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The phase diagram of the spin-1 chain with bilinear-biquadratic and next-nearest-neighbor interactions, recently
investigated by Pixley, Shashi, and Nevidomskyy [Phys. Rev. B 90, 214426 (2014)], has been revisited in the light
of results we have recently obtained on a similar model. Combining extensive density-matrix renormalization-
group simulations with conformal-field theory arguments, we confirm the presence of the three phases identified
by Pixley et al., a Haldane phase, a next-nearest-neighbor (NNN) Haldane phase, and a dimerized phase, but we
come to significantly different conclusions regarding the nature of the phase transitions to the dimerized phase:
(i) We provide numerical evidence of a continuous Ising transition between the NNN-Haldane phase and the
dimerized phase. (ii) We show that the tricritical end point, where the continuous transition between the Haldane
phase and the dimerized phase turns into a first-order transition, is distinct from the triple point where the three
phases meet. (iii) Finally, we demonstrate that the tricritical end point is in the same Wess-Zumino-Witten SU(2),
universality class as the continuous transition line that ends at this point.
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I. MOTIVATION

Two years ago, the phase diagram of the bilinear-
biquadratic spin-1 chain with next-nearest-neighbor (NNN)
interaction has been mapped out by Pixley, Shashi, and
Nevidomskyy [1]. It consists of three phases, and the nature of
the phase transitions has been determined using density-matrix
renormalization-group (DMRG) and field-theory arguments.
More recently, we have investigated a similar model in
which the biquadratic interaction is replaced by a three-site
interaction that provides the appropriate generalization of the
spin-1/2 Majumdar-Ghosh chain [2]. Much to our surprise,
while the competing phases are the same as for the model
with biquadratic interaction—Haldane, NNN Haldane (called
NNN-AKLT in Ref. [1]), and dimerized—we came to signifi-
cantly different conclusions regarding the transitions between
them. The aim of this Comment is to reinvestigate the nature of
the phase transitions in the model with biquadratic interactions
along the lines of Ref. [2]. As we will see, this leads to a
different phase diagram that turns out to be qualitatively similar
to that of the model with three-site interactions.

II. PHASE DIAGRAM
The J; — J» — Jp model is described by the Hamiltonian

H = Z 1S - Sigt + BSict - Sipr + J(Siz1 -8 (D)

Ji =1 throughout the paper. In the convention of Ref. [1],
J» =« and J, = B. Our main results are summarized in the
phase diagram of Fig. 1. Each phase may be schematically
illustrated by valence bond pictures, where each spin § = 1
is represented as a pair of spin-1/2 (dots). Each spin-1/2 can
form a singlet with one of its neighbors (lines), and the spin-
1 singlets of the dimerized phase are schematically shown
as double lines. In this representation, the appearance of the
unpaired edge spins 1/2 that form low-lying edge excitations
is very intuitive.

Below, with the help of extensive density-matrix
renormalization-group (DMRG) [3-6] calculations, we will
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demonstrate the following: (i) The phase transition between
the NNN-Haldane phase and the dimerized phase is continuous
and in the Ising universality class, and not first order. (ii) The
continuous Wess-Zumino-Witten (WZW) SU(2), transition
starts at the Takhtajan-Babujian (TB) point and terminates
at a tricritical point that is distinct from the triple point. (iii)
Beyond the tricritical point, the phase transition between the
Haldane phase and the dimerized phase is first order. (iv) The
tricritical point is in the same WZW SU(2), universality class
as the critical line that ends at that point, and not in the WZW
SU(2)4 universality class, as suggested in Ref. [1].

