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Abstract: This paper presents an overview of the recent developments of modifier-adaptation
schemes for real-time optimization of uncertain processes. These schemes have the ability to
reach plant optimality upon convergence despite the presence of structural plant-model mismatch.
Modifier Adaptation has its origins in the technique of Integrated System Optimization and Parameter
Estimation, but differs in the definition of the modifiers and in the fact that no parameter estimation
is required. This paper reviews the fundamentals of Modifier Adaptation and provides an overview
of several variants and extensions. Furthermore, the paper discusses different methods for estimating
the required gradients (or modifiers) from noisy measurements. We also give an overview of the
application studies available in the literature. Finally, the paper briefly discusses open issues so as to
promote future research in this area.
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1. Introduction

This article presents a comprehensive overview of the modifier-adaptation strategy for real-time
optimization. Real-time optimization (RTO) encompasses a family of optimization methods that
incorporate process measurements in the optimization framework to drive a real process (or plant)
to optimal performance, while guaranteeing constraint satisfaction. The typical sequence of steps
for process optimization includes (i) process modeling; (ii) numerical optimization using the process
model; and (iii) application of the model-based optimal inputs to the plant. In practice, this last step
is quite hazardous—in the absence of additional safeguards—as the model-based inputs are indeed
optimal for the model, but not for the plant unless the model is a perfect representation of the plant.
This often results in suboptimal plant operation and in constraint violation, for instance when optimal
operation implies operating close to a constraint and the model under- or overestimates the value of
that particular constraint.

RTO has emerged over the past forty years to overcome the difficulties associated with plant-model
mismatch. Uncertainty can have three main sources, namely, (i) parametric uncertainty when
the values of the model parameters do not correspond to the reality of the process at hand;
(ii) structural plant-model mismatch when the structure of the model is not perfect, for example
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in the case of unknown phenomena or neglected dynamics; and (iii) process disturbances. Of course
these three sources are not mutually exclusive.

RTO incorporates process measurements in the optimization framework to combat the detrimental
effect of uncertainty. RTO methods can be classified depending on how the available measurements
are used. There are basically three possibilities, namely, at the level of the process model, at the level of
the cost and constraint functions, and at the level of the inputs [1].

1. The most intuitive strategy is to use process measurements to improve the model. This is
the main idea behind the “two-step” approach [2–5]. Here, deviations between predicted and
measured outputs are used to update the model parameters, and new inputs are computed on
the basis of the updated model. The whole procedure is repeated until convergence is reached,
whereby it is hoped that the computed model-based optimal inputs will be optimal for the
plant. The requirements for this to happen are referred to as the model-adequacy conditions [6].
Unfortunately, the model-adequacy conditions are difficult to both achieve and verify.

2. This difficulty of converging to the plant optimum motivated the development of a modified
two-step approach, referred to as Integrated System Optimization and Parameter Estimation
(ISOPE) [7–10]. ISOPE requires both output measurements and estimates of the gradients of the
plant outputs with respect to the inputs. These gradients allow computing the plant cost gradient
that is used to modify the cost function of the optimization problem. The use of gradients is
justified by the nature of the necessary conditions of optimality (NCO) that include both constraints
and sensitivity conditions [11]. By incorporating estimates of the plant gradients in the model,
the goal is to enforce NCO matching between the model and the plant, thereby making the
modified model a likely candidate to solve the plant optimization problem. With ISOPE, process
measurements are incorporated at two levels, namely, the model parameters are updated on the
basis of output measurements, and the cost function is modified by the addition of an input-affine
term that is based on estimated plant gradients.

Note that RTO can rely on a fixed process model if measurement-based adaptation of the cost and
constraint functions is implemented. For instance, this is the philosophy of Constraint Adaptation
(CA), wherein the measured plant constraints are used to shift the predicted constraints in the
model-based optimization problem, without any modification of the model parameters [12,13].
This is also the main idea in Modifier Adaptation (MA) that uses measurements of the plant
constraints and estimates of plant gradients to modify the cost and constraint functions in the
model-based optimization problem without updating the model parameters [14,15]. Input-affine
corrections allow matching the first-order NCO upon convergence. The advantage of MA, which
is the focus of this article, lies in its proven ability to converge to the plant optimum despite
structural plant-model mismatch.

3. Finally, the third way of incorporating process measurements in the optimization framework
consists in directly updating the inputs in a control-inspired manner. There are various ways of
doing this. With Extremum-Seeking Control (ESC), dither signals are added to the inputs such
that an estimate of the plant cost gradient is obtained online using output measurements [16].
In the unconstrained case, gradient control is directly applied to drive the plant cost gradient
to zero. Similarly, NCO tracking uses output measurements to estimate the plant NCO, which
are then enforced via dedicated control algorithms [17,18]. Furthermore, Neighboring-Extremal
Control (NEC) combines a variational analysis of the model at hand with output measurements to
enforce the plant NCO [19]. Finally, Self-Optimizing Control (SOC) uses the sensitivity between
the uncertain model parameters and the measured outputs to generate linear combinations of the
outputs that are locally insensitive to the model parameters, and which can thus be kept constant
at their nominal values to reject the effect of uncertainty [20].
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The choice of a specific RTO method will depend on the situation at hand. However, it is highly
desirable for RTO approaches to have certain properties such as (i) guaranteed plant optimality upon
convergence; (ii) fast convergence; and (iii) feasible-side convergence. MA satisfies the first requirement
since the model-adequacy conditions for MA are much easier to satisfy than those of the two-step
approach. These conditions are enforced quite easily if convex model approximations are used instead
of the model at hand as shown in [21]. The rate of convergence and feasible-side convergence are also
critical requirements, which however are highly case dependent. Note that these two requirements
often oppose each other since fast convergence calls for large steps, while feasible-side convergence
often requires small and cautious steps. It is the intrinsic capability of MA to converge to the plant
optimum despite structural plant-model mismatch that makes it a very valuable tool for optimizing
the operation of chemical processes in the absence of accurate models.

This overview article is structured as follows. Section 2 formulates the static real-time optimization
problem. Section 3 briefly revisits ISOPE, while Section 4 discusses MA, its properties and several MA
variants. Implementation aspects are investigated in Section 5, while Section 6 provides an overview
of MA case studies. Finally, Section 7 concludes the paper with a discussion of open issues.

2. Problem Formulation

2.1. Steady-State Optimization Problem

The optimization of process operation consists in minimizing operating costs, or maximizing
economic profit, in the presence of constraints. Mathematically, this problem can be formulated
as follows:

u?
p = arg min

u
Φp(u) := φ(u, yp(u)) (1)

s.t. Gp,i(u) := gi(u, yp(u)) ≤ 0, i = 1, . . . , ng,

where u ∈ IRnu denotes the decision (or input) variables; yp ∈ IRny are the measured output variables;
φ : IRnu × IRny → IR is the cost function to be minimized; and gi : IRnu × IRny → IR, i = 1, . . . , ng, is the
set of inequality constraints on the input and output variables.

This formulation assumes that φ and gi are known functions of u and yp, i.e., they can be
directly evaluated from the knowledge of u and the measurement of yp. However, in any practical
application, the steady-state input-output mapping of the plant yp(u) is typically unknown, and only
an approximate nonlinear steady-state model is available:

F(x, u) = 0, (2a)

y = H(x, u), (2b)

where x ∈ IRnx are the state variables and y ∈ IRny the output variables predicted by the model.
For given u, the solution to (2a) can be written as

x = ξ(u), (3)

where ξ is an operator expressing the steady-state mapping between u and x. The input-output
mapping predicted by the model can be expressed as

y(u) := H(ξ(u), u). (4)
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Using this notation, the model-based optimization problem becomes

u? = arg min
u

Φ(u) := φ(u, y(u)) (5)

s.t. Gi(u) := gi(u, y(u)) ≤ 0, i = 1, . . . , ng.

However, in the presence of plant-model mismatch, the model solution u? does not generally
coincide with the plant optimum u?

p.

2.2. Necessary Conditions of Optimality

Local minima of Problem (5) can be characterized via the NCO [11]. To this end, let us denote the
set of active constraints at some point u by

A(u) =
{

i ∈ {1, . . . , ng} |Gi(u) = 0
}

. (6)

The Linear Independence Constraint Qualification (LICQ) requires that the gradients of the active
constraints, ∂Gi

∂u (u) for i ∈ A(u), be linearly independent. Provided that a constraint qualification such
as LICQ holds at the solution u? and the functions Φ and Gi are differentiable at u?, there exist unique
Lagrange multipliers µ? ∈ IRng such that the following Karush-Kuhn-Tucker (KKT) conditions hold at
u? [11]

G ≤ 0, µTG = 0, µ ≥ 0, (7)

∂L
∂u

=
∂Φ
∂u

+ µT ∂G
∂u

= 0,

where G ∈ IRng is the vector of constraint functions Gi, and L(u, µ) := Φ(u) + µTG(u) is the
Lagrangian function. A solution u? satisfying these conditions is called a KKT point.

The vector of active constraints at u? is denoted by Ga(u?) ∈ IRna
g , where na

g is the cardinality of
A(u?). Assuming that LICQ holds at u?, one can write:

∂Ga

∂u
(u?)Z = 0,

where Z ∈ IRnu×(nu−na
g) is a null-space matrix. The reduced Hessian of the Lagrangian on this null

space, ∇2
rL(u?) ∈ IR(nu−na

g)×(nu−na
g), is given by [22]

∇2
rL(u?) := ZT

[
∂2L
∂u2 (u

?, µ?)

]
Z.

In addition to the first-order KKT conditions, a second-order necessary condition for a local
minimum is the requirement that∇2

rL(u?) be positive semi-definite at u?. On the other hand,∇2
rL(u?)

being positive definite is sufficient for a strict local minimum [22].

3. ISOPE: Two Decades of New Ideas

In response to the inability of the classical two-step approach to enforce plant optimality, a
modified two-step approach was proposed by Roberts [8] in 1979. The approach became known under
the acronym ISOPE, which stands for Integrated System Optimization and Parameter Estimation [9,10].
Since then, several extensions and variants of ISOPE have been proposed, with the bulk of the
research taking place between 1980 and 2002. ISOPE algorithms combine the use of a parameter
estimation problem and the definition of a modified optimization problem in such a way that, upon
convergence, the KKT conditions of the plant are enforced. The key idea in ISOPE is to incorporate plant
gradient information into a gradient correction term that is added to the cost function. Throughout
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the ISOPE literature, an important distinction is made between optimization problems that include
process-dependent constraints of the form g(u, y) ≤ 0 and problems that do not include them [7,9].
Process-dependent constraints depend on the outputs y, and not only on the inputs u. In this section,
we briefly describe the ISOPE formulations that we consider to be most relevant for contextualizing
the MA schemes that will be presented in Section 4. Since ISOPE includes a parameter estimation
problem, the steady-state outputs predicted by the model will be written in this section as y(u, θ) in
order to emphasize their dependency on the (adjustable) model parameters θ ∈ IRnθ .

