ�‹�µ���š

�^�‰���Œ�l�^�Y�> ���o�����v����
(b)

Figure 6.6 … Cost of checking for violations of functional dependencies over TPC-H.

(Figure 6.6b). Parquet is only supported by CleanDB and Spark SQL; we omit BigDansing in

Figure 6.6b. The response times of Figure 6.6b are shorter than those of Figure 6.6abecause

Parquet is a binary columnar optimized data format which also supports compression.

CleanDB is faster than BigDansing and Spark SQL regardless of the underlying format. Big-

Dansing performs hash-based aggregation: it shuf”es the data based on a hash function to

create blocks that share the same orderkey and linenumber , and then iterates through each

block to check for violations. Spark SQL performs sort-based aggregation: it sorts the entire

dataset based on the (orderkey, linenumber) pair, and different data ranges end up in different

data nodes. Then, it performs the aggregate computations locally on each node. Spark SQL

outperforms BigDansing because the sort-based shuf”e implementation of Spark is more

ef“cient than the hash-based one [256]: The hash-based approach stresses the overall system

memory and causes a lot of random I/O, whereas the sort-based approach uses external

sorting to alleviate these issues. CleanDB considers data skew when creating the physical

query plan: It performs the aggregate operation locally within each data node and then merges

the partial results, thus minimizing cross-node traf“c. Therefore, CleanDB outperforms the

other systems because it translates the query into a set of Spark operators that do not require

data exchange until the “nal merge phase.

Scale Factor 15 30 45 60 70

Time (min) 1.7 2 3.7 4.9 5.65

Table 6.4 … Denial constraints involving inequalities as the dataset size increases. All systems
beside CleanDB fail to terminate.

TPC-H DC Results. The detection of violations of � 1 involves a self-join that checks the

inequality conditions. Table 6.4 shows that only CleanDB was able to successfully complete

the data constraint check. Spark SQL was unable to compute the expensive cross product to

evaluate the conditions. BigDansing and CleanDB rely on a custom theta join operator each.

The theta join implementation of BigDansing attempts to prune the pairwise comparisons

involved in the computation of an inequality join by “rst partitioning the data, then computing

min-max values per partition, and then only cross-comparing partitions whose min-max

124

6.7. Experimental Evaluation

�ì
�í�ì
�î�ì
�ï�ì
�ð�ì
�ñ�ì
�ò�ì
�ó�ì

�&�� ����

�d
�]�

u�
���

�~
�•

���
��• �����v�]���o�����}�v�•�š�Œ���]�v�š�•�W���d���Æ�r�í�ì�ì�<

���o�����v���� �^�‰���Œ�l�^�Y�>���]�P�����v�•�]�v�P
(a)

�ì
�ñ�ì

�í�ì�ì
�í�ñ�ì
�î�ì�ì
�î�ñ�ì
�ï�ì�ì

�&�� ����

�d
�]�

u�
���

�~
�•

���
��• �����v�]���o�����}�v�•�š�Œ���]�v�š�•�W���d���Æ�r�í�D

���o�����v���� �^�‰���Œ�l�^�Y�>���]�P�����v�•�]�v�P
(b)

Figure 6.7 … Cost of checking for violations of functional dependencies over Tax.

ranges overlap. The number of avoidable checks, however, is not guaranteed to be high,

unless the partitioning of the “rst step can be fully aligned with the “elds involved in the DC;

indeed, excessive data shuf”ing makes BigDansing non-responsive for � 1. On the contrary,

CleanDB spends more effort to obtain global data statistics and does a better job balancing

the theta join load among the Spark executors.

Tax Results. Figures 6.7a,6.7b show the time taken to detect violations of rules � 2, � 2 over

the Tax dataset. When evaluating the FD � 2 over the 100K-FD version of Tax, the input size is

too small for the skew-balancing optimizations of CleanDB to prove useful. 100K-DC is even

smaller (only 2.3MB). In addition, the DC version of Tax of [149] is a synthetic variation that

contains a small number of violations. Therefore, the effort of CleanDB to create balanced

data partitions for scale-out execution does not pay off. Still, even for this small size, SparkSQL

is unable to terminate because of the cartesian product it attempts to evaluate.

As shown in Figure 6.7b, CleanDB scales better than its competitors: CleanDB is the fastest

system over 1M-FD , and the only system that successfully terminates for 1M-DC , because it

balances the load more uniformly by aggregating the results locally.

Duplicate Elimination

The following experiments evaluate duplicate detection using DBLP, MAG, and the TPC-H

customer table; the duplicate elimination implementation of BigDansing is speci“c to the

customer table.

We demonstrate the importance of being able to handle heterogeneous datasets by consid-

ering different representations for DBLP: We consider i) a JSON version, which has become

the most popular data exchange format, ii) a Parquet version that preserves data nestings,

iii) a •”atŽ CSV version, and iv) a •”atŽ Parquet version. We obtain the last two versions by

”attening the entities of the nested input; if a publication has more than one author, then

the publication appears in multiple records … one for each author. We compare the response

time of CleanDB against Spark SQL. We consider two DBLP publications to be duplicates if

they appear on the same journal, have the same title, and the similarity of their attributes

125

Chapter 6. Uni“ed Scale-Out Data Cleaning

�ì
�í�ì
�î�ì
�ï�ì
�ð�ì
�ñ�ì

���o�����v���� �^�‰���Œ�l�^�Y�>

�d
�]�

u�
���

�~
�u

�]�
v�

µ�
š�

��•
�•

���µ�‰�o�]�����š�������o�]�u�]�v���š�]�}�v�W��
�����>�W���ñ�'��

�:�^�K�E �W���Œ�‹�µ���š
���^�s�z�(�o���š �W���Œ�‹�µ���š�z�(�o���š

(a)

�ì
�í�ì
�î�ì
�ï�ì
�ð�ì
�ñ�ì

���o�����v���� �^�‰���Œ�l�^�Y�>

�d
�]�

u�
���

�~
�u

�]�
v�

µ�
š�

��•
�•

���µ�‰�o�]�����š�������o�]�u�]�v���š�]�}�v�W��
�����>�W���í�ì�'��

�:�^�K�E �W���Œ�‹�µ���š
���^�s�z�(�o���š �W���Œ�‹�µ���š�z�(�o���š

(b)

Figure 6.8 … Duplicate elimination over simpli“ed representations of DBLP: Spark SQL was
unable to terminate when cleaning the original dataset.

�ì
�ñ

�í�ì
�í�ñ
�î�ì
�î�ñ

���µ�•�š�}�u���Œ�•���ñ�ì ���µ�•�š�}�u���Œ�•���í�ì�ì

�d
�]�

u�
���

�~
�u

�]�
v�

µ�
š�

��•
�•

���µ�‰�o�]�����š�������o�]�u�]�v���š�]�}�v�W�����µ�•�š�}�u���Œ

���o�����v���� ���]�P�����v�•�]�v�P�^�‰���Œ�l�^�Y�>
(a)

�ì
�í�ì�ì
�î�ì�ì
�ï�ì�ì
�ð�ì�ì
�ñ�ì�ì
�ò�ì�ì

�D���'�î�ì�í�ð �D���'�š�}�š���o

�d
�]�

u�
���

�~
�u

�]�
v�

µ�
š�

��•
�•

���µ�‰�o�]�����š�������o�]�u�]�v���š�]�}�v�W���D���'

���o�����v���� �^�‰���Œ�l�^�Y�>

�E�í�ì�Z

(b)

Figure 6.9 … Duplicate elimination over Customer and MAG.

exceeds 80% … we assume that the title and journal attributes are •cleanerŽ than the rest. Both

CleanDB and Spark SQL create blocks based on the journal and title values to reduce pairwise

comparisons. Similarly, two MAG publications are duplicates if they appear on the same year,

have the same author id, and are more than 80% similar.

DBLP Deduplication Results. Spark SQL initially was unable to complete the elimination

task, even for an input size of 1GB, because it is sensitive to data skew. Therefore, we removed

the most frequently occurring titles from the dataset to obtain a more uniform version and

enable the comparison against Spark SQL. The size of the uniform dataset varies from 5GB to

10GB when stored as XML, and the number of entries ranges from 6.4 to 64 million. For the

JSON, nested Parquet, •”atŽ CSV, and •”atŽ Parquet versions, the size reached 7GB, 2GB, 14GB,

and 2.4GB respectively.

Figure 6.8 presents the response time of the systems that are able to process DBLP. Both

CleanDB and Spark SQL are faster when running over the nested JSON and Parquet represen-

tations, because ”attening the data introduced many more tuples to be processed; thus, being

able to operate over the original, non-relational data representation can be a signi“cant asset

for many use cases.

126

6.8. Summary

Regardless of format, Spark SQL exhibits lower response times for the 5GB case, yet scales less

gracefully and is slower than CleanDB for the 10GB version. The explanation for this behavior

resembles the one for DCs: Spark SQL uses sort-based shuf”ing based on the journal, title

attributes to assign the records of each group into the same partition and then computes

the similarity within each group. On the contrary, CleanDB aggregates data locally, and then

merges the partial results together. The physical rewrites of CleanDB reduce network traf“c

and are resilient to skew. However, in the simpli“ed dataset versions that we produced to be

able to use Spark SQL, data ends up following a uniform distribution, thus favoring Spark SQL.

Still, when the data size increases, some of the values again occur more frequently than others;

Spark SQL creates imbalanced partitions, which overload some nodes and thus delay the

overall execution time because they have to perform more similarity checks than other nodes.

Customer Deduplication Results. Figure 6.9apresents the response time of all systems over

the customer dataset. BigDansing and Spark SQL perform poorly because of the subopti-

mal way in which they construct the value blocks to be checked for duplicates; instead of

grouping values locally and then shuf”ing them to other nodes, they shuf”e the entire dataset.

CleanDB scales better than the other systems because of its explicit skew handling.

MAG Deduplication Results. Figure 6.9b presents the response time of all systems over the

MAG dataset. Spark SQL was unable to execute the task for the whole dataset, thus we also

consider a 6.3GB subset that contains publications from year 2014. MAG is a real-world, highly

skewed dataset; CleanDB uses skew-resilient primitives, and thus signi“cantly outperforms

Spark SQL.

Summary. The physical-level optimizations, namely support for data skew and theta joins,

ensure that CleanDB scales gracefully, and handles realistic datasets for which its competitors

are unable to terminate successfully. The experiments also show the importance of allowing

data cleaning over the original, intended data format; cleaning nested data proved to be faster

when considering the original nested representation instead of ”attening all entries.

6.8 Summary

Practitioners typically perform manual data cleaning or use a number of cleaning tools … one

per error type. Being forced to use multiple tools is inconvenient, makes it hard to apply

cleaning operations iteratively until the user considers data quality to be satisfactory, and

seldom guarantees that a cleaning script will be ef“ciently optimized and executed as a whole.

This work introduces CleanM, a declarative query language that allows users to express their

different cleaning scripts. CleanM exposes a wide variety of parameterizable data cleaning

primitives, which a user can apply over her data. CleanM relies on a powerful, parallelizable

query calculus, and a three-level optimization process; all the operations included in a cleaning

script are translated to the calculus, and then optimized as one uni“ed task.

127

Chapter 6. Uni“ed Scale-Out Data Cleaning

We have implemented CleanDB, a scale-out querying and cleaning framework. CleanDB ex-

poses the functionality of CleanM over multiple types of data sources. CleanDB scales better

than existing data cleaning solutions and handles cases that other systems lack support for or

are unable to serve due to performance issues.

128

7 Looking forward:
HTAP on Heterogeneous Hardware

Modern database engines balance the demanding requirements of mixed, hybrid transactional

and analytical processing (HTAP) workloads by relying on i) global shared memory, ii) system-

wide cache coherence, and iii) massive parallelism. Thus, database engines are typically

deployed on multi-socket multi-cores, which have been the only platform to support all three

aspects.

Two recent trends, however, indicate that these hardware assumptions will be invalidated in

the near future. First, hardware vendors have started exploring alternate non-cache-coherent

shared-memory multi-core designs due to escalating complexity in maintaining coherence

across hundreds of cores. Second, as GPGPUs overcome programmability, performance,

and interfacing limitations, they are adopted by emerging servers to expose heterogeneous

parallelism. It is thus necessary to revisit database engine design because current engines

neither deal with the lack of cache coherence nor exploit heterogeneous parallelism.

In this chapter, we make the case for Heterogeneous-HTAP (H 2TAP), a new architecture

explicitly targeted at emerging hardware. H 2TAP engines store data in shared memory to

maximize data freshness, pair workloads with ideal processor types to exploit heterogeneity,

and use message passing with explicit processor cache management to circumvent the lack of

cache coherence.

7.1 Introduction

The past few years have witnessed a rise in demand for real-time business intelligence. Orga-

nizations increasingly require analytics on fresh operational data to derive timely insights. To

meet these requirements, database engines have to ef“ciently support hybrid transactional

and analytical workloads (HTAP) over shared data. Designing a database engine that can serve

mixed workloads ef“ciently is challenging, because OLTP workloads require ACID seman-

tics, high throughput, and performance isolation, while OLAP workloads require interactive

response times and data freshness.

129

Chapter 7. Looking forward:
HTAP on Heterogeneous Hardware

Database engines meet these con”icting demands by relying on hardware to support three

important functionalities. First, they rely on global shared memory to store a single copy of

data that can be accessed by both OLTP and OLAP workloads. Second, they rely on cache

coherence to guarantee that two threads running on different cores see a consistent view of

data stored in shared memory despite layers of caching. Third, they rely on abundant paral-

lelism to concurrently execute OLTP and OLAP queries. Despite providing massive parallelism,

accelerators like GPGPUs have traditionally neither shared memory nor maintained coherence

with CPUs. Thus, contemporary database engines are designed to be deployed on high-end

multi-socket multi-cores.

Two recent trends, however, necessitate revisiting contemporary database engine design.

First, as we move from the multi-core era to the many-core one, maintaining coherence

across hundreds of core-private caches has become challenging. Architecture researchers

and hardware vendors have started exploring many-core designs that support global shared

memory but not system-wide cache coherence [49, 50, 131, 178, 253]. Second, over the past few

years, GPGPUs have evolved from memory-limited, niche accelerators into general-purpose

processors that support, among other advanced features, globally shared address space and

pageable virtual memory. Based on these trends, emerging hardware will likely have three

salient properties: i) heterogeneous parallelism, ii) global shared memory, and iii) no system-

wide cache coherence. Current database engines are a poor match for emerging hardware

because they can neither deal with the lack of cache coherence nor exploit heterogeneous

parallelism. As a result, despite underutilizing hardware resources, current engines deployed

on emerging hardware will continue to suffer from a •house patternŽ [210]: OLTP and OLAP

workloads will negatively interfere with each other due to resource contention.

This chapter presents Heterogeneous-HTAP (H 2TAP), a new architecture for designing database

engines explicitly targeted at emerging hardware. The H 2TAP architecture requires database

engines to address all three aspects of emerging hardware explicitly by adhering to two design

principles: i) make heterogeneity a “rst-class design citizen, ii) decouple shared memory from

cache coherence. Using these principles, H 2TAP database engines exploit heterogeneity by

pairing processors with their ideal workloads, provide data freshness for OLAP workloads by

storing data in globally shared memory, and use message-passing-based parallelism instead of

shared-memory parallelism to scale OLTP workloads even in the absence of cache coherence.

We validate the H 2TAP architecture by designing and implementing Caldera, a prototype

H2TAP engine. Our evaluation shows that Caldera can provide transactional throughput com-

parable to state-of-the-art OLTP engines while providing interactive response time and data

freshness for analytical queries using GPGPUs.

7.2 Database engines on emerging hardware

As also described in Section 2.4, the hardware landscape exhibits two major trends to which

the data management sector must adapt, namely, the generalization of GPGPUs and the

130

7.3. The case for H 2TAP

specialization of multisocket CPUs. GPGPUs have evolved from memory-limited accelerators

for niche computations to general-purpose processors, whereas architecture researchers and

practitioners have started exploring specialized multicore CPU designs.

Putting the hardware trends together, we believe that in the near future, the servers that will

be used to deploy database engines will have three salient properties: 1) they will support

heterogeneous parallelism with CPUs that excel at latency-critical task-parallel workloads and

GPGPUs that excel at throughput-heavy data-parallel workloads, 2) similar to contemporary

servers, they will support a global address space that is shared across all processors, and

3) unlike contemporary servers, they will not support system-wide CC. Current engines suffer

from three major problems on such hardware.

First, database designs that rely on CC-shared memory for scaling transactional workloads

will be incompatible with non-CC hardware. Database engines rely on CC for cross-core data

sharing, and more importantly, thread synchronization based on spinlocks, shared-memory

atomics, or HTM. In the absence of system-wide CC, the only option today is to scale OLTP

workloads using the shared-nothing (SN) design. The SN design, however, is agnostic to the

fact that memory is globally shared across all processors, and thus suffers from distributed

transaction overheads when running poorly partitionable workloads [207].

Second, while specialized OLAP engines exploit the massive parallelism of GPGPUs [15, 127,

128], all current general-purpose engines ignore them because they traditionally did not share

an address space with CPUs, and thus made it dif“cult to share data across transactional and

analytical workloads. Using these contemporary database engines on emerging hardware with

GPGPUs that no longer suffer from any such data-sharing limitations would leave abundant

heterogeneous parallelism untapped.

