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Abstract
During the last decade, distribution networks have experienced essential changes
driven by the integration of renewable-energy sources, batteries, electric-vehicle charg-
ing stations, etc. This results in not only opportunities, but also operational problems.
For example, the renewable power generation and the charging-station power con-
sumption can be very large, leading to line congestion and over-/under-voltage issues.
To solve the operational problems, we can develop methods that consist in directly
manipulating the power; this is feasible by means of power-electronic devices and
local controllers. For example, to address the line congestion and over-/under-voltage
issues, we can either perform power curtailment at the energy sources and charg-
ing stations, or use batteries and demand response to avoid excessive power. So far,
there is a growing number of works on managing distribution networks via direct
power manipulation. These works include both the typical ones, such as regulating
voltage/frequency by active/reactive power, and the pioneering ones, such as the Com-
melec that controls distribution networks by multi-agent systems and explicit power
setpoints. With the integrated loads/sources and the direct power manipulation, the
essence of distribution networks has changed. This gives us the concept of active dis-
tribution networks (ADNs). In this thesis, we focus on how to ensure network security
and achieve optimality in ADNs.

First, we study the AC power-flow problem in generically modelled multi-phase
ADNs, which is an inverse problem. It determines whether a target system power
injection has a corresponding system electrical state that fulfills the security constraints
and might need to be repeatedly solved in real time. For this problem, we apply the
fixed-point theory and establish explicit conditions for the existence and uniqueness of
the power-flow solution. When the conditions are satisfied, we guarantee the existence
of a power-flow solution and analytically specify a domain in which this solution is
unique. For this guaranteed solution, we further provide an efficient iterative method
to numerically compute it.

Second, we take into account that the actual system power injection might be
different from the target one, due to improperly modelled system dynamics, reaction
delays, and renewable-energy disturbances. As a consequence, it is important to
see whether we can ensure that the actual system electrical state always satisfies the
security constraints, given that the actual system power injection resides in some
known uncertainty set. We refer to this as the admissibility problem, which is another
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Abstract

inverse problem. For it, a major difficulty is that each system power injection might
correspond to zero or multiple system electrical states. We layout the theoretical
foundations for solving this problem. In addition, we develop two concrete solution
methods that can be implemented in practical ADNs.

Third, to decide the optimal system power injection, we study an AC optimal power
flow problem in generically modelled multi-phase ADNs. In this problem, we consider
wye/delta load/source connections and incorporate the non-singularity constraint.
We solve this problem by developing a successive local exploration method.

All proposed theories and methods have been numerically evaluated via IEEE/CI-
GRE test feeders.

Keywords: active distribution network, inverse problem, power-flow solvability,
fixed-point theory ,non-singular Jacobian, security constraint, admissibility, multi-
phase optimal power flow, uncertain power injection, wye/delta connection.
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Résumé
Au cours de la dernière décennie, les réseaux de distribution ont évolué pour s’adapter
à l’intégration de sources d’énergie renouvelable, de batteries, de stations de recharge
de véhicules électriques, etc. Ces changements ouvrent non seulement sur de nouvelles
opportunités, mais également sur certains problèmes opérationnels. Par exemple, la
génération d’énergie renouvelable ou la consommation d’énergie par les stations de
recharge peuvent être très grandes, ce qui peut entraîner la congestion de lignes et
occasionner des problèmes de sur ou sous-tension. Afin de résoudre les problèmes
opérationnels, nous pouvons développer des méthodes qui consistent à manipuler
directement la puissance; ceci peut se faire par le biais d’outils d’électronique de
puissance ou de contrôleurs locaux. Par exemple, pour répondre aux problèmes de
congestion de lignes causant une sur ou sous-tension, nous pouvons soit avoir recours
à une réduction de production d’énergie au niveau des sources ainsi qu’au niveau
des stations de recharge, soit avoir recours à des batteries avec des consommations
flexibles afin d’éviter une consommation excessive d’énergie. Un nombre grandissant
de travaux portent sur la gestion de réseaux de distribution par le biais d’une manipula-
tion de la puissance. Ces travaux incluent des solutions classiques comme la régulation
de la tension ou de la fréquence par la puissance active ou réactive. Ils incluent éga-
lement des solutions plus novatrices comme Commelec qui contrôle les réseaux de
distribution grâce à des systèmes multi-agents et à l’utilisation de consignes de puis-
sance explicites. Avec l’intégration de nouvelles ressources et la manipulation directe
des puissances, l’essence des réseaux de distribution a changé pour donner naissance
aux réseaux dynamiques de distribution (RDDs). Dans cette thèse, nous nous intéres-
sons aux méthodes permettant d’assurer la sécurité des réseaux et permettant une
utilisation optimale des RDDs.

Dans un premier temps, nous étudions le problème de l’écoulement des charges
dans les RDDs multi-phasés modélisés de façon générique, ce qui est un problème in-
verse. Ceci permet de déterminer si l’injection de puissance d’un système correspond à
un état électrique qui satisfait les contraintes de sécurité. Cet état devra éventuellement
être recalculé en temps réel. Pour ce problème, nous appliquons la théorie du point
fixe et établissons des conditions explicites pour l’existence et l’unicité d’une solution
aux équations du problème d’écoulement de charges. Lorsque les conditions sont
satisfaites , nous garantissons l’existence d’une solution et précisons de manière analy-
tique, le domaine dans lequel cette solution est unique. Nous fournissons également
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Résumé

une méthode efficace et itérative qui la calcule numériquement.
Dans un second temps, nous prenons en considération le fait que l’injection de

puissance du système réel puisse être différente de celle du système modélisé. Ceci
peut être dû à une mauvaise modélisation des dynamiques du système, à des réactions
de délais ou à des perturbations des énergies renouvelables. Par conséquent, l’injection
de puissance réelle du système réside dans un domaine d’incertitude connu. Celle-ci
influe sur l’état électrique du système et il est important de savoir si celui-ci satisfait
toujours les contraintes de sécurité ou non. Ce problème, également inverse, est appelé
problème d’admissibilité. Une difficulté majeure dans la résolution de ce problème,
est que chaque injection de puissance peut correspondre à zéro ou de multiples états
électriques du système. Nous établissons les fondations théoriques pour résoudre
ce problème. De plus, nous développons deux méthodes concrètes qui peuvent être
implémentées en pratique dans les RDDs.

Dans un troisième temps, afin de décider l’injection optimale de puissance dans
le système, nous étudions un problème d’écoulement de charges optimal (OPF) dans
les RDDs multi-phasés génériquement modelés. Dans ce problème, nous considérons
des connections de ressources wye/delta, et nous incorporons la contrainte de non-
singularité. Nous résolvons ce problème en développant une méthode d’exploration
locale successive.

Toutes les théories et méthodes proposées ont été évaluée numériquement sur les
réseaux standardisés de IEEE et de CIGRE.

Mots clés : réseau dynamique de distribution, problem inverse, solvabilité de l’écou-
lement des charges, théorie des points fixes, Jacobienne non-singulière, contrainte
de sécurité, admissibilité, écoulement des charges optimal multi-phasé, injection de
puissance incertaine, connection wye/delta.
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1 Introduction

Harmony and order emerge as from innate nature.

Chuang Tzu
ZHUANG ZHOU

1.1 Background and Motivation

For more than a century, electric-power delivery systems have been indispensable
to our daily life. In general, they consist of two types of components: transmission
networks and distribution networks. As described in, for example, [1, 2],

� Transmission networks are designed to deliver electric power, at high voltages,
over long distances, from large centralized generating stations to distribution
substations.

� Distribution networks deliver electric power to end users, such as town houses
and relatively small commercial premises, at voltage levels lower than those of
transmission networks.

Traditionally, distribution networks are passive in the sense that they receive one-way
electric power from transmission networks at their substations and deliver it to end
users. Indeed, distribution networks are traditionally viewed as synthesized loads of
transmission networks. Guided by this point of view, the “connect and forget” principle
is typically applied and the planning/operation are based mainly on worst-case or
average loading conditions.

This situation has been going through radical changes for a decade, due to the
integration of renewable-energy sources (such as photovoltaic panels and wind tur-
bines), batteries, electric-vehicle charging stations, super capacitors. Consequently,
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Chapter 1. Introduction

the electric power can flow bi-directionally between the transmission networks and
end users. This is illustrated in Figure 1.1, where green and yellow arrows are used,
respectively, to indicate the generation and consumption of electric power.

Transmission
Network

Distribution
Network

Transmission
Network

Distribution
Network

E

V

Figure 1.1 – (Top) Traditional distribution network. (Bottom) Distribution network
with renewable-energy sources, batteries, and electrical-vehicle charging stations.
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It is worth noticing that the integrated local power generation (e.g., from renewable-
energy sources) and the integrated local power consumption (e.g., by electric-vehicle
charging stations) should be viewed as a double-edged sword. On the one hand, the
local power generation, together with the local power consumption, pose a threat to
the network security, because the electric power flowing in both directions can be
large enough to cause line congestion and over-/under-voltage issues [3, 4, 5]. On
the other hand, the local power generation offers not only the chance to reduce the
distribution networks’ dependency on external networks, but also the possibility to
achieve certain network optimality, such as minimizing the monetary cost of energy
trade or the network power loss.

To address the threat to network security, one crude method would be to curtail
the power generation and to reduce the power consumption. But, this is energy
inefficient, and sometimes might not be feasible due to practical constraints (e.g., a
charging station cannot arbitrarily reduce its power). A better method could be to
properly deploy energy-storage devices and to control their power to avoid, as much as
possible, the excessive power generation/consumption. In addition to the appropriate
deployment and control of energy-storage devices, we can also develop an effective
demand-response mechanism to shave the peak power generation/consumption.

As can be observed, when we want to preserve network security, the methods
consist in properly manipulating the power in distribution networks. In fact, the same
observation holds when we want to achieve certain network optimality. For example,
to minimize the monetary cost of externally buying energy, the local power generation
should be optimally determined for self-consumption.

