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Abstract—This paper presents a general class of gossip-
based averaging algorithms, which are inspired from Uniform
Gossip [1]. While Uniform Gossip works synchronously on
complete graphs, weighted gossip algorithms allow asynchronous
rounds and converge on any connected, directed or undirected
graph. Unlike most previous gossip algorithms [2]–[6], Weighted
Gossip admits stochastic update matrices which need not be
doubly stochastic. Double-stochasticity being very restrictive in
a distributed setting [7], this novel degree of freedom is essential
and it opens the perspective of designing a large number of
new gossip-based algorithms. To give an example, we present
one of these algorithms, which we call One-Way Averaging. It is
based on random geographic routing, just like Path Averaging [5],
except that routes are one way instead of round trip. Hence in
this example, getting rid of double stochasticity allows us to add
robustness to Path Averaging.

I. INTRODUCTION

Gossip algorithms were recently developed to solve the
distributed average consensus problem [1]–[6]. Every node i
in a network holds a value xi and wants to learn the average
xave of all the values in the network in a distributed way. Most
gossip algorithms were designed for wireless sensor networks,
which are usually modeled as random geometric graphs and
sometimes as lattices. Ideally a distributed averaging algorithm
should be efficient in terms of energy and delay without
requiring too much knowledge about the network topology
at each node, nor sophisticated coordination between nodes.

The simplest gossip algorithm is Pairwise Gossip, where
random pairs of connected nodes iteratively and locally aver-
age their values until convergence to the global average [2].
Pairwise local averaging is an easy task, which does not re-
quire global knowledge nor global coordination, thus Pairwise
Gossip fulfills the requirements of our distributed problem.
However, the convergence speed of Pairwise Gossip suffers
from the locality of the updates, and it was shown that averag-
ing random geographic routes instead of local neighborhoods
is an order-optimal communication scheme to run gossip.
Let n be the number of nodes in the network. On random
geometric graphs, Pairwise Gossip requires Θ(n2) messages
whereas Path Averaging requires only Θ(n logn) messages
under some conditions [5].

The previous algorithm gained efficiency at the price of
more complex coordination. At every round of Path Averaging,
a random node wakes up and generates a random route.
Values are aggregated along the route and the destination node
computes the average of the values collected along the route.

Then the destination node sends the average back through the
same route so that all the nodes in the route can update their
values to the average. Path Averaging is efficient in terms
of energy consumption, but it demands some long distance
coordination to make sure that all the values in the route were
updated correctly. Routing information back and forth might as
well introduce delay issues, because a node that is engaged in
a route needs to wait for the update to come back before it can
proceed to another round. Furthermore, in a mobile network,
or in a highly dynamic network, routing the information back
on the same route might even not succeed.

This work started with the goal of designing a unidirectional
gossip algorithm fulfilling the following requirements:

• Keep a geographic routing communication scheme be-
cause it is highly diffusive,

• Avoid routing back data: instead of long distance agree-
ments, only agreements between neighbors are allowed,

• Route crossing is possible at any time, without introduc-
ing errors in the algorithm.

As we were designing One-Way Averaging, we happened to
prove the correctness of a broad set of gossip-based algo-
rithms, which we present in this paper along with One-Way
Averaging. These algorithms can be asynchronous and they
use stochastic diffusion matrices which are not necessarily
doubly stochastic, as announced by the title of the paper.

In Section II, we give some background on gossip algo-
rithms, and we explain why Uniform Gossip is a key algorithm
to get inspired from when building a unidirectional gossip
algorithm. In Section III, we present Weighted Gossip, an
asynchronous generalization of Uniform Gossip, which was
already suggested in [1] but had remained unnamed. We show
in Section IV that weighted gossip algorithms converge to
xave, which is a novel result to the best of our knowledge. In
Section V, we describe in detail One-Way Averaging and we
show on simulations that the good diffusivity of geographic
routes in Path Averaging persists in One-Way Averaging.
Computing the speed of convergence of weighted gossip
algorithms remains open and is part of future work.