Third, even state-of-the-art database engines exhibit a house pattern [210]: under mixed

workloads, increasing OLAP throughput by scheduling more concurrent analytical queries

results in a collapse in transactional throughput due to contention for processing resources.

Avoiding the house pattern requires throttling or preempting analytical queries in order to

prioritize transaction execution. Such throttling is completely unwarranted in emerging server

platforms, especially since the heterogeneous processing resources are underutilized. Given

these problems, we believe that it is time to revisit database design for emerging hardware.

7.3 The case for H 2TAP

Heterogeneous-HTAP (H 2TAP) is a new architecture for building database engines that uses

two design principles to exploit all aspects of emerging hardware: 1) make heterogeneity a

“rst class design citizen, 2) decouple shared memory and CC dependencies.

Heterogeneity as an opportunity. The H2TAP architecture exploits heterogeneity based

on the observation that the latency-critical nature of OLTP workloads and the bandwidth-

131

Chapter 7. Looking forward:
HTAP on Heterogeneous Hardware

OLAP archipelago

GPU

OLTP archipelago

DRAM DRAMDRAM DRAM
SHARED MEMORY

Core Core

S
cheduler

Query compiler

Core

Query runtime

Query parser & optimizer

Figure 7.1 … H2TAP deployed over emerging server hardware.

intensive nature of OLAP workloads are aligned with the task-parallel nature of CPUs and

the data-parallel nature of GPUs respectively. Thus, the H 2TAP architecture uses both hard-

ware and workload heterogeneity in a synergistic fashion by introducing the archipelago

abstraction.

Archipelagos are resource containers de“ned by a set of processor cores and a target workload.

H2TAP uses archipelagos by partitioning cores into a task-parallel archipelago consisting only

of CPU cores, and a data-parallel archipelago that can contain both GPUs and CPU cores.

Transactions are executed in the task-parallel archipelago while analytical queries are handled

by the data-parallel archipelago as shown in Figure 7.1.

Decoupling shared memory and cache coherence. Despite executing queries in different

archipelagos, the H 2TAP architecture mandates storing a single copy of data in shared memory

that is globally accessibleacross archipelagos. Still, while the H 2TAP architecture expects

hardware to support shared memory, it does not rely on system-wide CC. Instead, H 2TAP en-

gines have to explicitly manage CC in software. The clear separation of workloads across

archipelagos simpli“es this task to a certain extent … as analytical queries do not update data,

H2TAP engines do not have to maintain coherence across archipelagos. However, H 2TAP en-

gines should guarantee that transactions running within the task-parallel archipelago obey

the ACID properties and analytical queries running in the data-parallel archipelago work on

transactionally consistent data, despite the lack of CC.

H2TAP blueprint. Figure 7.1 shows software components that an H 2TAP engine would need

to implement in order to realize the H 2TAP architecture in practice. The parser and optimizer

form a front-end that translates a SQL query into a physical query plan. The scheduler is

responsible for implementing the archipelago abstraction by managing core…archipelago

membership. Using this information, the scheduler can provide run-time elasticity by en-

abling on-the-”y •migrationŽ of CPU cores between archipelagos. Further, the scheduler also

132

7.3. The case for H 2TAP

maintains processor and memory utilization statistics within each archipelago. Based on these

statistics, it works with the optimizer to determine the target archipelago and cores where

each query will be executed. While the H 2TAP architecture requires transactional queries

to be scheduled on CPUs in the task-parallel archipelago, it enforces no such restrictions

on the scheduling of analytical queries in the data-parallel archipelago. Thus, the scheduler

can combine dynamic run-time information, such as data locality, with static optimizer cost

models to decide if a given analytical query should be executed on CPU or GPU cores in the

data-parallel archipelago.

Once the scheduler determines the target execution environment, a query compiler pro-

duces the query implementation from the physical query plan. Instead of using volcano-style

interpretation for executing the query plan, the query compiler generates machine code

corresponding to the target processor(s) for the query. Query compilation reduces the in-

terpretation overheads of query execution [153, 159, 190, 213, 153] and masks the effects of

(data) heterogeneity [143, 144, 145]; H2TAP extends the concept of heterogeneity to hardware

to mask the difference in Instruction Set Architectures (x86 or PTX [194]).

Finally, the generated code is passed to the Query runtime together with information from

the scheduler about the target processor(s) where the query should be executed. The runtime

is responsible for both providing a mechanism for sharing data across archipelagos and

shepherding query execution within each archipelago.

H2TAP bene“ts. The H2TAP architecture provides several bene“ts. First, archipelagos enable

af“nitizing workloads to ideal processor types; transactions bene“t from task parallelism

provided by CPUs and analytical queries bene“t from data parallelism provided by GPUs.

Second, by enabling CPU cores to change membership between task and data-parallel archi-

pelagos on the ”y, the H 2TAP architecture improves deployment elasticity because it enables

dynamic load balancing. For instance, an H 2TAP engine could con“gure its scheduler to

move unused CPU cores from task- to data-parallel archipelago, and use them for running

analytical queries under light OLTP workloads. Third, by separating OLTP and OLAP execution,

archipelagos eliminate interference and processor resource contention across workloads,

and hence the house pattern, by design. Fourth, by decoupling shared memory and CC, the

H2TAP architecture enables new database engine designs that can take a middle ground be-

tween shared-everything designs, which rely on CC and shared memory, and shared-nothing

designs, which are oblivious to both aspects.

H2TAP challenges. Despite the bene“ts of H 2TAP, realizing it in practice also requires an-

swering three questions. First, H 2TAP engines have to store data in a layout that is suitable

for ef“ciently running both transactional and analytical workloads. However, research on

CPU-based database engines has shown that different workloads bene“t from different storage

layouts [33, 86]. OLTP workloads bene“t from the N-ary Storage Model (NSM) because the

whole-record read-write operations performed by transactions can be implemented ef“ciently

using NSM•s row-wise layout. OLAP workloads, in contrast, touch only a few attributes, and

133

Chapter 7. Looking forward:
HTAP on Heterogeneous Hardware

thus bene“t more from the columnar layout of the Decomposition Storage Model (DSM),

which minimizes data transfers and utilizes CPU caches better. As H 2TAP engines need to

support both workloads, the “rst question to be answered is whether •middle-groundŽ [33]

hybrid layouts [37, 44, 120] work in the H 2TAP context as well.

Second, irrespective of the layout used, an H 2TAP engine must provide an ef“cient mech-

anism to provide analytical queries running in the data-parallel archipelago with access to

transactionally-consistent data, which is being updated by transactions running on CPUs.

Contemporary HTAP engines typically use snapshotting to solve this problem [147]. If we

used only CPUs in the data-parallel archipelago, we would be able to use fork-based snapshot-

ting [147] for executing OLAP queries over an immutable database snapshot. Unfortunately,

such an approach is not applicable with GPGPUs because CUDA memory allocations cannot

be shared across process boundaries due to CUDA runtime limitations. Thus, the second

question to be answered is whether alternate software snapshotting techniques [248] can be

used to enable cross-archipelago data sharing.

Third, while the H 2TAP architecture expects hardware to support globally accessible shared

memory, it does not rely on system-wide CC. Thus, an H 2TAP engine must be able to scale

transactional and analytical workloads despite the lack of CC. Given that OLAP queries run-

ning in the data-parallel archipelago never update the database due to their read-only nature,

H2TAP obviates the need for cross-archipelago CC. However, H 2TAP engines must still over-

come the lack of coherence within the task-parallel archipelago where concurrent transactions

update shared data and metadata. Therefore, the third question to be answered is whether

OLTP workloads can be scaled up within task-parallel archipelagos without relying on CC.

7.4 CALDERA: An H2TAP query engine

Caldera is a prototype query engine we develop to examine the opportunities offered by the

H2TAP architecture and address the challenges it raises. To this end, the Caldera prototype

implements only the query runtime and leaves the other components described in Section 7.3

to future work.

Applying H 2TAP. Caldera adheres to the H 2TAP architecture by grouping processors into a

CPU-only task-parallel archipelago, and a GPU-only data-parallel archipelago. Transactions

are executed in the task-parallel archipelago while analytical queries are handled by the

data-parallel archipelago.

Caldera stores data in shared memory that is allocated using Uni“ed Virtual Addressing. By

using UVA, Caldera exposes a global address space across archipelagos. We use UVA because

our current hardware setup uses Maxwell GPUs, which impose strict limits on the maximum

Uni“ed Memory allocation size. In the future, we plan to use Uni“ed Memory with Pascal

GPUs that have no such limitations.

134

7.4. CALDERA: An H2TAP query engine

C10

Ta0

C20 C10

Tb0

C20

P0

C11

Ta1

P1

C21Columns:

Tables:

Partitions:

Pages:

Figure 7.2 … The hierarchical data organization of Caldera for a columnar data layout, and the
in-memory state after a transaction has updated table T a. Superscripts represent epochs.

Data layout. Prior research has focused on building hybrid layouts that can support both

transactional and analytical workloads in the traditional HTAP context [33, 37, 44, 120]. For

instance, PAX [33] is an alternative storage layout that strikes a balance between the NSM

and DSM extremes. Like NSM, PAX organizes data records in pages. Like DSM, PAX groups

values of the same attribute together. A page therefore contains minipages, each of which

only contains values of a single attribute. Due to its organization of data into minipages and

pages, PAX enables cache-friendly query execution similar to DSM while providing update

cost similar to NSM.

Hybrid layouts like PAX play an even more important role in the new H 2TAP scenario because

they provide two tangible performance bene“ts. First, as the GPU memory capacity is limited,

data transfer plays a crucial role in determining the overall query execution time due to the

limited bandwidth of the PCIe bus. Thus, hybrid layouts will outperform NSM even in the

H2TAP scenario due to their ability to reduce the amount of data transferred. Second, GPUs

coalesce global memory loads and stores issued by threads into as few memory transactions

as possible to both improve performance and reduce memory bandwidth requirements.

However, in order for coalescing to work properly, threads should access memory locations

sequentially. Thus, a data layout like PAX is a better “t for GPUs than NSM because it enables

such coalesced accesses.

Our current prototype supports NSM, DSM, and PAX layouts. Caldera stores data in shared

memory as a collection of horizontal partitions. Within a partition, records of a table can

be stored in any of the three layout types. Figure 7.2 shows the hierarchical partition …table…

column…pagedata organization used by DSM.

135

Chapter 7. Looking forward:
HTAP on Heterogeneous Hardware

OLAP in the data-parallel archipelago. The Caldera prototype uses the kernel-based exe-

cution model for executing OLAP queries on the GPU similar to other GPU-based OLAP

engines [96, 127, 258]. Each database operator is implemented as a collection of data-parallel

primitives, where each primitive is an individual CUDA kernel. OLAP queries are executed by

a dedicated CPU thread that executes each database operator by executing the corresponding

CUDA kernels one at a time while using UVA to store all input, intermediate, and output data.

It is well-known that such kernel-based execution results in sub-optimal use of the GPU due

to unwarranted data transfers [205, 258]. In the future, we plan to use a query compilation

infrastructure to fuse multiple relational operators in a single kernel.

Caldera always executes OLAP queries on a database snapshot. Thus, users can trade off data

freshness for performance by having several OLAP queries share a snapshot, or maximize

freshness by taking a snapshot before running each OLAP query. Snapshotting is implemented

using a software-based shadow-copying mechanism that works on the hierarchical data orga-

nization. We describe it using the layout shown in Figure 7.2. Each table, column, and page is

associated with an epoch number. The query runtime creates a snapshot by performing a shal-

low copy of the top-level container and incrementing its epoch number. Thus, snapshotting is

an instantaneous operation after which the newly created snapshot and the •liveŽ database

share all data. After snapshotting, the runtime identi“es the columns that are necessary for

executing the OLAP query and invokes the GPU kernel, passing in pointers to relevant pages.

No data is copied explicitly; the GPU kernel accesses data directly from the UVA-allocated

host memory.

Copy-on-write during updates and garbage collection are integrated with transaction manage-

ment. When a transaction commits, the runtime identi“es records to be updated. It uses this

information to identify the backing pages for those records, and shadow-copies them by allo-

cating new pages and copying over data from the snapshot. Then, it applies the updates, and

marks the pages as •liveŽ by incrementing their epoch number. It repeats this copy-on-write

process all the way back to the root, allocating new data structures as required and updating

pointers. Similarly, when a snapshot is deleted, the query runtime uses epoch numbers to

identify both data and metadata that have been superseded by the copy-on-write process and

deletes the old versions to reclaim space.

OLTP in the task-parallel archipelago. Caldera scales OLTP workloads within the task-parallel

archipelago by using message passing-based parallelism (that relies on fast core-to-core mes-

saging) rather than shared-memory parallelism (that relies on cache coherence). Caldera sched-

ules one thread per core in the task-parallel archipelago and assigns one data partition to each

thread, which then mediates access to partition-local records. Each thread uses two-phase

locking (2PL) for concurrency control and a primary-key index to assist in record lookup. Un-

like data, which is shared across archipelagos, the lock tables and indices are private to each

thread running in the task-parallel archipelago and do not belong to the snapshot hierarchy

depicted in Figure 7.2. Thus, they refer to logical records whose physical location changes

during copy-on-write operations.

136

7.4. CALDERA: An H2TAP query engine

An incoming transaction can be scheduled to run on any thread; the chosen thread will act

as its host (the client thread). The client executes all operations of a transaction using direct

function calls to lookup/update records. If the client contains the target record in its partition,

it uses its local lock table to decide if the access request can be granted. If so, it grants the lock,

performs shadow copying if necessary, and executes the operation.

If the record belongs to a different partition, the client sends a message to the data owner

thread (the serverthread) requesting access to the record, and blocks the transaction. When

the server thread receives the message, it tries to acquire the lock. If successful, it grants the

lock, performs shadow copying if necessary, and sends a reply message giving the client access

to the record. If the acquisition fails, the server thread delays replying back until the lock

becomes available. Rather than shipping the whole record in the message, Caldera exploits

hardware-supported shared memory to reduce data movement by sending only the record

pointer. Upon receiving the reply, the client thread unblocks the transaction and uses the

record pointer to directly lookup/update the record. At transaction commit or abort time, the

client thread sends an explicit •releaseŽ message for each remote record. Upon receiving a

release message, the server thread releases the associated lock and picks a new lock owner. If

the new owning transaction is local to the server, it is unblocked and scheduled for execution.

Otherwise, the server unblocks it by replying back to the client.

Relying on explicit message passing has several bene“ts. First, two processors can never simul-

taneously access a shared memory word because each processor has exclusive access over its

partition. Before a thread can access a record, it has to explicitly synchronize with the owning

thread by sending it a message. This explicit communication eliminates the need for implicit

thread synchronization with latches, atomics, or other CC-dependent hardware features. Thus,

all aspects of transaction execution are single-threaded and completely synchronization-free.

Explicit communication also makes maintaining coherence across core-private caches straight-

forward. In Caldera, two transactions can never concurrently update the same record due to

2PL. Thus, cache management is necessary only to ensure that two transactions running seri-

ally on two different cores see the latest version of the record despite the existence of caches.

This can be done by adding explicit cache write back and invalidation at two points. When a

client thread requests a record from a server thread, the server thread explicitly writes back the

dirty data from its local cache before replying back. Similarly, before the client thread sends a

release message at commit time, it writes back the data it updated. Doing so guarantees that

a thread will always read the latest version of data from the memory instead of an outdated

cache. Together, explicit communication and cache management ensure that Caldera can

work on non-CC hardware.

Finally, by abstracting away the details of communication using a message passing library,

Caldera is portable, as the message-passing layer can be replaced to make it work on CC

multicores, non-CC multicores, and even potentially scale-out clusters without any change to

the core database logic.

137

Chapter 7. Looking forward:
HTAP on Heterogeneous Hardware

0

2

4

6

8

10

Caldera DBMS-C MonetDB

E
xe

cu
tio

n
T

im
e

(s
ec

.)

TPC-H Query 6

Figure 7.3 … GPU-powered Caldera vs. CPU-
powered columnar engines for Q6 of TPC-H.
Time for Caldera includes data transfer costs.

0

50

100

150

200

1 2 4 8 16 32 64 100

T
hr

ou
gh

pu
t (

K
Tp

s)

% Transactional data

q1
q1,5
q1,3,5,7
q1-10

Figure 7.4 … OLTP transaction throughput
in the presence of OLAP queries as we vary
the OLTP working set and the degree of data
freshness.

7.5 Evaluation

In this section, we present an evaluation of Caldera to show that the H 2TAP architecture can

be implemented in practice and can offer performance competitive to that of state-of-the-art

OLTP and OLAP engines. As described in Section 7.4, Caldera uses three features to tackle

the challenges posed by the H 2TAP architecture, namely, software snapshotting for cross-

archipelago HTAP, message-passing for transaction processing without CC, and PAX as the

hybrid layout that enables data sharing across mixed workloads. Thus, in this section, we

present the performance and scalability of these three aspects and compare Caldera with

Silo [241], a main-memory OLTP engine, MonetDB [58], an open-source column store, and

•DBMS-CŽ, a commercial column store.