Physically, it is feasible to directly manipulate the integrated local power generation
and consumption, by virtue of the technological advances in power electronics and
local control systems [6, 7, 8, 9, 10, 11, 12]. This facilitates a variety of works that aim to
solve the operational problems in distribution networks via direct power manipulation.
These works include not only the typical ones, such as regulating voltage/frequency via
active/reactive power [13, 14, 15], but also the pioneering ones, such as the Commelec
[16, 17] that uses multi-agent systems to manage distribution networks by explicit
power setpoints.

So far, it is clear that the essence of distribution networks has been changed, due to
the integration of local power generation and consumption, as well as the feasibility
of direct power manipulation. Compared to the traditional counterparts, distribution
networks now have both an enriched functionality resembling that in transmission
networks, and an inherent peculiarity including the non-negligible resistance over
reactance (R/X) ratios, phase imbalance, etc. All these factors, together, give rise to the
notion of active distribution networks (ADNs).
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1.2 Thesis Outline and Main Contributions

In this thesis, we study how to ensure network security and to achieve optimality in
ADNs, by manipulating the power. Specifically, we consider three problems, one after
another, in Chapters 2–4.

In Chapter 2: We focus on the AC power-flow problem in multi-phase ADNs, where
we have the complex nodal power injections at all buses and would like to obtain the
corresponding complex nodal voltages at all buses, by solving the non-linear multi-
dimensional power-flow equation. This problem helps determine whether a target
system power injection1 has a corresponding system electrical state2 that fulfills the
security constraints. Due to non-linearity of the power-flow equation, the existence
and uniqueness of the power-flow solution are not guaranteed globally. In fact, as
reported in, e.g. [18, 19, 20, 21], the number of power-flow solutions can be zero or
greater than one. With respect to this problem, our contributions are summarized as
follows.

Summary of Contributions in Chapter 2

We take account of multi-phase networks, and we impose no restriction on
the network topologies (i.e., they can be either radial or meshed). Both π-
modelled transmission lines and complex-ratio transformers are included in
our modelling.

� We show that, in practical ADNs, the power-flow problem can be expressed in
a fixed-point form, called the implicit Z-bus formulation [22].

� Next, by applying the Banach fixed-point theorem [23] to the implicit Z-bus
formulation of the power-flow problem, we establish explicit conditions for
the existence and uniqueness of the power-flow solution. Whenever the con-
ditions are satisfied, we guarantee the existence of a power-flow solution and
analytically specify a domain in which this solution is unique. Moreover,

– We provide an efficient iterative method for numerically computing this
solution.

– We show the non-singularity of the power-flow Jacobian at this solution.

� Last, we extend the above results to handle the various load and source con-
nections. These connections include grounded wye, ungrounded delta, and a
combination thereof.

1I.e., the collection of the complex nodal power injections at all buses.
2Represented by, e.g. the collection of the complex nodal voltages at all buses.
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In Chapter 3: We take into account that the actual system power injection might
be different from the target one, due to, for example, improperly modelled system
dynamics, reaction delays, and renewable-energy disturbances. This motivates the
“admissibility problem” that is formulated in the context of quasi-stationary analysis.
Specifically, let V? collect all system electrical states that satisfy the security constraints
and the non-singularity of the power-flow Jacobian, and let Suncertain collect all possible
actual system power injections. Since the system electrical state typically evolves as
a continuous function of time due to the physical nature, our goal is to see whether
we can ensure that the continuous path of the system electrical state remains in
V?, given that (i) it starts at some vinitial 2 V?, and that (ii) the corresponding path
of the actual system power injection belongs to Suncertain. If we can, then we say
that Suncertain is admissible for vinitial. To make the description of this problem more
clear, an illustration of the problem is shown in Figure 1.2. Indeed, the admissibility
problem is of practical interest, as it reflects not only the common practice to indirectly
control the electrical states via power injections, but also the fact that the local power
generation/consumption can be volatile and inaccurately modelled by controllers.

Uncertainty Set of
System Power Injections

Set of System Electrical States that
Satisfy the Security Constraints

and the Non-Singularity
of the Power-Flow Jacobian

System Power Injection ConstrainedSystem Electrical State Ensured

to Vary in this Blue Set.to Stay in this Red Set?

Figure 1.2 – Illustration of the admissibility problem.

To solve this problem, we contribute as follows.

Summary of Contributions in Chapter 3

� Let V be a set of system electrical states and S a set of system power injections.
We introduce the auxiliary concept of “V-control”. More precisely, we say that
S is a “domain of V-control” if: any continuous path of the system electrical
state that starts in V must stay in V , as long as the corresponding path of the
system power injection is constrained in S. With the concept of V-control, the
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admissibility problem consists in whether there exists a set V � V? such that
(i) vinitial 2 V , and (ii) Suncertain is a domain of V-control.

� We show that the “existence of a unique power-flow solution v 2 V for every
s 2 S” alone is neither sufficient nor necessary to ensure that S is a domain of
V-control.

� For S to be a domain of V-control, we give additional conditions that comple-
ment the existence and uniqueness of the power-flow solution. Moreover, we
propose theorems to ensure that there exists a unique power-flow solution
v 2 V for every s 2 S.

� Due to the real-quadratic nature of the multi-dimensional power-flow equa-
tion, we incidentally discover that local uniqueness implies non-singularity,
which is the converse of the inverse function theorem.

� Using a subset of the theoretical results in this chapter, we develop a first
solution method for the admissibility problem. Through numerical examples,
we see that this method is tight in the sense that it almost finds the largest
Suncertain that is admissible for some given vinitial 2 V?. However, we also see
that the method has a relatively high computational complexity and requires
large memory for data storage and manipulation. Thus, this method is not
suitable for real-time applications in large networks.

� Using another subset of the theoretical results in this chapter and the results in
Chapter 2, we develop a second solution method to the admissibility problem.
Compared to the first solution method, this second solution method is less
tight. But, it is suitable for real-time applications in large networks.

In Chapter 4: We consider an AC optimal power flow problem in multi-phase ADNs.
In this problem,

� We take account of wye/delta load/source connections and incorporate the
non-singularity of the power-flow Jacobian as a constraint.

� We would like to minimize an objective function that is convex in both the
complex nodal voltages and the system power injection.

This problem is non-convex and NP-hard. Moreover, the existent linearization and
convex-relaxation methods do not apply. With respect to the problem, our contribu-
tions are summarized below.
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Summary of Contributions in Chapter 4

� We show that

– This multi-phase optimal power flow problem might not be feasible, due
to the non-singularity constraint.

– Even if it is feasible, it might not have an optimal solution.

� We recall the results in Chapter 2 and show that, by properly restricting the
system power injection to some local domains, we can obtain an explicit
convex proxy for the feasible set of this problem.

� To solve this problem, we exploit the explicit convex proxy and develop a
successive local exploration method. In each iteration of the method, we
obtain a feasible point of this problem, by exploring around the feasible point
obtained in the previous iteration. We ensure that the objective-function
values at the obtained feasible points are monotonically non-increasing. For
two consecutive iterations, if the difference between the objective-function
values is less than some pre-specified error bound, then we terminate the
method.

� We give theoretical results for the successive local exploration method. In
detail,

– We guarantee that the objective-function values at the obtained feasible
points converge to a finite limit.

– If the objective function does not explicitly contain the complex nodal
voltages, then we give a-posteriori conditions to determine the local
optimality for both the obtained feasible points and their limit points.

In the fifth chapter, we provide concluding remarks for the thesis.
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2 Existence and Uniqueness of
Power-Flow Solutions in Multi-
Phase Networks

The very highest of heaven is hardly known.
Then comes what’s recognized and praised.
Then comes what’s feared.
Then comes what’s defied.

Tao Te Ching
LAOCIUS

2.1 Introduction

Motivation

In this chapter, we study the AC power-flow problem in multi-phase distribution
networks, which is an inverse problem. Specifically, given the system power injection,
our goal is to obtain the corresponding system electrical state by solving the non-linear
multi-dimensional power-flow equation.

Due to non-linearity, the existence and uniqueness of the power-flow solution are
not guaranteed in general [18,19,20,21]. Indeed, there can be zero or many power-flow
solutions. Some upper bounds on the number of power-flow solutions are presented
in [24, 25].

The lack of guaranteed existence and uniqueness of the power-flow solution creates
an issue for network security. More precisely, when we have a target system power
injection to implement, it is unknown whether this system power injection has a power-
flow solution. Even if there is a power-flow solution, it might not satisfy the security
constraints.

To address this issue, it is crucial to develop conditions that determine whether a
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target system power injection has a guaranteed unique power-flow solution in some
given domain. Moreover, as the power-flow problem might need to be repeatedly
solved in real time for ADNs, we expect that

� These conditions can be verified at a low computational complexity.

� The guaranteed unique power-flow solution can be computed efficiently.

Contributions and Chapter Outline

In Sections 2.3–2.4, we consider the generic network model (i.e., with an arbitrary
number of phases and an arbitrary network topology) and give the implicit Z-bus
formulation of the power-flow problem.

By applying the Banach fixed-point theorem to the implicit Z-bus formulation, we
establish Theorem 2.1 in Section 2.5.1, which contains explicit sufficient conditions on
the existence and uniqueness of the power-flow solution. Whenever the conditions are
satisfied, we guarantee the existence of a power-flow solution and analytically specify
a domain in which this solution is unique.

In Theorem 2.1, we also provide an iterative method to numerically compute
this solution; it converges in typically several iterations. If the iterative method is
implemented by following the procedures in Remark 2.1, then each iteration has a
computational complexity approximately linear in the number of buses and physical
branches. Note that this per-iteration complexity is much lower than that of the widely
deployed Newton-Raphson method.

We prove in Section 2.5.2 that the proposed conditions in Theorem 2.1 are better
than the state of the art.

