SMD pressure and flow sensor for compressed air in LTCC technology with integrated electronics

Y. Fournier, G. Boutinard Rouelle, N. Craquelin, T. Maeder, P. Ryser

Laboratoire de Production Microtechnique, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

Original version: Procedia Chemistry - Proceedings of Eurosensors XXIII 1 (1), 1471-1474, 2009

http://hdl.handle.net/10.1016/j.proche.2009.07.367

Abstract
We propose an SMD (surface mount device) sensor in LTCC (low-temperature co-fired ceramic) technology specially designed for standard industrial compressed air. It combines the measurement of pressure, flow, and temperature, with its integrated signal conditioning electronics. Such a sensor can be mounted on an integrated electro-fluidic platform like a standard component using surface mount technology, obviating the need for both wires and tubes. Usually, fluidic sensors in LTCC are dedicated to one physical quantity and need external electronics. The device proposed is the fusion of two independent sensors developed previously: one measuring pressure, the other one measuring flow and temperature.

Keywords: LTCC; integrated sensor; pressure; flow; temperature; SMD mounting

1. Introduction
Over the past years, the fields of sensors and microfluidics in LTCC technology have been explored, adding new possibilities to this material initially developed for high-density electronics and packaging. Research has led to the emergence of micro-heaters, flow sensors, pressure sensors, micro-reactors, fluidic mixing channels and bioreactors. However, these devices were mainly developed as stand-alone products without integrated signal amplification and conditioning, and not suited for industrial applications with surface mounting technology (SMT).

Our laboratory had previously developed different kinds of sensors in standard thick-film technology and in LTCC, aimed for the low-cost, mass production industry. For instance, a micro-flow sensor for liquids\(^1\) was integrated in a disposable microreactor driven under LabView. An SMD pressure sensor with integrated electronics was also realized\(^2\), followed by a flow sensor demonstrator to determine the most suitable measurement principle (calorimetric or anemometric)\(^3\).

In this work we propose for the first time a combined SMD sensor in LTCC for measuring compressed air pressure, flow and accessorially temperature, integrating signal conditioning electronics for linearization, adjustment and (for pressure and flow) temperature compensation. The pressure measurement is based on thick-film piezoresistors mounted in Wheatstone bridge on an LTCC membrane (Fig. 1 (a) to 1 (c)); the nominal range is 0...6 bars, a repeatability of 0.1%. The air flow measurement is based on the anemometric principle, with a heater resistor placed in the flow; see Fig. 1 (e). The intended range is between 0 and 100 NL/min when using a bypass (only a fraction of the total flow is measured). Finally, two thermistors upstream and downstream give the fluid temperature.

The presence of both discrete SMD components soldered on top of the sensor, and soldering pads at the bottom for the fluidic and electrical connections is made possible by the use of two soldering pastes with different melting points (lead free SnCuAg for the former, and SnPb or SnBi for the latter); cf Fig. 1 (c) and 1 (d).

The design of the currently fabricated integrated SMD sensor is described, as well as the performances and limitations of the individual former prototypes from which it originates.
2. Integrated sensor: design considerations

The sensor is currently under manufacturing, but the results will be available for the oral presentation. This chapter will then focus onto the design and the layout.

2.1. Design guidelines

The integrated sensor was designed with the following guidelines:

1. Pressure sensor principle: piezoresistors in full Wheatstone bridge on a membrane. LTCC must be able to sustain an air pressure of at least 10 bars (nominally 6), in a non-aggressive fluid.

2. Flow sensor principle: anemometric, with 1 heating thermistor suspended on a bridge in the airflow. Aimed range is between 0 and 100 NL/min with a bypass. The reaction time must not exceed 3 seconds.

3. Temperature sensor: amplification of a resistive bridge comprising thermoresistors placed toward inlets. The intended range is 0…100°C.

4. Mounting-induced stresses should not affect the sensor measurements (mainly for the pressure).

5. Device must be compatible with surface mount technology (flip chip). No external wires and no tube for connections; all connections must be at the bottom, except for test pins.

6. Electronics for processing the signals must be integrated; maximum of five electrical connections: power, the three signals (one for each physical quantity), and ground.