Experimental setup. All experiments are conducted on a server running RHEL 7.2, equipped

with two 12-core Intel Xeon E5-2650L v3 CPUs, 256GB RAM, and a GeForce GTX 980 GPU with

4GB memory. Although the hardware we use supports system-wide CC, Caldera uses it only as

the message passing substrate for inter-thread communication.

7.5.1 HTAP with software snapshotting

We present the OLTP throughput and OLAP response time achieved by Caldera under a mixed

workload. For these experiments, we use the TPC-H (SF-300) dataset. We use TPC-H Q6, a

selection over the lineitem table, as the OLAP query. In our OLTP workload, each transaction

performs ten read-modify-update operations on records randomly chosen from the lineitem

table. Thus, the OLTP workload is similar to an update-only YCSB workload [85] with a

theta value (zip“an distribution) of zero. We run ten OLAP queries in succession on the

GPU. The OLTP workload is executed by the CPU until all OLAP queries terminate. We use

the snapshotting ”exibility of Caldera to demonstrate the performance-freshness trade off

posed by our software shadow copying implementation. Further, it is common in real-world

deployments for transactions to access only a •hotŽ fraction of the dataset [166], whereas OLAP

queries scan through all the data. We make the target key range used by the OLTP workload a

parameter so that we test sensitivity to skewed OLTP working set sizes.

138

7.5. Evaluation

0

2

4

6

8

10

1 2 4 8 16 32 64 100

E
xe

cu
tio

n
T

im
e

(s
ec

.)

% Transactional data

Figure 7.5 … Execution time of OLAP queries
in the presence of OLTP queries. All OLAP
queries share a single snapshot, but OLTP-
triggered copy-on-write stresses memory
bandwidth.

0

20

40

60

80

100

120

0

2

4

6

8

10

10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t (

K
Tp

s)

E
xe

cu
tio

n
T

im
e

(s
ec

.)

#OLAP Queries

Time Throughput

Figure 7.6 … Execution time of OLAP queries
and throughput of OLTP queries. We increase
the number of queries that share a snapshot
from 10 to 100. Increasing snapshot sharing
improves performance.

Figure 7.3 shows the OLAP query execution time under MonetDB, DBMS-C, and Caldera in the

absence of transactions. Both MonetDB and DBMS-C parallelize the query across all 24 cores.

MonetDB is 1.27 × faster than DBMS-C because it bene“ts from the use of secondary indexes.

Caldera exploits the massive parallelism of the GPU to provide 4.15 × and 5.29× speedup over

MonetDB and DBMS-C, even though the table is streamed from host memory.

Figure 7.4 shows the OLTP throughput achieved by Caldera as we vary the working set size

from 1% to 100%. The four lines show the throughput as we increase data freshness by

varying snapshot frequency from one across all ten OLAP queries to one per OLAP query.

Clearly, transactional throughput deteriorates when we increase the working set size or the

frequency of snapshots due to software overhead, as Caldera incurs the cost of performing a

copy-on-write the “rst time data is modi“ed after each snapshot.

Snapshotting also affects OLAP response time. Figure 7.5 shows the average, minimum, and

maximum analytical query response times for Caldera when all ten queries share one snapshot

as we vary the (OLTP) working set size from 1% to 100%. In the presence of snapshotting,

both analytical queries running on the GPU and transactions running on CPU compete for

memory bandwidth due to the memory-intensive copy-on-write process. This results in a

2× increase in average response time and a 3 × increase in maximum response time. Note

that this overhead is not exclusive to the shadow copy implementation of Caldera: Fork-based

snapshotting implementations also suffer under update intensive workloads [248]. In addition

to such snapshotting-related overheads, current HTAP engines also exhibit the house effect as

transaction throughput collapses due to processor resource contention caused by interference

between OLAP and OLTP workloads [210]. Under Caldera, in contrast, processor resource

contention never occurs due to the strict separation of workloads provided by the archipelago

abstraction. Contention for memory bandwidth is purely due to the software overhead of our

copy-on-write mechanism and can be reduced using three techniques.

The “rst optimization is to trade off a degree of data freshness for improved performance by

sharing a snapshot across several OLAP queries. Figure 7.6shows the throughput and response

139

Chapter 7. Looking forward:
HTAP on Heterogeneous Hardware

0

0.5

1

1.5

2

1 2 4 8 12 16 20 24

T
hr

ou
gh

pu
t (

M
Tp

s)

cores

Caldera Silo

Figure 7.7 … TPC-C scalability as the number
of cores increase.

0

2

4

6

8

10

0 20 40 60 80 100

T
hr

ou
gh

pu
t (

M
Tp

s)

% Multisite transactions

Caldera Silo Silo-SN

Figure 7.8 … Throughput as the percentage of
multi-site transactions increases.

time for Caldera when we “x the OLTP working set to 100% … the worst case in Figure 7.5

… and vary the number of queries that share a snapshot from 10 to 100. Initially, almost all

transactions perform copy-on-write. Analytical queries that are executed concurrently with

these transactions suffer due to shared memory bandwidth. This explains the high worst-

case response time for analytical queries. As the copy-on-write process converges, both

transactional throughput and analytical response time improve substantially. Comparing

Figures 7.4 and 7.6, we observe that sharing a snapshot across 100 queries provides nearly a

5× improvement in OLTP throughput even if the working set covers 100% of the data set.

Second, as shown in Figure 7.4, limiting the OLTP working set to less than 16% of the total data

size limits the worst-case deterioration in throughput to only 2 × even if we use one snapshot

per query. Thus, hybrid data layouts that perform hot…cold data classi“cation [161] will enable

Caldera to further reduce the impact on OLTP throughput.

Third, pro“ling revealed that both memory allocation and memory copying performed during

the shadow-copy operation were sources of overhead. Thus, optimizing shadow copying by

using alternate snapshotting implementations [222, 248] is another approach for improving

OLTP throughput.

7.5.2 OLTP with message passing

Next, we compare the performance and scalability of Caldera against Silo for OLTP workloads.

To avoid confounding performance effects caused by memory allocation, and to keep the

comparison fair, we use the NSM data layout, and also use malloc as the memory allocator for

Caldera.

The “rst experiment investigates the scalability of both systems for the NewOrder transaction

of the TPC-C benchmark. For both systems, we assign a warehouse to a thread and increase

the number of threads (and hence the number of warehouses). Figure 7.7 reports throughput

at various thread counts; both systems scale well. Caldera outperforms Silo due to 1) bet-

ter data locality provided by partitioning, 2) better code locality due to the lack of thread

synchronization, and 3) limited message passing overhead because only 10% of NewOrder

transactions require remote accesses.

140

7.5. Evaluation

The next experiment investigates throughput sensitivity in the presence of multi-site transac-

tions. We use a read-only microbenchmark in which each transaction reads ten records from

a table of 24M records partitioned across 24 cores. Single-site transactions read all ten records

from the local partition. Multi-site transactions read two records from a random remote

partition and the remaining eight from the local partition. We compare Caldera with two

deployments of Silo, namely, Silo and shared-nothing Silo (SN-Silo). The default con“guration

uses a single instance of Silo over all cores. SN-Silo represents how one could use current OLTP

engines on emerging non-CC multi-cores; the SN-Silo setup uses one instance of Silo per core

and a distributed transaction layer to coordinate multi-site transactions using the two-phase

commit (2PC) protocol.

Figure 7.8 shows the throughput achieved by all three systems as the fraction of multi-site

transactions increases. Both Caldera and SN-Silo are affected by multi-site transactions, but for

very different reasons; Caldera suffers due to the use of CC as the message passing mechanism

while SN-Silo suffers due to the overheads of 2PC. Thus, for emerging hardware, replacing CC

with hardware message passing will bene“t Caldera, but not SN-Silo. Despite the message

passing overhead, Caldera can match Silo•s throughput, showing that the message passing-

based design used by Caldera provides performance competitive with that of state-of-the-art

OLTP engines.

7.5.3 Data sharing with PAX

The next experiment examines the suitability of PAX for OLAP operations executed on GPUs.

For this experiment, we use a main-memory-resident 16 GB table of 270M records. Each

record is comprised of 16 integer attributes. We use three different storage layouts for the

table: DSM, PAX, and NSM. We set the size of the PAX page to 4KB. Each PAX page contains

16 minipages, and each minipage contains 64 values. We then launch “ve instances of the

following query template:

SELECT SUM(col1 + ... + colN) FROMdataset

Each instance accesses 1, 2, 4, 8, or 16 attributes, respectively. Figure 7.9 depicts the response

time for each instance. NSM has the slowest response times because it leads to sub-optimal

data access patterns. Speci“cally, GPUs manage threads in groups. The ideal access pattern in

the context of GPUs is one for which all threads in a group perform coalesced accesses, i.e., they

access a contiguous chunk of memory. When executing a query over NSM data, the values

for col1, col2, etc., are not stored contiguously, thus resulting in multiple expensive memory

transactions.

PAX and DSM have almost identical response times, with the former being slightly slower.

Both the PAX and DSM layouts lead to coalesced memory accesses. In addition, both layouts

minimize unnecessary data transfers through the PCIe bus. Speci“cally, the maximum transfer

unit (MTU) through the PCIe bus typically does not exceed 512 bytes. We carefully con“gure

the PAX layout so that the size of each minipage is close to the MTU, and thus maximize the

utilization of the PCIe bandwidth.

141

Chapter 7. Looking forward:
HTAP on Heterogeneous Hardware

0
1
2
3
4
5
6

1 2 4 8 16E
xe

cu
tio

n
T

im
e

(s
ec

.)

Attributes accessed

DSM PAX NSM

10 21

Figure 7.9 … Comparing the ef“ciency of
different data layouts for GPU-based com-
putations.

0

5

10

15

Fermi MaxwellE
xe

cu
tio

n
T

im
e

(m
se

c.
)

GPU Architecture

DSM PAX NSM

Figure 7.10 … Comparing different data lay-
outs when all data is GPU resident.

While our previous experiment showed that NSM suffers due to its inability to perform coa-

lesced accesses, PAX and DSM are able to effectively saturate the PCIe bandwidth. The GPU

memory, however, provides an order of magnitude higher bandwidth compared to PCIe. As

on-board GPU memory continues to increase in capacity, an important question is whether

PAX lags behind DSM if all data were local to the GPU. To answer this question, we repeated

the previous experiment while storing all data in GPU memory. Due to limited memory ca-

pacity, we reduced the dataset size from 16GB to 1GB. Figure 7.10shows the response time

for the three layouts when the query touches only two attributes out of 16. We only report

the kernel execution time and not data transfer time for two GPUs belonging to different

generations, namely a Fermi GPU (Tesla M2090) and the Maxwell GPU (GTX 980). There are

three important observations.

First, comparing the two GPUs, we see that the Maxwell GPU provides a 2.5 × , 3.1× , and 3.5×

improvement for DSM, PAX, and NSM layouts respectively. These results are encouraging

because despite being just a consumer-grade graphics card, the Maxwell GPU (GTX 980)

outperforms a previous-generation compute accelerator (Tesla M2090).

Second, comparing relative performance of each layout within a GPU generation, we see that

NSM is 3× slower than DSM on Tesla and only 2 × slower on Maxwell. Similar, PAX is 1.3 ×

slower on Tesla but matches DSM performance on Maxwell. This result is in sharp contrast

with the UVA results we reported in Figure 7.9, where NSM was 13.74× slower than DSM.

This shows that modern GPUs have vastly reduced the performance impact of non-coalesced

memory accesses when data “ts in GPU memory. Thus, using a PAX-like storage layout

that acts as the middle ground between OLTP-oriented NSM and OLAP-oriented DSM is a

viable option for H 2TAP. A possible next step would be crafting a new data layout dynamically

depending on the workload requirements [37, 120], e.g., storing frequently accessed attributes

together in a group of columns.

Overall, the results indicate that it is possible to realize H 2TAP in practice and show many of

the opportunities and challenges involved in designing H 2TAP engines.

142

7.6. Summary

7.6 Summary

Modern database engines are designed to work on multi-socket multi-cores that provide

abundant homogeneous parallelism, system-wide CC, and global shared memory. As a result,

they are mismatched with emerging server hardware, which makes both parallelism and

CC support heterogeneous. We introduce H 2TAP, a new architecture for building database

engines on such hardware. Using Caldera, a prototype H 2TAP engine, we show that the

H2TAP architecture can be realized in practice and can match the performance of state-of-the-

art specialized OLTP and OLAP engines.

143

8 The Big Picture

This thesis examines the problems that arise in modern-day analytics over heterogeneous

datasets. Existing data analysis solutions typically involve transforming all datasets in a single

proprietary format and loading them in a warehouse prior to initiating analysis. Such solutions

do not scale with the increasing volume and diversity of data and query workloads. In addition,

they are incompatible with scenarios in which data movement is prohibitive, while they are

not ”exible enough for users to analyze their data ad-hoc. In summary, monolithic designs

with static query processing primitives are unable to ef“ciently support the variety of data

formats, models, locations, and analysis types required by modern applications.

This thesis makes the case for just-in-time (JIT) databases … systems that abolish static deci-

sions, de“ning optimized data access and manipulation primitives on demand at runtime …

that offer data virtualization; abstracting data out of its form, and manipulating it regardless of

the way it is stored or structured. JIT database systems reason about data model heterogeneity

through the use of expressive languages and algebras. They also mask data location hetero-

geneity through the use of compilers and optimizers that operate over virtual, simpli“ed data

schemas, yet generate sophisticated query plans based on the actual involved data stores. To

minimize data-to-insight time, JIT systems can operate over data in situ and employ code

generation techniques to adapt their internals … both query primitives and data structures … to

the underlying data, the query workload, and the available hardware.

The ultimate goal of just-in-time database systems is to decouple the type of analysis per-

formed from the original data layout and allow users to perform their analysis across data

stores, data models, and data formats, but at the same time experience the performance

offered by a custom system that has been built on demand to serve their speci“c use case.

This chapter summarizes the contributions of this thesis and discusses a number of ongoing

efforts to address open challenges related to just-in-time database systems and unconditional

data virtualization.

145

Chapter 8. The Big Picture

8.1 Unconditional data virtualization: What we did

Every work presented in this thesis redesigns a layer of the data analysis stack to tackle a

challenge stemming from data heterogeneity, with the end goal being the design of a just-

in-time database system [144]. Describing the data analysis stack bottom-up, and starting

from the data access part, dynamically generated access paths [145] remove the overheads of

traditional scan operators [100], mask data format heterogeneity, and enable a query engine

to operate natively over diverse datases … both binary ones as well as verbose, textual ones.

In terms of query processing techniques, we introduce a two-phase process to manage hetero-

geneous data models without sacri“cing performance [143, 144]: In the “rst phase, we use

a rich query algebra to express analysis over different collection types, such as relations and

arbitrarily nested hierarchies. In the second phase, our design allows a system to adapt its

behavior and its code based on the current type of analysis. Specialization to incoming queries

occurs through the use of runtime code generation. We envision that just-in-time database

systems will eventually specialize themselves to the available heterogeneous hardware [42]

(CPUs, GPGPUs, FPGAs, etc.) to fully exploit the resources of the modern server.

When data resides across heterogeneous data stores, users typically handcraft their analysis

to explicitly consider the characterictics of the various data sources and identify optimiza-

tion opportunities, rendering the overall analysis non-declarative and convoluted. As in the

previous case of query processing, we introduce another two-phase process to handle query

formulation and optimization across heterogeneous data stores: In the “rst phase, a data

virtualization module uses a location-aware query compiler to rewrite analysis tasks expressed

over location-agnostic data views. In the second phase, the optimizer of the virtualization

module produces query plans that consider the characteristics and particularities of the data

stores holding the data. Coupling the virtualization module with a query engine results in a

system that provides the necessary abstractions to query datasets that are dispersed across

multiple data stores, and at the same time allows for minimal response times [146].

Finally, the topmost layer of data analysis involves interpreting the returned data, and “guring

out whether the returned information is meaningful. It is highly likely that the data contains

inconsistencies and requires some cleaning effort before becoming useful. To this end, this

thesis proposes CleanM [115], a declarative query language that exposes a wide variety of

parameterizable data cleaning primitives which users can apply over their data. CleanM trans-

lates all cleaning operations to an optimizable, parallelizable calculus, and optimizes them all

as one uni“ed task.

8.2 Unconditional data virtualization: Next steps

The design of just-in-time database systems is a step in the ongoing effort towards uncondi-

tional data virtualization. Further advancement requires addressing a number of challenges,

as described below:

146

8.2. Unconditional data virtualization: Next steps

€ •To load or not to loadŽ, and •One storage layout does not “t allŽ.

Querying data in situ removes the bottleneck of the costly data loading process into a DBMS

prior to launching any queries. On the other hand, analytical DBMS operate over custom

binary data representations for performance reasons; they pick the data representation and

layout that is more suitable for the expected type of analysis. Thus, unless •rawŽ data comes

in a compact, binary serialization, in situ query engines typically use aggressive caching

policies to leverage previous data accesses and avoid re-paying to access the same raw

data subsets multiple times. As a result, after a number of queries, an in situ query engine

essentially operates over a binary subset of the original dataset, which corresponds to the

working set of a user.