In Section 2.5.3, we give an explicit condition on the non-singularity of the power-
flow Jacobian in Proposition 2.1. Using this condition, we show that the solution
guaranteed by Theorem 2.1 has a non-singular power-flow Jacobian hence fulfills static
voltage stability.

In Section 2.6, the above results are extended to networks with various load/source
connections, including wye, delta, and a combination thereof. Specifically, we first
extend the load/source model and the implicit Z-bus formulation in Sections 2.6.1–
2.6.2. Then, in Section 2.6.3, we give

� Lemma 2.3 and Theorem 2.2 on the existence and uniqueness of the power-flow
solution; they extend Theorem 2.1.

� Proposition 2.2 on the non-singularity of the power-flow Jacobian; it extends
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Proposition 2.1.

All the proposed results are numerically validated in Section 2.7.

2.2 State of the Art

In [26], conditions for the existence and uniqueness of the solution to the “reactive
power – voltage magnitude” problem are given and analyzed. Specifically, the authors
decouple the power-flow equation, and consider only the non-linear relation between
reactive power injections and nodal voltage magnitudes. This work is complemented
by [27] that contains conditions for the existence and uniqueness of the solution to
the “active power – voltage angle” problem. In both works, the authors assume that
the power-flow equation can be decoupled into two separate ones, and establish
all conditions on this assumption. Although the assumption is true in transmission
networks, it does not hold in distribution networks. This is because the R/X ratios in
distribution networks are much higher than those in transmission networks, which
renders the decoupling of the power-flow equation invalid.

For balanced radial distribution networks, some asymptotic results on the existence
and uniqueness of the feasible power-flow solution are given in [28], by exploiting the
radial topology. There, “feasible” means that the solution belongs to some neighbor-
hood of the zero-injection voltage profile. This result is extended to the unbalanced
radial three-phase distribution networks in [29], using a similar method. In both works,
the results are obtained by simply applying the limit theories. As a consequence, we do
not know how to concretely determine whether a target system power injection has a
unique solution. Moreover, the proofs are valid for only passive distribution networks,
which do not have power sources. Therefore, the results in [28, 29] have very limited
values in practical ADN applications.

Recently, the focus has been moved to fixed-point power-flow analysis, as the
fixed-point theorems can be applied to guarantee the existence and uniqueness of
the power-flow solution. In [30], the authors formulate the power-flow problem in
balanced distribution networks as a fixed-point problem. Based on this formulation,
the authors apply the Banach fixed-point theorem and obtain sufficient conditions to
guarantee the existence and uniqueness of the power-flow solution. These sufficient
conditions are further improved in [31]. However, as we show in Section 2.5.2 and
Section 2.7, the conditions in our proposed Theorem 2.1 are better than the conditions
in [30, 31]. More precisely, whenever the conditions in [30, 31] are satisfied, we have
that the conditions in Theorem 2.1 are also satisfied; but the converse is not true.

In [32, 33, 34], other results on the existence and uniqueness of the power-flow
solution are proposed. But these results are not of much interest in practical ADN

11



Chapter 2. Existence and Uniqueness of Power-Flow Solutions in Multi-Phase
Networks

applications. In detail:

� The results in [32] are established for lossless networks. But, due to the relatively
lower voltage level, it is inappropriate and impractical to neglect the power loss
in distribution networks.

� The results in [33] do not contain sufficient information about the uniqueness of
the power-flow solution. Similar to [28, 29], no method is provided to compute
the guaranteed unique solution, and no domain is specified for the guaranteed
uniqueness.

� The results in [34] are derived for only balanced networks that have radial topolo-
gies and equal R/X ratios in all transmission lines. Clearly, these results can hardly
be applied to real-world networks.

To handle different load/source connections, the conditions in our proposed Theo-
rem 2.1 are extended in [35]. However, compared to our extension of these conditions
in Lemma 2.3 and Theorem 2.2, the conditions in [35] are weaker and apply only to
networks with disjoint sets of wye and delta load/source connections.

2.3 Network Model and AC Power-Flow Equation

In this section, we describe the network model and the multi-dimensional AC power-
flow equation. Specifically, we consider a distribution network that has one slack bus
(indexed by 0), N PQ buses (indexed by 1,...,N ), and a generic topology (i.e., either
radial or meshed). The buses are physically connected through passive transmission
devices, including π-modelled transmission lines and complex-ratio transformers.

First, we define the following sets to collectively express the physical buses and
branches.

� N = f0, 1, ..., Ng,

� E = fjk : a transmission device exists between buses j, k 2 Ng.

Then, we denote the number of phases by Nphase, and let:

� vj , ij , sj 2 CNphase
be, respectively, the complex nodal voltage, current, and

power injection at bus j 2 N , 1

1For example, in three-phase networks, Nphase = 3, vj = (vaj ; v
b
j ; v

c
j )
T , ij = (iaj ; i

b
j ; i

c
j)
T , sj =

(saj ; s
b
j ; s

c
j)
T .
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� ijk 2 CNphase
be the complex branch current entering branch jk 2 E (i.e., from

bus j to k).

According to [1, 36], passive transmission devices are typically modelled by means
of longitudinal and transversal linear elements. As a consequence, for any jk 2 E ,
the branch current ijk and the nodal voltages vj , vk are linked through the following
equation,

ijk = Aj,kvj �Cj,kvk , (2.1)

where Aj,k, Cj,k 2 CNphase�Nphase
are constant and specified by the corresponding

transmission device.2

Next, take into account that

ij =
X

k: jk2E
ijk , 8j 2 N . (2.2)

By plugging (2.1) into (2.2), we obtain the linear relation between nodal currents and
nodal voltages:

ij =

� X
k: jk2E

Aj,k

�
vj �

X
k: jk2E

Cj,kvk , 8j 2 N . (2.3)

In a more compact form, the linear relation (2.3) can be written as264 i0
...

iN

375 = Y

264v0

...
vN

375 , (2.4)

where Y is the Nphase(N + 1)-by-Nphase(N + 1) compound nodal admittance matrix
of the network [1, 37].

Then, consider that 264 s0

...
sN

375 = diag

�264v0

...
vN

375�
264 i0

...
iN

375 , (2.5)

where diag(�) is a diagonal matrix with the entries of a vector on the main diagonal,
and �means the complex conjugation.

2To give an instance, we consider a �-modelled transmission line that connects buses j and k. Let
Yseries be the series admittance between the two buses, and Yshunt=2 be the shunt admittance attached
to each of the two buses. Then, we have ijk = Yseries(vj � vk) + (Yshunt=2)vj . As it can be seen in this
example, Aj;k = Yseries + Yshunt=2, and Cj;k = Yseries.
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By combining (2.4) and (2.5), we obtain the following AC power-flow equation that
links the nodal power injections with the nodal voltages:264 s0

...
sN

375 = diag

�264v0

...
vN

375�Y

264v0

...
vN

375 . (2.6)

Note that the slack-bus voltage v0 and the nodal admittance matrix Y are both known
in Equation (2.6).

2.4 Implicit Z-Bus Formulation of the Power-Flow Problem

In the conventional formulation of the AC power-flow problem, we have some given
nodal power injections s1,...,sN , and we need to find the corresponding nodal volt-
ages v1,...,vN , by solving the power-flow equation (2.6). In what follows, we give an
equivalent formulation of the power-flow problem, which is called the implicit Z-
bus formulation [22]. First, let us partition the nodal admittance matrix into four
sub-matrices as follows. The sizes of these sub-matrices are listed in Table 2.1.

Y =

"
Y00 Y0L

YL0 YLL

#
. (2.7)

Y00 Y0L YL0 YLL

Nphase-by-Nphase Nphase-by-NphaseN NphaseN-by-Nphase NphaseN-by-NphaseN

Table 2.1 – Sizes of sub-matrices in Y.

Then, in accordance with the sizes of the sub-matrices, we define the following
collective notations. As it can be seen, v fully represents the system electrical state,
and s is the system power injection.

v =

264v1

...
vN

375 2 CNphaseN , i =

264 i1
...

iN

375 2 CNphaseN , s =

264 s1

...
sN

375 2 CNphaseN .

(2.8)

With the above partition and notations, the linear relation (2.4) and the AC power-flow

14



2.4. Implicit Z-Bus Formulation of the Power-Flow Problem

equation (2.6) can be written in the following forms.

i0 = Y00v0 + Y0Lv , (2.9a)

i = YL0v0 + YLLv . (2.9b)

s0 = diag(v0)
�
Y00v0 + Y0Lv

�
, (2.10a)

s = diag(v)
�
YL0v0 + YLLv

�
. (2.10b)

Here, observe that if all the nodal voltages are non-zero, then (2.10b) is equivalent to

YLLv = �YL0v0 + diag(v)�1s . (2.11)

Moreover, as shown in [38, 39, 40, 41], YLL is invertible in practical distribution net-
works.3 Therefore, we have

v = w + Y�1
LLdiag(v)�1s , (2.12)

with

w = �Y�1
LLYL0v0 . (2.13)

Here, it is worth noticing that

� w is the zero-injection voltage profile of the network.

� (2.10b) can be expressed as

s = F(v) , (2.14)

where

F(v) = diag(v)YLL(v �w) (2.15)

is the continuously differentiable function that maps a system electrical state, v,
to its corresponding system power injection.

� (2.12) is a direct result of the superposition theorem and can be written as

v = Gs(v) , (2.16)

3For completeness, a proof is provided in Appendix 2.A.
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with

Gs(v) = w + Y�1
LLdiag(v)�1s . (2.17)

Using (2.16), we give the implicit Z-bus formulation of the power-flow problem as
follows.

Problem 2.1 (ImplicitZ-Bus Formulation)

Given the target system power injection s, solve equation (2.16) to find the
corresponding system electrical state v.