3.1. ISOPE Algorithm

The original ISOPE algorithm does not consider process-dependent constraints in the optimization
problem, but only input bounds. At the kth RTO iteration, with the inputs uk and the plant
outputs yp(uk), a parameter estimation problem is solved, yielding the updated parameter values θk.
This problem is solved under the output-matching condition

y(uk, θk) = yp(uk). (8)

Then, assuming that the output plant gradient
∂yp
∂u (uk) is available, the ISOPE modifier λk ∈ IRnu

for the gradient of the cost function is calculated as

λT
k =

∂φ

∂y
(
uk, y(uk, θk)

)
[

∂yp

∂u
(uk)−

∂y
∂u

(uk, θk)

]
. (9)

Based on the parameter estimates θk and the updated modifier λk, the next optimal RTO inputs
are computed by solving the following modified optimization problem:

u?
k+1 = arg min

u
φ(u, y(u, θk)) + λT

k u (10)

s.t. uL ≤ u ≤ uU.

The new operating point is determined by filtering the inputs using a first-order exponential filter:

uk+1 = uk +K(u?
k+1 − uk). (11)

The output-matching condition (8) is required in order for the gradient of the modified cost
function to match the plant gradient at uk. This condition represents a model-qualification condition
that is present throughout the ISOPE literature [7,10,23,24].

3.2. Dealing with Process-Dependent Constraints

In order to deal with process-dependent constraints, Brdyś et al. [25] proposed to use a modifier
for the gradient of the Lagrangian function. The parameter estimation problem is solved under
the output-matching condition (8) and the updated parameters are used in the following modified
optimization problem:

u?
k+1 = arg min

u
φ(u, y(u, θk)) + λT

k u (12)

s.t. gi(u, y(u, θk)) ≤ 0, i = 1, . . . , ng,

where the gradient modifier is computed as follows:
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λT
k =

[
∂φ

∂y
(
uk, y(uk, θk)

)
+ µT

k
∂g
∂y
(
uk, y(uk, θk)

)]
[

∂yp

∂u
(uk)−

∂y
∂u

(uk, θk)

]
. (13)

The next inputs applied to the plant are obtained by applying the first-order filter (11), and the
next values of the Lagrange multipliers to be used in (13) are adjusted as

µi,k+1 = max{0, µi,k + bi(µ
?
i,k+1 − µi,k)}, i = 1, . . . , ng, (14)

where µ?
k+1 are the optimal values of the Lagrange multipliers of Problem (12) [7]. This particular ISOPE

scheme is guaranteed to reach a KKT point of the plant upon convergence, and the process-dependent
constraints are guaranteed to be respected upon convergence. However, the constraints might be
violated during the RTO iterations leading to convergence, which calls for the inclusion of conservative
constraint backoffs [7].

3.3. ISOPE with Model Shift

Later on, Tatjewski [26] argued that the output-matching condition (8) can be satisfied without
the need to adjust the model parameters θ. This can be done by adding the bias correction term ak to
the outputs predicted by the model,

ak := yp(uk)− y(uk, θ). (15)

This way, the ISOPE Problem (10) becomes:

u?
k+1 ∈ arg min

u
φ(u, y(u, θ) + ak) + λT

k u (16)

s.t. uL ≤ u ≤ uU,

with

λT
k :=

∂φ

∂y
(uk, y(uk, θ) + ak)

[
∂yp

∂u
(uk)−

∂y
∂u

(uk, θ)

]
. (17)

This approach can also be applied to the ISOPE scheme (12) and (13) and to all ISOPE algorithms
that require meeting Condition (8). As noted in [26], the name ISOPE is no longer adequate since,
in this variant, there is no need for estimating the model parameters. The name Modifier Adaptation
becomes more appropriate. As will be seen in the next section, MA schemes re-interpret the role of the
modifiers and the way they are defined.

4. Modifier Adaptation: Enforcing Plant Optimality

The idea behind MA is to introduce correction terms for the cost and constraint functions such
that, upon convergence, the modified model-based optimization problem matches the plant NCO.
In contrast to two-step RTO schemes such as the classical two-step approach and ISOPE, MA schemes
do not rely on estimating the parameters of a first-principles model by solving a parameter estimation
problem. Instead, the correction terms introduce a new parameterization that is specially tailored
to matching the plant NCO. This parameterization consists of modifiers that are updated based on
measurements collected at the successive RTO iterates.
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4.1. Basic MA Scheme

4.1.1. Modification of Cost and Constraint Functions

In basic MA, first-order correction terms are added to the cost and constraint functions of the
optimization problem [14,15]. At the kth iteration with the inputs uk, the modified cost and constraint
functions are constructed as follows:

Φm,k(u) := Φ(u) + εΦ
k + (λΦ

k )
T(u− uk) (18)

Gm,i,k(u) := Gi(u) + ε
Gi
k + (λGi

k )T(u− uk) ≤ 0, i = 1, . . . , ng, (19)

with the modifiers εΦ
k ∈ IR, ε

Gi
k ∈ IR, λΦ

k ∈ IRnu , and λ
Gi
k ∈ IRnu given by

εΦ
k = Φp(uk)−Φ(uk), (20a)

ε
Gi
k = Gp,i(uk)− Gi(uk), i = 1, . . . , ng, (20b)

(λΦ
k )

T =
∂Φp

∂u
(uk)−

∂Φ
∂u

(uk), (20c)

(λGi
k )T =

∂Gp,i

∂u
(uk)−

∂Gi
∂u

(uk), i = 1, . . . , ng. (20d)

The zeroth-order modifiers εΦ
k and ε

Gi
k correspond to bias terms representing the differences

between the plant values and the predicted values at uk, whereas the first-order modifiers λΦ
k and λ

Gi
k

represent the differences between the plant gradients and the gradients predicted by the model at uk.

The plant gradients ∂Φp
∂u (uk) and

∂Gp,i
∂u (uk) are assumed to be available at uk. A graphical interpretation

of the first-order correction for the constraint Gi is depicted in Figure 1. Note that, if the cost and/or
constraints are perfectly known functions of the inputs u, then the corresponding modifiers are equal
to zero, and no model correction is necessary. For example, the upper and lower bounds on the input
variables are constraints that are perfectly known, and thus do not require modification.
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At the kth RTO iteration, the next optimal inputs u?
k+1 are computed by solving the following

modified optimization problem:

u?
k+1 = arg min

u
Φm,k(u) := Φ(u) + (λΦ

k )
Tu (21a)

s.t. Gm,i,k(u) := Gi(u) + ε
Gi
k + (λGi

k )T(u− uk) ≤ 0, i = 1, . . . , ng. (21b)
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Note that the addition of the constant term εΦ
k − (λΦ

k )
Tuk to the cost function does not affect the

solution u?
k+1. Hence, the cost modification is often defined by including only the linear term in u, that

is, Φm,k(u) := Φ(u) + (λΦ
k )

Tu.
The optimal inputs can then be applied directly to the plant:

uk+1 = u?
k+1. (22)

However, such an adaptation strategy may result in excessive correction and, in addition,
be sensitive to process noise. Both phenomena can compromise the convergence of the algorithm.
Hence, one usually relies on first-order filters that are applied to either the modifiers or the inputs.
In the former case, one updates the modifiers using the following first-order filter equations [15]:

εG
k = (Ing −Kε)εG

k−1 + Kε
(
Gp(uk)−G(uk)

)
, (23a)

λΦ
k = (Inu −KΦ)λΦ

k−1 + KΦ
(

∂Φp

∂u
(uk)−

∂Φ
∂u

(uk)

)T
, (23b)

λ
Gi
k = (Inu −KGi )λGi

k−1 + KGi

(
∂Gp,i

∂u
(uk)−

∂Gi
∂u

(uk)

)T
, i = 1, . . . , ng, (23c)

where the filter matrices Kε, KΦ, and KGi are typically selected as diagonal matrices with
eigenvalues in the interval (0, 1]. In the latter case, one filters the optimal RTO inputs u?

k+1 with
K = diag(k1, . . . , knu), ki ∈ (0, 1]:

uk+1 = uk + K(u?
k+1 − uk). (24)

4.1.2. KKT Matching Upon Convergence

The appeal of MA lies in its ability to reach a KKT point of the plant upon convergence, as made
explicit in the following theorem.

Theorem 1 (MA convergence⇒ KKT matching [15]). Consider MA with filters on either the modifiers or
the inputs. Let u∞ = lim

k→∞
uk be a fixed point of the iterative scheme and a KKT point of the modified optimization

Problem (21). Then, u∞ is also a KKT point of the plant Problem (1).

4.1.3. Model Adequacy

The question of whether a model is adequate for use in an RTO scheme was addressed by Forbes
and Marlin [27], who proposed the following model-adequacy criterion.

Definition 1 (Model-adequacy criterion [27]). A process model is said to be adequate for use in an RTO
scheme if it is capable of producing a fixed point that is a local minimum for the RTO problem at the plant
optimum u?

p.

In other words, u?
p must be a local minimum when the RTO algorithm is applied at u?

p.
The plant optimum u?

p satisfies the first- and second-order NCO of the plant optimization Problem (1).
The adequacy criterion requires that u?

p must also satisfy the first- and second-order NCO for the
modified optimization Problem (21), with the modifiers (20) evaluated at u?

p. As MA matches the
first-order KKT elements of the plant, only the second-order NCO remain to be satisfied. That is, the
reduced Hessian of the Lagrangian must be positive semi-definite at u?

p. The following proposition
characterizes model adequacy based on second-order conditions. Again, it applies to MA with filters
on either the modifiers or the inputs.
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Proposition 1 (Model-adequacy conditions for MA [15]). Let u?
p be a regular point for the constraints and

the unique plant optimum. Let ∇2
rL(u?

p) denote the reduced Hessian of the Lagrangian of Problem (21) at u?
p.

Then, the following statements hold:

i If ∇2
rL(u?

p) is positive definite, then the process model is adequate for use in the MA scheme.
ii If ∇2

rL(u?
p) is not positive semi-definite, then the process model is inadequate for use in the MA scheme.

iii If ∇2
rL(u?

p) is positive semi-definite and singular, then the second-order conditions are not conclusive with
respect to model adequacy.

Example 1 (Model adequacy). Consider the problem min
u

Φp(u) = u2
1 + u2

2, for which u?
p = [0, 0]T.

The models Φ1(u) = u2
1 + u4

2 and Φ2(u) = u2
1 − u4

2 both have their gradients equal to zero at u?
p, and their

Hessian matrices both have eigenvalues {2, 0} at u?
p, that is, they are both positive semi-definite and singular.

However, Φ1 is adequate since u?
p is a minimizer of Φ1, while Φ2 is inadequate since u?

p is a saddle point of Φ2.