Even when aggressively caching raw data, it is non-trivial for a JIT query engine to decide

what the layout of its caches should be to minimize query running times: In the case

of heterogeneous data, it is likely that users want to launch different types of analysis

(e.g., both OLAP queries and navigational queries over hierarchies) over the same data,

otherwise there will be a mismatch between the type of analysis and the data. For example,

purely relational data layouts are not always well-suited for ef“ciently querying nested

data. Instead, practitioners consider nested columnar layouts [9, 182] as a more suitable

option than relational row-oriented and column-oriented layouts. Besides the issue of

storage layout, a JIT query engine has to decide which cached data is •most valuableŽ to it.

Speci“cally, the cost of reading and parsing raw data varies widely across heterogeneous

formats. JIT query engines typically evict elements from their caches using cost-oblivious

algorithms, such as LRU [36, 145, 197], ignoring that an element to be evicted can be very

expensive to reconstruct (e.g., because the engine read it from a deeply nested JSON “le).

Addressing the issues of dynamic data layouts and caching in the context of heterogeneous

data management requires careful monitoring of the workload and awareness of the cost

paid to populate data caches. Our current work focuses on a cost-based cache manager

that uses timing measurements and workload monitoring to automate decisions about

caching policy [45]. Using workload monitoring information, the cache manager automati-

cally switches to the best performing in-memory layout for caching nested data. Timing

measurements further enable the cache manager to make more informed cache eviction

decisions than LRU. Finally, the cache manager avoids high caching overhead by choos-

ing dynamically between a low and high overhead caching scheme for previously unseen

queries.

€ Indexing over raw data. This thesis focuses on analytical use cases, and treats value-based

indexes as an orthogonal, optional optimization [48, 148]. For “le types that incorporate

indexes over their content, the generated access paths traverse the indexes to speed up

accesses. In the rest of the cases, instead of populating an index, the generated access paths

opt to build binary columnar caches, which also reduce the data footprint of subsequent

queries accessing a cached column. Still, there are scenarios in which avoiding full scans of

tabular “les with a row-oriented data layout accelerates analytical queries [197].

It is both straightorward and bene“cial to couple a just-in-time query engine with indexing

147

Chapter 8. The Big Picture

support. Depending on the workload, the analytical scenarios that this thesis examines

can bene“t from both lightweight, value-existence indexes, (e.g., zone maps), as well as

value-position indexes (e.g., B + -Tree). A prominent example comes from Slalom [197], an

in situ query engine that makes on-the-”y partitioning and indexing decisions based on

information collected from the underlying raw data. A just-in-time query engine, coupled

with the partitioning and indexing tuner of Slalom, can adaptively tune indexing structures

to adapt to the query workload even better.

€ Handling raw data updates. Accessing data in situ is one of the main motivations of this

thesis. It has been proposed in the context of analytical processing, where in-place data

updates are infrequent; when updates do occur, they typically involve users directly extend-

ing one of the data sources / “les, or simply adding a new source / “le to the system. In

data-append scenarios, updating any existing auxiliary structures … positional map indexes

and data caches … involves extending them on the “rst access to the •freshŽ pieces of the

data. As for the case of adding a new “le, no auxiliary data structures have been created for

the “le in the past, thus no particular actions are required.

Proteus currently targets read-only and append-like analytical workloads. In case of append-

like updates, Proteus extends its existing auxiliary structures (e.g., caches). For the case of

“ner-grained updates, a promising step is incorporating the update scheme of Alpine [41]:

Alpine proposes a logical partitioning scheme over the input data “les. Speci“cally, for each

partition, Alpine stores an identi“er that is suf“cient to identify the existence of an in-place

update within the partition. The identi“er comprises an MD5 hash code of the contents

within that partition, the starting and ending binary positions of the partition in the “le, as

well as the characters corresponding to those positions. When the Alpine engine detects an

update, it updates the positional map and any data caches corresponding to the partition.

€ Vectorization vs. compilation. Query compilation facilitates the generation of a query

implementation that maximizes pipelining. The generated code keeps data in CPU registers

as much as possible and operates over tuples in tight loops with high instruction locality.

Still, pipelined query engines are not the de facto best-performing execution engines in

every scenario; there are queries types for which, depending on the involved operators

and their selectivities [215], a vectorized columnar executor can outperform a pipelined

one [232, 202].

In the context of accessing heterogeneous data, pipelined query processing has an added

bene“t: data does not have to reside in columns before query execution can start. In

other words, a vectorized executor pays a materialization cost both to create columns

from the underlying heterogeneous data and to create the intermediate results between

query operators. Still, there are use cases in which the initial materialized columns can be

subsequently treated as data caches, and thus compensate for the effort spent in populating

them. In summary, it will be bene“cial for a just-in-time query engine to be able to generate

both fully pipelined code, as well as vectorized code on a per query case [228] … or couple

pipelined and vectorized code for a single query implementation [161]; such ”exibility has

148

8.2. Unconditional data virtualization: Next steps

the potential to maximize the JIT query engine•s degree of adaptivity to the characteristics of

each incoming query.

€ Reducing compilation overhead. Generating and compiling the code corresponding to a

query at runtime introduces an overhead in the total query evaluation time. The overhead

varies depending on the code generation infrastructure used: Typically, generating an

•externalŽ C/C++ library per query introduces an overhead of a few seconds [190, 231, 145].

On the other hand, generating the LLVM intermediate representation typically takes 10s-

100s of milliseconds. Still, if one wants to use a just-in-time query engine for short-running

tasks (e.g., OLTP workloads), the compilation cost can become signi“cant.

Besides relying on low-level compiler infrastructure, a system can further reduce the compi-

lation cost by caching the code generated by previous queries; the same cached code can be

re-used in subsequent occurrences of similar queries. If code re-use is a major requirement,

it is also possible for a system to generate code that is •parameterizableŽ. Speci“cally, in-

stead of compiling the entire query logic, the system•s code generator can leave out some

information, such as the value of an integer constant used in a “ltering expression. Then,

the same code template can be used by all queries that adhere to the same template but

have different values for said “ltering expression. Obviously, leaving out information from

the generated code facilitates reuse, but can also hurt performance if the generated code

ends up having to •interpretŽ signi“cant parts of the query plan.

€ Query optimization and scheduling across heterogeneous processors. Transactions re-

quire synchronization at multiple levels (concurrency control protocols at the logical level,

latching at the physical level, atomics at the hardware level). Therefore, the H 2TAP work

restricts the membership of task-parallel archipelagos to CPUs. On the other hand, OLAP

queries can be parallelized well on both CPUs and GPUs, therefore the data-parallel archi-

pelago bene“ts from being heterogeneous. Given the processor heterogeneity, a given OLAP

query could potentially be executed on just CPUs, just GPUs, or a mix of both [61, 127, 142].

Thus, an important topic that requires further research is query optimization and scheduling

in the heterogeneous OLAP archipelago.

GDB [127] is one of the “rst prototypes to investigate extensions to analytical cost models

in the CPU…GPU query coprocessing scenario for deciding optimal operator placement.

CoGaDB [61] is a more recent effort that uses cost models based on observed query execution

time that are learned on-the-”y and continuously re“ned for both picking an optimal query

plan and the placement of operators across CPUs and multiple GPUs. We plan to extend

Caldera with such heterogeneity-aware query optimizers in the future.

€ Utilizing the full range of data-parallel hardware. Over the past few years, processor ven-

dors have introduced several new heterogeneous hardware accelerators that compete with

GPUs for accelerating data-parallel workloads. For instance, the Intel Many Integrated Core

processor (also known as Xeon Phi) packs several hyperthreaded, low-frequency in-order

cores together with high-bandwidth memory in a single package to provide an order-of-

magnitude more hardware contexts than server-grade Xeon processors. The Intel HARP

149

Chapter 8. The Big Picture

platform integrates Field Programmable Gate Arrays (FPGAs) and Xeon processors in a

single multi-socket system. Recent research has shown that analytical workloads bene“t

from such heterogeneous hardware [137, 184].

While the Caldera prototype focuses on GPUs, the H 2TAP architecture is independent of the

type of data-parallel hardware used for accelerating OLAP queries. In fact, given that the

H2TAP architecture decouples cache coherence from shared memory, it can take advantage

of the simpler data-parallel hardware that does not necessarily support system-wide cache

coherence. Further, the use of query compilation makes the overall architecture hardware-

agnostic; any processor can be integrated into the Caldera framework as long as the query

compiler generates specialized code for the target processor.

150

A

151

Appendix A.

A.1 Spam Analysis Queries

Due to legal restrictions, we are not allowed to disclose the exact Symantec real-world workload

presented in Section 4.7.2. Nevertheless, the current section presents some indicative SQL

queries used, for which table and “eld names have been anonymized.

For presentation purposes, when dealing with JSON data, we use the PostgreSQL JSON exten-

sions [208]. In the FROM clause of following SQL queries, •binŽ, •jsonŽ and •csvŽ indicates that

the query operates over binary tabular data, JSON data, and comma-separated-values data,

respectively.

Queries over binary data.

SELECT MAX(w), MAX(x), SUM(y), SUM(z), COUNT(*)
FROMbin
WHEREf1 > val1 AND f2 < val2 AND f3 < val3

AND f4 > val4 AND f5 <= val5
GROUP BYz;

Queries over CSV data.

SELECT f5, MAX(a), MAX(b), COUNT(*)
FROMcsv
WHEREf1 > val1 AND f2 < val2 AND f3 = •foo•

AND f4 < val3 AND (f5 = •xx• OR f5 = •yy• OR f5 = •zz•)
GROUP BYf5;

Queries over JSON data.

PostgreSQL treats JSON as an explicit data type, therefore “eld manipulation of a JSON object

requires overloaded constructs. In the following query, (ob j Š >> •x•) :: int accesses “eld x of

a JSON object, and treats it as an integer.

SELECT (obj->•z•->>•z1•)::int,
MAX((obj->>•x•)::int), count(*)

FROMjson
WHERE(obj->>•x•)::int < val1 AND

(obj->>•y•)::int > val2
GROUP BY(obj->•z•->>•z1•)::int;

152

A.1. Spam Analysis Queries

Unnesting a JSON array using PostgreSQL involves a call to the j son_ar r ay _elementsfunc-

tion, as well as a nested query to continue manipulation of the results.

SELECT MAX(x2), COUNT(*)
FROM(SELECT (obj->>•x•)::int as x2,

json _array _elements((obj->>•y•)::json)
FROMjson
WHERE(obj->>•a•)::int < val1) internal;

Queries over a combination of datasets.

SELECT csv.f4, MAX(x), SUM(y), COUNT(z)
FROM csv JOIN json ON (csv.f = (obj->>•f•)::int)
WHEREcsv.f1 > val1 AND csv.f2 < val2 AND

csv.f3 = •foo• AND
(csv.f4 < val3 OR (obj->>•f5•)::int > val4)
AND (obj->>•f6•)::int < val5
AND (obj->•f7•->>•g•)::int = val6

GROUP BYcsv.f4;

SELECT bin.f10, MAX(y), COUNT(*)
FROMbin
JOIN csv ON (bin.f = csv.f)
JOIN json ON (bin.f = (obj->>•f•)::int)
WHEREbin.f1 > val1 AND bin.f2 < val2 AND

bin.f3 < val3 AND bin.f4 > val4 AND
bin.f5 < val5 AND csv.f6 > val6 AND
csv.f7 < val7 AND (obj->>•f8•)::int > val8
AND (obj->>•f9•)::int < val9

GROUPBY bin.f10;

153

Bibliography

[1] Apache Avro. https://avro.apache.org/ . 5.3

[2] Apache Calcite project. https://calcite.apache.org . 5.2, 5.8.2

[3] Apache Cassandra. http://cassandra.apache.org . 5.6.1, 5.7

[4] Apache Cassandra. Partitioners. https://docs.datastax.
com/en/cassandra/2.0/cassandra/architecture/
architecturePartitionerAbout _c.html . 5.6.1

[5] Apache Drill. https://drill.apache.org/ . 2.1.3, 4.2

[6] Apache Flink. https://flink.apache.org . 5.3

[7] Apache Flume. http://flume.apache.org . 5.2

[8] Apache Hadoop. https://hadoop.apache.org/ . 2.1.3, 5.3

[9] Apache Parquet. https://parquet.apache.org/ . 4.2, 5.3, 5.5.1, 8.2

[10] Apache Sqoop. http://sqoop.apache.org . 5.2

[11] Google Gson. https://github.com/google/gson . 4.5.2

[12] Jackson. https://github.com/FasterXML/jackson . 4.5.2

[13] KNIME. https://www.knime.org/ . 2.5.2

[14] LLVM•s Analysis and Transform Passes. http://llvm.org/docs/Passes.html .

4.5.1

[15] MapD. https://www.mapd.com/ . 7.2

[16] Paxata. https://www.paxata.com/ . 2.5.2

[17] Pentaho. http://www.pentaho.com/ . 2.5.2

[18] perf: Linux pro“ling with performance counters. https://perf.wiki.kernel.
org . 3.5.3

155

Bibliography

[19] RapidJSON. http://rapidjson.org/ . 4.5.2

[20] TPCx-BB. http://www.tpc.org/tpcx-bb . 5.1, 5.7.1

[21] Apache Arrow, 2017. http://arrow.apache.org . 5.2, 5.8.2

[22] G. Aad et al. The ATLAS Experiment at the CERN Large Hadron Collider. Journal of

Instrumentation, 3(8):1…438, 2008.3.6

[23] C. L. Abad, N. Roberts, Y. Lu, and R. H. Campbell. A storage-centric analysis of MapRe-

duce workloads: File popularity, temporal locality and arrival patterns. In Proceedings of

the 2012 IEEE International Symposium on Workload Characterization, IISWC •12, pages

100…109, 2012.5.1

[24] D. Abadi, P. Boncz, S. Harizopoulos, S. Idreos, and S. Madden. The design and imple-

mentation of modern column-oriented database systems. Foundations and Trends in

Databases, 5(3):197…280, 2013.3.3

[25] Z. Abedjan, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, and M. Stonebraker. Dataxformer:

A robust transformation discovery system. In Proceedings of the 32nd IEEE International

Conference on Data Engineering, ICDE •16, pages 1134…1145, 2016.2.5, 2.5.1, 2.5.2

[26] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to Semistruc-

tured Data and XML. Morgan Kaufmann, 1999. 2.2

[27] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener. The Lorel Query Language

for Semistructured Data. Journal on Digital Libraries, 1(1):68…88, 1997. 2.2

[28] A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi, A. Rasin, and A. Silberschatz. HadoopDB:

An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Work-

loads. Proceedings of the VLDB Endowment, 2(1):922…933, 2009.4.2, 5.2

[29] A. Abouzied, D. J. Abadi, and A. Silberschatz. Invisible Loading: Access-Driven Data

Transfer from Raw Files into Database Systems. In Joint 2013 EDBT/ICDT Conferences,

EDBT •13 Proceedings, pages 1…10, 2013.1.1, 2.1.3

[30] S. Adali, K. S. Candan, Y. Papakonstantinou, and V. S. Subrahmanian. Query Caching

and Optimization in Distributed Mediator Systems. In Proceedings of the 1996 ACM

SIGMOD International Conference on Management of Data, SIGMOD •96, pages 137…148,

1996. 4.2

[31] S. Adali, K. S. Candan, Y. Papakonstantinou, and V. S. Subrahmanian. Query Caching

and Optimization in Distributed Mediator Systems. In Proceedings of the 1996 ACM

SIGMOD International Conference on Management of Data, SIGMOD •96, pages 137…148,

1996. 5.6.1

156

Bibliography

[32] S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Automated Selection of Materialized

Views and Indexes in SQL Databases. In Proceedings of the 26th International Conference

on Very Large Data Bases, VLDB •00, pages 496…505, 2000.4.6

[33] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis. Weaving Relations for Cache

Performance. In Proceedings of 27th International Conference on Very Large Data Bases,

VLDB •01, pages 169…180, 2001.7.3, 7.4

[34] A. Ailamaki, V. Kantere, and D. Dash. Managing scienti“c data. Communications of

ACM, 53(6):68…78, 2010.1

[35] M. Al-Kateb, P. Sinclair, A. Crolotte, L. Ma, G. Au, and S. Nair. Optimizing UNION ALL

join queries in teradata. pages 1209…1212, 2017.5.1, 5.2, 5.6.1

[36] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and A. Ailamaki. NoDB: Ef“cient Query

Execution on Raw Data Files. In Proceedings of the 2012 ACM SIGMOD International

Conference on Management of Data, SIGMOD •12, pages 241…252, 2012.1.1, 2.1.1,2.1.3,

3.1, 3.2, 3.4.1,3.4.2,3.4.2, 4.5.2, 8.2

[37] I. Alagiannis, S. Idreos, and A. Ailamaki. H2O: a hands-free adaptive store. In Proceedings

of the 2014 ACM SIGMOD International Conference on Management of Data, SIGMOD

•14, pages 1103…1114, 2014.2.3, 7.3, 7.4, 7.5.3

[38] A. Alexandrov, R. Bergmann, S. Ewen, J. Freytag, F. Hueske, A. Heise, O. Kao, M. Leich,

U. Leser, V. Markl, F. Naumann, M. Peters, A. Rheinländer, M. J. Sax, S. Schelter, M. Höger,

K. Tzoumas, and D. Warneke. The Stratosphere platform for big data analytics. VLDB

Journal , 23(6):939…964, 2014.2.1.3,5.3

[39] S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm, V. R. Borkar, Y. Bu, M. J. Carey, I. Cetindil,

M. Cheelangi, K. Faraaz, E. Gabrielova, R. Grover, Z. Heilbron, Y. Kim, C. Li, G. Li, J. M.

Ok, N. Onose, P. Pirzadeh, V. J. Tsotras, R. Vernica, J. Wen, and T. Westmann. AsterixDB:

A Scalable, Open Source BDMS. Proceedings of the VLDB Endowment, 7(14):1905…1916,

2014. 2.1.3, 4.2

[40] H. Altwaijry, S. Mehrotra, and D. V. Kalashnikov. QuERy: A Framework for Integrating

Entity Resolution with Query Processing. Proceedings of the VLDB Endowment, 9(3):120…

131, 2015.2.5.2

[41] A. Anagnostou, M. Olma, and A. Ailamaki. Alpine: Ef“cient In-Situ Data Exploration

in the Presence of Updates. In Proceedings of the 2017 ACM SIGMOD International

Conference on Management of Data, SIGMOD •17, pages 1651…1654, 2017.2.1.3, 8.2

[42] R. Appuswamy, M. Karpathiotakis, D. Porobic, and A. Ailamaki. The Case For Heteroge-

neous HTAP. In 8th Biennial Conference on Innovative Data Systems Research, CIDR •17,

2017. 8.1

157

Bibliography

[43] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan, M. J.