2.5 Application of the Banach Fixed-Point Theorem to Power-
Flow Solvability

2.5.1 Explicit Conditions to Guarantee the Existence and Uniqueness of
the Power-Flow Solution

Observe that Equation (2.16) has a fixed-point form. According to the Banach fixed-
point theorem [23], if Gs is a contraction mapping (i.e., a self-mapping with contraction
property) in some domain D, then we have: in this domain D, there exists a unique
v that satisfies v = Gs(v). Moreover, this v can be computed through the iterative
method

v(k+1) = Gs(v(k)) , (2.18)

with arbitrary v(0) 2 D. Therefore, in order to solve Problem 2.1, we need to find a
proper domain, in which Gs is a contraction mapping.

For this purpose, we assume the knowledge of a reference system electrical state
v̂ and its corresponding system power injection ŝ = F(v̂). This reference system
electrical state v̂ can be interpreted as the present one that is typically obtained through
measurement units and state estimation processes [42,43,44,45,46]. In the cases where
there is no knowledge of the present system electrical state, a trivial choice for v̂, ŝ is
w, 0.

With the knowledge of v̂ and ŝ, we want to find a domain that contains v̂, in which
Gs is a contraction mapping for s around ŝ. In other words, we want to explore the
power-flow solvability in some neighbourhoods of v̂, ŝ. To do so, we first propose a
lemma for the self-mapping property of Gs, which uses the notations in Table 2.2.4

4For any M-by-K matrix A, kAk1 means the induced ‘1 norm, which is defined as kAk1 =
max1�m�M

PK
k=1 j(A)m;kj.
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The corresponding proof can be found in Appendix 2.B.

Notation Definition

W diag(w)

ξ(s)
W�1Y�1

LLW
�1

diag(s)

1

α(v) minj
j(v)j j
j(w)j j

ρz(v)
1

2

�
α(v)� ξ(F(v))

α(v)

�
ρy(v, s̃) ρz(v)�

r�
ρz(v)

�2
� ξ
�
s̃� F(v)

�

Table 2.2 – Notations for the proof of contraction mapping.

Lemma 2.1

Let s be the target system power injection, v̂ represent the reference system
electrical state, and ŝ = F(v̂) be the reference system power injection.

Suppose that v̂ and s� ŝ satisfy

ρz(v̂) > 0 , (2.19)

ξ(s� ŝ) <
�
ρz(v̂)

�2
. (2.20)

Then, Gs is a self-mapping in

Dρ(v̂) =
n

v : j(v)j � (v̂)j j � ρj(w)j j, j = 1, ..., NphaseN
o
, (2.21)

for ρ 2
h
ρy(v̂, s), ρz(v̂)

i
.

Note that, in Lemma 2.1, we specify a lower bound ρy(v̂, s) for ρ that depends on the
target system power injection s. This lower bound will be used later to provide a better
localization for the power-flow solution. Also, notice that ξ is a norm and ξ(s� ŝ) is a
distance between the system power injections s, ŝ. This is because

� ξ(κs) = jκjξ(s) for any κ 2 C,
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� ξ(s + s0) � ξ(s) + ξ(s0) due to the triangle inequality of the induced matrix norm,

� ξ(s) = 0 ) W�1Y�1
LLW

�1
diag(s) = 0 ) s = 0.

Next, we proceed and propose a lemma for the contraction property of Gs. The proof
of this lemma is given in Appendix 2.C.

Lemma 2.2

Let s be the target system power injection, v̂ represent the reference system
electrical state, and ŝ = F(v̂) be the reference system power injection.

Suppose that v̂ and s � ŝ satisfy conditions (2.19)–(2.20). Then, Gs is a con-

traction mapping inDρ(v̂), for ρ 2
h
ρy(v̂, s), ρz(v̂)

i
.

Using Lemma 2.2, we have the following theorem that comes naturally from the Banach
fixed-point theorem. To facilitate the comprehension of this theorem, we provide a
graphical illustration in Figure 2.1.

Theorem 2.1

Let s be the target system power injection, v̂ represent the reference system
electrical state, and ŝ = F(v̂) be the reference system power injection.

Suppose that v̂ and s� ŝ satisfy conditions (2.19)–(2.20). Then, in domainDρ(v̂)

with ρ = ρz(v̂), there exists a unique solution v to (2.16). Moreover, this solution
is located in the smaller domainDρ(v̂) with ρ = ρy(v̂, s), and can be computed
through the iterative method (2.18) with arbitrary v(0) 2 Dρ(v̂), ρ = ρz(v̂).

As can be seen in Theorem 2.1,Dρ(v̂) with ρ = ρz(v̂) depends only on the choice of the
reference system electrical state v̂, whereasDρ(v̂) with ρ = ρy(v̂, s) depends on both
v̂ and the target system power injection s. If the distance ξ(s� ŝ) decreases, then the
value of ρy(v̂, s) also decreases. When the distance ξ(s� ŝ) becomes 0 (i.e., s = ŝ), we
have that ρy(v̂, s) becomes 0 hence the guaranteed solution v becomes v̂.
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In D�(v̂) with � = �z(v̂),

b
v̂

b
v

Electrical State

Power Injection

ŝ = F(v̂)

s = F(v)

D�(v̂) with

D�(v̂) with

� = �z(v̂)

� = �y(v̂; s)

there is a unique v that

Conditions: �(s � ŝ) < (�z(v̂))2
�z(v̂) > 0

satis�es s = F(v).
b

b

Moreover, this unique v
is located in D�(v̂) with
� = �y(v̂; s).

v(0)

v(1)
v(1)

v(0)

and

The yellow and green
sequences have di�erent
v(0) 2 D�(v̂) with � = �z(v̂),
but they both converge to
the guaranteed unique v.

Figure 2.1 – Illustration of Theorem 2.1.
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Remark 2.1 (Computational Complexity Related to Theorem 2.1)

1. The complexity of verifying the conditions (2.19)–(2.20) is quadratic inNphaseN .
Indeed, when computing the values of ξ(ŝ) and ξ(s� ŝ), we need to perform
(NphaseN)2 multiplications and additions due to the fact that the constant
matrix W�1Y�1

LLW
�1

is a full matrix.

2. The complexity of obtaining v(k+1) in (2.18) is quadratic in NphaseN if we
directly compute w + Y�1

LLdiag(v(k))�1s. This is because Y�1
LL is a full matrix.

However, we observe that the matrix YLL is sparse in practice, since the real-
world distribution networks are typically radial or weakly meshed. By virtue
of this observation, the complexity of obtaining v(k+1) can be considerably
reduced by means of LU decomposition with complete Markowitz pivoting
[47, 48, 49]. In detail, we first apply Gaussian elimination with Markowitz
pivoting to YLL, which identifies permutation matrices P, Q, lower-triangular
matrix L, and upper-triangular matrix U such that

PYLLQ = LU . (2.22)

Due to the merit of Markowitz pivoting, the number of non-zero entries in L

and U is usually only a few more than that in YLL. With the matrices P, Q, L,
and U, we can obtain v(k+1) by sequentially solving the following equations,
which involves mainly permutations and forward/backward substitutions.

Ld =Pdiag(v(k))�1s (2.23a)

Ug =d (2.23b)

h =Qg (2.23c)

v(k+1) =h + w (2.23d)

In this way, if we pre-store the matrices P, Q, L, U, then the complexity of
obtaining v(k+1) is usually linear in NphaseN and Nphasecard(E), where card(�)
means the cardinality of a set.

2.5.2 Comparison with State of the Art

In this section, we compare Theorem 2.1 with the results in [30, 31]. To the best of our
knowledge, these results are the state of the art on the existence and uniqueness of AC
power-flow solutions. Specifically,

� In [30], the authors propose the following sufficient condition on the existence
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of a unique AC power-flow solution in distribution networks5: 9p 2 [1,1], q =

p/(p� 1) such that W�1Y�1
LLW

�1
�
p
kskq < 0.25 , (2.24)

where, for any matrix A, kAk�p = maxmkRowm(A)kp . However, they do not
analytically specify the domain in which the guaranteed solution is unique.

� In [31], the sufficient condition of [30] is improved as follows: 9p 2 [1,1], q =

p/(p� 1) and real invertible diagonal matrix Λ such thatW�1Y�1
LLW

�1
Λ
�
p
kΛ�1skq < 0.25 . (2.25)

Same as in [30], the authors do not analytically specify the domain in which the
guaranteed solution is unique.

As there is no assumption of non-trivial v̂ and ŝ in [30,31], we present below a corollary
in order to make a fair comparison. This corollary is straightforwardly obtained by
choosing v̂ = w and ŝ = 0 in our Theorem 2.1. Later, in Section 2.7, we give numerical
examples where Theorem 2.1 can be applied to guarantee the existence and uniqueness
of the power-flow solution, but this corollary cannot. In other words, Theorem 2.1 is
strictly stronger than the corollary.

Corollary 2.1

Suppose that the target system power injection s satisfies

ξ(s) < 0.25 . (2.26)

Then, in domainDρ(w) with ρ = 0.5, there exists a unique solution v to (2.16).
Moreover, this solution is located in the smaller domainDρ(w) with ρ = ρy(w, s),
and can be computed through the iterative method (2.18) with arbitrary v(0) 2
Dρ(w), ρ = 0.5 .

5Although the original derivation in [30] is based on balanced networks, the obtained result has the
same mathematical form for more general unbalanced networks.
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Now, we compare Corollary 2.1 with the results in [30, 31]. Specifically, we show that
ξ(s) < 0.25 whenever (2.25) is true. First, observe that

ξ(s) =
W�1Y�1

LLW
�1

diag(s)

1

=
�W�1Y�1

LLW
�1

Λ
��

Λ�1diag(s)
�
1

= maxm
X
n

����W�1Y�1
LLW

�1
Λ
�
m,n

�������Λ�1s
�
n

��� . (2.27)

Then, for any m, we apply the Holder’s inequality and obtainX
n

����W�1Y�1
LLW

�1
Λ
�
m,n

�������Λ�1s
�
n

���
�
Rowm

�
W�1Y�1

LLW
�1

Λ
�

p

Λ�1s

q

�
W�1Y�1

LLW
�1

Λ
�
p

Λ�1s

q
. (2.28)

By combination of (2.27) and (2.28), we have

ξ(s) �
W�1Y�1

LLW
�1

Λ
�
p

Λ�1s

q
, (2.29)

which completes our proof.