4.1.4. Similarity with ISOPE

The key feature of MA schemes is that updating the parameters of a first-principles model is not
required to match the plant NCO upon convergence. In addition, compared to ISOPE, the gradient
modifiers have been redefined. The cost gradient modifier (20c) can be expressed in terms of the
gradients of the output variables as follows:

(λΦ
k )

T =
∂Φp

∂u
(uk)−

∂Φ
∂u

(uk), (25)

=
∂φ

∂u
(uk, yp(uk)) +

∂φ

∂y
(uk, yp(uk))

∂yp

∂u
(uk)

− ∂φ

∂u
(uk, y(uk, θ))− ∂φ

∂y
(uk, y(uk, θ))

∂y
∂u

(uk, θ).

Notice that, if Condition (8) is satisfied, the gradient modifier λΦ
k in (25) reduces to the ISOPE

modifier (9). In fact, Condition (8) is required in ISOPE in order for the gradient modifier (9) to
represent the difference between the plant and model gradients. Put differently, output matching is a
prerequisite for the gradient of the modified cost function to match the plant gradient. This requirement
can be removed by directly defining the gradient modifiers as the differences between the plant and
model gradients, as given in (25).

4.2. Alternative Modifications

4.2.1. Modification of Output Variables

Instead of modifying the cost and constraint functions as in (18) and (19) , it is also possible to
place the first-order correction terms directly on the output variables [15]. At the operating point uk,
the modified outputs read:

ym,k(u) := y(u) + ε
y
k + (λ

y
k )

T(u− uk), (26)

with the modifiers ε
y
k ∈ IRny and λ

y
k ∈ IRnu×ny given by:

ε
y
k = yp(uk)− y(uk), (27a)

(λ
y
k )

T =
∂yp

∂u
(uk)−

∂y
∂u

(uk). (27b)
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In this MA variant, the next RTO inputs are computed by solving

u?
k+1 = arg min

u
φ(u, ym,k(u)) (28)

s.t. ym,k(u) = y(u) + ε
y
k + (λ

y
k )

T(u− uk)

gi(u, ym,k(u)) ≤ 0, i = 1, . . . , ng.

Interestingly, the output bias ε
y
k is the same as the model shift term (15) introduced by

Tatjewski [26] in the context of ISOPE. The MA scheme (28) also reaches a KKT point of the plant upon
convergence and, again, one can choose to place a filter on either the modifiers or the inputs [15].

4.2.2. Modification of Lagrangian Gradients

Section 3.2 introduced the algorithmic approach used in ISOPE for dealing with
process-dependent constraints, which consists in correcting the gradient of the Lagrangian function.
An equivalent approach can be implemented in the context of MA by defining the modified
optimization problem as follows:

u?
k+1 = arg min

u
Φm,k(u) := Φ(u) + (λLk )

Tu (29a)

s.t. Gm,i,k(u) := Gi(u) + ε
Gi
k ≤ 0, i = 1, . . . , ng, (29b)

where ε
Gi
k are the zeroth-order constraint modifiers, and the Lagrangian gradient modifier λLk represents

the difference between the Lagrangian gradients of the plant and the model,

(λLk )
T =

∂Lp

∂u
(uk, µk)−

∂L
∂u

(uk, µk). (30)

This approach has the advantage of requiring a single gradient modifier λLk , but the disadvantage
that the modified cost and constraint functions do not provide first-order approximations to the plant
cost and constraint functions at each RTO iteration. This increased plant-model mismatch may result
in slower convergence to the plant optimum and larger constraint violations prior to convergence.

4.2.3. Directional MA

MA schemes require the plant gradients to be estimated at each RTO iteration. Gradient estimation
is experimentally expensive and represents the main bottleneck for MA implementation (see Section 5
for an overview of gradient estimation methods). The number of experiments required to estimate
the plant gradients increases linearly with the number of inputs, which tends to make MA
intractable for processes with many inputs. Directional Modifier Adaptation (D-MA) overcomes
this limitation by estimating the gradients only in nr < nu privileged input directions [28,29].
This way, convergence can be accelerated since fewer experiments are required for gradient estimation
at each RTO iteration. D-MA defines a (nu × nr)-dimensional matrix of privileged directions,
Ur = [δu1 . . . δur], the columns of which contain the nr privileged directions in the input space.
Note that these directions are typically selected as orthonormal vectors that span a linear subspace of
dimension nr.

At the operating point uk, the directional derivatives of the plant cost and constraints that need to
be estimated are defined as follows:

∇Ur jp :=
∂jp(uk + Urr)

∂r

∣∣∣∣
r=0

, jp ∈ {Φp, Gp,1, Gp,2, . . . , Gp,ng}, (31)
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where r ∈ IRnr . Approximations of the full plant gradients are given by

∇̂Φk =
∂Φ
∂u

(uk)(Inu −UrU+
r ) +∇Ur ΦpU+

r , (32)

∇̂Gi,k =
∂Gi
∂u

(uk)(Inu −UrU+
r ) +∇Ur Gp,iU+

r , i = 1, . . . , ng, (33)

where the superscript (·)+ denotes the Moore-Penrose pseudo-inverse, and Inu is the nu-dimensional
identity matrix. In D-MA, the gradients of the plant cost and constraints used in (20c) and (20d) are
replaced by the estimates (32) and (33). Hence, the gradients of the modified cost and constraint
functions match the estimated gradients at uk, that is, ∂Φm

∂u (uk) = ∇̂Φk and ∂Gm,i
∂u (uk) = ∇̂Gi,k.

Figure 2 illustrates the fact that the gradient of the modified cost function ∂Φm
∂u (uk) and the plant

cost gradient ∂Φp
∂u (uk) share the same projected gradient in the privileged direction δu, while ∂Φm

∂u (uk)

matches the projection of the model gradient ∂Φ
∂u (uk) in the direction orthogonal to δu.
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In general, D-MA does not converge to a KKT point of the plant. However, upon convergence,
D-MA reaches a point for which the cost function cannot be improved in any of the privileged directions.
This is formally stated in the following theorem.

Theorem 2 (Plant optimality in privileged directions [29]). Consider D-MA with the gradient
estimates (32) and (33) in the absence of measurement noise and with perfect estimates of the
directional derivatives (31). Let u∞ = lim

k→∞
uk be a fixed point of that scheme and a KKT point

of the modified optimization Problem (21). Then, u∞ is optimal for the plant in the nr privileged
directions.

The major advantage of D-MA is that, if the selected number of privileged directions is much
lower than the number of inputs, the task of gradient estimation is greatly simplified. An important
issue is the selection of the privileged directions.

Remark 1 (Choice of privileged directions). Costello et al. [29] addressed the selection of privileged
input directions for the case of parametric plant-model mismatch. They proposed to perform a
sensitivity analysis of the gradient of the Lagrangian function with respect to the uncertain model
parameters θ. The underlying idea is that, if the likely parameter variations affect the Lagrangian
gradient significantly only in a few input directions, it will be sufficient to estimate the plant gradients
in these directions. The matrix of privileged directions Ur is obtained by performing singular value
decomposition of the normalized (by means of the expected largest variations of the uncertain model
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In general, D-MA does not converge to a KKT point of the plant. However, upon convergence,
D-MA reaches a point for which the cost function cannot be improved in any of the privileged
directions. This is formally stated in the following theorem.

Theorem 2 (Plant optimality in privileged directions [29]). Consider D-MA with the gradient
estimates (32) and (33) in the absence of measurement noise and with perfect estimates of the directional
derivatives (31). Let u∞ = lim

k→∞
uk be a fixed point of that scheme and a KKT point of the modified optimization

Problem (21). Then, u∞ is optimal for the plant in the nr privileged directions.

The major advantage of D-MA is that, if the selected number of privileged directions is much
lower than the number of inputs, the task of gradient estimation is greatly simplified. An important
issue is the selection of the privileged directions.

Remark 1 (Choice of privileged directions). Costello et al. [29] addressed the selection of privileged input
directions for the case of parametric plant-model mismatch. They proposed to perform a sensitivity analysis of the
gradient of the Lagrangian function with respect to the uncertain model parameters θ. The underlying idea is that,
if the likely parameter variations affect the Lagrangian gradient significantly only in a few input directions, it will
be sufficient to estimate the plant gradients in these directions. The matrix of privileged directions Ur is obtained
by performing singular value decomposition of the normalized (by means of the expected largest variations of
the uncertain model parameters θ) sensitivity matrix δL2

δuδθ evaluated for the optimal inputs corresponding to
the nominal parameter values. Only the directions in which the gradient of the Lagrangian is significantly



Processes 2016, 4, 55 12 of 35

affected by parameter variations are retained. Other choices of Ur are currently under research. For example, it is
proposed in [30] to adapt Ur at each RTO iteration and considering large parametric perturbations.

D-MA is particularly well suited for the run-to-run optimization of repetitive dynamical systems,
for which a piecewise-polynomial parameterization of the input profiles typically results in a large
number of RTO inputs, thus making the estimation of full gradients prohibitive. For instance,
Costello et al. [29] applied D-MA very successfully to a flying power-generating kite.

4.2.4. Second-Order MA

Faulwasser and Bonvin [31] proposed the use of second-order modifiers in the context of MA.
The use of second-order correction terms allows assessing whether the scheme has converged to a
point satisfying the plant second-order optimality conditions. Note that, already in 1989, Golden and
Ydstie [32] investigated second-order modification terms for single-input problems.

Consider the second-order modifiers

Θ
j
k :=

∂2 jp

∂u2 (uk)−
∂2 j
∂u2 (uk), j ∈ {Φ, G1, G2, . . . , Gng}, (34)

with Θ
j
k ∈ IRnu×nu . These modifiers describe the difference in the Hessians of the plant and model

costs (j = Φ) and constraints (j = Gi), respectively. Second-order MA reads:

u?
k+1 = arg min

u
Φ(u) + εΦ

k + (λΦ
k )

T(u− uk) + 1
2 (u− uk)

TΘΦ
k (u− uk)︸ ︷︷ ︸

=: Φm,k(u)

(35a)

s.t. Gi(u) + ε
Gi
k + (λGi

k )T(u− uk) +
1
2 (u− uk)

TΘ
Gi
k (u− uk)︸ ︷︷ ︸

=: Gm,i,k(u)

≤ 0, (35b)

i = 1, . . . , ng,

u ∈ C, (35c)

with

uk+1 = uk + K(u?
k+1 − uk). (36)

Note that, in contrast to the first-order formulation (21), we explicitly add the additional constraint
u ∈ C in (35c), where C denotes a known nonempty convex subset of IRnu . This additional constraint,
which is not subject to plant-model mismatch, will simplify the convergence analysis.

Next, we present an extension to Theorem 1 that shows the potential advantages of second-order
MA. To this end, we make the following assumptions:

A1 Numerical feasibility: For all k ∈ N, Problem (35) is feasible and has a unique minimizer.
A2 Plant and model functions: The plant and model cost and constraint functions are all twice

continuously differentiable on C ⊂ IRnu .

Proposition 2 (Properties of second-order MA [31]). Assume that the second-order MA scheme (35 and 36)
has converged with u∞ = lim

k→∞
uk. Let Assumptions A1 and A2 hold, and let a linear independence constraint

qualification hold at u∞. Then, the following properties hold:

i u∞ satisfies the KKT conditions of the plant, and
ii the cost and constraint gradients and Hessians of the modified Problem (35) match those of the plant at u∞.
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In addition, if (35) has a strict local minimum at u∞ such that, for all d ∈ Rnd ,

dT∇2
rL(u∞)d > 0, (37)

then

iii Φp(u∞) is a strict local minimum of Φp(u).