Franklin, A. Ghodsi, and M. Zaharia. Spark SQL: relational data processing in spark. In

Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data,

SIGMOD •15, pages 1383…1394, 2015.2.1.3, 2.5.2, 4.1, 4.2, 5.1, 5.2, 5.3, 5.3, 6.1, 6.5, 6.6

[44] J. Arulraj, A. Pavlo, and P. Menon. Bridging the Archipelago Between Row-Stores and

Column-Stores for Hybrid Workloads. In Proceedings of the 2016 ACM SIGMOD Inter-

national Conference on Management of Data, SIGMOD •16, pages 583…598, 2016.7.3,

7.4

[45] T. Azim, M. Karpathiotakis, and A. Ailamaki. ReCache: Reactive Caching for Fast Analyt-

ics over Heterogeneous Data. Proceedings of the VLDB Endowment, 2018. To Appear.

8.2

[46] C. Balkesen, G. Alonso, J. Teubner, and M. T. Özsu. Multi-Core, Main-Memory Joins:

Sort vs. Hash Revisited. Proceedings of the VLDB Endowment, 7(1):85…96, 2013.4.5.1

[47] A. Barbalace, M. Sadini, S. Ansary, C. Jelesnianski, A. Ravichandran, C. Kendir, A. Murray,

and B. Ravindran. Popcorn: bridging the programmability gap in heterogeneous-ISA

platforms. In Proceedings of the 10th European Conference on Computer Systems, EuroSys

•15, 2015.2.4.2

[48] R. Barber, P. Bendel, M. Czech, O. Draese, F. Ho, N. Hrle, S. Idreos, M. Kim, O. Koeth,

J. Lee, T. T. Li, G. M. Lohman, K. Morfonios, R. Müller, K. Murthy, I. Pandis, L. Qiao,

V. Raman, R. Sidle, K. Stolze, and S. Szabo. Business Analytics in (a) Blink. IEEE Data

Engineering Bulletin, 35(1):9…14, 2012.8.2

[49] A. Baumann, P. Barham, P. Dagand, T. L. Harris, R. Isaacs, S. Peter, T. Roscoe, A. Schüp-

bach, and A. Singhania. The multikernel: a new OS architecture for scalable multicore

systems. In Proceedings of the 22nd ACM Symposium on Operating Systems Principles,

SOSP •09, pages 29…44, 2009.2.4.2, 7.1

[50] A. Baumann, C. Hawblitzel, K. Kourtis, T. Harris, and T. Roscoe. Cosh: Clear OS Data

Sharing In An Incoherent World. In 2014 Conference on Timely Results in Operating

Systems, TRIOS •14, 2014.2.4.2, 7.1

[51] L. Berti-Equille, T. Dasu, and D. Srivastava. Discovery of complex glitch patterns: A novel

approach to Quantitative Data Cleaning. In Proceedings of the 27th IEEE International

Conference on Data Engineering, ICDE •11, pages 733…744, 2011.2.5.2

[52] L. Berti-Équille, J. M. Loh, and T. Dasu. A masking index for quantifying hidden glitches.

Knowledge and Information Systems, 44(2):253…277, 2015.2.5.2

[53] K. S. Beyer, R. Cochrane, V. Josifovski, J. Kleewein, G. Lapis, G. M. Lohman, R. Lyle,

F. Özcan, H. Pirahesh, N. Seemann, T. C. Truong, B. V. der Linden, B. Vickery, and

C. Zhang. System RX: one part relational, one part XML. In Proceedings of the 2005 ACM

158

Bibliography

SIGMOD International Conference on Management of Data, SIGMOD •05 , pages 347…358,

2005. 4.2

[54] K. S. Beyer, V. Ercegovac, R. Gemulla, A. Balmin, M. Y. Eltabakh, C. Kanne, F. Özcan, and

E. J. Shekita. Jaql: A Scripting Language for Large Scale Semistructured Data Analysis.

Proceedings of the VLDB Endowment, 4(12):1272…1283, 2011.2.1.3,4.2

[55] S. Blanas, K. Wu, S. Byna, B. Dong, and A. Shoshani. Parallel data analysis directly on

scienti“c “le formats. In Proceedings of the 2014 ACM SIGMOD International Conference

on Management of Data, SIGMOD •14, pages 385…396, 2014.2.1.3

[56] J. Bleiholder and F. Naumann. Declarative Data Fusion … Syntax, Semantics, and Imple-

mentation. In Proceedings of the 9th East European Conference on Advances in Databases

and Information Systems, ADBIS •05, 2005. 2.5.2

[57] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and J. Teubner. MonetD-

B/XQuery: a fast XQuery processor powered by a relational engine. In Proceedings of

the 2006 ACM SIGMOD International Conference on Management of Data, SIGMOD •06 ,

pages 479…490, 2006.4.2

[58] P. A. Boncz, M. L. Kersten, and S. Manegold. Breaking the memory wall in MonetDB.

Communications of ACM, 51(12):77…85, 2008.2.1.1,2.1.3,2.3, 3.3, 4.5, 7.5

[59] P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-Pipelining Query Execu-

tion. In 2nd Biennial Conference on Innovative Data Systems Research, CIDR •05, pages

225…237, 2005.2.1.2, 2.3, 3.1, 3.3, 3.5.1

[60] O. Boykin, S. Ritchie, I. O•Connell, and J. Lin. Summingbird: A Framework for Integrating

Batch and Online MapReduce Computations. Proceedings of the VLDB Endowment,

7(13), 2014. 6.2.2

[61] S. Breß, H. Funke, and J. Teubner. Robust Query Processing in Co-Processor-accelerated

Databases. In Proceedings of the 2016 ACM SIGMOD International Conference on Man-

agement of Data, SIGMOD •16, pages 1891…1906, 2016.8.2

[62] S. Breß, M. Heimel, N. Siegmund, L. Bellatreche, and G. Saake. GPU-Accelerated

Database Systems: Survey and Open Challenges. Transactions on Large-Scale Data- and

Knowledge-Centered Systems, 15:1…35, 2014.2.4.1

[63] R. Brun and F. Rademakers. ROOT - An Object Oriented Data Analysis Framework.

In Proceedings of the Workshop on Arti“cial Intelligence in High Energy and Nuclear

Research, AIHENP •96, 1997.3.1, 3.6

[64] R. Brunel, J. Finis, G. Franz, N. May, A. Kemper, T. Neumann, and F. Färber. Supporting

hierarchical data in SAP HANA. In Proceedings of the 31st IEEE International Conference

on Data Engineering, ICDE •15, pages 1280…1291, 2015.4.2

159

Bibliography

[65] F. Bugiotti, D. Bursztyn, A. Deutsch, I. Ileana, and I. Manolescu. Invisible Glue: Scal-

able Self-Tuning Multi-Stores. In 7th Biennial Conference on Innovative Data Systems

Research, CIDR •15, 2015. 1, 4.1, 4.2, 5.2

[66] P. Buneman, B. Choi, W. Fan, R. Hutchison, R. Mann, and S. Viglas. Vectorizing and

querying large XML repositories. In Proceedings of the 21st IEEE International Conference

on Data Engineering, ICDE •05, pages 261…272, 2005.4.2

[67] P. Buneman, S. B. Davidson, K. Hart, G. C. Overton, and L. Wong. A Data Transformation

System for Biological Data Sources. In Proceedings of the 21st International Conference

on Very Large Data Bases, VLDB •95, pages 158…169, 1995.2.2

[68] P. Buneman, M. F. Fernandez, and D. Suciu. UnQL: A Query Language and Algebra for

Semistructured Data Based on Structural Recursion. VLDB Journal, 9(1):76…110, 2000.

2.2

[69] P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong. Comprehension Syntax. pages

87…96, 1994.2.2, 2.2

[70] J. Cai and A. Shrivastava. Software Coherence Management on Non-coherent Cache

Multi-cores. In 29th International Conference on VLSI Design and 15th International

Conference on Embedded Systems, VLSID •16, pages 397…402, 2016.2.4.2

[71] M. J. Carey, L. M. Haas, P. M. Schwarz, M. Arya, W. F. Cody, R. Fagin, M. Flickner, A. Lu-

niewski, W. Niblack, D. Petkovic, J. T. II, J. H. Williams, and E. L. Wimmers. Towards

Heterogeneous Multimedia Information Systems: The Garlic Approach. In Proceedings

of the 5th International Workshop on Research Issues in Data Engineering - Distributed

Object Management, RIDE-DOM •95, pages 124…131, 1995.4.2, 5.2, 5.6.1

[72] M. J. Carey and H. Lu. Load Balancing in a Locally Distributed Database System. In

Proceedings of the 1986 ACM SIGMOD International Conference on Management of Data,

SIGMOD •1986, pages 108…119, 1986.5.2

[73] D. D. Chamberlin, M. M. Astrahan, M. W. Blasgen, J. Gray, W. F. K. III, B. G. Lindsay,

R. A. Lorie, J. W. Mehl, T. G. Price, G. R. Putzolu, P. G. Selinger, M. Schkolnick, D. R.

Slutz, I. L. Traiger, B. W. Wade, and R. A. Yost. A History and Evaluation of System R.

Communications of ACM, 24(10):632…646, 1981.2.3

[74] C. Chasseur, Y. Li, and J. M. Patel. Enabling JSON document stores in relational systems.

In Proceedings of the 16th International Workshop on the Web and Databases, WebDB 13,

pages 1…6, 2013.4.2

[75] S. S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. D.

Ullman, and J. Widom. The TSIMMIS Project: Integration of Heterogeneous Information

Sources. In Information Processing Society of Japan, IPSJ •94, pages 7…18, 1994.4.2, 5.2

160

Bibliography

[76] L. J. Chen, P. A. Bernstein, P. Carlin, D. Filipovic, M. Rys, N. Shamgunov, J. F. Terwilliger,

M. Todic, S. Tomasevic, and D. Tomic. Mapping XML to a wide sparse table. In Pro-

ceedings of the 28th IEEE International Conference on Data Engineering, ICDE •12, 2012.

4.2

[77] L. J. Chen, P. A. Bernstein, P. Carlin, D. Filipovic, M. Rys, N. Shamgunov, J. F. Terwilliger,

M. Todic, S. Tomasevic, and D. Tomic. Mapping XML to a wide sparse table. IEEE

Transactions on Knowledge and Data Engineering, TKDE •14, 26(6):1400…1414, 2014.4.2

[78] Y. Cheng and F. Rusu. Parallel In-Situ Data Processing with Speculative Loading. In

Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data,

SIGMOD •14, pages 1287…1298, 2014.1.1, 2.1.3

[79] Y. Cheng and F. Rusu. SCANRAW: A database meta-operator for parallel in-situ process-

ing and loading. ACM Transactions on Database Systems, TODS •15, 40(3):19:1…19:45,

2015. 2.1.3

[80] Y. Cheng, W. Zhao, and F. Rusu. Bi-Level Online Aggregation on Raw Data. In Proceedings

of the 29th International Conference on Scienti“c and Statistical Database Management,

SSDBM •17, pages 10:1…10:12, 2017.2.1.3

[81] J. Chou, M. Howison, B. Austin, K. Wu, J. Qiang, E. W. Bethel, A. Shoshani, O. Rübel,

Prabhat, and R. D. Ryne. Parallel index and query for large scale data analysis. In

Conference on High Performance Computing Networking, Storage and Analysis, SC •11,

pages 30:1…30:11, 2011.2.1.3

[82] X. Chu, I. F. Ilyas, and P. Papotti. Holistic data cleaning: Putting violations into context.

In Proceedings of the 29th IEEE International Conference on Data Engineering, ICDE •13,

pages 458…469, 2013.2.5.2

[83] X. Chu, M. Ouzzani, J. Morcos, I. F. Ilyas, P. Papotti, N. Tang, and Y. Ye. KATARA: Reliable

Data Cleaning with Knowledge Bases and Crowdsourcing. Proceedings of the VLDB

Endowment, 8(12):1952…1955, 2015.2.5

[84] J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein, and C. Welton. MAD Skills: New

Analysis Practices for Big Data. Proceedings of the VLDB Endowment, 2(2):1481…1492,

2009. 2.5.2

[85] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking

cloud serving systems with YCSB. In Proceedings of the 1st ACM Symposium on Cloud

Computing, SoCC •10, pages 143…154, 2010.7.5.1

[86] G. P. Copeland and S. N. Khosha“an. A Decomposition Storage Model. ACM SIGMOD

Record, 14(4):268…279, 1985.7.3

[87] W. Corno, F. Corcoglioniti, I. Celino, and E. D. Valle. Exposing Heterogeneous Data

Sources as SPARQL Endpoints through an Object-Oriented Abstraction. In Proceedings

of the 3rd Asian Semantic Web Conference, ASWC •08, pages 434…448, 2008.2.2

161

Bibliography

[88] A. Crotty, A. Galakatos, K. Dursun, T. Kraska, U. Çetintemel, and S. B. Zdonik. Tupleware:

Rede“ning modern analytics. CoRR, 2014.2.3

[89] P. Cudré-Mauroux, E. Wu, and S. Madden. The Case for RodentStore: An Adaptive,

Declarative Storage System. In 4th Biennial Conference on Innovative Data Systems

Research, CIDR •09, 2009. 2.2

[90] M. Dallachiesa, A. Ebaid, A. Eldawy, A. K. Elmagarmid, I. F. Ilyas, M. Ouzzani, and N. Tang.

NADEEF: A Commodity Data Cleaning System. In Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data, SIGMOD •15, pages 541…552, 2013.

2.5.2, 6.1

[91] M. Dashti. Program Analysis and Compilation Techniques for Speeding up Transactional

Database Workloads, 2017. PhD thesis, EPFL. 2.3

[92] T. Dasu and J. M. Loh. Statistical Distortion: Consequences of Data Cleaning. Proceed-

ings of the VLDB Endowment, 5(11):1674…1683, 2012.2.5.2

[93] J. Dean and S. Ghemawat. MapReduce: Simpli“ed Data Processing on Large Clusters.

Communications of ACM, 51(1):107…113, 2008.2.1.3

[94] A. Deshpande and J. M. Hellerstein. Decoupled Query Optimization for Federated

Database Systems. In Proceedings of the 18th IEEE International Conference on Data

Engineering, ICDE •02, pages 716…727, 2002.5.2

[95] D. J. DeWitt, A. Halverson, R. V. Nehme, S. Shankar, J. Aguilar-Saborit, A. Avanes,

M. Flasza, and J. Gramling. Split Query Processing in Polybase. In Proceedings of

the 2013 ACM SIGMOD International Conference on Management of Data, SIGMOD •13 ,

pages 1255…1266, 2013.2.1.3, 4.2, 5.2

[96] G. F. Diamos, H. Wu, J. Wang, A. Lele, and S. Yalamanchili. Relational algorithms for

multi-bulk-synchronous processors. In ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, PPoPP •13, pages 301…302, 2013.2.4.1, 7.4

[97] A. Doan, A. Halevy, and Z. Ives. Principles of Data Integration . Morgan Kaufmann, 2012.

1

[98] W. Du, R. Krishnamurthy, and M.-C. Shan. Query Optimization in a Heterogeneous

DBMS. In Proceedings of the 18th International Conference on Very Large Data Bases,

VLDB •92, pages 277…291, 1992.5.6.1

[99] J. Duggan, A. J. Elmore, M. Stonebraker, M. Balazinska, B. Howe, J. Kepner, S. Madden,

D. Maier, T. Mattson, and S. Zdonik. The BigDAWG Polystore System. ACM SIGMOD

Record, 44(3), 2015.1, 4.1, 4.2, 5.2

[100] A. Dziedzic, M. Karpathiotakis, I. Alagiannis, R. Appuswamy, and A. Ailamaki. DBMS

Data Loading: An Analysis on Modern Hardware. In Data Management on New Hard-

ware - 7th International Workshop on Accelerating Data Analysis and Data Management

162

Bibliography

Systems Using Modern Processor and Storage Architectures, ADMS •16 and 4th Inter-

national Workshop on In-Memory Data Management and Analytics, IMDM •16, pages

95…117, 2016.2.1.1,8.1

[101] ESRI. Shape“le Technical Description. http://www.esri.com/library/
whitepapers/pdfs/shapefile.pdf . 3.4.1

[102] W. Fan. Data quality: From theory to practice. ACM SIGMOD Record, 44(3):7…18, 2015.