Later, in Section 2.7, we give numerical examples where Corollary 2.1 can be applied
to guarantee the existence and uniqueness of the power-flow solution, but the results in
[30, 31] cannot. In other words, Corollary 2.1 is, in fact, strictly stronger than the results
in [30, 31] (i.e., the condition in Corollary 2.1 is strictly weaker than the counterparts
in [30, 31]).

2.5.3 Non-Singularity of the Power-Flow Jacobian at the Guaranteed Solu-
tions

In what follows, we give results on the non-singularity of the power-flow Jacobian.

First, let JF(v) denote the Jacobian of F evaluated at v. As F is the continuously
differentiable function that maps a system electrical state into its corresponding system
power injection, we have that JF is the power-flow Jacobian [1, 50]. According to the
mathematical expression of F in equation (2.15), the action of JF(v) on arbitrary
d 2 CNphaseN is as follows.

JF(v) � d = diag
�
YLL(v �w)

�
d + diag(v)YLLd . (2.30)
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Then, we give the following proposition on the non-singularity of JF. The corre-
sponding proof can be found in Appendix 2.D. Note that

� This proposition contains an explicit condition ρz(v) > 0 on the non-singularity
of the power-flow Jacobian at v.

� In general, the existence and uniqueness do not imply non-singularity. Here,
we have this proposition because the power-flow problem has a real-quadratic
nature in rectangular coordinates.

.

Proposition 2.1

In Theorem 2.1,

1. The satisfaction of ρz(v̂) > 0 implies that JF(v̂) is non-singular.

2. Moreover, in domainDρ(v̂) with ρ = ρz(v̂), the guaranteed unique solution
v satisfies ρz(v) > 0, which implies that JF(v) is non-singular.

According to [51,52,53], the non-singularity of the power-flow Jacobian represents a suf-
ficient condition for the static voltage stability of the operating point. This means that
the guaranteed unique solution v in Theorem 2.1 satisfies the static voltage stability.

Remark 2.2 (Relation Between Theorem 2.1 and the Inverse Function Theorem [54])

On the one hand, the proposed Theorem 2.1 is consistent with the inverse function
theorem, since the condition (2.19) in Theorem 2.1 is essentially a requirement for
v̂ to have a non-singular power-flow Jacobian.

On the other hand, Theorem 2.1 and the inverse function theorem give different
amounts of information. Specifically,

� In the inverse function theorem, the non-singular Jacobian at v̂ implies that
there exists a neighborhood Uv of v̂ and a neighborhood Us of ŝ = F(v̂) such
that F maps Uv bijectively to Us. But, the neighborhoods Uv, Us do not have
explicit forms and might not have bounded radii.

� By contrast, in Theorem 2.1, we explicitly specify a set�
s : ξ(s� ŝ) <

�
ρz(v̂)

�2
�

such that, for every system power injection in this

set, there exists a unique solution inDρ(v̂), ρ = ρz(v̂).
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2.6 Extension of the Proposed Results to Networks with Vari-
ous Load and Source Connections

2.6.1 Details of Connections and Augmentation of the Multi-Dimensional
Power-Flow Equation

In this section, we make an extension of the modeling in Section 2.5, by consider-
ing different load/source connections. Specifically, these connections include wye,
delta, and a combination thereof. To cover the most general cases, the extension is
formulated in three-phase networks, i.e., Nphase = 3.

First, we show the wye and delta connections in Figure 2.2.

Phase a
Phase b

Phase c

sY;a
j sY;b

j sY;c
j s�;ab

j

s�;bc
j

s�;ca
j

Wye Connection Delta Connection

Figure 2.2 – Illustration of wye and delta connections.

Then, let us introduce some new notations:

� sYj =
�
sY,aj , sY,bj , sY,cj

�T
2 C3 is the power injection of the wye-connected load/-

source at bus j,

� s∆
j =

�
s∆,ab
j , s∆,bc

j , s∆,ca
j

�T
2 C3 is the power injection of the delta-connected

load/source at bus j,

� i∆j =
�
i∆,abj , i∆,bcj , i∆,caj

�T
2 C3 is the phase-to-phase current for the delta-

connected load/source at bus j, 6

6i�;abj means the current from phase b to phase a.
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� sY =

��
sY1

�T
, ...,

�
sYN

�T�T
2 C3N , s∆ =

��
s∆

1

�T
, ...,

�
s∆
N

�T�T
2 C3N , and

i∆ =

��
i∆1

�T
, ...,

�
i∆N

�T�T
2 C3N are, respectively, the vectors that collect sYj , s∆

j ,

i∆j for all j 2 N n f0g,

� T 2 R3�3 and H 2 R3N�3N are auxiliary constant matrices, defined as follows.

T =

264 1 �1 0

0 1 �1

�1 0 1

375 , H =

264T
. . .

T

375 . (2.31)

With the above notations, we have the following equations for each bus j 2 N n f0g.

sj = sYj + diag(vj)T
T i∆j , (2.32)

s∆
j = diag(Tvj)i∆j . (2.33)

These equations can be collectively expressed as follows.

s = sY + diag(v)HT i∆ , (2.34)

s∆ = diag(Hv)i∆ . (2.35)

Since s = diag(v)YLL(v �w), Equation (2.34) can be re-organized as

sY = diag(v)YLL(v �w)� diag(v)HT i∆ . (2.36)

Notice that (2.35)–(2.36) together define an augmentation of the multi-dimensional

power-flow equation in this network. Moreover,

"
v

i∆

#
represents the augmented sys-

tem electrical state, and

"
sY

s∆

#
is the augmented system power injection. To ease the

exposition, we enclose (2.35)–(2.36) in the following form.

sY,∆ =

"
sY

s∆

#
, sY,∆ = FY,∆

�
v, i∆

�
. (2.37)
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2.6.2 Extended Implicit Z-Bus Formulation of the Power-Flow Problem

Assume that all the nodal voltages are non-zero, then (2.36) can be equivalently written
as

YLL(v �w) = diag(v)�1sY + HT i∆ . (2.38)

Furthermore, assume that all the entries in vector Hv are non-zero, which is true in
practice. Then, (2.35) is equivalent to

i∆ = diag(Hv)�1s∆ . (2.39)

By plugging (2.39) into (2.38), we obtain

YLL(v �w) = diag(v)�1sY + HTdiag(Hv)�1s∆ . (2.40)

Since YLL is invertible, there is

v = w + Y�1
LL

�
diag(v)�1sY + HTdiag(Hv)�1s∆

�
. (2.41)

Observe that equation (2.41) is an extension of (2.12), and can be written as

v = GsY;�(v) , (2.42)

where

GsY;�(v) = w + Y�1
LL

�
diag(v)�1sY + HTdiag(Hv)�1s∆

�
. (2.43)

As i∆ can be straightforwardly recovered from v via (2.39), we only need to focus on
finding the solution v to (2.42), which leads to the following extended implicit Z-bus
formulation of the power-flow problem.

Problem 2.2 (Extended ImplicitZ-Bus Formulation)

Given the target system power injection sY,∆, find the solution v to equation
(2.42).

2.6.3 Extended Results on Existence, Uniqueness, and Non-Singularity

In what follows, we extend the theoretical results in Theorem 2.1 and Proposition 2.1.
To this end, we first give the notations in Table 2.3. As can be seen, the notations
in Table 2.3 are extensions of their counterparts in Table 2.2. Then, we present the
following lemma and prove it in Appendix 2.E.
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Notation Definition

β(v) minj
j(Hv)j j

(jHjjwj)j
γ(v) minfα(v), β(v)g

ξY (sY,∆)
W�1Y�1

LLW
�1

diag(sY )

1

ξ∆(sY,∆)
W�1Y�1

LLHTdiag(jHjjwj)�1diag(s∆)

1

ξY,∆(sY,∆) ξY (sY,∆) + ξ∆(sY,∆)

ρzY,∆(v, sY,∆)
1

2

�
γ(v)� ξY,∆(sY,∆)

γ(v)

�
ρyY,∆(v, sY,∆, s̃Y,∆) ρzY,∆(v, sY,∆)�

r�
ρzY,∆(v, sY,∆)

�2
� ξY,∆

�
s̃Y,∆ � sY,∆

�

Table 2.3 – Notations for the extended results on solvability and non-singularity.

Lemma 2.3

Let sY,∆ be the target system power injection,

"
v̂

î∆

#
represent the reference

system electrical state, and ŝY,∆ = FY,∆
�
v̂, î∆

�
be the reference system power

injection.

Suppose that there exists a ρ 2 (0, γ(v̂)) such that

ξY (sY,∆ � ŝY,∆) +
ξY (ŝY,∆)

α(v̂)
ρ

α(v̂)� ρ +

ξ∆(sY,∆ � ŝY,∆) +
ξ∆(ŝY,∆)

β(v̂)
ρ

β(v̂)� ρ � ρ , (2.44)

ξY (sY,∆)�
α(v̂)� ρ

�2 +
ξ∆(sY,∆)�
β(v̂)� ρ

�2 < 1 . (2.45)

Then, in domainDρ(v̂), there exists a unique solution v to (2.42). Moreover, this
solution can be computed via

v(k+1) = GsY;�(v(k)) , (2.46)

with arbitrary v(0) 2 Dρ(v̂).
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Notice that the iterative method (2.46) can be efficiently implemented by following
the procedures in Remark 2.1. The only difference is that the right-hand side of (2.23a)

is replaced by P

�
diag(v(k))�1sY + HTdiag(Hv(k))�1s∆

�
.