Proposition 2 shows that, if second-order information can be reconstructed from measurements,
then the RTO scheme (35 and 36) allows assessing, upon convergence, that a local minimum of the
modified Problem (35) is also a local minimum of the plant.

Remark 2 (Hessian approximation). So far, we have tacitly assumed that the plant gradients and Hessians are
known. However, these quantities are difficult to estimate accurately in practice. Various approaches to compute
plant gradients from measurements will be described in Section 5.1. To obtain Hessian estimates, one can rely
on well-known approximation formulas such as BFGS or SR1 update rules [33]. While BFGS-approximated
Hessians can be enforced to be positive definite, the convergence of the SR1 Hessian estimates to the true
Hessian can be guaranteed under certain conditions ([33] Chap. 6). However, the issue of computing Hessian
approximations that can work in a RTO context (with a low number of data points and a fair amount of noise) is
not solved yet!

Remark 3 (From MA to RTO based on surrogate models). It is fair to ask whether second-order
corrections allow implementing model-free RTO schemes. Upon considering the trivial models Φ(u) = 0
and Gi(u) = 0, i = 1, . . . , ng, that is, in the case of no model, the modifiers are

ε
j
k = jp(uk), (λ

j
k)

T =
∂jp

∂u
(uk), Θ

j
k =

∂2 jp

∂u2 (uk), j ∈ {Φ, G1, G2, . . . , Gng},

and the second-order MA Problem (35) reduces to a Quadratically Constrained Quadratic Program:

u?
k+1 = arg min

u
Φp(uk) +

∂Φp

∂u
(uk)(u− uk) +

1
2 (u− uk)

T ∂2Φp

∂u2 (uk)(u− uk)

s.t. Gp,i(uk) +
∂Gp,i

∂u
(uk)(u− uk) +

1
2 (u− uk)

T ∂2Gp,i

∂u2 (uk)(u− uk) ≤ 0, (38)

i = 1, . . . , ng,

u ∈ C,

where C is determined by lower and upper bounds on the input variables, C = {u ∈ IRnu : uL ≤ u ≤ uU}.
Note that the results of Proposition 2 also hold for RTO Problem(38). Alternatively, the same information can be
used to construct the QP approximations used in Successive Quadratic Programming (SQP) approaches for
solving NLP problems [33]. The SQP approximation at the kth RTO iteration is given by,

u?
k+1 = arg min

u
Φp(uk) +

∂Φp

∂u
(uk)(u− uk) +

1
2 (u− uk)

T ∂2Lp

∂u2 (uk)(u− uk)

s.t. Gp,i(uk) +
∂Gp,i

∂u
(uk)(u− uk) ≤ 0, i = 1, . . . , ng, (39)

u ∈ C,

where the constraints are linearized at uk, and the Hessian of the Lagrangian function is used in the quadratic
term of the cost function. Properties (i) and (iii) of Proposition 2 also hold for RTO Problem (39), and the
Hessian of the Lagrangian function of Problem (39) matches the Hessian of the plant upon convergence.
As the approximations of the cost and constraints are of local nature, a trust-region constraint may be
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added [33,34]. Obviously, such an approach leads to a SQP-like RTO scheme based on a surrogate model.
A thorough investigation of RTO based on surrogate models is beyond the scope of this paper. Instead, we refer
the reader to the recent progress made in this direction [35–38].

4.3. Convergence Conditions

Arguably, the biggest advantage of the MA schemes presented so far lies in the fact that any
fixed point turns out to be a KKT point of the plant according to Theorem 1. Yet, Theorem 1 is
somewhat limited in value, as it indicates properties upon convergence rather than stating sufficient
conditions for convergence. Note that properties-upon-convergence results appear frequently in
numerical optimization and nonlinear programming, see for example methods employing augmented
Lagrangians with quadratic penalty on constraint violation ([39] Prop. 4.2.1). Hence, we now turn
toward sufficient convergence conditions.

4.3.1. RTO Considered as Fixed-Point Iterations

In principle, one may regard any RTO scheme as a discrete-time dynamical system. In the case
of MA, it is evident that the values of the modifiers at the kth RTO iteration implicitly determine the
values of the inputs at iteration k + 1.

We consider here the second-order MA scheme with input filtering from the previous section.
Let vec(A) ∈ Rn(n+1)/2 be the vectorization of the symmetric matrix A ∈ Rn×n. Using this short hand
notation, we collect all modifiers in the vector Λ ∈ RnΛ , nΛ = (ng + 1)

(
nu +

nu(nu+1)
2

)
+ ng + 1,

Λk :=
(

εΦ
k , (λΦ

k )
T, vec(ΘΦ

k ), εG1
k , (λG1

k )T, vec(ΘG1
k ), . . . , ε

Gng
k , (λ

Gng
k )T, vec(Θ

Gng
k )

)T
. (40)

As the minimizer in the optimization problem (35) depends on Λk, we can formally state
Algorithm (35 and 36) as

uk+1 = (1− α)uk + αu?(uk, Λk), (41)

whereby u?(uk, Λk) is the minimizer of (35), and, for sake of simplicity, the filter is chosen as the scalar
α ∈ (0, 1). Clearly, the above shorthand notation can be applied to any MA scheme with input filtering.
Before stating the result, we recall the notion of a nonexpansive map.

Definition 2 (Nonexpansive map). The map Γ : C → C is called nonexpansive, if

∀x, y ∈ C : ‖Γ(x)− Γ(y)‖ ≤ ‖x− y‖.

Theorem 3 (Convergence of MA [31]). Consider the RTO scheme (41). Let Assumptions A1 and A2 hold
and let α ∈ (0, 1). If the map u? : u 7→ u?(u, Λ(u)) is nonexpansive in the sense of Definition 2 and has at
least one fixed point on C, then the sequence (uk)k∈N of RTO iterates defined by (41) converges to a fixed point,
that is,

lim
k→∞
‖u?(uk, Λ(uk))− uk‖ = 0.

Remark 4 (Reasons for filtering). Filtering can be understood as a way to increase the domain of attraction of
MA schemes. This comes in addition to dealing with noisy measurements and the fact that large correction steps
based on local information should be avoided.

4.3.2. Similarity with Trust-Region Methods

The previous section has investigated global convergence of MA schemes. However, the analysis
requires the characterization of properties of the argmin operator of the modified optimization problem,
which is in general challenging. Next, we recall a result given in [40] showing that one can exploit the
similarity between MA and trust-region methods. This similarity has also been observed in [41].
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To this end, we consider the following variant of (21)

u?
k+1 = arg min

u
Φm,k(u) := Φ(u) + (λΦ

k )
Tu (42a)

s.t. Gm,i,k(u) := Gi(u) + ε
Gi
k + (λGi

k )T(u− uk) ≤ 0, i = 1, . . . , ng, (42b)

u ∈ B(uk, ρk). (42c)

The only difference between this optimization problem and (21) is the trust-region constraint (42c),
where B(uk, ρk) denotes a closed ball in IRnu with radius ρk centered at uk.

Consider

ωk :=
Φp(uk)−Φp(u?

k+1)

Φm,k(uk)−Φm,k(u?
k+1)

If ωk � 1, then, at u?
k+1, the plant performs significantly better than predicted by the modified

model. Likewise, if ωk � 1, the plant performs significantly worse than predicted by the modified
model. In other words, ωk is a local criterion for the quality of the modified model. In trust-region
methods, one replaces (input) filtering with acceptance rules for candidate points. In [40], it is suggested
to apply the following rule:

uk+1 :=

{
u?

k+1 if ωk ≥ η1

uk otherwise
(43)

Note that this acceptance rule requires application of u?
k+1 to the plant.

Another typical ingredient of trust-region methods is an update rule for the radius ρk. Consider the
constant scalars 0 < η1 ≤ η2 < 1, 0 < γ1 ≤ γ2 < 1, and assume that the update satisfies the
following conditions:

ρk+1 ∈





[ρk, ∞) if ωk ≥ η2

[γ2ρk, ρk] if ωk ∈ [η1, η2)

[γ1ρk, γ2ρk] if ωk ≤ η1

(44)

As in the previous section, we assume that Assumptions A1 and A2 hold. In addition, we require
the following:

A3 Plant boundedness: The plant objective Φp is lower-bounded on IRnu . Furthermore, its Hessian is
bounded from above on IRnu .

A4 Model decrease: For all k ∈ N, there exists a constant κ ∈ (0, 1] and a sequence
(βk)k∈N > 1 such that

Φm,k(u
?
k )−Φm,k(u

?
k+1) ≥ κ‖∇Φm,k(uk)‖ ·min

{
ρk,
‖∇Φm,k(uk)‖

βk

}
.

Now, we are ready to state convergence conditions for the trust-region-inspired MA scheme given
by (42)–(44).

Theorem 4 (Convergence with trust-region constraints [40]). Consider the RTO scheme (42)–(44) and let
Assumptions A1–A4 hold, then

lim
k→∞
‖∇Φp(uk)‖ = 0.

The formal proof of this result is based on a result on convergence of trust-region methods given
in [34]. For details, we refer to [40].
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Remark 5 (Comparison of Theorems 3 and 4). A few remarks on the convergence results given by
Theorems 3 and 4 are in order. While Theorem 3 is applicable to schemes with first- and second-order correction
terms, the convergence result is based on the nonexpansiveness of the argmin operator, which is difficult to verify
in practice. However, Theorem 3 provides a good motivation for input filtering as the convergence result is based
on averaged iterations of a nonexpansive operator. In contrast, Theorem 4 relies on Assumption A4, which
ensures sufficient model decrease ([34] Thm. 6.3.4, p. 131). However, this assumption is in general not easy
to verify.

There is another crucial difference between MA with and without trust-region constraints. The input
update (43) is based on ωk, which requires application of u?

k+1 to the plant. Note that, if at the kth RTO
iteration the trust region is chosen too large, then first u?

k+1 is applied to the plant, resulting in ωk < η1 and
thus to immediate (re-)application of uk. In other words, a trust region that is chosen too large can result in
successive experiments that do not guarantee plant cost improvement. In a nominal setting with perfect gradient
information, this is clearly a severe limitation. However, in any real world application, where plant gradients
need to be estimated, the plant information obtained from rejected steps may be utilized for gradient estimation.

4.3.3. Use of Convex Models and Convex Upper Bounds

Next, we turn to the issue of convexity in MA. As already mentioned in Proposition 1, for a
model to be adequate in MA, it needs to be able to admit, after the usual first-order correction, a strict
local minimum at the generally unkown plant optimum u?

p. At the same time, it is worth noting
that the model is simply a tool in the design of MA schemes. In Remark 3, for instance, we pointed
toward second-order MA with no model functions. Yet, this is not the only possible choice. It has
been observed in [21] that the adequacy issue is eliminated if one relies on strictly convex models and
first-order correction terms. The next proposition summarizes these results.