II. BACKGROUND ON GOSSIP ALGORITHMS

The values to be averaged are gathered in a vector x(0) and
at any iteration t, the current estimates of the average xave are
gathered in x(t). Gossip algorithms update estimates linearly.
At any iteration t, there is a matrix W (t) such that:

x(t)T = x(t− 1)TW (t).
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In gossip algorithms that converge to average consensus, W (t)
is doubly stochastic: W (t)1 = 1 ensures that the global
average is conserved, and 1T

W (t) = 1T guarantees stable
consensus. To perform averaging on a one way route, W (t)
should be upper triangular (up to a node index permutation).
But the only matrix that is both doubly stochastic and upper
triangular matrix is the identity matrix. Thus, unidirectional
averaging requires to drop double stochasticity.

Uniform Gossip solves this issue in the following way.
Instead of updating one vector x(t) of variables, it updates a
vector s(t) of sums, and a vector ω(t) of weights. Uniform
Gossip initializes s(0) = x(0) and ω(0) = 1. At any time, the
vector of estimates is x(t) = s(t)/ω(t), where the division
is performed elementwise. The updates are computed with
stochastic diffusion matrices {D(t)}t>0:

s(t)T = s(t− 1)TD(t), (1)

ω(t)T = ω(t− 1)TD(t). (2)

Kempe et al. [1] prove that the algorithm converges to a
consensus on xave (limt x(t) = xave1) in the special case
where for any node i, Dii(t) = 1/2 and Dij(t) = 1/2 for
one node j chosen i.i.d. uniformly at random. As a key remark,
note that here D(t) is not doubly stochastic. The algorithm is
synchronous and it works on complete graphs without routing,
and on other graphs with routing. We show in this paper
that the idea works with many more sequences of matrices
{D(t)}t>0 than just the one used in Uniform Gossip.

III. WEIGHTED GOSSIP

We call Weighted Gossip the class of gossip-based algo-
rithms following the sum and weight structure of Uniform
Gossip described above (Eq. (1) and (2)). A weighted gossip
algorithm is entirely characterized by the distribution of its
diffusion matrices {D(t)}t>0. Let P (s, t) := D(s)D(s +
1) . . .D(t) and let P(t) := P (1, t). Then

s(t)T = x(0)TP (t), (3)

ω(t)T = 1T
P (t). (4)

If a weighted gossip algorithm is asynchronous, then,
Dii(t) = 1 and Dij,j �=i(t) = 0 for the nodes i that do not
contribute to iteration t. If Dij(t) �= 0, then node i sends
(Dij(t)si(t− 1),Dij(t)ωi(t− 1)) to node j, which adds the
received data to its own sum sj(t−1) and weight ωj(t−1). At
any iteration t, the estimate at node i is xi(t) = si(t)/ωi(t).

Because 1T
D(t) �= 1T , sums and weights do not reach a

consensus. However, because D(t)1 = 1, sums and weights
are conserved: at any iteration t,

n∑
i=1

si(t) =

n∑
i=1

xi(0) = nxave, (5)

n∑
i=1

ωi(t) = n. (6)

This implies that Weighted Gossip is a class of non-biased
estimators for the average (even though

∑n

i=1
xi(t) is not

conserved through time!):

Theorem 3.1 (Non-biased estimator): If the estimates
x(t) = s(t)/ω(t) converge to a consensus, then the
consensus value is the average xave.

Proof: Let c be the consensus value. For any ε > 0, there
is an iteration t0 after which, for any node i, |xi(t)− c| < ε.
Then, for any t > t0, |si(t) − cωi(t)| < εωi(t) (weights are
always positive). Hence, summing over i,∣∣∣∣∣
∑
i

(si(t)− cωi(t))

∣∣∣∣∣ ≤
∑
i

|si(t)− cωi(t)| < ε
∑
i

ωi(t).

Using Eq. (5), (6), the previous equation can be written as
|nxave − nc| < nε, which is equivalent to |xave − c| < ε.
Hence c = xave.
In the next section, we show that, although sums and weights
do not reach a consensus, the estimates {xi(t)}1≤i≤n converge
to a consensus under some conditions.

IV. CONVERGENCE

In this section we prove that Weighted Gossip succeeds in
other cases than just Uniform Gossip.

Assumption 1: {D(t)}t>0 is a stationary and ergodic se-
quence of stochastic matrices with positive diagonals, and
E[D] is irreducible.
Irreducibility means that the graph formed by edges (i, j)
such that P[Dij > 0] > 0 is connected, which requires the
connectivity of the network. Note that i.i.d. sequences are
stationary and ergodic. Stationarity implies that E[D] does not
depend on t. Positive diagonals means that each node should
always keep part of its sum and weight: ∀i, t,Dii(t) > 0.