By comparing Lemma 2.3 with Theorem 2.1, it is clear that Lemma 2.3 does not
provide an explicit condition for the existence and uniqueness of v, hence it is hard to
apply in practice. Indeed, to find an appropriate ρ, we have to scan all possible values,
which is computationally intensive. To address this issue, we sacrifice the tightness of
(2.44)–(2.45) and propose the following theorem. The corresponding proof is given in
Appendix 2.F.

Theorem 2.2

Let sY,∆ be the target system power injection,

"
v̂

î∆

#
represent the reference

system electrical state, and ŝY,∆ = FY,∆
�
v̂, î∆

�
be the reference system power

injection.

Suppose that

ρzY,∆(v̂, ŝY,∆) > 0 , (2.47)

ξY,∆
�
sY,∆ � ŝY,∆

�
<
�
ρzY,∆(v̂, ŝY,∆)

�2
. (2.48)

Then, in domain Dρ(v̂) with ρ = ρzY,∆(v̂, ŝY,∆), there exists a unique solution v

to (2.42). Moreover, this solution is located in the smaller domain Dρ(v̂) with
ρ = ρyY,∆(v̂, ŝY,∆, sY,∆) and can be computed through the iterative method (2.46)

with arbitrary v(0) 2 Dρ(v̂), ρ = ρzY,∆(v̂, ŝY,∆).

We see that Theorem 2.2 gives explicit conditions for guaranteeing the existence and
uniqueness of the power-flow solution; they extend the corresponding conditions in
Theorem 2.1.

In the following text, we give results on the non-singularity of the augmented power-
flow Jacobian. First, let us denote the augmented power-flow Jacobian by JFY;�(v, i∆);
it is the Jacobian of FY,∆ evaluated at (v, i∆). Specifically, for arbitrary d 2 C3N and
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g 2 C3N , the action of JFY;�(v, i∆) on

"
d

g

#
is expressed as follows.

JFY;�(v, i∆) �
"
d

g

#

=

264
�

diag
�
YLL(v �w)

�
� diag

�
HT i∆

��
d + diag(v)YLLd� diag(v)HTg

diag
�
i∆
�
Hd + diag(Hv)g

375 .

(2.49)

Then, we give the following proposition on the non-singularity of JFY;�(v, i∆). The
corresponding proof can be found in Appendix 2.G. Here, recall that given v and sY,∆,
we can recover i∆ via (2.39).

Proposition 2.2

In Theorem 2.2,

1. The satisfaction of ρzY,∆(v̂, ŝY,∆) > 0 implies that JFY;�(v̂, î∆) is non-singular.

2. Moreover, in domainDρ(v̂) with ρ = ρzY,∆(v̂, ŝY,∆), the guaranteed unique

solution v satisfies ρzY,∆(v, sY,∆) > 0, which implies that JFY;�(v, i∆) is
non-singular.

Remark 2.3 (Comparison with the State of the Art)

In [35], the authors extend the proposed Theorem 2.1 to address ZIP loads. Therein,
they consider both wye and delta connections. However, compared to our results
in this section, their results do not handle the combination of wye and delta con-
nections at a bus. In other words, their results require only one type of connection
per bus. Additionally, they do not assume the knowledge of a reference system
electrical state and its corresponding system power injection. As a consequence, it
is easy to find a situation where the results in this section are applicable, whereas
the results in [35] are not. Last but not least, there is no result on the non-singularity
of the power-flow Jacobian in [35].

2.6.4 Discussion on General Multi-Phase Networks

Observe that the developed results in Sections 2.6.1–2.6.3 can be easily adapted to
handle the general multi-phase networks where one-, two-, three-phase buses coexist.
Specifically, for such networks,
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� v, w, and sY collect their corresponding electrical quantities for only the existent
phases,

� s∆ collects the corresponding electrical quantities for only the existent phase-to-
phase connections,

� H contains rows that correspond to only the existent phase-to-phase connections
and columns that correspond to only the existent phases,

� YLL contains rows and columns in Y that correspond to the existent phases at
PQ buses.

With these adaptations, we preserve the mathematical forms and correctness for all
the proposed theories.

2.7 Numerical Evaluation

In this section, we present the numerical evaluation of the proposed theories, using a
two-bus network and two IEEE networks [55, 56]. All the experiments are conducted
on a Macbook Pro with 3 GHz Intel Core i7 and 16 GB 1600 MHz DDR3.

2.7.1 Numerical Experiments for Section 2.5

A Two-Bus Network

We consider a balanced network that has one three-phase PQ bus (namely, Nphase = 3

and N = 1). This PQ bus is directly connected to the slack bus via a transmission line.
The per-unit line admittance matrix is given as follows,2647� 12 �1 + 2 �1 + 2

�1 + 2 7� 12 �1 + 2

�1 + 2 �1 + 2 7� 12

375 .

Moreover, we assume that the shunt elements are negligible and the slack-bus voltage
is v0 = (1, e�

2�
3 , e

2�
3 )T p.u. In this way,

w = v0, YLL =

2647� 12 �1 + 2 �1 + 2

�1 + 2 7� 12 �1 + 2

�1 + 2 �1 + 2 7� 12

375 . (2.50)

Now, let the power injection s = s1 be balanced in all phases. As a consequence, there
is v1 = (va1)v0, which means that v = v1 is determined by va1 2 C.

On the top of Figure 2.3, we plot the region (a filled circle) in which the condition
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(2.19) holds. It can be seen that this region covers almost all the va1 with a secured
magnitude and an angle between �35.78�, which is of practical significance. Also,
note that the region contains va1 with a magnitude much higher than 1 p.u., which
corresponds to the case of strong reverse power flow.

On the bottom of Figure 2.3, we take v̂a1 = 1 p.u. (i.e., v̂ = w, ŝ = 0), s = (1.5 +

0.9, 1.5 + 0.9, 1.5 + 0.9)T p.u., and we plot the domain Dρ(v̂) for ρz(v̂), ρy(v̂, s). We
see that when taking the target system power injection s into account, the guaranteed
solution is localized more accurately usingDρ(v̂) with ρ = ρy(v̂, s).

In Table 2.4, we show the update of (va1)(k) during the iterations. By observing
the third column, it is clear that the iterative update gradually converges. In the
fourth column, we give the convergence rate that is upper bounded by the contraction

modulus
ξ(s)�

α(v̂)� ρy(v̂, s)
�2 = 0.3264.

We note that the true convergence rate is usually less than a third of the contraction
modulus. As a consequence, when our conditions hold, the iterative method generally
reaches a precision of 10�6 in several iterations.

k (va1)(k)
���(va1)(k) � (va1)(k�1)

��� j(va1)(k+1) � (va1)(k)j
j(va1)(k) � (va1)(k�1)j

0 1.0000 + 0.0000

1 1.0946 + 0.0531 0.1085 0.0990

2 1.0839 + 0.0526 0.0107 0.0912

3 1.0847 + 0.0531 0.0010 0.0921

4 1.0846 + 0.0531 0.0001

Table 2.4 – Update of va1 in the iterations.
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35.78 �

1

1 2
<(va

1)

=(va
1)

0

1

1 2
<(va

1)

=(va
1)

D�(v̂) with � = �z(v̂)

D�(v̂) with � = �y(v̂; s)

Reference v̂
Solution v

0

Figure 2.3 – (Top) The region where condition (2.19) holds. (Bottom) The domainDρ(v̂)
and the guaranteed solution v (projected on the space of va1 ).
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Modified IEEE 34-Bus Test Feeder

In this modified IEEE 34-Bus Test Feeder,

� The three-phase line configuration 300 is applied to all transmission lines,

� Both regulators are set to default values,

� All loads are considered to be wye-connected and constant-power.

Let the IEEE benchmark system power injection be sbench. In addition, let v̂ = w

and ŝ = 0. Then, ρz(v̂) = 0.5 and ξ(sbench � ŝ) = ξ(sbench) = 0.1042 < 0.25, which takes
0.5 ms to compute. Clearly, the conditions (2.19)–(2.20) in Theorem 2.1 are satisfied.7

Therefore, there exists a unique solution v inDρ(v̂) with ρ = ρy(v̂, sbench) = 0.1182. We
compute this guaranteed solution v via the iterative method (2.18). In this example,
the iterative method converges in 6 iterations. On average, each iteration takes 0.08 ms
if we follow the efficient computation procedures in Remark 2.1. We observe that this
solution v is identical to the one obtained from the Newton-Raphson method (up to
the machine precision). However, the total runtime of the Newton-Raphson method is
approximately 80 times longer than that of our iterative method.

Next, we perform the continuation power-flow analysis [50, 57]. Specifically, we let
the target system power injection be s = κsbench, where κ 2 [0,1). By varying κ, we
find

� The conditions in [30] are satisfied for s belonging to Interval 1 in Figure 2.4,8

� The conditions in [31] are satisfied for s belonging to Interval 2 in Figure 2.4,9

� The conditions (2.19)–(2.20) in our Theorem 2.1 are satisfied for s belonging to
Interval 3 in Figure 2.4.

Clearly, Interval 3 is much larger than Intervals 1 and 2. Furthermore, let s(1) be the
rightmost system power injection in Interval 3 and denote its guaranteed solution
by v(1). By taking ŝ = s(1) and v̂ = v(1), we obtain Interval 4 in Figure 2.4. For all s

belonging to Interval 4, we guarantee the existence of a power-flow solution that is
unique in a neighborhood of v(1). Note that Interval 4 cannot be obtained using the
proposed Corollary 2.1 and the results in [30, 31].

7Note that Corollary 2.1 also applies in this case.
8We choose the best values of p and q through parameter scanning.
9In addition to the best values of p and q, we take (�)k;k = 1=maxhj(W�1Y�1

LLW
�1

)h;kj as suggested
in [31].
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0 0.5 1 1.5 2 2.5 3

Interval 4

Interval 3

Interval 2

Interval 1

ksk1

s(1)

Figure 2.4 – The conditions in [30] are satisfied by system power injections in Interval
1. The conditions in [31] are satisfied by system power injections in Interval 2. The
conditions in Theorem 2.1 are satisfied by system power injections in Intervals 3 and 4.