III. ISING TRANSITION

Let us first consider the transition between the NNN-
Haldane phase and the dimerized phase. We define the local
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FIG. 1. Phase diagram of the spin-1 chain with next-nearest-
neighbor coupling J, and biquadratic interaction J;,. The transition
from the dimerized phase to the Haldane phase starts at the Takhtajan-
Babudjian (TB) point, is continuous along the solid line, with central
charge ¢ = 3/2, and first order along the dashed line. The transition
from the NNN-Haldane phase to the dimerized phase is a continuous
transition in the Ising universality class with central charge ¢ = 1/2.
The transition between the Haldane phase and the NNN-Haldane
phase is always first order.
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FIG. 2. (a) Log-log plot of the midchain dimerization in open
chain as a function of the number of sites N for J, = 1 and different
values of Jj,. The linear curve corresponds to the Ising critical point,
and its slope to the critical exponent d. This leads to J, = —0.223
and d = 0.129, in good agreement with the prediction 1/8 for Ising.
(b) Site dependence of D(j,N) at the critical point fitted to 1/(Nr)?,
where r = sin(zrj/N). Inset: same plot in log-log scale. The data
points and the fitting lines overlap for the left and right halves of
the chain due to the symmetry of the sinus with respect to 7 /2.
The fit leads to an exponent d = 0.129, again close to the Ising
prediction 1/8.

dimerization as D(j,N) = |(§j . S‘jH) — (S'j,l . §j)|, where
j is the site index and N is the total number of spins. In
order to locate the phase boundaries, we look at the midchain
dimerization D(N /2,N) around the transition as a function of
system size N. In the NNN-Haldane phase, the dimerization
vanishes with the system size, while in the dimerized phase it
stays finite. In finite-size chains, we found that the dimerization
increases continuously from NNN-Haldane phase to the
dimerized phase, in agreement with the numerical results of
Ref. [1]. The separatrix in a log-log plot corresponds to the
phase transition, and its slope is equal to the critical exponent
(see Fig. 2). Since open boundaries favor dimerization, they
correspond to nonzero boundary magnetic field in the Ising
model. From boundary conformal field theory (CFT), the
magnetization at the critical point is expected to decay away
from the boundary as [7] (o(x)) o< 1/x'/8. Moreover, for
a finite system (o (x)) oc 1/[(N/m)sin(zrx/N)]'/3. Identify-
ing the local dimerization with o(x), one gets D(j,N)
1/[N sin(rj/N)]'/* and in particular D(N/2,N) o< 1/N'/8.
The critical exponent obtained numerically, d ~ 0.129, is in
good agreement with the Ising prediction.

We identify open boundary conditions (OBCs) in our model
with 1, 1 boundary conditions in the Ising model for N even
and with 1, | boundary conditions for N odd, where the
arrows refer to the directions of boundary magnetic fields in
the Ising model [2]. This follows because OBCs favor the
same sign of the dimerization at both ends of the system
for N even but opposite signs for N odd. Then according
to conformal field theory (CFT), the ground-state energy in an
open Ising chain scales with the system size N as E = gyN +
g1 —mv/(48N) for N even and E = ggN + &) + 7v/(23N)
for N odd [8], where gy and & are two nonuniversal constants.
&o corresponds to the energy per site in the thermodynamic
limit, and & depends on the boundary conditions. The resulting
three parameter fits performed with respect to &g, €1, and v are
presented in Figs. 3(a) and 3(b).

We have calculated the lowest four excited-state energies
for both parities of N in the singlet sector as well as the
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FIG. 3. Ground-state and excitation energy at J, = 1 and J, =
—0.223, a point that belongs to the Ising critical line. (a),(b) Linear
scaling of the ground-state energy per site in an open chain with 1/ N>
after subtracting the &( and &, terms for even and odd number of sites.
(c),(d) Energy gaps in the singlet and triplet sectors for OBCs as a
function of 1/N for even and odd number of sites. The slope of the
singlet gap gives access to the value of the velocity. Insets: Conformal
towers. Grey lines show Ising conformal towers for / (N even) and
for € (N odd). Blue symbols correspond to DMRG data.

triplet gap; see Figs. 3(c) and 3(d). The excitation energies in
the singlet sector reveal the expected Ising conformal tower
of the identity primary field I for N even and of the energy
primary field € for N odd with scaling dimensions O and 1/2
respectively [9]. This definitely establishes that the transition
is continuous and in the Ising universality class.