Proposition 3 (Use of convex models in MA [21]). Consider the MA Problem (21). Let the model cost and
constraint functions Φ and Gi, i = 1, . . . , ng, be strictly convex functions. Then, (i) Problem (21) is a strictly
convex program; and (ii) the model satisfies the adequacy condition of Definition 1.

Remark 6 (Advantages of convex models). The most important advantage of convex models in MA is that
model adequacy is guaranteed without prior knowledge of the plant optimum. Furthermore, it is well known
that convex programs are, in general, easier to solve than non-convex ones. Note that one can relax the strict
convexity requirement to either the cost being strictly convex or at least one of the active constraints being
strictly convex at the plant optimum [21].

4.4. Extensions

Several extensions and variants of MA have recently been developed to account for specific
problem configurations and needs.

4.4.1. MA Applied to Controlled Plants

MA guarantees plant feasibility upon convergence, but the RTO iterates prior to convergence
might violate the plant constraints. For continuous processes, it is possible to generate feasible
steady-state operating points by implementing the RTO results via a feedback control layer that
tracks the constrained variables that are active at the RTO solution [42]. This requires the constrained
quantities in the optimization problem to be measured online at sufficiently high frequency.
Navia et al. [43] recently proposed an approach to prevent infeasibilities in MA implementation by
including PI controllers that become activated only when the measurements show violation of the
constraints. In industry, model predictive control (MPC) is used widely due to its ability to handle
large multivariable systems with constraints [44]. Recently, Marchetti et al. [45] proposed an approach
for integrating MA with MPC, wherein MPC is used to enforce the equality and active inequality
constraints of the modified optimization problem. The remaining degrees of freedom are controlled to
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their optimal values along selected input directions. In order to implement MA on a controlled plant,
the gradients are corrected on the tangent space of the equality constraints.

The approach used in industry to combine RTO with MPC consists in including a target
optimization stage at the MPC layer [44]. Since the nonlinear steady-state model used at the RTO
layer is not in general consistent with the linear dynamic model used by the MPC regulator, the
optimal setpoints given by the RTO solution are often not reachable by the MPC regulator. The target
optimization problem uses a (linear) steady-state model that is consistent with the MPC dynamic
model. Its purpose is to correct the RTO setpoints by computing steady-state targets that are reachable
by the MPC regulator [46,47]. The target optimization problem executes at the same frequency as the
MPC regulator and uses the same type of feedback. Three different designs of the target optimization
problem have been analyzed in [48], each of which guarantees attaining only feasible points for the
plant at steady state, and reaching the RTO optimal inputs upon convergence.

Another difficulty arises when the inputs of the model-based optimization problem are not the
same as the plant inputs. This happens, for instance, when the plant is operated in closed loop, but
only a model of the open-loop system is available [49]. In this case, the plant inputs are the controller
setpoints r, while the model inputs are the manipulated variables u. Three alternative MA extensions
have recently been proposed to optimize a controlled plant using a model of the open-loop plant [50].
The three extensions use the cost and constraint gradients of the plant with respect to the setpoints r:

1. The first approach, labeled “Method UR”, suggests solving the optimization problem for u, but
computes the modifiers in the space of the setpoints r.

2. The second approach, labelled “Method UU”, solves the optimization problem for u, and
computes the modifiers in the space of u.

3. The third approach, labelled “Method RR”, solves the optimization problem for r, and computes
the modifiers in the space of r. It relies on the construction of model approximations for the
controlled plant that are obtained from the model of the open-loop plant.

As shown in [50], the three extensions preserve the MA property of reaching a KKT point of the
plant upon convergence.

4.4.2. MA Applied to Dynamic Optimization Problems

There have been some attempts to extend the applicability of MA to the dynamic run-to-run
optimization of batch processes [51,52]. The idea therein is to build on the repetitive nature of batch
processes and perform run-to-run iterations to progressively improve the performance of the batches.

The approach used in [51] takes advantage of the fact that dynamic optimization problems can
be reformulated as static optimization problems upon discretization of the inputs, constraints and
the dynamic model [17]. This allows the direct use of MA, the price to pay being that the number
of decision variables increases linearly with the number of discretization points, as shown in [51].
Note that, if the active path constraints are known in the various intervals of the solution, a much more
parsimonious input parameterization can be implemented, as illustrated in ([17] Appendix).

The approach proposed in [52] uses CA (that is, MA with only zeroth-order modifiers) for the
run-to-run optimization of batch processes. Dynamic optimization problems are characterized by the
presence of both path and terminal constraints. Because of uncertainty and plant-model mismatch, the
measured values of both path and terminal constraints will differ from their model predictions. Hence,
for each run, one can offset the values of the terminal constraints in the dynamic optimization problem
with biases corresponding to the differences between the predicted and measured terminal constraints
of the previous batch. Path constraints are modified similarly, by adding to the path constraints
a time-dependent function corresponding to the differences between the measured and predicted
path constraints during the previous batch. An additional difficulty arises when the final time of the
batch is also a decision variable. Upon convergence, the CA approach [52] only guarantees constraint
satisfaction, while the full MA approach [51] preserves the KKT matching property of standard MA.



Processes 2016, 4, 55 18 of 35

4.4.3. Use of Transient Measurements for MA

MA is by nature a steady-state to steady-state RTO methodology for the optimization of uncertain
processes. This means that several iterations to steady state are generally needed before convergence.
However, there are cases where transient measurements can be used as well. Furthermore, it would be
advantageous to be able to use transient measurements in a systematic way to speed up the steady-state
optimization of dynamic processes.

The concept of fast RTO via CA was introduced and applied to an experimental
solid oxide fuel-cell stack in the presence of operating constraints and plant-model
mismatch [53]. Solid oxide fuel-cell stacks are, roughly speaking, electrochemical reactors
embedded in a furnace. The electrochemical reaction between hydrogen and oxygen is almost
instantaneous and results in the production of electrical power and water. On the other hand, thermal
equilibration is much slower. The fast RTO approach in [53] is very simple and uses CA. The RTO
period is set somewhere between the time scale of the electrochemical reaction and the time scale of
the thermal process. This way, the chemical reaction has time to settle, and the thermal effects are
treated as slow process drifts that are accounted for like any other source of plant-model mismatch.
This shows that it is possible to use RTO before steady state has been reached, at least when a
time-scale separation exists between fast optimization-relevant dynamics and slow dynamics that do
not affect much the cost and constraints of the optimization problem.

In [54], a framework has been proposed to apply MA during transient operation to steady
state for the case of parametric plant-model mismatch, thereby allowing the plant to converge
to optimal operating conditions in a single transient operation to steady state. The basic idea is
simply to implement standard MA during the transient “as if the process were at steady state”.
Optimal inputs are computed and applied until the next RTO execution during transient. Hence, the
time between two consecutive RTO executions becomes a tuning parameter just as the filter gains.
Transient measurements obtained at the RTO sampling period are treated as if they were steady-state
measurements and are therefore directly used for computing the zeroth-order modifiers and estimating
the plant gradients at “steady state”. There are two main advantages of this approach: (i) standard MA
can be applied; and (ii) the assumption that transient measurements can play the role of steady-state
measurements becomes more and more valid as the system approaches steady state. Simulation results
in [54] are very encouraging, but they also highlight some of the difficulties, in particular when
the dynamics exhibit non-standard behaviors such as inverse response. A way to circumvent these
difficulties consists in reducing the RTO frequency. Ultimately, this frequency could be reduced to the
point that MA is only solved at steady state, when the process dynamics have disappeared. Research is
ongoing to improve the use of transient measurements and characterize the types of dynamic systems
for which this approach is likely to reduce the time needed for convergence [55].

4.4.4. MA when Part of the Plant is Perfectly Modeled

As mentioned above, MA is capable of driving a plant toward a KKT point even though the model
is structurally incorrect. The only requirement for the model is that it satisfies the model-adequacy
conditions, a property that can be enforced if convex model approximations are used [54]. In addition,
plant measurements that allow good estimation of the plant constraints and gradients are required.
The fact that MA can be efficient without an accurate model does not mean that it cannot benefit from
the availability of a good model. For instance, in [56] the authors acknowledge that, for most energy
systems, the model incorporates basic mass and energy balances that can often be very rigorously
modeled and, thus, there is no need to include any structural or parametric plant-model mismatch.
The authors suggest separating the process model equations into two sets of equations. The set of
rigorous model equations is denoted the “process model”, while the second set of equations is referred
to as the “approximate model” and describes performance and efficiency factors, which are much
harder to model and therefore susceptible to carry plant-model mismatch. Hence, modifiers are used
only for this second set of equations by directly modifying the corresponding model equations. Key to



Processes 2016, 4, 55 19 of 35

the approach in [56] is data reconciliation, which makes explicit use of the knowledge of the set of
“perfect model equations”. One of the advantages of not modifying the well-known subparts of the
model is that it may reduce the number of plant gradients that need to be estimated, without much
loss in performance.

5. Implementation Aspects

The need to estimate plant gradients represents the main implementation difficulty. This is a
challenging problem since the gradients cannot be measured directly and, in addition, measurement
noise is almost invariably present. This section discusses different ways of estimating gradients, of
computing modifiers, and of combining gradient estimation and optimization.

5.1. Gradient Estimation

Several methods are available for estimating plant gradients [57–60]. These methods can be
classified as steady-state perturbation methods that use only steady-state data, and dynamic perturbation
methods that use transient data.

5.1.1. Steady-State Perturbation Methods

Steady-state perturbation methods rely on steady-state data for gradient estimation. For each
change in the input variables, one must wait until the plant has reached steady state before taking
measurements, which can make these methods particularly slow. Furthermore, to obtain reliable
gradient estimates, it is important to avoid (i) amplifying the noise present in experimental data [61,62];
and (ii) using past data that correspond to different conditions (for example, different qualities of raw
materials, or different disturbance values).

Finite-difference approximation (FDA). The most common approach is to use FDA techniques that
require at least nu + 1 steady-state operating points to estimate the gradients. Several alternatives can
be envisioned for choosing these points:

• FDA by perturbing the current RTO point: A straightforward approach consists in perturbing each
input individually around the current operating point to get an estimate of the corresponding
gradient element. For example, in the forward-finite-differencing (FFD) approach, an estimator
of the partial derivative ∂Φp

∂uj
(uk), j = 1, . . . , nu, at the kth RTO iteration is obtained as

(∇̂Φp,k)j =
[
Φ̃p(uk + hej)− Φ̃p(uk)

]
/h, h > 0, (45)

where h is the step size, ej is the jth unit vector, and the superscript ˜(·) denotes a noisy
measurement. This approach requires nu perturbations to be carried out at each RTO
iteration, and for each perturbation a new steady state must be attained. Alternatively, the
central-finite-differencing (CFD) approach can be used, which is more accurate but requires 2nu

perturbations at each RTO iteration [61]. Since perturbing each input individually may lead to
constraint violations when the current operating point is close to a constraint, an approach has
been proposed for generating nu perturbed points that take into account the constraints and
avoid ill-conditioned points for gradient estimation [45].