Theorem 4.1 (Main Theorem): Under Assumption 1,
Weighted Gossip using {D(t)}t>0 converges to a consensus
with probability 1, i.e. limt→∞ x(t) = xave1.
To prove Th. 4.1, we will start by upper bounding the
error ‖x(t)− xave1‖∞ with a non-increasing function f(t)
(Lemma 4.1): let ηji(t) = Pji(t)−

∑n

j=1
Pji(t)/n = Pji(t)−

ωi(t)/n, then f is defined as f(t) = max1≤i≤n fi(t), where
fi(t) =

∑n

j=1
|ηji(t)| /ωi(t). Then, we will prove that f(t)

vanishes to 0 by showing that ηji(t) vanishes to 0 (weak
ergodicity argument of Lemma 4.3) and that ωi(t) is bounded
away from 0 infinitely often (Lemma 4.4).

Lemma 4.1: If {D(t)}t>0 is a sequence of stochastic ma-
trices, then the function f(t) is non increasing. Furthermore,

‖x(t)− xave1‖∞ ≤ ‖x(0)‖∞ f(t). (7)

Proof: By Eq. (3), for any node i,

|xi(t)− xave| =

∣∣∣∣∣
∑n

j=1
Pji(t)xj(0)

ωi(t)
− xave

∣∣∣∣∣
=

∣∣∣∣∣
∑n

j=1
(ωi(t)/n+ ηji(t))xj(0)

ωi(t)
− xave

∣∣∣∣∣
=

∣∣∣∣∣
∑n

j=1
ηji(t)xj(0)

ωi(t)

∣∣∣∣∣
≤ ‖x(0)‖∞

∑n

j=1
|ηji(t)|

ωi(t)

= ‖x(0)‖∞ fi(t),
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which proves Eq (7). Next, we need to prove that f(t) is a
non-increasing function. For any node i, by Eq. (1) and (2),

fi(t) =

n∑
j=1

|ηji(t)|
ωi(t)

=

n∑
j=1

|∑n

k=1
ηjk(t− 1)Dki(t)|∑n

k=1
ωk(t− 1)Dki(t)

≤
n∑

j=1

∑n

k=1
|ηjk(t− 1)|Dki(t)∑n

k=1
ωk(t− 1)Dki(t)

=

∑n

k=1

∑n

j=1
|ηjk(t− 1)|Dki(t)∑n

k=1
ωk(t− 1)Dki(t)

≤ max
k

∑n

j=1
|ηjk(t− 1)|Dki(t)

ωk(t− 1)Dki(t)
(8)

= max
k

∑n

j=1
|ηjk(t− 1)|

ωk(t− 1)

= max
k

fk(t− 1) = f(t− 1),

which implies that f(t) ≤ f(t − 1). Eq. (8) comes from the
following equality: for any {ak}1≤k≤n ≥ 0, {bk}1≤k≤n > 0,

∑n

k=1
ak∑n

k=1
bk

=

n∑
k=1

bk∑n

j=1
bj

ak
bk
≤ max

k

ak
bk

.

The following lemma is useful to prove Lemmas 4.3
and 4.4.

Lemma 4.2: Under Assumption 1, there is a deterministic
time T and a constant c such that

P[D(1)D(2) . . .D(T ) > c] > 0,

where A > c means that every entry of A is larger than c.
Proof: The proof of this lemma can be found in [8]. For

the case where {D(t)}t>0 is i.i.d., a simpler proof can be
found in [9]. Note that the theorems proven in [8] and [9] are
slightly different than our lemma because the authors multiply
matrices on the left, whereas we multiply them on the right.
However the multiplication side does not change the proof.

For completeness and simplicity, we give the proof in
the i.i.d. case. E[D] being irreducible and having a pos-
itive diagonal, it is primitive as well: there is an m >
0 such that E[D]m > 0 (elementwise). {D(t)}t≥1 is
i.i.d., hence E[D(1)D(2) . . .D(m)] = E[D]m > 0, and

P

[
(D(1)D(2) . . .D(m))ij > 0

]
> 0 for any entry (i, j).