By contrast, the singlet-triplet gap remains finite. In Ref.
[1], the authors came to the same conclusion regarding the
singlet-triplet gap. However, they did not investigate the singlet
sector. So they came to the conclusion that there is no gap
closing at the transition, and accordingly that the transition
must be first order.

IV. TRANSITION BETWEEN HALDANE
AND DIMERIZED PHASES

As mentioned above, the transition between the Haldane
phase and the dimerized phase starts at the TB point, where
it is continuous in the WZW SU(2), universality class, and
terminates at the tricritical point, where the transition becomes
first order. The SU(2), phase transition is characterized by a
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central charge ¢ = 3/2 and by the critical exponentd = 3/8 of
the operator tr g, the j = 1/2 primary operator in the SU(2),
WZW model that describes dimerization:

3} . §i+1 X (—l)itr g + uniform part.

In Ref. [1], the main argument in favor of the WZW SU(2)4
universality class at the end point was based on the central
charge. It was extracted from the scaling of the entanglement
entropy Sy(n) with block size n in open chains of size N
according to the Calabrese-Cardy formula [10]:

c |:2N . (nn)} _

S(n) = —-log| —ssin{ — | | + s; + logg, 2)
6 b4 N

where logg is a correction term that depends on the confor-

mally invariant boundary conditions. Using an open chain with

N = 90 sites, the authors of Ref. [1] came to the conclusion

that the central charge is around ¢ = 2.

Since the finite-size effects for open systems are usually
quite strong for the extraction of the central charge, we have
revisited this conclusion using periodic systems. Among the
various ways of implementing periodic boundary conditions
in the matrix product state formulation of DMRG, we have
chosen the implementation that allows one to extract the
entanglement entropy (and then the central charge) directly
from the ground state without further approximations: We have
looked for the ground state of an open chain with an additional
interaction between the first and last sites, as in conventional
DMRG. The coupling between the first and the last bond
increases the complexity of the algorithm and slows down
the convergence to the ground state, therefore the accessible
system sizes are much smaller for periodic chains. We have
performed five sweeps increasing linearly the number of kept
state up to 500, and 5—-10 additional sweeps with “jiggling” the
number of kept states around this value, until the convergence
was reached. In Fig. 4(a), we present results for the central
charge extracted from fits of the entanglement entropy to the
Calabrese-Cardy formula for periodic systems:

c N . mn
S(n) = 3 log |:; sin <W>] + 7. 3)

The results for N = 16, 20, and 30 sites are shown. The central
charge extracted from periodic chains has very small finite-size
dependence, and it is clear that it never exceeds significantly
the value ¢ = 3/2. This implies that the end point is in the
WZW SU(2), universality class. To recover this result with
open boundary conditions, one should presumably use systems
with much more than 90 sites.

We now confirm these results by calculating the critical
exponent and the conformal towers. The tricritical point is
characterized by the absence of logarithmic corrections. This
is the only point along the critical line where the critical
exponents can be accurately extracted from finite sizes. We
again look for the separatrix in the scaling of the midchain
dimerization in order to locate the critical line, as described
in the previous section. The slope gives an apparent critical
exponent, presented in Fig. 4(c). The point at which the slope
is the closest to the predicted value 3/8 [Fig. 4(a)] is identified
with the end point. The critical exponent obtained at the end
point from a scaling analysis of the dimerization D(j,N)
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FIG. 4. (a) Central charge along the critical line as determined
from fitting the entanglement entropy of periodic chains with the
Calabrese-Cardy formula [10]. (b) Apparent critical exponent along
the SU(2), critical line as a function of J, from the slope of the log-log
plot D(N/2,N) as a function of N for the values J, for which it is
linear. The grey line is the theoretical value of the exponent, 3/8. (c)
Log-log plot of the midchain dimerization as a function of the number
of sites N at the critical point J, = 0.37 and J, = —0.331. The slope
corresponds to the critical exponent d = 0.364, in good agreement
with 3/8 for WZW SU(2),. (d) Site dependence of D(j,N) at the
critical point fitted to 1/(Nr)?, where r = sin(;rj/N). Inset: same
plot in log-log scale. The data points and the fitting lines overlap for
the left and right halves of the chain. The fit leads to an exponent
d = 0.351, again close to the WZW SU(2), prediction 3/8.

with the spin position j for a fixed chain length N is also
in good agreement with the prediction d = 3/8; see Fig. 4(b).
The position of the end point deduced from this analysis is
J» =0.37£0.01,J, = —0.331 £ 0.001, well separated from
the triple point.