• FDA using past RTO points: The gradients can be estimated by FDA based on the measurements
obtained at the current and past RTO points {uk, uk−1, . . . , uk−nu}. This approach is used in
dual ISOPE and dual MA methods [7,63–65]—the latter methods being discussed in Section 5.3.
At the kth RTO iteration, the following matrix can be constructed:
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Uk := [ uk − uk−1, uk − uk−2, . . . , uk − uk−nu ] ∈ IRnu×nu . (46)

Assuming that measurements of the cost Φp and constraints Gp,i are available at each iteration,
we construct the following vectors:

δΦ̃p,k := [ Φ̃p,k − Φ̃p,k−1, Φ̃p,k − Φ̃p,k−2, . . . , Φ̃p,k − Φ̃p,k−nu ]T ∈ IRnu , (47)

δG̃p,i,k := [ G̃p,i,k − G̃p,i,k−1, G̃p,i,k − G̃p,i,k−2, . . . , G̃p,i,k − G̃p,i,k−nu ]T ∈ IRnu , (48)

i = 1, . . . , ng.

The measured cost has measurement noise vk:

Φ̃p,k = Φp(uk) + vk. (49)

If Uk is nonsingular, then the set of nu + 1 points {uk−j}nu
j=0 is said to be poised for linear

interpolation in IRnu , and Uk is called a matrix of simplex directions [34]. The cost gradient at uk
can then be estimated by FDA as follows:

∇̂Φp,k = (δΦ̃p,k)
T(Uk)

−1, (50)

which is known as the simplex gradient [34]. The constraint gradients can be computed in a similar
way.

Broyden’s method. The gradients are estimated from the past RTO points using the following recursive
updating scheme:

∇̂Φp,k = ∇̂Φp,k−1 +
(Φ̃p,k − Φ̃p,k−1)− ∇̂Φp,k−1(uk − uk−1)

(uk − uk−1)T(uk − uk−1)
(uk − uk−1)

T. (51)

The use of Broyden’s method was investigated for ISOPE in [66] and for MA in [67]. Comparative
studies including this gradient estimation method can be found in [58,68].

Gradients from fitted surfaces. A widely used strategy for extracting gradient information from
(noisy) experimental data consists in fitting polynomial or spline curves to the data and evaluating
the gradients analytically by differentiating the fitted curves [69]. In the context of MA, Gao et al. [36]
recently proposed to use least-square regression to obtain local quadratic approximations of the cost
and constraint functions using selected data, and to evaluate the gradients by differentiating these
quadratic approximations.

5.1.2. Dynamic Perturbation Methods

In dynamic perturbation methods, the steady-state gradients are estimated based on the transient
response of the plant. Three classes of methods are described next.

Dynamic model identification. These methods rely on the online identification of simple dynamic
input-output models based on the plant transient response. Once a dynamic model is identified, the
steady-state gradients can be obtained by application of the final-value theorem. Indeed, the static gain
of a transfer function represents the sensitivity (or gradient) of the output with respect to the input.
McFarlane and Bacon [70] proposed to identify a linear ARX model and used the estimated static
gradient for online optimizing control. A pseudo-random binary sequence (PRBS) was superimposed
on each of the inputs to identify the ARX model. In the context of ISOPE, Becerra et al. [71] considered
the identification of a linear ARMAX model using PRBS signals. Bamberger and Isermann [72]
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identified online a parametric second-order Hammerstein model by adding a pseudo-random
ternary sequence to each input. The gradient estimates were used for online optimizing control.
Garcia and Morari [73] used a similar approach, wherein the dynamic identification was performed in
a decentralized fashion. The same approach was also used by Golden and Ydstie [32] for estimating the
first- and second-order derivatives of a SISO plant. Zhang and Forbes [60] compared the optimizing
controllers proposed in [70] and [32] with ISOPE and the two-step approach.

Extremum-seeking control. The plant gradients can also be obtained using data-driven methods
as discussed in [74]. Among the most established techniques, ESC [16] suggests adding a dither
signal (e.g., a sine wave) to each of the inputs during transient operation. High-pass filtering of the
outputs removes the biases, while using low-pass filters together with correlation let you compute the
gradients of the outputs with respect to the inputs. The main limitation of this approach is the speed of
convergence as it requires two time-scale separations, the first one between the filters and the periodic
excitation, and the second one between the periodic excitation and the controlled plant. Since all
inputs have to be perturbed independently, convergence to the plant gradients can be prohibitively
slow in the MIMO case. Recent efforts in the extremum-seeking community have led to a more
efficient framework, referred to as “estimation-based ESC” (by opposition to the previously described
perturbation-based ESC), which seems to be more efficient in terms of convergence speed [75].

Multiple units. Another dynamic perturbation approach relies on the availability of several identical
units operated in parallel [76]. The minimal number of required units is nu + 1, since one unit operates
with the inputs computed by the RTO algorithm, while a single input is perturbed in each of the
remaining nu units in parallel. The gradients can be computed online by finite differences between
units. Convergence time does not increase with the number of inputs. Obviously, this approach relies
heavily on the availability of several identical units, which occurs for instance when several units, such
as fuel-cell stacks, are arranged in parallel. Note that these units must be identical, although some
progress has been made to encompass cases where this is not the case [77].

5.1.3. Bounds on Gradient Uncertainty

As discussed in [78], obtaining bounds on gradient estimates is often more challenging than
obtaining the estimates themselves. The bounds on gradient estimates should be linked with the
specific approach used to estimate the gradients. For the case of gradient estimates obtained by
FFD, CFD, and two design-of-experiment schemes, Brekelmans et al. [61] proposed a deterministic
quantification of the gradient error due to the finite-difference approximation (truncation error) and a
stochastic characterization due to measurement noise. The expressions obtained for the total gradient
error are convex functions of the step size, for which it is easy to compute for each scheme the step size
that minimizes the total gradient error. Following a similar approach, the gradient error associated
with the simplex gradient (50) was analyzed by Marchetti et al. [64].

The gradient estimation error is defined as the difference between the estimated gradient and the
true plant gradient:

εT
k = ∇̂Φp,k −

∂Φp

∂u
(uk). (52)

From (49) and (50), this error can be split into the truncation error εt and the measurement noise
error εn,

εk = εt
k + εn

k , (53)
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with

(εt
k)

T = [Φp(uk)−Φp(uk−1), . . . , Φp(uk)−Φp(uk−nu)](Uk)
−1 − ∂Φp

∂u
(uk), (54a)

(εn
k )

T = [vk − vk−1, . . . , vk − vk−nu ](Uk)
−1. (54b)

Assuming that Φp is twice continuously differentiable with respect to u, the norm of the gradient
error due to truncation can be bounded from above by

‖εt
k‖ ≤ dΦrk, (55)

where dΦ is an upper bound on the spectral radius of the Hessian of Φp for u ∈ C, and rk is the radius
of the unique n-sphere that can be generated from the points uk, uk−1, . . . , uk−nu :

rk = r(uk, uk−1, . . . , uk−nu) = (56)
1
2

∥∥∥
[
(uk − uk−1)

T(uk − uk−1), . . . , (uk − uk−nu)
T(uk − uk−nu)

]
(Uk)

−1
∥∥∥.

In turn, assuming that the noisy measurements Φ̃p remain within the interval δΦ at steady state,
the norm of the gradient error due to measurement noise can be bounded from above:

‖εn
k ‖ ≤

δΦ

lmin,k
, (57)

lmin,k = lmin(uk, uk−1, . . . , uk−nu),

where lmin,k is the minimal distance between all possible pairs of complement affine subspaces that can
be generated from the set of points Sk = {uk, uk−1, . . . , uk−nu}. Using (55) and (57), the gradient-error
norm can be bounded from above by

‖εk‖ ≤ ‖εt
k‖+ ‖εn

k ‖ ≤ EΦ
k := dΦrk +

δΦ

lmin,k
. (58)

5.2. Computation of Gradient Modifiers

5.2.1. Modifiers from Estimated Gradients

The most straightforward way of computing the gradient modifiers is to evaluate them directly
from the estimated gradients, according to their definition (20):

(λΦ
k )

T = ∇̂Φp,k −
∂Φ
∂u

(uk), (59a)

(λGi
k )T = ∇̂Gp,i,k −

∂Gi
∂u

(uk), i = 1, . . . , ng, (59b)

where, in principle, any of the methods described in Section 5.1 can be used to obtain the gradient
estimates ∇̂Φp,k and ∇̂Gp,i,k.

5.2.2. Modifiers from Linear Interpolation or Linear Regression

Instead of using a sample set of steady-state operating points to estimate the gradients, it is
possible to use the same set to directly compute the gradient modifiers by linear interpolation or
linear regression. For instance, Marchetti [65] proposed to estimate the gradient modifiers by linear
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interpolation using the set of nu + 1 RTO points {uk−j}nu
j=0. In addition to the plant vectors δΦ̃p,k and

δG̃p,i,k given in (47) and (48), their model counterparts can be constructed at the kth RTO iteration:

δΦk := [ Φ(uk)−Φ(uk−1), . . . , Φ(uk)−Φ(uk−nu) ]T ∈ IRnu , (60)

δGi,k := [ Gi(uk)− Gi(uk−1), . . . , Gi(uk)− Gi(uk−nu) ]T ∈ IRnu , i = 1, . . . , ng. (61)

The interpolation conditions for the modified cost function read:

Φm,k(uk−j) = Φ(uk−j) + εΦ
k + (λΦ

k )
T(uk−j − uk) = Φ̃p,k−j, j = 1, . . . , nu, (62)

with εΦ
k = Φ̃p,k −Φ(uk). Equation (62) forms a linear system in terms of the gradient modifier and can

be written in matrix form as

(Uk)
TλΦ

k = δΦ̃p,k − δΦk, (63)

where Uk and δΦ̃p,k are the quantities defined in (46) and (47), respectively. This system of equations
has a unique solution if the matrix Uk is nonsingular. The constraint gradient modifiers can be
computed in a similar way, which leads to the following expressions for the gradient modifiers [65]:

(λΦ
k )

T = (δΦ̃p,k − δΦk)
T (Uk)

−1 , (64a)

(λGi
k )T = (δG̃p,i,k − δGi,k)

T (Uk)
−1 , i = 1, . . . , ng. (64b)

Here, the sample points consist of the current and nu most recent RTO points. However, it is also
possible to include designed perturbations in the sample set.

Figure 3 shows how the modified cost function approximates the plant cost function using MA
when (i) the points {uk, uk−1} are used to obtain the simplex gradient estimate (50), which is then
used in (59a) to compute the gradient modifier, and (ii) the same points are used to compute the linear
interpolation gradient modifier (64a). It can be seen that the linear interpolation approach gives a
better approximation of the plant cost function, especially if the points are distant from each other.