For any time t, the diagonal coefficients of D(t) are non-
zero, thus, if the (i, j)th entry of P(k, k + m − 1) =
D(k)D(k + 1) . . .D(k +m− 1) is positive, then Pij(t) > 0
for all t ≥ k + m − 1. Now take T = n(n − 1)m. The
probability that P(T ) > 0 is larger than or equal to the joint
probability that P12(1,m) > 0, P13(m + 1, 2m) > 0, . . .,
Pn,n−1(T −m+ 1, T ) > 0. By independence of {D(t)}t≥1,

P[P(T ) > 0] ≥ P[P1,2(1,m) > 0]P[P1,3(m+ 1, 2m) > 0]

. . . . . .P[Pn,n−1(T −m+ 1, T ) > 0] > 0.

Therefore, there is a c > 0 such that P[D(1)D(2) . . .D(T ) >
c] > 0.

Lemma 4.3 (Weak ergodicity): Under Assumption 1,
{D(t)}t≥1 is weakly ergodic.

Weak ergodicity means that when t grows, P(t) tends to
have identical rows, which may vary with t. It is weaker than
strong ergodicity, where P(t) tends to a matrix 1πT , where π

does not vary with t. Interestingly, simple computations show
that if P(t) has identical rows, then consensus is reached. All
we need to know in this paper is that weak ergodicity implies
that

lim
t→∞

max
i,j

n∑
k=1

|Pik(t)−Pjk(t)| = 0,

and we suggest [10] for further reading about weak ergodicity.
Proof: Let Q be a stochastic matrix. The Dobrushin

coefficient δ(Q) of matrix Q is defined as:

δ(Q) =
1

2
max
ij

n∑
k=1

|Qik −Qjk| .

One can show [10] that 0 ≤ δ(Q) ≤ 1, and that for any
stochastic matrices Q1 and Q2,

δ(Q1Q2) ≤ δ(Q1)δ(Q2). (9)

Another useful fact is that for any stochastic matrix Q

1− δ(Q) ≥ max
j

min
i

Qij ≥ min
i,j

Qij . (10)

A block criterion for weak ergodicity [10] is based on Eq. (9):
{D(t)}t≥1 is weakly ergodic if and only if there is a strictly
increasing sequence of integers {ks}s≥1 such that

∞∑
s=1

(1− δ(P(ks + 1, ks+1))) =∞. (11)

We use this criterion with ks = sT , where T was defined in
Lemma 4.2.

A joint consequence of Lemma 4.2 and of Birkhoff’s
ergodic theorem [11], [8] (in the i.i.d. case, one can use
the strong law of large numbers instead) is that the event
{D(ks + 1)D(ks + 2) . . .D(ks+1) > c} happens infinitely
often with probability 1. Hence, using Eq. (10), the event
{1 − δ (P(ks + 1, ks+1)) > c} happens infinitely often with
probability 1. We can thus conclude that the block crite-
rion (11) holds with probability 1 and that {D(t)}t≥1 is
weakly ergodic.

The next lemma shows that, although weights can become
arbitrarily small, they are uniformly large enough infinitely
often.

Lemma 4.4: Under Assumption 1, there is a constant α
such that, for any time t, with probability 1, there is a time
t1 ≥ t at which mini ωi(t1) ≥ α.

Proof: As mentioned in the proof of Lemma 4.3, the event
{D(ks + 1)D(ks + 2) . . .D(ks+1) > c}, where ks = sT ,
happens infinitely often with probability 1. Let t1 be the
first time larger than t such that D(t1 − T + 1)D(t1 − T +
2) . . .D(t1) > c. Then the weights at time t1 satisfy

ω(t1)
T = ω(t1 − T )TD(t1 − T + 1) . . .D(t1)

> cω(t1 − T )T11T ,
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because weights are always positive. Now, because the sum
of weights is equal to n, ω(t1− T )T1 = n. Hence ω(t1)

T >
cn1T . Taking α = cn concludes the proof.
To prove Theorem 4.1, it remains to show that f(t) converges
to 0.

Proof: (Theorem 4.1) For any ε > 0, according to
Lemma 4.3, there is a time t0 such that for any t ≥ t0,

max
i,j

n∑
k=1

|Pik(t)−Pjk(t)| < ε.

As a consequence |Pik(t)−Pjk(t)| < ε for any i, j, k. Hence
|ηjk(t)| < ε as well. Indeed,

|ηjk(t)| =

∣∣∣∣∣Pjk(t)−
n∑

i=1

Pik(t)

n

∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

Pjk(t)−Pik(t)

n

∣∣∣∣∣
≤

n∑
i=1

|Pjk(t)−Pik(t)|
n

<

n∑
i=1

ε

n
= ε.