In Ref. [1] it was suggested that these two points coincide.
While the estimate of the triple point 0.47 < J, < 0.55 and
—0.2 < Jp < —0.15 reported in Ref. [1] is consistent with our
results, we think that the two points do not coincide, and that
the tricritical point lies clearly outside this interval. We have
actually checked that the transition from the dimerized phase
to the Haldane phase is first order between these two points by
looking at the dimerization as in Ref. [11], with similar results.

The ground-state energies for even and odd number of sites
are expected to scale according to [2]

E N K N LR
even = €0 +81_@’ odd = €0 +81+16—N- 4)
In order to build the conformal tower at the end point

J» =0.37 and J, = —0.331, we calculate the gap between

the ground-state energy and the lowest energies in different

sectors of Sg,. The gap scales linearly with 1/N, and the slope
gives access to the velocity. In a chain with an even number
of sites, the ground state is a singlet and the first excited states
is a triplet, while in a chain with an odd number of sites, the
ground state is in the triplet sector. The DMRG data on the
scaling are presented in Fig. 5.
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FIG. 5. Ground-state and excitation energy at J, = 0.37 and J, =
—0.331, a point that belongs to the critical line between the Haldane
and the Dimerized phases. (a),(b) Linear scaling of the ground-state
energy per site in an open chain with 1/N? after subtracting the gy
and ¢; terms for even and odd number of sites. (c),(d) Energy gap
between the ground state and the lowest energy states in different
sectors of S;"‘ =0,1,...,5 as a function of 1/N for even and odd
number of sites. Insets: Conformal towers. Blue symbols correspond
to DMRG data. Red lines are the expected conformal towers [2], with
a velocity defined by the finite-size scaling of the ground-state energy
for N even.

In order to prove that the point J, = 0.37 and J, = —0.331
is indeed the end point, we checked that the logarithmic
corrections destroy the conformal towers away from this point
[2]. In order to do so, we have calculated the velocities by
performing a linear fit of the gap for the first three levels in
each tower. The conformal towers are reconstructed only when
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FIG. 6. Velocity along the critical line between the Haldane phase
and the dimerized phase extracted from the gap between various
energy levels and the ground state. For clarity, results for N = 50,51
and N = 30,31 are shifted vertically by 1 and 2 respectively.

all velocities take the same values. Otherwise the structure is
perturbed. Figure 6 provides examples of velocities extracted
along the critical line for different sizes. The crossing points
around J, = 0.37 are compatible with our determination of
the tricritical point.

V. CONCLUSION

Extensive DMRG calculations coupled to CFT arguments
have revealed significant differences with the original phase
diagram of Ref. [1] regarding the nature of the phase
transitions: (i) The phase transition between NNN-Haldane
phase and dimerized phase turns out to be continuous, and in
the Ising universality class. (ii) The tricritical point at which
the continuous WZW SU(2), transition turns into a first order
occurs below the triple point. (iii) This tricritical point is in the
same WZW SU(2), universality class as the critical line that
ends at this point.

The similarities of the phase diagrams for biquadratic and
three-site interactions suggest that their main features are
generic for the spontaneous dimerization transitions of spin-1
chains.

Finally, since the end point of the WZW SU(2), critical
line and the triple point do not coincide but are separated
by a first-order transition line between the Haldane and the
dimerized phases, as in the model of Ref. [2], we anticipate
that the conclusions of Ref. [1] regarding the end points of the
disorder lines will also be modified, and that they might end
at the first-order transition line and not at the triple point or at
the WZW SU(2), critical line. This goes beyond the scope of
this Comment however and is left for future investigation.
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