Remark 7 (Linear regression). If there are more than nu + 1 sample points, it might not be possible
to interpolate all the points. In this case, it is possible to evaluate the gradient modifiers by linear
least-square regression.

Remark 8 (Quadratic interpolation). In case of second-order MA, it is possible to compute the gradient and
Hessian modifiers by quadratic interpolation or quadratic least-squares regression. In this case, the number of
well-poised points required for complete quadratic interpolation is (nu + 1)(nu + 2)/2 (see [34] for different
measures of well poisedness that can be used to select or design the points included in the sample set).

5.2.3. Nested MA

A radically different approach for determining the gradient modifiers has been proposed
recently [79]. Rather than trying to estimate the plant gradients, it has been proposed to identify
the gradient modifiers directly via derivative-free optimization. More specifically, the RTO problem is
reformulated as two nested optimization problems, with the outer optimization computing the gradient
modifiers at low frequency and the inner optimization computing the inputs more frequently. We shall
use the indices j and k to denote the iterations of the outer and inner optimizations, respectively.
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Figure 3. Approximation of the plant cost function. Top plot: Modified cost using gradient from
FDA; Bottom plot: Modified cost using linear interpolation.

The inner optimization problem (for j fixed) is formulated as follows:

u⋆
k+1 = argmin

u
Φm,k(u) := Φ(u) + (λΦ

j )
Tu (65a)

s.t. Gm,i,k(u) := Gi(u) + εGi

k + (λGi

j )T(u− uk) ≤ 0 i = 1, . . . , ng. (65b)

Note the difference with (21a): for the inner optimization, the gradient modifiers are considered as
constant parameters that are updated by the outer optimization. The values of the converged inputs,
u⋆
∞, and of the converged Lagrange multipliers associated with the constraints, µ⋆

∞, depend on the
choice of the modifiers λΦ

j and λGi

j . For the sake of notation, let us group these modifiers in the matrix

Λj :=
[
λΦ
j λG1

j . . . λ
Gng

j

]
.

Once the inner optimization has converged, the following unconstrained outer optimization
problem is solved:

Λ⋆
j+1 = argmin

Λ

{
Φp (u

⋆
∞ (Λj)) + (µ⋆

∞ (Λj))
T
Gp(u

⋆
∞)

}
, (66)

and the inner optimization problem is repeated for the modifiers Λj+1. Note that, since the functions
Φp and Gp are unknown, Problem (66) is conveniently solved using derivative-free optimization
techniques such as the Nelder-Mead simplex method [79]. Furthermore, it has been shown that
separating the MA problem into two nested optimization problems preserves the ability to reach
a KKT point of the plant [79]. However, since Nested MA often requires many iterations (for both
the j and k indices), it is characterized by potentially slow convergence.

5.3. Dual MA Schemes

Following the idea of the dual ISOPE algorithm [7,63], dual MA schemes estimate the gradients
based on the measurements obtained at the current and past operating points by adding a duality

Figure 3. Approximation of the plant cost function. Top plot: Modified cost using gradient from FDA;
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The inner optimization problem (for j fixed) is formulated as follows:

u?
k+1 = arg min

u
Φm,k(u) := Φ(u) + (λΦ

j )
Tu (65a)

s.t. Gm,i,k(u) := Gi(u) + ε
Gi
k + (λGi

j )T(u− uk) ≤ 0 i = 1, . . . , ng. (65b)

Note the difference with (21a): for the inner optimization, the gradient modifiers are considered
as constant parameters that are updated by the outer optimization. The values of the converged inputs,
u?

∞, and of the converged Lagrange multipliers associated with the constraints, µ?
∞, depend on the

choice of the modifiers λΦ
j and λ

Gi
j . For the sake of notation, let us group these modifiers in the matrix

Λj :=
[

λΦ
j λG1

j . . . λ
Gng
j

]
.

Once the inner optimization has converged, the following unconstrained outer optimization
problem is solved:

Λ?
j+1 = arg min

Λ

{
Φp
(
u?

∞
(
Λj
))

+
(
µ?

∞
(
Λj
))T Gp(u?

∞)
}

, (66)

and the inner optimization problem is repeated for the modifiers Λj+1. Note that, since the functions
Φp and Gp are unknown, Problem (66) is conveniently solved using derivative-free optimization
techniques such as the Nelder-Mead simplex method [79]. Furthermore, it has been shown that
separating the MA problem into two nested optimization problems preserves the ability to reach a
KKT point of the plant [79]. However, since Nested MA often requires many iterations (for both the j
and k indices), it is characterized by potentially slow convergence.
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5.3. Dual MA Schemes

Following the idea of the dual ISOPE algorithm [7,63], dual MA schemes estimate the gradients
based on the measurements obtained at the current and past operating points by adding a duality
constraint in the modified optimization problem. This constraint is used to ensure sufficient variability
in the data for estimating the gradients reliably. Several dual MA schemes have been proposed that
differ in the model modification introduced, the approach used for estimating the gradients, and the
choice of the duality constraint.

The following duality constraint is used to position the next RTO point with respect to the nu

most recent points {uk, uk−1, . . . , uk−nu+1}:

Dk(u) := D(u, uk, uk−1, . . . , uk−nu+1) ≤ 0 . (67)

To compute the simplex gradient (50), or the interpolation modifiers (64) at the next RTO
point uk+1, we require the matrix Uk+1 defined in (46) to be nonsingular. Assuming that the last
nu − 1 columns of Uk+1 are linearly independent, they constitute a basis for the unique hyperplane
Hk = {u ∈ IRnu : nT

k u = bk, with bk = nT
k uk} that contains the points {uk, uk−1, . . . , uk−nu+1}. Here,

nk is a vector that is orthogonal to the hyperplane. Hence, the matrix Uk+1 will be nonsingular if uk+1
does not belong toHk [65]. For this reason, duality constraints produce two disjoint feasible regions,
one on each side of the hyperplaneHk.

Dual MA schemes typically solve two modified optimization problems that include the duality
constraint, one for each side of the hyperplaneHk. For the half space nT

k u > bk, we solve:

u+
k+1 = arg min

u
Φm,k(u) = Φ(u) + εΦ

k + (λΦ
k )

T(u− uk) (68)

s.t. Gm,i,k(u) = Gi(u) + ε
Gi
k + (λGi

k )T(u− uk) ≤ 0, i = 1, . . . , ng,

Dk(u) ≤ 0, nT
k u ≥ bk,

while for the half space nT
k u < bk, we solve:

u−k+1 = arg min
u

Φm,k(u) = Φ(u) + εΦ
k + (λΦ

k )
T(u− uk) (69)

s.t. Gm,i,k(u) = Gi(u) + ε
Gi
k + (λGi

k )T(u− uk) ≤ 0, i = 1, . . . , ng,

Dk(u) ≤ 0, nT
k u ≤ bk,

The next operating point uk+1 is chosen as the solution that minimizes Φm,k(u):

uk+1 = arg min
u

Φm,k(u), s.t. u ∈ {u+
k+1, u−k+1}.

Several alternative dual MA algorithms have been proposed in the literature, which we briefly
describe next:

(a) The original dual ISOPE algorithm [7,63] estimates the gradients by FDA according to (50) and
introduces a constraint that prevents ill-conditioning in the gradient estimation. At the kth RTO
iteration, the matrix

Ūk(u) := [ u− uk, u− uk−1, . . . , u− uk−nu+1 ] ∈ IRnu×nu (70)

is constructed. Good conditioning is achieved by adding the lower bound ϕ on the inverse of the
condition number of Ūk(u):

1
κk(u)

=
σmin(Ūk(u))
σmax(Ūk(u))

≥ ϕ, (71)
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where σmin and σmax denote the smallest and largest singular values, respectively. This bound is
enforced by defining the duality constraint

Dk(u) = ϕκk(u)− 1 ≤ 0, (72)

which is used in (68) and (69).
(b) Gao and Engell [14] proposed a MA scheme that (i) estimates the gradients from the current

and past operating points according to (50), and (ii) enforces the ill-conditioning duality
constraint (72). However, instead of including the duality constraint in the optimization problem,
it is used to decide whether an additional input perturbation is needed. This perturbation
is obtained by minimizing the condition number κk(u) subject to the modified constraints.
The approach was labeled Iterative Gradient-Modification Optimization (IGMO) [80].

(c) Marchetti et al. [64] considered the dual MA scheme that estimates the gradients from the current
and past operating points according to (50). The authors showed that the ill-conditioning bound
(71) has no direct relationship with the accuracy of the gradient estimates, and proposed to upper
bound the gradient-error norm of the Lagrangian function:

‖εL(u)‖ ≤ EU, (73)

where εL is the Lagrangian gradient error. In order to compute the upper bound as a function
of u, we proceed as in (56)–(58) and define the radius rk(u) = r(u, uk, . . . , uk−nu+1) and the
minimal distance lmin,k(u) = lmin(u, uk, . . . , uk−nu+1). This allows enforcing (73) by selecting u
such that,

EL
k (u) := dLrk(u) +

δL

lmin,k(u)
≤ EU, (74)

where dL is an upper bound on the spectral radius of the Hessian of the Lagrangian function, and
δL is the range of measurement error in the Lagrangian function resulting from measurement
noise in the cost and constraints [64]. This bound is enforced by defining the duality constraint
used in (68) and (69) as

Dk(u) = EL
k (u)− EU ≤ 0. (75)

(d) Rodger and Chachuat [67] proposed a dual MA scheme based on modifying the output variables
as in Section 4.2.1. The gradients of the output variables are estimated using Broyden’s formula
(51). The authors show that, with Broyden’s approach, the MA scheme (28) may fail to reach a
plant KKT point upon convergence due to inaccurate gradient estimates and measurement noise.
This may happen if the gradient estimates are not updated repeatedly in all input directions and
if the step ‖uk+1 − uk‖ is too small. A duality constraint is proposed for improving the gradient
estimates obtained by Broyden’s approach.

(e) Marchetti [65] proposed another dual MA scheme, wherein the gradient modifiers are obtained
by linear interpolation according to (64). Using this approach, the modified cost and constraint
functions approximate the plant in a larger region. In order to limit the approximation error
in the presence of noisy measurements, a duality constraint was introduced that limits the
Lagrangian gradient error for at least one point belonging to the simplex with the extreme points
{u, uk, . . . , uk−nu+1}. This duality constraint produces larger feasible regions than (75) for the
same upper bound EU, and therefore allows larger input moves and faster convergence.
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6. Applications

As MA has many useful features, it is of interest to investigate its potential for application. Table 1
lists several case studies available in the literature and compares them in terms of the MA variant that
is used, the way the gradients are estimated and the number of input variables. Although this list is
not exhaustive, it provides an overview of the current situation and gives a glimpse of the potential
ahead. From this table, several interesting conclusions can be drawn:

• About half of the available studies deal with chemical reactors, both continuous and
discontinuous. In the case of discontinuous reactors, the decision variables are input
profiles, that can be parameterized to generate a larger set of constant input parameters.
The optimization is then performed on a run-to-run basis, with each iteration hopefully resulting
in improved operation.