2.7.2 Numerical Experiments for Section 2.6.3

IEEE 123-Bus Test Feeder

The IEEE 123-Bus Test Feeder is a large multi-phase network with unbalanced one-,
two-, and three-phase loads/sources. As mentioned in Section 2.6.4, let us first delete
in H the rows that correspond to the lacking phase-to-phase connections and the
columns that correspond to the lacking phases.

Similarly to part of the previous example on the modified IEEE 34-Bus Test Feeder,
we set the regulators to their default values and perform the continuation power-
flow analysis. Specifically, denote the IEEE benchmark system power injection by�
sY,∆

�bench
, and the target system power injection by sY,∆ = κ

�
sY,∆

�bench
with κ 2

[0,1). As there is no combined wye/delta connection, the conditions in [35] are
applicable.

First, let v̂ = w and ŝY,∆ = 0. Through varying κ, we find

� The conditions in [35] are satisfied for sY,∆ belonging to Interval 1 in Figure 2.5,10

� The conditions (2.44)–(2.45) in Lemma 2.3 are satisfied for sY,∆ belonging to
Interval 2 in Figure 2.5,

� The conditions (2.47)–(2.48) in Theorem 2.2 are satisfied for sY,∆ belonging to
Interval 3 in Figure 2.5.

Note that the verification of the explicit conditions (2.47)–(2.48) takes 12 ms on average,

10As suggested by the authors of [35], we let their diagonal matrix � be W.
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which is much faster than the other conditions.

Then, let
�
sY,∆

�(1)
be the rightmost power injection in Interval 2, and its guaranteed

solution be v(1) (which is computed via the iterative method in (2.46)). By choosing

v̂ = v(1) and ŝY,∆ =
�
sY,∆

�(1)
, we obtain Interval 4 via Lemma 2.3 and Interval 5 via

Theorem 2.2. These two intervals cannot be obtained from the results in [35].

0 0.2 0.4 0.6 0.8 1 1.2 1.4
ksY;"k1

Interval 5

Interval 4

Interval 3

Interval 2

Interval 1
(sY;")(1)

Figure 2.5 – The conditions in [35] are satisfied by system power injections in Interval
1. The conditions in Lemma 2.3 are satisfied by system power injections in Intervals
2 and 4. The conditions in Theorem 2.2 are satisfied by system power injections in
Intervals 3 and 5.

IEEE 123-Bus Test Feeder (with Combined Wye/Delta Connections)

Here, we modify the IEEE 123-Bus Test Feeder by adding the loads and sources in
Table 2.5 to the benchmark system power injection. In this way, we create combined
wye/delta connections, which renders the results in [35] inapplicable. With the modi-
fied benchmark system power injection, we repeat the continuation power-flow analy-
sis in the previous example and obtain 4 intervals in Figure 2.6. Specifically, Intervals 1
and 3 correspond to Lemma 2.3; Intervals 2 and 4 correspond to Theorem 2.2. Within
each interval, we notice that

� For a target system power injection, the computation of the guaranteed solution
converges in typically less than 10 iterations of (2.46). On average, each iteration
takes 0.49 ms.

� The guaranteed unique solutions in Theorem 2.2 and Lemma 2.3 match with
those obtained from OpenDSS [58]. OpenDSS is the only freely-available solver
that works with combined wye/delta connections.
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Bus Type Phase-Phase ab Phase-Phase bc Phase-Phase ca

/ Phase a (p.u.) / Phase b (p.u.) / Phase c (p.u.)

1 delta �0.03� 0.01 �0.03� 0.01 �0.03� 0.01

35 wye �0.02 �0.02 �0.02

76 wye 0.04 + 0.01 0.04 + 0.01 0.04 + 0.01

99 delta �0.02� 0.01 �0.02� 0.01 �0.02� 0.01

Table 2.5 – Additional loads and sources in IEEE 123-Bus Test Feeder.

0 0.5 1 1.5
ksY;"k1

Interval 4

Interval 3

Interval 2

Interval 1
(sY;")(1)

Figure 2.6 – The conditions in Lemma 2.3 are satisfied by system power injections
in Intervals 1 and 3. The conditions in Theorem 2.2 are satisfied by system power
injections in Intervals 2 and 4.

2.8 Conclusions

We have proposed explicit sufficient conditions on the existence and uniqueness of
the power-flow solution. Once the conditions are satisfied, we guarantee the existence
of a power-flow solution and provide an analytically specified domain in which this
guaranteed solution is unique. In addition, we have also provided an iterative method
to compute this solution; it can be efficiently implemented by means of LU decompo-
sition with Markowitz pivoting. Moreover, we have provided an explicit condition on
the non-singularity of power-flow Jacobian and have shown that the guaranteed solu-
tion has a non-singular power-flow Jacobian. All these results have been extended to
account for various load/source connections, including wye, delta, and a combination
thereof.
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Appendix

2.A Proof of Invertibility of YLL

The proof is based on the following assumptions, which hold in a large number of
practical distribution networks.

� The connection from the slack bus to a PQ bus can be realized in three ways:
(i) a transmission line, (ii) a Delta�WyeG transformer, or (iii) a WyeG �WyeG

transformer;

� The connection between two PQ buses can be realized through either a trans-
mission line or a WyeG �WyeG transformer;

� For all transmission lines, the series admittances and shunt admittances are
described by circulant matrices.

� For all transformers, we employ the models in [36], which include both the
longitudinal winding admittances and the transversal core-related admittances.

� Transmission lines and transformers do not generate active power, and their
longitudinal elements have positive resistance in zero-, positive-, negative se-
quences.

With the above assumptions, we prove the invertibility of YLL, by showing: if YLLv = 0,
then we must have v = 0. To this end, we view YLL as the nodal admittance matrix
of a fictitious N-bus network (i.e., the original network with the slack bus grounded),
and letN slack be the set of PQ buses that are directly connected to the slack bus in the
original (N + 1)-bus network. Then, the total power injection into this N-bus network
is stotal = vTYLLv = 0. Notice that stotal equals the total power loss and can be further
decomposed as

stotal = sslack + sseries + sshunt + swinding + score , (2.51)

where

� sslack results from the transmission devices between the grounded slack bus and
the PQ buses j 2 N slack,

� sseries and sshunt result from the transmission lines between the PQ buses,

� swinding and score result from the transformers between the PQ buses.

By our last assumption, stotal = 0 implies that all the five terms have zero real parts.
Consequently, we have
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1. vj = 0, 8j 2 N slack.

2. vj = vk, if buses j, k 2 f1, ..., Ng are connected through a transmission line.

3. vj = xjkvk, if buses j, k 2 f1, ..., Ng are connected through a transformer with
ratio xjk.

Since N slack is non-empty, there is at least one vj equal to zero. This zero voltage
propagates throughout the N-bus network. Thus, we have v = 0.

�

2.B Proof of Lemma 2.1

First, let us define u = W�1v, which can be viewed as the normalized system electrical
state. Then, Equation (2.16) is equivalent to

u = G̃s(u) , (2.52)

where

G̃s(u) = 1 + W�1Y�1
LLW

�1
diag(u)�1s . (2.53)

Since W defines an invertible relation between u and v, we can complete the proof by
showing: given the satisfaction of conditions (2.19)–(2.20), G̃s(u) is a self-mapping in
domain

D̃ρ(û) =
n

u : j(u)j � (û)j j � ρ, j = 1, ..., NphaseN
o
, (2.54)

for ρ 2
h
ρy(v̂, s), ρz(v̂)

i
and û = W�1v̂.

In other words, we need to show: given the satisfaction of conditions (2.19)–(2.20),u� û

1
� ρ )

G̃s(u)� û

1
� ρ , (2.55)

for ρ 2
h
ρy(v̂, s), ρz(v̂)

i
.
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To this end, consider that

G̃s(u)� û =W�1Y�1
LLW

�1
�

diag(u)�1s� diag(û)�1ŝ

�
=W�1Y�1

LLW
�1
�

diag(u)�1s� diag(u)�1ŝ

�
+ W�1Y�1

LLW
�1
�

diag(u)�1ŝ� diag(û)�1ŝ

�
. (2.56)

For the terms on the right-hand side of (2.56), we can re-arrange as follows:

W�1Y�1
LLW

�1
�

diag(u)�1s� diag(u)�1ŝ

�

=W�1Y�1
LLW

�1
diag

�
s� ŝ

�264 (u)�1
1

...
(u)�1

NphaseN

375 , (2.57)

W�1Y�1
LLW

�1
�

diag(u)�1ŝ� diag(û)�1ŝ

�

=W�1Y�1
LLW

�1
diag(ŝ)

26666664
(û)1 � (u)1

(û)1(u)1
...

(û)NphaseN � (u)NphaseN

(û)NphaseN (u)NphaseN

37777775 . (2.58)

In this way, for ρ < α(v̂), ku� ûk1 � ρ implies thatG̃s(u)� û

1
�
W�1Y�1

LLW
�1
�

diag(u)�1s� diag(u)�1ŝ

�
1

+

W�1Y�1
LLW

�1
�

diag(u)�1ŝ� diag(û)�1ŝ

�
1

� ξ(s� ŝ)

α(v̂)� ρ +
ξ(ŝ)ρ�

α(v̂)� ρ
�
α(v̂)

. (2.59)
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Furthermore, observe that

ξ(s� ŝ)

α(v̂)� ρ +
ξ(ŝ)ρ�

α(v̂)� ρ
�
α(v̂)

� ρ

=

ρ2 �
�
α(v̂)� ξ(ŝ)

α(v̂)

�
ρ+ ξ(s� ŝ)

α(v̂)� ρ

=
ρ2 � 2ρz(v̂)ρ+ ξ(s� ŝ)

α(v̂)� ρ . (2.60)

Given the satisfaction of conditions (2.19)–(2.20), we have

ρ2 � 2ρz(v̂)ρ+ ξ(s� ŝ) � 0 , (2.61)

α(v̂)� ρ > 0 , (2.62)

for ρ 2
h
ρy(v̂, s), ρz(v̂)

i
. Specifically, (2.61) is true because: the satisfaction of (2.19)–

(2.20) ensures that the convex polynomial ρ2 � 2ρz(v̂)ρ+ ξ(s� ŝ) has two positive real
roots ρy(v̂, s), 2ρz(v̂)� ρy(v̂, s), hence ρ2 � 2ρz(v̂)ρ+ ξ(s� ŝ) is non-positive between
its small root ρy(v̂, s) and its axis of symmetry ρz(v̂).

