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Motivated by the possibility to load multicolor fermionic atoms in optical lattices, we study the entropy

dependence of the properties of the one-dimensional antiferromagnetic SUðNÞ Heisenberg model, the

effective model of the SUðNÞ Hubbard model with one particle per site (filling 1=N) in the large U=t limit.

Using continuous-time world-line Monte Carlo simulations for N ¼ 2–5, we show that characteristic

short-range correlations develop at low temperature as a precursor of the ground state algebraic

correlations. We also calculate the entropy as a function of temperature, and we show that the first

sign of short-range order appears at an entropy per particle that increases with N and already reaches

0:8kB at N ¼ 4, in the range of experimentally accessible values.

DOI: 10.1103/PhysRevLett.109.205306 PACS numbers: 67.85.�d, 02.70.�c, 75.10.Jm

Lattice SUðNÞmodels play an ever-increasing role in the
investigation of strongly correlated systems. The first sys-
tematic use of these models took place in the context of the
large-N generalization of the SU(2) Heisenberg model, in
which conjugate (or self-conjugate) representations are put
on the two sublattices of the square lattice so that a SUðNÞ
singlet can be formed on two sites [1–3]. Over the years,
another class of SUðNÞ models with the same representa-
tion at each site has appeared as the relevant description of
the low temperature properties in several contexts. In
particular, the SU(3) model corresponds to the spin-1
Heisenberg model with equal bilinear and biquadratic
interactions [4–6], while the SU(4) model is equivalent to
the symmetric version of the Kugel-Khomskii model of
Mott insulators with orbital degeneracy [7,8].

These models have attracted renewed attention recently
as the appropriate low-energy theory of ultracold fermionic
gases loaded in optical lattices [9]. As in Thouless’ descrip-
tion of exchange processes in crystalline 3He [10], the
dominant process in the Mott insulating phase with one
atom per site is the permutation Pij between nearest neigh-

bors i and j. In 3He, the nucleus has a spin 1=2, and, up to a
constant, the resulting model is the standard SU(2)
Heisenberg model, since, for spin 1=2, the permutation

can be written Pij ¼ 2 ~Si ~Sj þ 1=2. For a general nuclear

spin I, the number N of different atomic states is equal to
2Iþ 1, and the resulting model is the SUðNÞ Heisenberg
model with the N-fold degenerate fundamental represen-
tation at each site (see below for details). Alkaline
rare earth atoms, in which the nuclear spin can take values
from 1=2 to 9=2, are the most promising candidates
to implement these models with cold atoms in optical
lattices.

In that respect, a very important question concerns the
possibility to observe correlations typical of the low-
energy properties of these models. With cold atoms, since
it is the entropy rather than the temperature which is

controlled [11], the relevant question is whether the mini-
mum experimentally realizable entropy is larger than that
where correlations are likely to become strong. In current
state-of-the-art experimental setups, the lower limit for
fermions with N ¼ 2 is equal to 0:77kB per particle [12].
For the SU(2) case, the first signs of the Mott transition and
of nearest-neighbor antiferromagnetic correlations have
been predicted to appear below an entropy per atom of
about kB ln2 ’ 0:693kB [13,14], just below the current
experimental limit, and longer-range correlations will be
difficult to detect because they develop at lower entropy.
For instance, on the cubic lattice, Néel ordering takes place
at an entropy per site of 0:338kB.
The first hint that increasing the number of colors might

help has been obtained in the context of a high temperature
investigation of the N-flavor Hubbard model by Hazzard
et al. [15], who have shown that the effective temperature
reached after introducing the optical lattice decreases with
N under fairly general conditions. However, to the best of
our knowledge, no attempt has been made so far to deter-
mine how correlations develop when reducing the entropy
and to what extent this depends on N.
In this Letter, we address this issue in the context

of the one-dimensional (1D) antiferromagnetic SUðNÞ
Heisenberg model on the basis of extensive quantum
Monte Carlo (QMC) simulations. As we shall see, the
ground state algebraic correlations lead to characteristic
anomalies in the structure factor upon lowering the tem-
perature. These anomalies become visible only at quite low
temperature, but, remarkably enough, the corresponding
entropy per particle increases with N, leading to observ-
able qualitative effects with current experimental setups
for N � 4.
The SU ðNÞ Heisenberg model.— A good starting point

to discuss N-color fermionic atoms loaded in an optical
lattice is the SUðNÞ Hubbard model defined by the
Hamiltonian:
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H ¼ t
X
hi;ji�

ðcy�ic�j þ H:c:Þ þU
X

i;�<�

n�in�i; (1)

where cyi;� and ci;� are creation and annihilation operators,

respectively, of a fermion of color � ¼ 1 . . .N on site i and
the sum is over the first neighbors of a periodic chain of
length L. n�i is the number of fermions of color � on site i.
At filling 1=N, i.e., with one fermion per site, the ground
state is a Mott insulator for large enoughU=t [16–18], and,
to second order in t=U, the low-energy effective
Hamiltonian is the SUðNÞ Heisenberg model with the
fundamental SUðNÞ representation at each site and with
coupling constant J ¼ 2t2=U. Setting the energy unit by
J ¼ 1, this Hamiltonian can be written (up to an additive
constant)

H ¼ X
hiji

Pij; (2)

where Pij permutes the colors on sites i and j. If we denote

by S��i the operator that replaces color� by� on site i, this
permutation operator can be written as

Pij ¼
X
�;�

S��i S��j : (3)

This effective Hamiltonian is an accurate description of
the system provided the temperature is much smaller than
the Mott gap. In terms of entropy, the criterion is actually
quite simple. The high temperature limit of the entropy per
site of the SUðNÞ Hubbard model at 1=N filling can be
shown to be equal to kB½N lnN � ðN � 1Þ lnðN � 1Þ�,
while that of the SUðNÞ Heisenberg model is equal to
kB lnN. So the description in terms of the Heisenberg
model can be expected to be accurate when the entropy
is below kB lnN. For N > 2, this entropy is much larger
than the current experimental limit: For SU(3), it is already
equal to kB ln3 ’ 1:099kB, and it increases with N. Of
course, this is not the whole story, since what really matters
is the entropy below which specific correlations develop,
but this is encouraging.

A peculiar characteristic of these SUðNÞ models is that
one needsN sites to form a singlet. This is reflected in their
ground state properties: plaquette singlet ground state for
simplex-based models [19–21] or for the SU(4) model on a
ladder [22], 3-sublattice color order for SU(3) on the
triangular [4] and square [5] lattices, dimerized ground
state with Néel long-range [23] or algebraic [24] order
for SU(4) on the square lattice, chiral spin liquids with
fractional fluxes for large N [25]. In one dimension, the
SUðNÞ model has been solved with the Bethe ansatz for
arbitrary N by Sutherland [26], who showed that there are
N � 1 branches of elementary fractional excitations. They
all have the same velocity v ¼ 2�=N at small energy [26],
and pairs of zero energy elementary fractional excitations
have momentum 2�n=N, with n an integer [27]. In the
thermodynamic limit, the energy per site is given by

E0ðNÞ ¼ 2
X1
k¼2

ð�1Þk�ðkÞ
Nk

� 1; (4)

where � is Riemann’s zeta function [26]. Some values are
given in Table I. Affleck has argued that the central charge
c should be equal to N � 1 [29], and Lee [30] has shown
that, at low temperature T, the entropy is given by

SðTÞ ¼ kBNðN � 1Þ
6

T þOðT2Þ; (5)

a direct consequence of c ¼ N � 1 and v ¼ 2�=N, since
the linear coefficient is equal to �c=3v.
The QMC algorithm.—QMC simulation is the most

efficient method to study the finite temperature properties
of interacting systems provided one can find a basis where
there is no minus sign problem, i.e., a basis in which all off-
diagonal matrix elements of the Hamiltonian are nonpos-
itive. For the SU(2) antiferromagnetic Heisenberg model
on bipartite lattices, this is easily achieved by a spin
rotation by � on one sublattice. For SUðNÞ with N > 2,
there is no such general solution, but in 1D one can get rid
of the minus sign on a chain with open boundary condi-
tions, as already noticed for the SU(4) model [31]. Let us
start from the natural basis consisting of the NL product
states �ij�ii ¼ j�0; . . . ; �L�1i, where �i is the color at
site i. In this basis, all off-diagonal elements of the SUðNÞ
model of Eq. (2) are either zero or positive. However, a
generalization of the Jordan-Wigner transformation allows
us to change all these signs on an open chain. This trans-
formation is defined by

j�0; . . . ; �L�1i ! ð�1Þrð�0;...;�L�1Þj�0; . . . ; �L�1i; (6)

where rð�0; . . . ; �L�1Þ is the number of permutations
between different color particles on neighboring sites
needed to obtain a state such that the �i are ordered
(�i � �j for i < j). This basis change is equivalent to a