2.5.1, 2.5.2

[103] L. Fegaras. Incremental query processing on big data streams. IEEE Transactions on

Knowledge and Data Engineering, TKDE •16, 28(11):2998…3012, 2016.6.2.2

[104] L. Fegaras and D. Maier. Towards an Effective Calculus for Object Query Languages. In

Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data,

SIGMOD •95, 1995.2.2

[105] L. Fegaras and D. Maier. Optimizing object queries using an effective calculus. ACM

Transactions on Database Systems, 25(4):457…516, 2000.2.2, 2.2, 4.3, 6.1, 6.2.2, 6.3.1,

6.3.2, 6.4

[106] M. F. Fernández, J. Siméon, and P. Wadler. An Algebra for XML Query. In Foundations of

Software Technology and Theoretical Computer Science, 20th Conference, FST TCS •00,

pages 11…45, 2000.2.2, 4.3

[107] S. J. Finkelstein. Common Subexpression Analysis in Database Applications. In Pro-

ceedings of the 1982 ACM SIGMOD International Conference on Management of Data,

SIGMOD •82, pages 235…245, 1982.4.6

[108] A. Floratou, U. F. Minhas, and F. Özcan. SQL-on-Hadoop: Full Circle Back to Shared-

Nothing Database Architectures. Proceedings of the VLDB Endowment, 7(12):1295…1306,

2014. 5.6.1

[109] D. Florescu and D. Kossmann. Storing and Querying XML Data using an RDMBS. IEEE

Data Engineering Bulletin, 22(3):27…34, 1999.4.2

[110] H. Galhardas. Data Cleaning and Transformation Using the AJAX Framework. In Inter-

national Summer School on Generative and Transformational Techniques in Software

Engineering, GTTSE •05, pages 327…343, 2005.2.5.2, 6.1

[111] H. Galhardas, D. Florescu, D. E. Shasha, E. Simon, and C. Saita. Improving data cleaning

quality using a data lineage facility. In Proceedings of the 3rd International Workshop on

Design and Management of Data Warehouses, DMDW •01, page 3, 2001.6.6

[112] M. N. Garofalakis and Y. E. Ioannidis. Parallel Query Scheduling and Optimization with

Time- and Space-Shared Resources. In Proceedings of the 23rd International Conference

on Very Large Data Bases, VLDB •97, 1997. 5.2

163

Bibliography

[113] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. That•s all folks! LLUNATIC goes open

source. Proceedings of the VLDB Endowment, 7(13):1565…1568, 2014.2.5

[114] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, and H. Jacobsen. BigBench:

towards an industry standard benchmark for big data analytics. In Proceedings of the

2013 ACM SIGMOD International Conference on Management of Data, SIGMOD •13,

pages 1197…1208, 2013.5.1, 5.7.1

[115] S. Giannakopoulou, M. Karpathiotakis, B. Gaidioz, and A. Ailamaki. An Optimizable

Query Language for Uni“ed Scale-Out Data Cleaning. volume 10, pages 1466…1477,

2017. 8.1

[116] Google. Supersonic Library. https://code.google.com/p/supersonic/ . 3.3

[117] G. Graefe and W. J. McKenna. The Volcano Optimizer Generator: Extensibility and

Ef“cient Search. In Proceedings of the 9th IEEE International Conference on Data Engi-

neering, ICDE •93, pages 209…218, 1993.2.1.1, 2.3, 4.5

[118] J. Gray, D. T. Liu, M. A. Nieto-Santisteban, A. S. Szalay, D. J. DeWitt, and G. Heber.

Scienti“c data management in the coming decade. ACM SIGMOD Record, 34(4):34…41,

2005. 1

[119] S. C. Gray, F. Özcan, H. Pereyra, B. van der Linden, and A. Zubiri. SQL-on-Hadoop

without compromise. Technical report, IBM, 03 2015. 5.1, 5.4

[120] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudré-Mauroux, and S. Madden. HYRISE - A

Main Memory Hybrid Storage Engine. Proceedings of the VLDB Endowment, 4(2):105…

116, 2010.4.6, 7.3, 7.4, 7.5.3

[121] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and T. Yamazaki. Syner-

gistic Processing in Cell•s Multicore Architecture. 39th Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO •06, 26:10…24, 2006.2.4.2

[122] D. Haas, S. Krishnan, J. Wang, M. J. Franklin, and E. Wu. Wisteria: Nurturing scalable

data cleaning infrastructure. Proceedings of the VLDB Endowment, 8(12):2004…2007,

2015. 2.5.2

[123] L. M. Haas, J. C. Freytag, G. M. Lohman, and H. Pirahesh. Extensible Query Process-

ing in Starburst. Proceedings of the 1989 ACM SIGMOD International Conference on

Management of Data, SIGMOD •89, pages 377…388, 1989.2.1.3

[124] L. M. Haas, D. Kossmann, E. L. Wimmers, and J. Yang. Optimizing Queries Across Diverse

Data Sources. In Proceedings of the 23rd International Conference on Very Large Data

Bases, VLDB •97, pages 276…285, 1997.5.2, 5.6.1

[125] A. Y. Halevy. Answering queries using views: A survey. VLDB Journal , 10(4):270…294,

2001. 4.6

164

Bibliography

[126] B. Haynes, A. Cheung, and M. Balazinska. PipeGen: Data Pipe Generator for Hybrid

Analytics. In Proceedings of the 7th ACM Symposium on Cloud Computing, SoCC •16,

pages 470…483, 2016.5.2

[127] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and P. V. Sander. Relational

Query Coprocessing on Graphics Processors. ACM Transactions on Database Systems,

TODS •09, 34(4):21:1…21:39, 2009.2.4.1,7.2, 7.4, 8.2

[128] M. Heimel, M. Saecker, H. Pirk, S. Manegold, and V. Markl. Hardware-oblivious paral-

lelism for in-memory column-stores. Proceedings of the VLDB Endowment, 6(9):709…720,

2013. 2.4.1, 7.2

[129] T. Heinis, M. Branco, I. Alagiannis, R. Borovica, F. Tauheed, and A. Ailamaki. Chal-

lenges and Opportunities in Self-Managing Scienti“c Databases. IEEE Data Engineering

Bulletin , 34(4):44…52, 2011.1

[130] W. Hong and M. Stonebraker. Optimization of parallel query execution plans in XPRS.

Distributed and Parallel Databases, 1(1):9…32, 1993.5.2

[131] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H. Wilson,

N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella, P. Salihundam, V. Er-

raguntla, M. Konow, M. Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel, K. Henriss,

T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. V. D. Wijngaart, and T. Mattson. A 48-Core

IA-32 message-passing processor with DVFS in 45nm CMOS. In IEEE International

Solid-State Circuits Conference, ISSCC •10, pages 108…109, 2010.2.4.2, 7.1

[132] S. Idreos, I. Alagiannis, R. Johnson, and A. Ailamaki. Here are my Data Files. Here are my

Queries. Where are my Results? In 5th Biennial Conference on Innovative Data Systems

Research, CIDR •11, pages 57…68, 2011.2.1.3

[133] C. G. III, F. Sironi, M. F. Kaashoek, and N. Zeldovich. Hare: a “le system for non-cache-

coherent multicores. In Proceedings of the 10th European Conference on Computer

Systems, EuroSys •15, pages 30:1…30:16, 2015.2.4.2

[134] I. F. Ilyas and X. Chu. Trends in cleaning relational data: Consistency and deduplication.

Foundations and Trends® in Databases, 5(4):281…393, 2015.2.5, 6.2.1

[135] M. Ivanova, M. Kersten, and S. Manegold. Data Vaults: A Symbiosis between Database

Technology and Scienti“c File Repositories. In Proceedings of the 24th International

Conference on Scienti“c and Statistical Database Management, SSDBM •12, pages 485…

494, 2012.1.1, 2.1.3

[136] M. Ivanova, M. L. Kersten, N. J. Nes, and R. Goncalves. An architecture for recycling

intermediates in a column-store. volume 35, pages 24:1…24:43, 2010. 3.5.1, 4.6

[137] S. Jha, B. He, M. Lu, X. Cheng, and H. P. Huynh. Improving Main Memory Hash Joins

on Intel Xeon Phi Processors: An Experimental Approach. Proceedings of the VLDB

Endowment, 8(6):642…653, 2015.8.2

165

Bibliography

[138] Y. Jiang, G. Li, J. Feng, and W.-S. Li. String Similarity Joins: An Experimental Evaluation.

Proceedings of the VLDB Endowment, 7(8):625…636, 2014.6.1, 6.3.1,6.3.2

[139] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler: Interactive Visual Speci“ca-

tion of Data Transformation Scripts. In Proceedings of the International Conference on

Human Factors in Computing Systems, CHI •11, pages 3363…3372, 2011.2.5, 2.5.2, 6.1

[140] S. Kanev, J. P. Darago, K. M. Hazelwood, P. Ranganathan, T. Moseley, G. Wei, and D. M.

Brooks. Pro“ling a warehouse-scale computer. In Proceedings of the 42nd Annual

International Symposium on Computer Architecture, ISCA •15 , pages 158…169, 2015.

5.6.2, 5.8.2

[141] Y. Kargin, M. L. Kersten, S. Manegold, and H. Pirk. The DBMS - your big data sommelier.

In Proceedings of the 31st IEEE International Conference on Data Engineering, ICDE •15,

2015. 1.1, 2.1.3

[142] T. Karnagel, D. Habich, and W. Lehner. Adaptive work placement for query processing on

heterogeneous computing resources. Proceedings of the VLDB Endowment, 10(7):733…

744, 2017.8.2

[143] M. Karpathiotakis, I. Alagiannis, and A. Ailamaki. Fast Queries Over Heterogeneous Data

Through Engine Customization. Proceedings of the VLDB Endowment, 9(12):972…983,

2016. 6.2.2, 6.4, 7.3, 8.1

[144] M. Karpathiotakis, I. Alagiannis, T. Heinis, M. Branco, and A. Ailamaki. Just-In-Time Data

Virtualization: Lightweight Data Management with ViDa. In 7th Biennial Conference on

Innovative Data Systems Research, CIDR •15, 2015. 1.1, 2.1.3,4.2, 5.1, 6.2.2, 7.3, 8.1

[145] M. Karpathiotakis, M. Branco, I. Alagiannis, and A. Ailamaki. Adaptive Query Processing

on RAW Data. Proceedings of the VLDB Endowment, 7(12):1119…1130, 2014.1.1, 2.1.3,

7.3, 8.1, 8.2

[146] M. Karpathiotakis, A. Floratou, F. Özcan, and A. Ailamaki. No data left behind: Real-time

insights from a complex data ecosystem. Proceedings of the 8th ACM Symposium on

Cloud Computing, SoCC •17, 2017.8.1

[147] A. Kemper and T. Neumann. HyPer: A hybrid OLTP&OLAP main memory database

system based on virtual memory snapshots. In Proceedings of the 27th IEEE International

Conference on Data Engineering, ICDE •11, pages 195…206, 2011.7.3

[148] M. S. Kester, M. Athanassoulis, and S. Idreos. Access Path Selection in Main-Memory

Optimized Data Systems: Should I Scan or Should I Probe? In Proceedings of the 2017

ACM SIGMOD International Conference on Management of Data, SIGMOD •17 , pages

715…730, 2017.8.2

[149] Z. Khayyat, I. F. Ilyas, A. Jindal, S. Madden, M. Ouzzani, P. Papotti, J. Quiané-Ruiz, N. Tang,

and S. Yin. BigDansing: A System for Big Data Cleansing. In Proceedings of the 2015

166

Bibliography

ACM SIGMOD International Conference on Management of Data, SIGMOD •15 , pages

1215…1230, 2015.2.5, 2.5.2, 6.1, 6.7, 6.7.3

[150] W. Kim. On Optimizing an SQL-like Nested Query. ACM Transactions on Database

Systems, 7(3):443…469, 1982.6.3.1

[151] R. Kimball and M. Ross. The data warehouse toolkit: the complete guide to dimensional

modeling, 2nd Edition . Wiley, 2002. 5.8.1

[152] T. Kirk, A. Y. Levy, Y. Sagiv, and D. Srivastava. The Information Manifold. In AAAI Spring

Symposium on Information Gathering , pages 233…246, 1995.5.2

[153] Y. Klonatos, C. Koch, T. Rompf, and H. Cha“. Building Ef“cient Query Engines in a

High-Level Language. Proceedings of the VLDB Endowment, 7(10):853…864, 2014.2.3,

4.2, 7.3

[154] L. Kolb, A. Thor, and E. Rahm. Dedoop: Ef“cient Deduplication with Hadoop. Proceed-

ings of the VLDB Endowment, 5(12):1878…1881, 2012.2.5.2

[155] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching, A. Choi, J. Erickson, M. Grund,

D. Hecht, M. Jacobs, I. Joshi, L. Kuff, D. Kumar, A. Leblang, N. Li, I. Pandis, H. Robinson,

D. Rorke, S. Rus, J. Russell, D. Tsirogiannis, S. Wanderman-Milne, and M. Yoder. Impala:

A modern, open-source SQL engine for hadoop. In 7th Biennial Conference on Innovative

Data Systems Research, CIDR •15, 2015.5.5.1, 5.6.2

[156] D. Kossmann. The State of the Art in Distributed Query Processing. ACM Computing

Surveys, 32(4):422…469, 2000.5.2, 5.6, 5.6.1

[157] Y. Kotidis and N. Roussopoulos. DynaMat: A Dynamic View Management System for

Data Warehouses. In Proceedings of the 1999 ACM SIGMOD International Conference on

Management of Data, SIGMOD •99, pages 371…382, 1999.4.6

[158] N. Koudas, S. Sarawagi, and D. Srivastava. Record linkage: similarity measures and

algorithms. In Proceedings of the 2006 ACM SIGMOD International Conference on

Management of Data, SIGMOD •06, pages 802…803, 2006.2.5.1

[159] K. Krikellas, S. Viglas, and M. Cintra. Generating code for holistic query evaluation. In

Proceedings of the 26th IEEE International Conference on Data Engineering, ICDE •10,

pages 613…624, 2010.2.3, 3.1, 4.2, 4.5, 6.6, 7.3

[160] D. Laney. 3D Data Management: Controlling Data Volume, Velocity, and Variety. Techni-

cal report, META Group, February 2001. 3.1

[161] H. Lang, T. Mühlbauer, F. Funke, P. A. Boncz, T. Neumann, and A. Kemper. Data Blocks:

Hybrid OLTP and OLAP on Compressed Storage using both Vectorization and Compila-

tion. In Proceedings of the 2016 ACM SIGMOD International Conference on Management

of Data, SIGMOD •16, pages 311…326, 2016.7.5.1, 8.2

167

Bibliography

[162] C. Lattner and V. S. Adve. LLVM: A Compilation Framework for Lifelong Program Analysis

& Transformation. In 2nd IEEE / ACM International Symposium on Code Generation

and Optimization, CGO •04, pages 75…88, 2004.2.3, 3.4.2,4.2, 4.5.1

[163] J. Lee, S. Seo, C. Kim, J. Kim, P. Chun, Z. Sura, J. Kim, and S. Han. COMIC: A Coherent

Shared Memory Interface for Cell Be. In 17th International Conference on Parallel

Architecture and Compilation Techniques, PACT •08 , pages 303…314, 2008.2.4.2

[164] J. LeFevre, J. Sankaranarayanan, H. Hacigümüs, J. Tatemura, N. Polyzotis, and M. J. Carey.

MISO: souping up big data query processing with a multistore system. In Proceedings of

the 2014 ACM SIGMOD International Conference on Management of Data, SIGMOD •14 ,

pages 1591…1602, 2014.5.2

[165] M. Lenzerini. Data Integration: A Theoretical Perspective. In Proceedings of the 21st

ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, PODS •02,

pages 233…246, 2002.5.2

[166] J. J. Levandoski, P. Larson, and R. Stoica. Identifying hot and cold data in main-memory

databases. In Proceedings of the 29th IEEE International Conference on Data Engineering,

ICDE •13, pages 26…37, 2013.7.5.1

[167] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica. Tachyon: Reliable, memory speed

storage for cluster computing frameworks. In Proceedings of the 5th ACM Symposium

on Cloud Computing, SoCC •14, pages 6:1…6:15, 2014.5.5.1

[168] Y. Li, N. R. Katsipoulakis, B. Chandramouli, J. Goldstein, and D. Kossmann. Mison: A fast

JSON parser for data analytics. Proceedings of the VLDB Endowment, 10(10):1118…1129,

2017. 4.5.2

[169] F. X. Lin, Z. Wang, and L. Zhong. K2: A Mobile Operating System for Heterogeneous

Coherence Domains. ACM Transactions on Computer Systems, TOCS •15, 33(2):4:1…4:27,

2015. 2.4.2

[170] L. Liu and M. T. Özsu, editors. Encyclopedia of Database Systems. Springer US, 2009.5.2

[171] Z. H. Liu, B. C. Hammerschmidt, and D. McMahon. JSON data management: support-

ing schema-less development in RDBMS. In Proceedings of the 2014 ACM SIGMOD

International Conference on Management of Data, SIGMOD •14, pages 1247…1258, 2014.