• One sees from the list of problems in Table 1 that the Williams-Otto reactor seems to be
the benchmark problem for testing MA schemes. The problem is quite challenging due to the
presence of significant structural plant model-mismatch. Indeed, the plant is simulated as a
3-reaction system, while the model includes only two reactions with adjustable kinetic parameters.
Despite very good model fit (prediction of the simulated concentrations), the RTO techniques
that cannot handle structural uncertainty, such as the two-step approach, fail to reach the plant
optimum. In contrast, all 6 MA variants converge to the plant optimum. The differentiation
factor is then the convergence rate, which is often related to the estimation of plant gradients.

• Most MA schemes use FDA to estimate gradients. In the case of FFD, one needs to perturb each
input successively; this is a time-consuming operation since, at the current operating point, the
system must be perturbed nu times, each time waiting for the plant to reach steady state. Hence,
FDA based on past and current operating points is clearly the preferred option. However, to
ensure that sufficient excitation is present to compute accurate gradients, the addition of a duality
constraint is often necessary. Furthermore, both linear and nonlinear function approximations
have been proposed with promising results. An alternative is to use the concept of neighboring
extremals (NE), which works well when the uncertainty is of parametric nature (because the
NE-based gradient law assumes that the variations are due to parametric uncertainties). Note that
two approaches do not use an estimate of the plant gradient: CA uses only zeroth-order modifiers
to drive the plant to the active constraints, while nested MA circumvents the computation of
plant gradients by solving an additional optimization problem. Note also that IGMO can be
classified as dual MA, with the peculiarity that the gradients are estimated via FDA with added
perturbations when necessary.
• The typical number of input variables is small (nu < 5), which seems to be related to the

difficulties of gradient estimation. When the number of inputs is much larger, it might be useful
to investigate whether it is important to correct the model in all input directions, which is nicely
solved using D-MA.

• Two applications, namely, the path-following robot and the power kite, deal with the optimization
of dynamic periodic processes. Each period (or multiple periods) is considered as a run, the
input profiles are parameterized, and the operation is optimized on a run-to-run basis.

• Five of these case studies have dealt with experimental implementation, four on lab-scale setups
and one at the industrial level. There is clearly room for more experimental implementations
and, hopefully, also significant potential for improvements ahead!
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Table 1. Overview of MA case studies (FFD: forward finite difference with input perturbation; FDA: finite-difference approximation based on past and current
operating points; NE: neighboring extremals; CA: Constraint Adaptation; MAWQA: MA with quadratic approximation; IGMO: iterative gradient-modification
optimization, where gradients are estimated via FDA with added perturbation when necessary; in bold: experimental implementation).

Problems MA Variant Ref. Gradient Est. # of Inputs Remarks

Williams-Otto CSTR

MA [64] FFD 2 basic MA algorithm

(benchmark for MA)

dual MA [64,65] FDA, lin. approx. 2 addition of a constraint on gradient accuracy
2nd-order MA [31] FFD 2 addition of second-order correction terms

MAWQA [36,81] quad. approx. 2 gradient computed via quadratic approximation
nested MA [82] — 2 additional optimization to by-pass gradient calculation
various MA [80] various 2 IGMO, dual MA, nested MA and MAWQA

CSTR convex MA [21] perfect 2 use of convex model

(with pyrrole reaction) transient MA [54] NE-based 2 use of transient measurements for static optimization
MAWQA [83] quad. approx. 2 gradient computed via quadratic approximation

Semi-batch reactors dual, nested MA [79] FDA, — 3 4 reactions, run-to-run scheme
MA [84] FDA 11 1 reaction, run-to-run scheme

Distillation column various MA [85,86] various 2 controlled column, dual, nested, transient measurements
Batch chromatography various MA [14,87] various 2 IGMO, dual MA and MAWQA, run-to-run schemes
Electro-chromatography dual MA [88] IGMO 2 Continuous process
Chromatographic separation dual MA [89] IGMO 3 Continuous multi-column solvent gradient purification
Sugar and ethanol plant MA [56] FDA 6 heat and power system
Leaching process MA [90] FDA 4 4 CSTR in series, industrial implementation
Hydroformylation process MAWQA [91] quad. approx. 4 reactor and decanter with recycle
Flotation column various MA [92] FFD, FDA, — 3 implemented on lab-scale column
Three-tank system MA [15]; [79] FFP; FDA, — 2 implemented on lab-scale setup
Solid-oxide fuel cell CA [93]; [53] — 3; 2 implemented on lab fuel-cell stack
Parallel compressors MA [94] FFP 2 & 6 parallel structure exploited for gradient estimation
Path-following robot CA [95] — 700 periodic operation, enforcing minimum-time motion
Power kite D-MA [28], [96] FDA 40→ 2 periodic operation, implemented on small-scale kite
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7. Conclusions

This section concludes the paper with a brief discussion of open issues and a few final words.

7.1. Open Issues

As illustrated in this paper, significant progress has been made recently on various aspects of
MA. Yet, there are still unresolved issues with respect to both the methodology and applications.
In particular, it is desirable for RTO schemes to exhibit the following features [38]:

i plant optimality and feasibility upon convergence,
ii acceptable number of RTO iterations, and

iii plant feasibility throughout the optimization process.

These features and related properties are briefly discussed next.

Feasibility of all RTO iterates. By construction, MA satisfies Feature (i), cf. Theorem 1. However,
Theorem 1 does not guarantee feasibility of the successive RTO iterates, nor does it imply anything
regarding convergence speed. The Sufficient Conditions for Feasibility and Optimality (SCFO)
presented in [35,97] can, in principle, be combined with any RTO scheme and enforce Feature (iii).
However, SCFO often fails to enforce sufficiently fast convergence (cf. the examples provided in [35],
Section 4.4) because of the necessity to upper bound uncertain plant constraints using Lipschitz
constants. Hence, it is fair to search for other approaches that can ensure plant feasibility of the
successive RTO iterates. One intuitive way is to replace the first-order (Lipschitz) upper bounds in
[35] by second-order upper-bounding functions. For purely data-driven RTO, it has been shown
numerically that this outperforms Lipschitz bounds [38]. Furthermore, the handling of plant
infeasibility in dual MA has been discussed in [43]. New results given in [98] demonstrate that
the combination of convex upper-bounding functions with the usual first-order MA corrections
terms implies optimality upon convergence (Feature (i)) and feasibility for all iterates (Feature (iii)).
However, a conclusive analysis of the trade-off between convergence speed and the issue of plant
feasibility has not been conducted yet. Using the numerical optimization terminology, one could
say that it remains open how one chooses the step length in RTO, when plant feasibility and fast
convergence are both important.

Robustness to gradient uncertainty. The implementation of MA calls for the estimation of plant
gradients. At the same time, as estimated gradients are prone to errors, it is not clear to which extent
MA is robust to this kind of uncertainty. Simulation studies such as [15,64] indicate that MA is
reasonably robust with respect to gradient uncertainty. For data-driven RTO schemes inspired by
SCFO [35], robustness to multiplicative cost gradient uncertainty has been shown [37]. However, the
assumption of purely multiplicative gradient uncertainty is hard to justify in practice, as this would
imply exact gradient information at any unconstrained local optimum of the plant.

Realistically, one has to assume that gradient uncertainty is additive and bounded. First steps
towards a strictly feasible MA scheme can be found in [99], wherein convex upper-bounding functions
similar to [98] are combined with dual constraints from Section 5.3 [64].

Exploitation of plant structure for gradient estimation. In the presentation of the different MA
variants, it is apparent that the physical structure of the plant (parallel or serial connections,
recycles, weak and strong couplings) has not been the focus of investigation. At the same time,
since many real-world RTO applications possess a specific structure, it is fair to ask whether one
can exploit the physical interconnection structure to facilitate and possibly improve gradient estimation.
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Parallel structures with identical units may be well suited for gradient estimation [76]. Recently, it
has been observed that, under certain assumptions, parallel structures of heterogeneous units can also
be exploited for gradient estimation [94]. A formal and general investigation of the interplay between
plant structure and gradient estimation remains open.

RTO of interconnected processes. There is an evident similarity between many RTO schemes and
numerical optimization algorithms. For example, one might regard MA adaptation in its simpliest
form of Section 4.1 as an experimental gradient descent method, likewise the scheme of Section 4.3.2 is
linked to trust-region algorithms, and Remark 3 has pointed toward a SQP-like scheme. Hence, one
might wonder whether the exploitation of structures in the spirit of distributed NLP algorithms will
yield benefits to RTO and MA schemes. The early works on distributed ISOPE methods [7,100,101]
point into such a direction. Furthermore, a recent paper by Wenzel et al. [102] argues for distributed
plant optimization for the sake of confidentiality. In the context of MA, it is interesting to note that
different distributed MA algorithms have recently been proposed [103,104]. Yet, there is no common
consensus on the pros and cons of distributed RTO schemes.

Integration with advanced process control. Section 4.4.1 discussed the application of MA to
controlled plants, and highlighted that the implementation of RTO results by means of MPC can be
used to prevent constraint violations. Section 4.4.3 reported on the use of transient data for the purpose
of gradient estimation for static MA. In general, it seems that the use of transient measurements
in RTO either requires specific dynamic properties of the underlying closed-loop system or a tight
integration of RTO and advanced process control. As many industrial multivariable process control
tasks are nowadays solved via MPC, this can be narrowed down to the integration of MA and MPC.
Yet, there remain important questions: (i) How to exploit the properties of MPC for RTO or MA?
(ii) Can one use the gradient information obtained for MA in the MPC layer? While there are answers
to Question (i) [45,105]; Question (ii) remains largely unexplored. This also raises the research question
of how to design (static) MA and (dynamic) process control in a combined fashion or, expressed
differently, how to extend the MA framework toward dynamic RTO problems. The D-MA approach
sketched in Section 4.2.3 represents a first promising step for periodic and batch dynamic processes.
Yet, the close coupling between MA and economic MPC schemes might bring about interesting new
research and implementation directions [106–108].

Model-based or data-driven RTO? The fact that all MA properties also hold for the trivial case of
no model gives rise to the fundamental question regarding the role of models in RTO. As shown
in Section 4, models are not needed in order to enforce plant optimality upon convergence in MA.
Furthermore, models bring about the model-adequacy issue discussed in Section 4.1.3. At the same
time, industrial practitioners often spend a considerable amount of time on model building, parameter
estimation and model validation. Hence, from the industrial perspective, there is an evident expectation
that the use of models should pay off in RTO. From the research perspective, this gives rise to the
following question: How much should we rely on uncertain model and how much on available plant
data? In other words, what is a good tuning knob between model-based and data-driven RTO?

7.2. Final Words

This overview paper has discussed real-time optimization of uncertain plants using Modifier
Adaptation. It has attempted to present the main developments in a comprehensive and unified way
that highlights the main differences between the schemes. Yet, as in any review, the present one is also
a mere snapshot taken at a given time. As we tried to sketch it, there remain several open issues, some
of which will be crucial for the success of modifier-adaptation schemes in industrial practice.
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