Therefore, for any t ≥ t0 and any 1 ≤ i ≤ n,

fi(t) <
nε

ωi(t)
,

and therefore
f(t) <

nε

miniωi(t)
.

Using Lemma 4.4, there is a constant α such that, with prob-
ability 1, there is a time t1 ≥ t0 at which mini ωi(t1) ≥ α.
Then, for any ε′, it suffices to take ε = αε′/n to conclude
that there is a time t1 with probability 1 such that f(t1) < ε′.
Since f is non increasing (Lemma 4.1), for all time t ≥ t1,
f(t) < ε′; in other words f(t) converges to 0. Using (7)
concludes the proof.

Remark: A similar convergence result can be proved with-
out Assumption 1 (stationarity and ergodicity of the matri-
ces D(t)), in a setting where the matrices are chosen in a
perhaps adversarial manner. One needs only some minimal
connectivity assumptions, which then guarantee that there
exists a finite number T such that, for all t, all entries of
D(t+1) · · ·D(t+T ) are bounded below by a positive constant
c (see, e.g., Lemma 5.2.1 in [12]).

V. ONE-WAY AVERAGING

In this section, we describe in detail a novel weighted gossip
algorithm, which we call One-Way Averaging.

A. Assumptions and Notations

Assume that the network is a random geometric graph on a
convex area A, with a connection radius r(n) large enough
to enable geographic routing [3]. For every node i, let Ti
be a distribution of points outside of the area A, and let
Hi be a distribution of integers larger than 2. Each node
has an independent local exponential random clock of rate
λ, and initiates an iteration when it rings. Equivalently, time
is counted in terms of a global and virtual exponential clock
of rate nλ. Each time the global clock rings, a node wakes
up independently and uniformly at random. In the analysis, t
indicates how many times the global clock rang. A detailed
analysis of this time model can be found in [2].

B. Description of One-Way Averaging

Each node i initializes its sum si(0) = xi(0) and its weight
ωi(0) = 1. For any iteration t > 0, let i be the node whose
clock rings. Node i draws a target Z according to distribution
Zi and a number H ≥ 2 of hops according to distribution
Hi. Node i chooses uniformly at random a neighbor which is
closer to the target Z than itself. If there is no such neighbor
then the iteration terminates. If such a neighbor j exists, then
node i divides its sum si(t − 1) and its weight ωi(t− 1) by
H and sends (si(t− 1),ωi(t− 1)) ∗ (H − 1)/H to node j.
It also sends the remaining number H − 1 of hops and the
target Z . Node j adds the received sum and weight to its
sum sj(t− 1) and its weight ωj(t− 1). Then it performs the
same operation as node i towards a node that is closer to the
target, except that it divides its new sum and weight by H−1
instead of H (formally, H ← H − 1). Messages are greedily
sent towards the target, H being decremented at each hop. The
iteration ends when H = 1 or when a node does not have any
neighbor to forward a message to. At any time, the estimate
of any node is the ratio between its sum and its weight.

C. Diffusion Matrices

Suppose that at round t, a whole route of H nodes is
generated. Then, after re-indexing nodes starting with the
nodes in the route, the diffusion matrix D(t) can be written
as:⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1/H 1/H . . . 1/H 1/H 0

0 1/(H − 1) . . . 1/(H − 1) 1/(H − 1) 0

0 0
. . .

...
... 0

0 0 0 1/2 1/2 0

0 0 0 0 1 0

0 0 0 0 0 Id

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where Id denotes the identity matrix. If the route stops early
and has for example only 3 nodes while H = 4, then, after
re-indexing the nodes, D(t) can be written as:⎛

⎜⎜⎝
1/4 1/4 1/2 0

0 1/3 2/3 0

0 0 1 0

0 0 0 Id

⎞
⎟⎟⎠ .

Note that D(t) is indeed stochastic for all t. It is upper-
triangular as well: One-Way Averaging does not require to
route information backwards along the path. Furthermore,
{D(t)}t>0 verifies Assumption 1. First, {D(t)}t>0 is an i.i.d.
sequence. Second, {D(t)}t>0 have positive diagonals. Third,
if the network is connected and if the routes generated by
distributions {Zi}1≤i≤n and {Hi}1≤i≤n connect the network,
then E[D] is irreducible. Therefore, One-Way Averaging is a
successful distributed averaging algorithm. Finally, routes can
cross each other without corrupting the algorithm (the resulting
diffusion matrices are still stochastic).