Hamiltonian transformation, the new Hamiltonian being
given by

H ¼ X
hiji

X
�

�
S��i S��j � X

���

S��i S��j

�
: (7)

On a periodic chain, the equivalence with the Hamiltonian
of Eq. (2) is not exact, but the difference disappears in the

TABLE I. Ground state energies per site obtained for several N
with the Bethe ansatz (BA) in the thermodynamic limit and on a
finite size chain [28] and at T ¼ 0:01 with the QMC algorithm
(see the text) on a L ¼ 60 chain with n ¼ 107 Monte Carlo
steps.

N BAðL ¼ 1Þ BAðL ¼ 60Þ QMCðL ¼ 60Þ
2 �0:386294 �0:38675ð2Þ
3 �0:703212 �0:7038228 �0:70384ð2Þ
4 �0:8251193 �0:82577ð2Þ
5 �0:884730 �0:88541ð2Þ

PRL 109, 205306 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

16 NOVEMBER 2012

205306-2



thermodynamic limit. So in the following we will simulate
the Hamiltonian of Eq. (7).

To do so, we have developed a continuous time world-
line algorithm with cluster updates [32] adapted to the
model of Eq. (7) with N colors [33]. Using this algorithm,
we have calculated the energy per site E, which is given by

E ¼
�
H

L

�
’ kBT

Ln

X
�

�X
hiji

Z
d���ið�Þ;�jð�Þ � ncð�Þ

�
; (8)

where n is the number of Monte Carlo steps and ncð�Þ the
number of world-line crossings in the configuration �, the
diagonal correlations defined by

CðjÞ ¼
�X

�

S��0 S��j

�
� 1

N
(9)

and the associated structure factor defined by

~CðkÞ ¼ 1

2�

N

N � 1

X
j

CðjÞeikj: (10)

This structure factor is normalized in such a way that
2�
L

P
k
~CðkÞ ¼ 1.

The results.—We have studied chains of length L ¼ 60
for T from 0.01 to 20 with a number of colors N ¼ 2, 3, 4,
and 5. The measurements were based on a number
of Monte Carlo steps n at least equal to 106. The

autocorrelation time measured by the binning method
indicates that around N steps are needed to obtain uncorre-
lated configurations, whatever the temperature, and that the
precision on the energy per site E is better than 10�4. This
could be confirmed by the comparison of the limit of the
energy when T ! 0 with the exact finite L value for SU(3)
[28]. Moreover, the energy of the ground state differs from
that of the thermodynamic limit by less than 8� 10�4. So,
for our purpose, the finite size effects can be considered to
be negligible (see Table I). The entropy per site S has been
deduced from the energy E by an integration from high
temperature:

SðTÞ ¼ Sð1Þ �
Z 1

T
d�

kB
�

dE

d�
; (11)

where Sð1Þ ¼ kB lnN. E and S are plotted in Fig. 1 for
different N as a function of T. Since the entropy is the
result of a numerical integration, it is important to check its
accuracy, especially at low temperature, since by construc-
tion it has to be correct at high temperature. Now, we know
that, at low temperature, the entropy must be linear with a
slope equal to kBNðN � 1Þ=6 [see Eq. (5)]. This is con-
firmed by the inset in Fig. 1(b), in which one clearly sees
that the entropies times 6=kBNðN � 1Þ lie on top of each
other at low temperature.
Now, the stabilization of the energy at low T occurs at a

temperature that decreases when N increases. Thus, one
could naively think that it will be more difficult to observe
the development of the ground state correlations when N
increases. However, this is not true if one considers the
entropy. Indeed, the entropy grows much faster at low
temperature when increasing N. So, the temperature cor-
responding to a given entropy decreases very fast when N
increases.