4.2

[172] S. Lohr. For Big-Data Scientists, •Janitor Work• Is Key Hurdle to Insights, The New York

Times, 2014. 1.2, 6.1

[173] L. F. Mackert and G. M. Lohman. R* Optimizer Validation and Performance Evaluation

for Distributed Queries. In Proceedings of the 12th International Conference on Very

Large Data Bases, VLDB •86, pages 149…159, 1986.5.6.1

168

Bibliography

[174] S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizing main-memory join on modern

hardware. IEEE Transactions on Knowledge and Data Engineering, TKDE •02, 14(4):709…

730, 2002.4.5.1

[175] H. Markram, K. Meier, T. Lippert, S. Grillner, R. S. Frackowiak, S. Dehaene, A. Knoll,

H. Sompolinsky, K. Verstreken, J. DeFelipe, S. Grant, J. Changeux, and A. Saria. Introduc-

ing the Human Brain Project. In Proceedings of the 2nd European Future Technologies

Conference and Exhibition, FET •11, pages 39…42, 2011.1.1

[176] M. Martin, M. Hill, and D. Sorin. Why on-chip cache coherence is here to stay. Commu-

nications of ACM , 55(7):78…89, 2012.2.4.2

[177] T. G. Mattson, V. Gadepally, Z. She, A. Dziedzic, and J. Parkhurst. Demonstrating the Big-

DAWG Polystore System for Ocean Metagenomics Analysis. In 8th Biennial Conference

on Innovative Data Systems Research, CIDR •17, 2017. 5.2

[178] T. G. Mattson, R. Van der Wijngaart, and M. Frumkin. Programming the Intel 80-core

Network-on-a-chip Terascale Processor. In Proceedings of the ACM/IEEE Conference on

High Performance Computing, SC •08, page 38, 2008.2.4.2,7.1

[179] A. McCallum, K. Nigam, and L. H. Ungar. Ef“cient Clustering of High-dimensional Data

Sets with Application to Reference Matching. In Proceedings of the 6th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, SIGKDD •00, pages

169…178, 2000.6.3.2

[180] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A Database

Management System for Semistructured Data. SIGMOD Record, 26(3):54…66, 1997.2.2

[181] E. Meijer. The world according to LINQ. Communications of ACM, 54(10):45…51, 2011.

2.2

[182] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton, and T. Vassi-

lakis. Dremel: Interactive Analysis of Web-Scale Datasets. Proceedings of the VLDB

Endowment, 3(1):330…339, 2010.2.1.3,4.2, 8.2

[183] D. Molka, D. Hackenberg, R. Schöne, and W. E. Nagel. Cache Coherence Protocol

and Memory Performance of the Intel Haswell-EP Architecture. In 44th International

Conference on Parallel Processing, ICPP •15, pages 739…748, 2015.2.4.2

[184] R. Mueller, J. Teubner, and G. Alonso. Data Processing on FPGAs. Proceedings of the

VLDB Endowment, 2(1):910…921, 2009.8.2

[185] T. Mühlbauer, W. Rödiger, R. Seilbeck, A. Reiser, A. Kemper, and T. Neumann. Instant

Loading for Main Memory Databases. volume 6, pages 1702…1713, 2013.2.1.3

[186] R. Murthy, Z. H. Liu, M. Krishnaprasad, S. Chandrasekar, A. Tran, E. Sedlar, D. Florescu,

S. Kotsovolos, N. Agarwal, V. Arora, and V. Krishnamurthy. Towards an enterprise XML

169

Bibliography

architecture. In Proceedings of the 2005 ACM SIGMOD International Conference on

Management of Data, SIGMOD •05, pages 953…957, 2005.4.2

[187] MySQL. Chapter 24. Writing a Custom Storage Engine. http://dev.mysql.com/
doc/internals/en/custom-engine.html . 2.1.2

[188] F. Nagel, G. M. Bierman, and S. D. Viglas. Code Generation for Ef“cient Query Processing

in Managed Runtimes. Proceedings of the VLDB Endowment, 7(12):1095…1106, 2014.2.3

[189] F. Nagel, P. A. Boncz, and S. Viglas. Recycling in pipelined query evaluation. In Proceed-

ings of the 29th IEEE International Conference on Data Engineering, ICDE •13 , pages

338…349, 2013.3.5.1, 4.6

[190] T. Neumann. Ef“ciently Compiling Ef“cient Query Plans for Modern Hardware. Pro-

ceedings of the VLDB Endowment, 4(9):539…550, 2011.2.3, 3.4.1, 3.4.2, 4.2, 4.5, 7.3,

8.2

[191] M. Nowak, K. Nienartowicz, A. Valassi, M. Lubeck, and D. Geppert. Objectivity data

migration. Proceedings of the Conference for Computing in High Energy and Nuclear

Physics, 2003. 1

[192] NVIDIA. CUDA C Programming Guide. http://docs.nvidia.com/cuda/cuda-
c-programming-guide . 2.4.1

[193] NVIDIA. NVLink High-Speed Interconnect. http://www.nvidia.com/object/
nvlink.html . 2.4.1

[194] NVIDIA. Parallel Thread Execution ISA Version 4.3. http://docs.nvidia.com/
cuda/parallel-thread-execution . 7.3

[195] NVIDIA. Summit and Sierra Supercomputers: An Inside Look at the U.S. Department of

Energy•s New Pre-Exascale Systems. Technical report, 11 2014.2.4.1

[196] A. Okcan and M. Riedewald. Processing Theta-joins Using MapReduce. In Proceedings

of the 2011 ACM SIGMOD International Conference on Management of Data, SIGMOD

•11, pages 949…960, 2011.6.5

[197] M. Olma, M. Karpathiotakis, I. Alagiannis, M. Athanassoulis, and A. Ailamaki. Slalom:

Coasting Through Raw Data via Adaptive Partitioning and Indexing. Proceedings of the

VLDB Endowment, 10(10):1106…1117, 2017.2.1.3, 8.2

[198] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin: A Not-So-Foreign

Language for Data Processing. In Proceedings of the 2008 ACM SIGMOD International

Conference on Management of Data, SIGMOD •08, pages 1099…1110, 2008.2.1.3, 4.2, 5.1,

5.2

170

Bibliography

[199] K. W. Ong, Y. Papakonstantinou, and R. Vernoux. The SQL++ Semi-structured Data

Model and Query Language: A Capabilities Survey of SQL-on-Hadoop, NoSQL and

NewSQL Databases. CoRR, abs/1405.3631, 2014.4.2

[200] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B. Chun. Making Sense of

Performance in Data Analytics Frameworks. In 12th USENIX Symposium on Networked

Systems Design and Implementation, NSDI •15, pages 293…307, 2015.5.6.2,5.8.2

[201] S. Padmanabhan, T. Malkemus, R. C. Agarwal, and A. Jhingran. Block Oriented Pro-

cessing of Relational Database Operations in Modern Computer Architectures. In

Proceedings of the 17th IEEE International Conference on Data Engineering, ICDE •01,

pages 567…574, 2001.2.3

[202] S. Pantela and S. Idreos. One Loop Does Not Fit All. In Proceedings of the 2015 ACM

SIGMOD International Conference on Management of Data, SIGMOD •15 , pages 2073…

2074, 2015.8.2

[203] Y. Papakonstantinou, V. R. Borkar, M. Orgiyan, K. Stathatos, L. Suta, V. Vassalos, and

P. Velikhov. XML queries and algebra in the Enosys integration platform. Data &

Knowledge Engineering, 44(3):299…322, 2003.2.2, 4.3

[204] L. Passing, M. Then, N. Hubig, H. Lang, M. Schreier, S. Günnemann, A. Kemper, and

T. Neumann. Sql-and operator-centric data analytics in relational main-memory

databases. Proceedings of the 20th International Conference on Extending Database

Technology, EDBT •17, pages 84…95, 2017.2.5.2

[205] J. Paul, J. He, and B. He. GPL: A GPU-based Pipelined Query Processing Engine. In

Proceedings of the 2016 ACM SIGMOD International Conference on Management of Data,

SIGMOD •16, pages 1935…1950, 2016.7.4

[206] H. Pirk, F. Funke, M. Grund, T. Neumann, U. Leser, S. Manegold, A. Kemper, and M. Ker-

sten. CPU and Cache Ef“cient Management of Memory-Resident Databases. In Pro-

ceedings of the 29th IEEE International Conference on Data Engineering, ICDE •13, pages

14…25, 2013.2.3

[207] D. Porobic, I. Pandis, M. Branco, P. Tözün, and A. Ailamaki. OLTP on Hardware Islands.

Proceedings of the VLDB Endowment, 5(11):1447…1458, 2012.7.2

[208] PostgreSQL. JSON Types.http://www.postgresql.org/docs/9.5/static/
datatype-json.html . A.1

[209] N. Prokoshyna, J. Szlichta, F. Chiang, R. J. Miller, and D. Srivastava. Combining quantita-

tive and logical data cleaning. Proceedings of the VLDB Endowment, 9(4):300…311, 2015.

2.5.2

[210] I. Psaroudakis, F. Wolf, N. May, T. Neumann, A. Böhm, A. Ailamaki, and K. Sattler. Scaling

Up Mixed Workloads: A Battle of Data Freshness, Flexibility, and Scheduling. In 6th TPC

171

Bibliography

Technology Conference on Performance Characterization and Benchmarking. Traditional

to Big Data, TPCTC •14, 2014.1.2, 7.1, 7.2, 7.5.1

[211] L. Qiao, Y. Li, S. Takiar, Z. Liu, N. Veeramreddy, M. Tu, Y. Dai, I. Buenrostro, K. Surlaker,

S. Das, and C. Botev. Gobblin: Unifying Data Ingestion for Hadoop. Proceedings of the

VLDB Endowment, 8(12):1764…1775, 2015.5.2

[212] V. Raman and J. M. Hellerstein. Potter•s Wheel: An Interactive Data Cleaning System. In

Proceedings of the VLDB Endowment, pages 381…390, 2001.2.5, 2.5.2,6.1

[213] J. Rao, H. Pirahesh, C. Mohan, and G. M. Lohman. Compiled Query Execution Engine us-

ing JVM. In Proceedings of the 22nd IEEE International Conference on Data Engineering,

ICDE •06, page 23, 2006.2.3, 4.2, 7.3

[214] Robert Kruszewski. Catalyst: Allow adding custom optimizers, 2016. 3

[215] K. A. Ross. Conjunctive selection conditions in main memory. In Proceedings of the 21st

ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, PODS •02,

pages 109…120, 2002.8.2

[216] M. T. Roth, F. Ozcan, and L. M. Haas. Cost Models DO Matter: Providing Cost Information

for Diverse Data Sources in a Federated System. In Proceedings of the 25th International

Conference on Very Large Data Bases, VLDB •99, pages 599…610, 1999.4.5.2, 5.2

[217] M. T. Roth and P. M. Schwarz. Don•t Scrap It, Wrap It! A Wrapper Architecture for Legacy

Data Sources. In Proceedings of the 23rd International Conference on Very Large Data

Bases, VLDB •97, pages 266…275, 1997.4.2, 4.5.2,5.2, 5.6.1

[218] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Ef“cient and Extensible Algorithms

for Multi Query Optimization. In Proceedings of the 2000 ACM SIGMOD International

Conference on Management of Data, SIGMOD •00, pages 249…260, 2000.4.6

[219] F. Rusu. Scalable in-situ exploration over raw data. In 8th Biennial Conference on

Innovative Data Systems Research, CIDR •17, 2017. 2.1.3

[220] A. D. Sarma, Y. He, and S. Chaudhuri. ClusterJoin: A Similarity Joins Framework using

Map-Reduce. Proceedings of the VLDB Endowment, 7(12):1059…1070, 2014.6.3.1,6.3.2

[221] K.-U. Sattler, S. Conrad, and G. Saake. Adding con”ict resolution features to a query

language for database federations. Australasian Journal of Information Systems, AJIS •00,

8(1), 2000. 2.5.2

[222] F. M. Schuhknecht, J. Dittrich, and A. Sharma. RUMA Has It: Rewired User-space

Memory Access is Possible! Proceedings of the VLDB Endowment, 9(10):768…779, 2016.

7.5.1

172

Bibliography

[223] P. M. Schwarz, W. Chang, J. C. Freytag, G. M. Lohman, J. McPherson, C. Mohan, and

H. Pirahesh. Extensibility in the Starburst Database System. In 1986 International

Workshop on Object-Oriented Database Systems, OODBS •86, pages 85…92, 1986.2.1.3

[224] A. Shaikhha, Y. Klonatos, L. Parreaux, L. Brown, M. Dashti, and C. Koch. How to Architect

a Query Compiler. In Proceedings of the 2016 ACM SIGMOD International Conference

on Management of Data, SIGMOD •16, pages 1907…1922, 2016.2.3

[225] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and J. F. Naughton.

Relational Databases for Querying XML Documents: Limitations and Opportunities. In

Proceedings of the 25th International Conference on Very Large Data Bases, VLDB •99,

1999. 4.1, 4.2

[226] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop Distributed File System.

In IEEE 26th Symposium on Mass Storage Systems and Technologies, MSST •12, pages

1…10, 2010.2.1.3

[227] A. Sinha, Z. Shen, Y. Song, H. Ma, D. Eide, B. P. Hsu, and K. Wang. An Overview of Mi-

crosoft Academic Service (MAS) and Applications. Proceedings of the 24th International

Conference on World Wide Web Companion, WWW •15, pages 243…246, 2015.6.7

[228] P. Sioulas and A. Ailamaki. Vectorizing an In Situ Query Engine. In Proceedings of the

2016 ACM SIGMOD International Conference on Management of Data, SIGMOD •16,

pages 2261…2262, 2016.8.2

[229] R. T. Snodgrass and I. Ahn. A Taxonomy of Time in Databases. In Proceedings of the 1985

ACM SIGMOD International Conference on Management of Data, SIGMOD •85 , pages

236…246, 1985.1

[230] M. A. Soliman, L. Antova, V. Raghavan, A. El-Helw, Z. Gu, E. Shen, G. C. Caragea, C. Garcia-

Alvarado, F. Rahman, M. Petropoulos, F. Waas, S. Narayanan, K. Krikellas, and R. Baldwin.

Orca: A Modular Query Optimizer Architecture for Big Data. In Proceedings of the 2014

ACM SIGMOD International Conference on Management of Data, SIGMOD •14 , pages

337…348, 2014.5.8.2

[231] J. Sompolski. Just-in-time Compilation in Vectorized Query Execution. Master•s thesis,

University of Warsaw, VU University Amsterdam, 2011. 8.2

[232] J. Sompolski, M. Zukowski, and P. A. Boncz. Vectorization vs. compilation in query

execution. In Proceedings of the Seventh International Workshop on Data Management

on New Hardware, DaMoN •11, pages 33…40, 2011.8.2

[233] M. Stonebraker. Technical perspective - One size “ts all: an idea whose time has come

and gone. Communications of ACM, 51(12):76, 2008. 1.2, 3.3, 4.1

[234] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau, A. Lin,

S. Madden, E. J. O•Neil, P. E. O•Neil, A. Rasin, N. Tran, and S. B. Zdonik. C-Store: A

173

Bibliography

Column-oriented DBMS. In Proceedings of the 31st International Conference on Very

Large Data Bases, VLDB •05, pages 553…564, 2005.3.3

[235] M. Stonebraker, D. Bruckner, I. F. Ilyas, G. Beskales, M. Cherniack, S. B. Zdonik, A. Pagan,

and S. Xu. Data Curation at Scale: The Data Tamer System. In 6th Biennial Conference

on Innovative Data Systems Research, CIDR •13, 2013. 2.5, 2.5.2,6.1

[236] D. Tahara, T. Diamond, and D. J. Abadi. Sinew: a SQL system for multi-structured data.

In Proceedings of the 2014 ACM SIGMOD International Conference on Management of

Data, SIGMOD •14, pages 815…826, 2014.4.2

[237] The HDF Group. HDF5. http://www.hdfgroup.org/HDF5 . 3.4.1

[238] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, and

R. Murthy. Hive - A Warehousing Solution Over a Map-Reduce Framework. Proceedings

of the VLDB Endowment, 2(2):1626…1629, 2009.4.1, 5.1, 5.2, 5.3, 5.3

[239] A. Tomasic, L. Raschid, and P. Valduriez. Scaling Access to Heterogeneous Data Sources

with DISCO. IEEE Transactions on Knowledge and Data Engineering, TKDE •98, 10(5):808…

823, 1998.4.2, 5.2

[240] P. W. Trinder. Comprehensions, a Query Notation for DBPLs. In 3rd International

Workshop on Database Programming Languages: Bulk Types and Persistent Data, 1991.