D. Simulation

One-Way Averaging and Path Averaging were run (Matlab)
on random geometric graphs on the unit square, using the
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same routes for a fair comparison. At each iteration t, the
number H(t) of hops was generated with H uniform in
[
1/

√
2r(n)�, 


√
2/r(n)�] and the target Z(t) was drawn in

the following way: let I be the coordinates of the woken node,
and let U be a point drawn uniformly at random in the unit
square, then

Z(t) = I + 3
U − I

‖U − I‖
2

.

Let C(t1, t2) be the message cost of a given algorithm
from iteration t1 to iteration t2. For One-Way Averaging,
C(t1, t2) =

∑t2
t=t1

R(t), where R(t) ≤ H(t) is the effective
route length at iteration t. Because Path Averaging routes
information back and forth, the cost of one iteration is taken to
be equal to twice the route length: C(t1, t2) = 2

∑t2
t=t1

R(t).
Let ε(t) = x(t) − xave1. The empirical consensus cost is
defined as:

Cemp(t1, t2) =
C(t1, t2)

log ‖ε(t1)‖ − log ‖ε(t2)‖
,

so that

‖ε(t2)‖ = ‖ε(t1)‖ exp
(
− C(t1, t2)

Cemp(t1, t2)

)
.

In Fig. 1, we display the empirical consensus cost of both
algorithms, with t1 = 750 and t2 growing linearly with n. We
can see that One-Way Averaging performs better than Path
Averaging on this example. Although One-Way Averaging
converges slower in terms of iterations, spending twice as few
messages per iteration is sufficient here to outperform Path
Averaging.

The speed of convergence depends on the network but
also on {Zi}1≤i≤n and {Hi}1≤i≤n, which we have not
optimized. It would be interesting in further work to compute
the speed of convergence of Weighted Gossip, and to derive
optimal distributions {Zi}1≤i≤n and {Hi}1≤i≤n for a given
network using One-Way Averaging. As a conclusion, One-Way
Averaging seems to have the same diffusive qualities as Path
Averaging while being more robust at the same time.
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VI. CONCLUSION

We proved that weighted gossip algorithms converge to
average consensus with probability 1 in a very general set-
ting, i.e. in connected networks, with stationary and ergodic
iterations, and with a simple stability condition (positive diag-
onals). We believe that dropping double stochasticity opens
great opportunities in designing new distributed averaging
algorithms that are more robust and adapted to the specificities
of each network. One-Way Averaging for example is more
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Fig. 1. Comparison of the consensus cost for One-Way Averaging and Path
Averaging in random geometric graphs of increasing sizes n. The connection
radius scales as r(n) =

√
6 logn/n. Display of Cemp(t1, t2) averaged over

15 graphs and 4 simulation runs per graph.

robust than Path Averaging, and it surprisingly consumes fewer
messages on simulations. Also, double stochasticity is difficult
to enforce in a distributed manner in directed graphs using
unidirectional communications. With Weighted Gossip, one
could easily build averaging algorithms for directed networks
that are reliable enough not to require acknowledgements.

The next step of this work is to compute analytically the
speed of convergence of Weighted Gossip. In classical Gossip,
double stochasticity would greatly simplify derivations, but
this feature disappears in Weighted Gossip, which makes the
problem more difficult.
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[5] F. Bénézit, A. Dimakis, P. Thiran, and M. Vetterli, “Order-optimal con-
sensus through randomized path averaging,” submitted for publication.

[6] A. Nedic, A. Olshevsky, A. Ozdaglar, and J. Tsitsiklis, “On distributed
averaging algorithms and quantization effects,” in IEEE Conference on
Decision and Control, 2008, pp. 4825–4830.

[7] B. Gharesifard and J. Cortés, “When does a digraph admit a doubly
stochastic adjacency matrix?” in submitted to the American Control
Conference, 2010.

[8] A. Tahbaz-Salehi and A. Jadbabaie, “Consensus over ergodic stationary
graph processes,” IEEE Transactions on Automatic Control, 2009.

[9] ——, “Necessary and sufficient conditions for consensus over random
independent and identically distributed switching graphs,” in IEEE
Conference on Decision and Control, 2007, pp. 4209–4214.
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