We now look at the diagonal correlations ~CðkÞ. They
have been calculated for different temperatures, but, in
view of the implications for ultracold fermionic gas, we
represent them as a function of the entropy per site S. Since
the system is 1D, there is no long-range order and, hence,
no Bragg peaks. Nevertheless, short-range correlations
develop at low entropy. They translate into finite height

peaks in ~CðkÞ at finite temperature and singularities at zero
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FIG. 1 (color online). Evolution of the energy per site E and of
the entropy per site S as a function of the temperature T for
different N on a L ¼ 60 chain. The inset shows the slope of the
entropy at T ¼ 0, given in Eq. (5). The curvature being positive
at T ¼ 0, the curves go higher than the tangent (dashed line).

FIG. 2 (color online). Evolution of the structure factor ~CðkÞ as a function of the entropy per site S for different N on a L ¼ 60 chain.
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temperature. The number and the position of these peaks
depend on the number of colors N. From the Bethe ansatz
solution, singularities are expected to occur at k ¼ 2p�=N
with p ¼ 1; . . . ; N � 1. The results of Fig. 2 agree with this
prediction: There is a single peak at � for SU(2), while
N � 1 peaks are indeed present for SUðNÞ at sufficiently
small entropy. Note, however, that all peaks do not have the
same amplitude for N � 4. For N ¼ 4 and 5, two types of
peaks not related by the symmetry k ! 2�� k are
present. The peaks at 2�=N and 2ðN � 1Þ�=N are much
more prominent, and they start to be visible at much larger
entropy.

At the maximal entropy, the structure factor ~CðkÞ is flat
(see Fig. 2). At large but finite entropy, it presents a broad
maximum at k ¼ � for all N. This reflects the simple fact
that colors tend to be different on neighboring sites. More
specific correlations appear upon lowering the entropy. For
SU(2), the peak at k ¼ � just gets more pronounced. To
observe the development of the singularity typical of the
SU(2) ground state, algebraic correlations will, however,
require to reach rather low entropy. This should be con-
trasted with the N > 2 cases, where a qualitative change in
the structure factor occurs upon reducing the entropy: The
broad peak at k ¼ � is replaced by peaks at 2�=N and
2ðN � 1Þ�=N. One can in principle read off the corre-
sponding entropy from Fig. 2. To come up with a quanti-
tative estimate, we note that, upon reducing the entropy, the
curvature of the structure factor at k ¼ � changes sign
from positive at high temperature to negative when the
peaks at 2�=N and 2ðN � 1Þ�=N appear. This occurs at
Sc=kB ¼ 0:58, 0.87, and 1.08 for N ¼ 3, 4, and 5, respec-
tively. This characteristic entropy Sc increases more or less
linearly withN as Sc ’ 0:2NkB, and forN ¼ 4 and 5, it lies

in the experimentally accessible range. This is mostly a
consequence of the temperature dependence of the entropy,
which grows much faster with N at low temperature. The
characteristic temperature at which deviations from the
broad peak at k ¼ � occur depends only weakly on N.
Finally, secondary peaks appear at lower temperature
(see Fig. 3).
Conclusions.—We have shown that the entropy at which

the periodicity characteristic of the zero temperature alge-
braic order of SUðNÞ chains is revealed increases signifi-
cantly with N. For N ¼ 4, this entropy is already larger
than the entropy per particle recently achieved in the
N ¼ 2 case in the center of the Mott insulating cloud
(0:77kB) [12]. Whether a similar entropy can be achieved
for N > 3 remains to be seen. As shown by Hazzard et al.
[15], if the initial temperature is fixed, the initial entropy in

a 3D trap increases with N as N1=3, implying that one
might have to go to values of N larger than 4 to reach a
final entropy low enough to observe characteristic correla-
tions. However, evaporative cooling might allow one to
reach initial entropies that are less dependent on N. In a
recent experiment on 173Yb, the initial entropy reported by
Sugawa et al. [34] for this N ¼ 6 case is not much higher
than in N ¼ 2 experiments [12]. It is our hope that the
present results will encourage the experimental investiga-
tion of the 1=N-filled Mott phase of N-color ultracold
fermionic atoms.
We thank Niels Blümer, Elena Gorelik, Daniel Greif,

and Sandro Wenzel for useful discussions. L.M. acknowl-
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Note added.—After submission of this work, we

received a preprint by Bonnes et al. [35] in which they
consider the same problem in the context of the SUðNÞ
Hubbard model. The approaches are complementary, and
the numerical results for N ¼ 3 are consistent in the tem-
perature range where they can be compared, yielding a
coherent picture from high temperature [35] to very low
temperature (present work).
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