7. Laser trimming should be avoided, or limited to coarse pre-trimming operations.

8. The heat generated by the power transistor and the residual heat from the heating thermistor must have a minimum impact on the flow and temperature measurement -> drain heat to a bottom thermal plate.
2.2. Mechanical arrangement

Based on previous attempts\(^2\), the tape system chosen is the DuPont (DP) 951 GreenTapeTM PX (254 \(\mu\)m unfired thickness). Thinner tapes (114, 165 \(\mu\)m) are a possible choice for the membrane (at the expense of reliability) or for the tape supporting the resistors, but this would require more testing. The retained pastes are Ag DP 6141 for vias, Ag:Pd DP 6146 for tracks and pads, Ag DP 6145 for inner ground plane, DP 2041 (10 k\(\Omega\)/\(\square\)) for the piezoresistors, and DP 5092D for the thermistors; all will be cofired. For post-firing there will be an overglaze (organic or ESL G-481) on both faces, and finally lead-free 96.5Sn-3Ag-0.5Cu solder paste on top for the SMD components.

Due to the rather contradictory aspects of the fluidic functions involved, the placement of the sensing elements and the overall shape of the circuit are of capital importance. While the pressure sensor has to avoid heat and mechanical stresses, the thermal flow sensor must be at the same time insulated from external influences, and evacuate parasitic heat efficiently to the outside. Furthermore, the temperature sensor should measure the actual fluid temperature, and not the result of the flow measurement.

These considerations rapidly led to the selection of an elongated shape for the device, as depicted on Fig 2. The fluidic inlet and outlet form the outmost parts of the bottom footprint of the circuit, which isolates the pressure sensor from mounting stresses: in order to ensure the mechanical stability, all the weight and electrical connections must be concentrated between these two "feet".

Fig. 2. Schematic top view of the integrated sensor, showing the placement of the fluidic functions and the elongated shape of the circuit.

3. Air flow sensor

On the former prototype\(^2\), two thermal mass flow measuring principles were tested: calorimetric (heat diffuses faster than air flows), useful for small flows, and anemometric (flow goes faster than heat diffuses), better suited for high flows. In both cases, the regulation is made by maintaining the central heating resistor at constant temperature, approximately 100\(^\circ\)C above the ambient (in practice, this is done by keeping a 30\% higher resistance value, due to the TCE of 3000 ppm/K of the DP 2041 paste). The Fig. 3 depicts the bypass and mounting on fluidic PCB.
Fig. 3. Schematic view of the flow sensor demonstrator mounted on a fluidic PCB, depicting the bypass and thermistors.

4. Pressure sensor

To decouple the pressure membrane from the mechanical and thermal stresses (due to soldering during assembly, heat dissipation, etc.), it is advantageous to position it in a cantilever fashion at one end of the circuit, and to place oblong cuts to create "hinges" between the pressure measuring area and the main part of the sensor.

Measurement of the demonstrator of Fig. 1 (b), fitted with the ZMD31010 signal conditioner, gave outstanding results: the repeatability of the sensor was better than 0.1%. Depending on the voltage reference employed, more testing is required to determine its absolute precision, but it is expected to be between 1 and 2% of full scale.

5. Temperature sensor

For the temperature measurement, it was decided to put two thermistors, one close to each fluidic connection to get an averaging and to be insensitive to flow inversions. This was preferred to placing one thermistor in a dead end channel, where the response time would have been greater. The second half of the LM358 amplifier is employed for signal conditioning, with the help of SMD resistors for adjusting the gain.
6. Conclusion

The design of a combined LTCC fluidic sensor allowing measurement of standard industrial compressed air pressure, flow and temperature with integrated electronics and which can be mounted with standard surface mount technologies was discussed, and an elegant solution is proposed on Fig 4. The individual functions having been tested with demonstrators in previous works, we are confident that this new design will be successful. The nominal ranges of measurement are 0...6 bars, 0…100 NL/min, and 0…100°C.

Acknowledgements

The following people from the LPM are warmly thanked: Mr. M. Garcin for his help with screen-printing operations, Mr. N. Dumontier for hardware support, and Mr. S. Wuilloud for improving the lamination fixture.

References