4.3

[241] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy transactions in multicore

in-memory databases. In ACM SIGOPS 24th Symposium on Operating Systems Principles,

SOSP •13, 2013. 7.5

[242] Unidata. NetCDF. http://www.unidata.ucar.edu/software/netcdf/ .

2.1.3

[243] P. Vassiliadis. A Survey of Extract-Transform-Load Technology. In Integrations of Data

Warehousing, Data Mining and Database Technologies - Innovative Approaches., pages

171…199. 2011.5.2

[244] P. Vassiliadis and A. Simitsis. Near Real Time ETL. In New Trends in Data Warehousing

and Data Analysis, pages 1…31. 2009.5.2

[245] T. Venetis, A. Ailamaki, T. Heinis, M. Karpathiotakis, F. Kherif, A. Mitelpunkt, and V. Vas-

salos. Towards the Identi“cation of Disease Signatures. In 8th International Conference

on Brain Informatics and Health, BIH •15, pages 145…155, 2015.1

[246] R. Verborgh and M. D. Wilde. Using OpenRe“ne. Packt Publishing, 2013. 2.5, 2.5.2

[247] J. S. Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical

Software, TOMS •85, 11(1):37…57, 1985.6.3.2

174

Bibliography

[248] D. —idlauskas, C. S. Jensen, and S. —altenis. A Comparison of the Use of Virtual Versus

Physical Snapshots for Supporting Update-intensive Workloads. In Proceedings of the

8th International Workshop on Data Management on New Hardware, DaMoN •12 , pages

1…8, 2012.7.3, 7.5.1,7.5.1

[249] P. Wadler. Comprehending Monads. volume 2, pages 461…493, 1992.2.2, 2.2

[250] S. Wanderman-Milne and N. Li. Runtime Code Generation in Cloudera Impala. IEEE

Data Engineering Bulletin, 37(1):31…37, 2014.2.3

[251] J. Wang, T. Baker, M. Balazinska, D. Halperin, B. Haynes, B. Howe, D. Hutchison, S. Jain,

R. Maas, P. Mehta, D. Moritz, B. Myers, J. Ortiz, D. Suciu, A. Whitaker, and S. Xu. The

Myria Big Data Management and Analytics System and Cloud Services. In 8th Biennial

Conference on Innovative Data Systems Research, CIDR •17, 2017.5.2

[252] J. Wang, S. Krishnan, M. J. Franklin, K. Goldberg, T. Kraska, and T. Milo. A Sample-and-

clean Framework for Fast and Accurate Query Processing on Dirty Data. In Proceedings

of the 2014 ACM SIGMOD International Conference on Management of Data, SIGMOD

•14, pages 469…480, 2014.2.5.2, 1

[253] D. Wentzlaff and A. Agarwal. Factored operating systems (fos): the case for a scalable

operating system for multicores. Operating Systems Review, 43(2):76…85, 2009.2.4.2,7.1

[254] L. Wong. Kleisli, a functional query system. Journal of Functional Programming,

10(1):19…56, 2000.2.2

[255] K. Wu, S. Ahern, E. W. Bethel, J. Chen, H. Childs, E. Cormier-Michel, C. G. R. Geddes,

J. Gu, H. Hagen, B. Hamann, W. Koegler, J. Laurent, J. Meredith, P. Messmer, E. Otoo,

V. Perevoztchikov, A. Poskanzer, Prabhat, O. Rübel, A. Shoshani, A. Sim, K. Stockinger,

G. Weber, and W.-M. Zhang. FastBit: interactively searching massive data. Journal of

Physics Conference Series, Proceedings of SciDAC, 180(1):012053, 2009.2.1.3

[256] R. Xin. Made sort-based shuf”e the default implementation, Spark Issue 3280, 2014.

6.7.3

[257] Y. Xu, Y. Du, Y. Zhang, and J. Yang. A Composite and Scalable Cache Coherence Pro-

tocol for Large Scale CMPs. In Proceedings of the 25th International Conference on

Supercomputing, ICS •11, pages 285…294, 2011.2.4.2

[258] Y. Yuan, R. Lee, and X. Zhang. The Yin and Yang of Processing Data Warehousing Queries

on GPU Devices. Proceedings of the VLDB Endowment, 6(10):817…828, 2013.2.4.1,7.4

[259] N. Yuhanna. The Forrester Wave’: Enterprise Data Virtualization, Q1 2015. 1.3.1

[260] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J. Franklin, S. Shenker,

and I. Stoica. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory

Cluster Computing. In Proceedings of the 9th USENIX Symposium on Networked Systems

Design and Implementation, NSDI •12 , 2012. 2.5.2, 5.1, 5.3, 6.2.2, 6.5, 6.6

175

Manolis (Manos) Karpathiotakis
Ph.D. in Computer Science

École Polytechnique Fédérale de Lausanne
CH-1015, Lausanne, Switzerland
manos.karpathiotakis@epfl.ch

 http://karpathiotakis.net

RESEARCH INTERESTS
data management in the presence of data variety, query processing, just-in-time code
generation, (scale-out) data analytics, hardware accelerators

ACADEMIC BACKGROUND
Ph.D. in Computer Science, 2012 – 2017 École Polytechnique Fédérale de Lausanne
Thesis: Just-in-time Analytics Over Heterogeneous Data and Hardware
Advisor: Prof. Anastasia Ailamaki

M.Sc. in Advanced Information Systems, 2008 – 2011 University of Athens, Greece
Grade: 9.34 / 10
Thesis: Design and Implementation of a Registry for the Semantic Sensor Web

B.Sc. in Informatics & Telecommunications, 2004 – 2008 University of Athens, Greece
Grade: 8.35 / 10 - Graduation Rank: 3rd / 52
Thesis: e-Government with the utilization of GIS technologies

HONORS & AWARDS

�x EPFL Teaching Assistant Award, 2016
�x IBM PhD Fellowship Award, 2015-2016
�x EPFL Computer Science Fellowship, 2012-2013
�x Awarded 3rd place in Semantic Web Challenge 2012

WORKING EXPERIENCE
09/2012 – present École Polytechnique Fédérale de Lausanne Lausanne, Switzerland

�x Doctoral Assistant & Member of the Data-Intensive Applications and Systems (DIAS)
laboratory, advised by Prof. Anastasia Ailamaki.

�x Working on analytics over heterogeneous data and hardware (http://dias.epfl.ch/vida).
06/2015 – 09/2015 IBM Almaden Research Center San Jose, California

�x Intern at the Big Data Research Group, mentored by Avrilia Floratou and Fatma Özcan.
�x Worked on enhancing the federated querying capabilities of Spark, a big data engine.

10/2013 – 06/2015 École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
�x Research Assistant in the Human Brain Project (https://www.humanbrainproject.eu).
�x Worked on the query engine of a platform used for the diagnosis of brain diseases.

06/2009 – 09/2012 University of Athens Athens, Greece
�x Implementation team coordinator, Research Assistant, Scientific Programmer in the

context of the European FP7 Programs SemsorGrid4Env (http://semsorgrid4env.eu)
and TELEIOS (http://www.earthobservatory.eu).

�x Worked on a scalable spatiotemporal RDF store (http://www.strabon.di.uoa.gr). 177

PUBLICATIONS

Conferences:

�x M. Karpathiotakis, A. Floratou, F. Ozcan, A. Ailamaki, “No Data Left Behind: Real-Time
Insights from a Complex Data Ecosystem”. In Proceedings of the ACM Symposium on Cloud
Computing (SoCC), 2017

�x S. Giannakopoulou, M. Karpathiotakis, B. Gaidioz, A. Ailamaki, “CleanM: An Optimizable
Query Language for Unified Scale-Out Data Cleaning”. In Proceedings of the Very Large
Databases Endowment (PVLDB), Vol.10(11), 2017

�x M. Olma, M. Karpathiotakis, I. Alagiannis, M. Athanassoulis, A. Ailamaki, “Slalom: Coasting
Through Raw Data via Adaptive Partitioning and Indexing”. In Proceedings of the Very
Large Databases Endowment (PVLDB), Vol.10(10), 2017

�x R. Appuswamy, M. Karpathiotakis, D. Porobic, A. Ailamaki, “The Case For Heterogeneous
HTAP”. In Conference on Innovative Data Systems Research (CIDR), 2017

�x M. Karpathiotakis, I. Alagiannis, A. Ailamaki, “Fast Queries Over Heterogeneous Data
Through Engine Customization”. In Proceedings of the Very Large Databases Endowment
(PVLDB), Vol.9(12), 2016

�x T. Venetis, A. Ailamaki, T. Heinis, M. Karpathiotakis, F. Kherif, A. Mitelpunkt, V. Vassalos,
“Towards the Identification of Disease Signatures”. In International Conference on Brain
Informatics and Health (BIH), 2015

�x M. Karpathiotakis, I. Alagiannis, T. Heinis, M. Branco, A. Ailamaki, “Just-In-Time Data
Virtualization: Lightweight Data Management with ViDa”. In Conference on Innovative
Data Systems Research (CIDR), 2015

�x M. Karpathiotakis, M. Branco, I. Alagiannis, A. Ailamaki, “Adaptive Query Processing on
RAW Data”. In Proceedings of the Very Large Databases Endowment PVLDB, Vol.7(12), 2014

�x K. Kyzirakos, M. Karpathiotakis, K. Bereta, G. Garbis, C. Nikolaou, P. Smeros, S.
Giannakopoulou, K. Dogani, M. Koubarakis, “The Spatiotemporal RDF Store Strabon”. In
International Symposium of Advances in Spatial and Temporal Databases (SSTD), 2013

�x K. Kyzirakos, M. Karpathiotakis, M. Koubarakis, “Strabon, a Semantic Geospatial DBMS”. In
International Semantic Web Conference (ISWC), 2012

�x M. Koubarakis, M. Sioutis, K. Kyzirakos, M. Karpathiotakis, C. Nikolaou, S. Vassos, G. Garbis,
K. Bereta, O. C. Dumitru, D. E. Molina, K. Molch, G. Schwarz, M. Datcu, “Building Virtual
Earth Observatories using Ontologies, Linked Geospatial Data and Knowledge Discovery
Algorithms”, In International Conference on Ontologies, DataBases, and Applications of
Semantic (ODBASE), 2012

�x A. J. G. Gray, R. Garcia-Castro, K. Kyzirakos, M. Karpathiotakis, J.-P. Calbimonte, K. Page, J.
Sadler, A. Frazer, I. Galpin, A. Fernandes, N. W. Paton, O. Corcho, M. Koubarakis, D. De
Roure, K. Martinez, A. Gomez-Perez, “A Semantically Enabled Service Architecture for
Mashups over Streaming and Stored Data”. In Extended Semantic Web Conference (ESWC),
2011

 178

Refereed Journals:
�x C. Nikolaou, K. Dogani, K. Bereta, G. Garbis, M. Karpathiotakis, K. Kyzirakos, M. Koubarakis,

“Sextant: Visualizing time-evolving liked geospatial data”. In Journal of Web Semantics 35
�x K. Kyzirakos, M. Karpathiotakis, G. Garbis, C. Nikolaou, K. Bereta, I. Papoutsis, T. Herekakis,

D. Michail, M. Koubarakis, C. Kontoes, “Wildfire monitoring using satellite images,
ontologies and linked geospatial data”. In Journal of Web Semantics 24

�x J. G. Gray, J. Sadler, O. Kit, K. Kyzirakos, M. Karpathiotakis, J.-P. Calbimonte, K. Page, R.
García-Castro, A. Frazer, I. Galpin, A. Fernandes, N.W. Paton, O. Corcho, M. Koubarakis, D.
De Roure, K. Martinez, A. Gómez-Pérez. “A Semantic Sensor Web for Environmental
Decision Support Applications”. In Sensors 11(9), 2011

Demonstrations:
�x K. Bereta, C. Nikolaou, M. Karpathiotakis, K. Kyzirakos, M. Koubarakis, “SexTant: Visualizing

Time-Evolving Linked Geospatial Data”. In International Semantic Web Conference (ISWC),
2013

�x K. Kyzirakos, M. Karpathiotakis, G. Garbis, C. Nikolaou, K. Bereta, M. Sioutis, I. Papoutsis, T.
Herekakis, D. Michail, M. Koubarakis, C. Kontoes, “Real Time Fire Monitoring Using
Semantic Web and Linked Data Technologies”. In International Semantic Web Conference
(ISWC), 2012

�x M. Koubarakis, K. Kyzirakos, M. Karpathiotakis, C. Nikolaou, S. Vassos, G. Garbis, M. Sioutis,
K. Bereta, D. Michail, C. Kontoes, I. Papoutsis, T. Herekakis, S. Manegold, M. Kersten, M.
Ivanova, H. Pirk, Y. Zhang, M. Datcu, G. Schwarz, O. C. Dumitru, D. Espinoza Molina, K.
Molch, U. Di Giammatteo, M. Sagona, S. Perelli, T. Reitz, E. Klien, R. Gregor, “TELEIOS: A
Database-Powered Virtual Earth Observatory”. In Proceedings of the Very Large Databases
Endowment (PVLDB), Vol.5(12), 2012

Workshops:

�x A. Dziedzic, M. Karpathiotakis, I. Alagiannis, R. Appuswamy, A. Ailamaki, “DBMS Data
Loading: An Analysis on Modern Hardware”. In International Workshop on Accelerating
Data Analysis and Data Management Systems Using Modern Processor and Storage
Architectures (ADMS), 2016

�x C. Kontoes, I. Keramitsoglou, I. Papoutsis, D. Michail, T. Herekakis, P. Xofis, M. Koubarakis,
K. Kyzirakos, M. Karpathiotakis, C. Nikolaou, M. Sioutis, G Garbis, S. Vassos, S. Manegold, M.
Kersten, H. Pirk, M. Ivanova, “Operational Wildfire Monitoring and Disaster Management
Support Using State-of-the-art EO and Information Technologies”, In International
Workshop on Earth Observation and Remote Sensing Applications (EORSA), 2012

�x M. Koubarakis, K. Kyzirakos, M. Karpathiotakis, C. Nikolaou, M. Sioutis, S. Vassos, D. Michail,
T. Herekakis, C. Kontoes, I. Papoutsis, “Challenges for Qualitative Spatial Reasoning in
Linked Geospatial Data”. In Benchmarks and Applications of Spatial Reasoning (BASR), 2011

�x K. Kyzirakos, M. Karpathiotakis, M. Koubarakis, “Developing Registries for the Semantic
Sensor Web using stRDF and stSPARQL”. In International Workshop on Semantic Sensor
Networks (SSN), 2010

 179

Tutorials:
�x M. Koubarakis, K. Kyzirakos, M. Karpathiotakis, “Data models, Query Languages,

Implemented Systems and Applications of Linked Geospatial Data”. In Extended Semantic
Web Conference (ESWC), 2012

�x M. Koubarakis, M. Karpathiotakis, K. Kyzirakos, C. Nikolaou, M. Sioutis, “Data Models and
Query Languages for Linked Geospatial Data”. In Reasoning Web (RW), 2012

Contests:
�x K. Kyzirakos, M. Karpathiotakis, G. Garbis, C. Nikolaou, K. Bereta, I. Papoutsis, T. Herekakis,

D. Michail, M. Koubarakis, C.Kontoes: “Wildfire Monitoring Using Satellite Images,
Ontologies, and Linked Geospatial Data”. In Semantic Web Challenge 2012, in conjunction
with International Semantic Web Conference (ISWC) 2012 (Awarded 3rd place)

CONFERENCE PRESENTATIONS & INVITED TALKS

�x “Data models, Query Languages, Implemented Systems and Applications of Linked
Geospatial Data”. At ESWC 2012

�x “Adaptive Query Processing on RAW Data”. At VLDB 2014
�x “Just-In-Time Data Virtualization: Lightweight Data Management with ViDa”. At CIDR

2015
�x “Just-In-Time Data Virtualization: Lightweight Data Management with ViDa”. At IBM,

2015
�x “Just-In-Time Data Virtualization”. At Ecocloud Annual Event 2016
�x “Fast Queries Over Heterogeneous Data Through Engine Customization”. At VLDB 2016
�x “DBMS Data Loading: An Analysis on Modern Hardware”. At ADMS 2016
�x “Just-in-time Database Engines”. At IBM, 2017
�x “Just-in-time Database Engines”. At Microsoft, 2017
�x “Just-in-time Analytics in the presence of Heterogeneity”. At Huawei, 2017

PROFESSIONAL ACTIVITIES
Reviewer: SIGMOD 2014 (External), Semantic Web Journal

PROFESSIONAL MEMBERSHIPS
�x ACM
�x IEEE

IN THE NEWS
�x https://actu.epfl.ch/news/manos-karpathiotakis-wins-ibm-fellowship-award-2/
�x http://www.ecocloud.ch/2015/03/12/manos-karpathiotakis-wins-the-ibm-fellowship-

award/

 180

TEACHING ASSISTANTSHIPS
Spring 2014-2017 Introduction to Database Systems
Fall 2016 Computer Architecture
Fall 2013 Functional Programming Principles in Scala
Fall 2013 Principles of Reactive Programming
Fall 2009-2011 Knowledge Technologies
Spring 2010 Foundation of Databases
Fall 2008,2009 Introduction to Programming
Fall 2008 Operating Systems

LANGUAGES
Greek (Native), English (Fluent), French (Beginner)

REFERENCES
Provided upon request.

181