As a result of (2.61) and (2.62), we obtain

ξ(s� ŝ)

α(v̂)� ρ +
ξ(ŝ)ρ�

α(v̂)� ρ
�
α(v̂)

� ρ , (2.63)

for ρ 2
h
ρy(v̂, s), ρz(v̂)

i
.

By combination of (2.59) and (2.63), there isG̃s(u)� û

1
� ρ , (2.64)

for ρ 2
h
ρy(v̂, s), ρz(v̂)

i
, which completes the proof.

�

2.C Proof of Lemma 2.2

In this proof, we continue using the notations in Appendix 2.B. Here, our goal is to show:
given the satisfaction of conditions (2.19)–(2.20), G̃s(u) is a contraction mapping in

domain D̃ρ(û) for ρ 2
h
ρy(v̂, s), ρz(v̂)

i
.

40



2.C. Proof of Lemma 2.2

In other words, we need to show: given the satisfaction of conditions (2.19)–(2.20),G̃s(u)� G̃s(u0)

1
<
u� u0


1
, 8u, u0 2 D̃ρ(û) , (2.65)

holds for ρ 2
h
ρy(v̂, s), ρz(v̂)

i
.

To this end, consider that

G̃s(u)� G̃s(u0) = W�1Y�1
LLW

�1
�

diag(u)�1s� diag(u0)�1s

�
. (2.66)

Similar to (2.58), the right-hand side of (2.66) can be re-arranged as follows.

W�1Y�1
LLW

�1
�

diag(u)�1s� diag(u0)�1s

�

=W�1Y�1
LLW

�1
diag(s)

2666664
(u0)1 � (u)1

(u0)1(u)1
...

(u0)NphaseN � (u)NphaseN

(u0)NphaseN (u)NphaseN

3777775 . (2.67)

In this way, for ρ < α(v̂), u, u0 2 D̃ρ(û) implies thatG̃s(u)� G̃s(u0)

1
� ξ(s)�

α(v̂)� ρ
�2

u� u0

1
. (2.68)

Further, given the satisfaction of conditions (2.19)–(2.20), we have

ξ(s) �ξ(ŝ) + ξ(s� ŝ)

<ξ(ŝ) +
1

4

�
α(v̂)� ξ(ŝ)

α(v̂)

�2

=
1

4

�
α(v̂) +

ξ(ŝ)

α(v̂)

�2

=
�
α(v̂)� ρz(v̂)

�2
. (2.69)

Therefore, we obtain that

ξ(s) <
�
α(v̂)� ρ

�2
, (2.70)

for ρ 2
h
ρy(v̂, s), ρz(v̂)

i
.
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By combination of (2.68) and (2.70), there isG̃s(u)� G̃s(u0)

1
<
u� u0


1
, (2.71)

for ρ 2
h
ρy(v̂, s), ρz(v̂)

i
, which completes the proof.

�

2.D Proof of Proposition 2.1

For the First Item

In order to prove that JF(v̂) is non-singular, we need to show

JF(v) � d = 0 ) d = 0 . (2.72)

This can be done by the method of contradiction. First, let us assume that there exists
a d 6= 0 such that JF(v) � d = 0. Clearly, for any ε > 0, εd satisfies

JF(v) � (εd) = 0 . (2.73)

Then, let vε
0 = v̂ + εd and vε

00 = v̂ � εd be two different system electrical states. Note
that vε

0 and vε
00 correspond to the same system power injection, since

F(vε
0) =diag(v̂ + εd)YLL(v̂ + εd�w)

=ŝ + JF(v) � (εd) + diag(εd)YLL(εd)

=ŝ� JF(v) � (εd) + diag(εd)YLL(εd)

=diag(v̂ � εd)YLL(v̂ � εd�w)

=F(vε
00) . (2.74)

Next, we find a small enough ε� > 0 such that

� The difference of power injections F(vε
0)� ŝ satisfies condition (2.20),

� Both vε
0 and vε

00 are included in domainDρ(v̂) with ρ = ρz(v̂).

This creates a contradiction, since Theorem 2.1 enforces that vε
0 = vε

00. Therefore, d

must be 0 and JF(v̂) is non-singular.
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For the Second Item

As the guaranteed solution v belongs to domainDρ(v̂) with ρ = ρz(v̂), we have

j(v)j j
j(w)j j

� j(v̂)j j
j(w)j j

� ρz(v̂)

� α(v̂)� ρz(v̂) , 8j . (2.75)

This implies that

α(v) � α(v̂)� ρz(v̂) . (2.76)

Then, we have

ρz(v) =
1

2

0@α(v)�
ξ
�
F(v)

�
α(v)

1A
� 1

2

0@�α(v̂)� ρz(v̂)
�
�

ξ
�
F(v)

�
�
α(v̂)� ρz(v̂)

�
1A

=

�
α(v̂)� ρz(v̂)

�2
� ξ
�
F(v)

�
2
�
α(v̂)� ρz(v̂)

� . (2.77)

Next, according to (2.69) in Appendix 2.C, there is

ξ
�
F(v)

�
= ξ(s) <

�
α(v̂)� ρz(v̂)

�2
. (2.78)

By plugging (2.78) into (2.77), we obtain

ρz(v) > 0 , (2.79)

which completes the proof.

�

2.E Proof of Lemma 2.3

Let u = W�1v and notice that (2.42) is equivalent to

u = G̃sY;�(u) , (2.80)
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where

G̃sY;�(u) = 1 + W�1Y�1
LLW

�1
diag(u)�1sY + W�1Y�1

LLHTdiag(HWu)�1s∆ .

(2.81)

Then, by the Banach fixed-point theorem, we need to show that G̃sY;� is a contraction
mapping in

D̃ρ(û) =
n

u : j(u)j � (û)j j � ρ, j = 1, ..., 3N
o
,

for û = W�1v̂ and some ρ 2 (0, γ(v̂)) that satisfies (2.44)–(2.45).11 To do so, we
sequentially prove the self-mapping property and the contraction property of G̃sY;� .

Self-Mapping Property

Assuming that ku� ûk1 � ρ, our goal is to show kG̃sY;�(u)� ûk1 � ρ.

Since û = G̃sY;�(û), we have

G̃sY;�(u)� û =W�1Y�1
LLW

�1
�

diag(u)�1sY � diag(û)�1ŝY
�

+ W�1Y�1
LLHT

�
diag(HWu)�1s∆ � diag(HWû)�1ŝ∆

�
,

=W�1Y�1
LLW

�1
�

diag(u)�1sY � diag(u)�1ŝY
�

+ W�1Y�1
LLW

�1
�

diag(u)�1ŝY � diag(û)�1ŝY
�

+ W�1Y�1
LLHT

�
diag(HWu)�1s∆ � diag(HWu)�1ŝ∆

�
+ W�1Y�1

LLHT
�

diag(HWu)�1ŝ∆ � diag(HWû)�1ŝ∆
�
. (2.82)

Therefore,G̃sY;�(u)� û

1
�
W�1Y�1

LLW
�1
�

diag(u)�1sY � diag(u)�1ŝY
�
1

+
W�1Y�1

LLW
�1
�

diag(u)�1ŝY � diag(û)�1ŝY
�
1

+
W�1Y�1

LLHT
�

diag(HWu)�1s∆ � diag(HWu)�1ŝ∆
�
1

+
W�1Y�1

LLHT
�

diag(HWu)�1ŝ∆ � diag(HWû)�1ŝ∆
�
1
.

(2.83)

11Recall that ~D�(û) is defined in (2.54).
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According to the proof of Lemma 2.1, we haveW�1Y�1
LLW

�1
�

diag(u)�1sY � diag(u)�1ŝY
�
1
� ξY (sY,∆ � ŝY,∆)

α(v̂)� ρ , (2.84)

W�1Y�1
LLW

�1
�

diag(u)�1ŝY � diag(û)�1ŝY
�
1
� ξY (ŝY,∆)ρ�

α(v̂)� ρ
�
α(v̂)

. (2.85)

Furthermore, consider that

W�1Y�1
LLHT

�
diag(HWu)�1s∆ � diag(HWu)�1ŝ∆

�

=W�1Y�1
LLHTdiag(jHjjwj)�1diag

�
s∆ � ŝ∆

�

266666666666664

10@ (HWu)1

(jHjjwj)1

1A
...
10@ (HWu)3N

(jHjjwj)3N

1A

377777777777775
, (2.86)

W�1Y�1
LLHT

�
diag(HWu)�1ŝ∆ � diag(HWû)�1ŝ∆

�

=W�1Y�1
LLHTdiag(jHjjwj)�1diag

�
ŝ∆
�

266666666666666666666664

0@ (HWû)1

(jHjjwj)1

1A�
0@ (HWu)1

(jHjjwj)1

1A
0@ (HWû)1

(jHjjwj)1

1A0@ (HWu)1

(jHjjwj)1

1A
...0@ (HWû)3N

(jHjjwj)3N

1A�
0@ (HWu)3N

(jHjjwj)3N

1A
0@ (HWû)3N

(jHjjwj)3N

1A0@ (HWu)3N

(jHjjwj)3N

1A

377777777777777777777775

,

(2.87)

j(HWu)j � (HWû)j j � ρ(jHjjwj)j , 8j = 1, ..., 3N , (2.88)

j(HWu)j j � (β(v̂)� ρ)(jHjjwj)j , 8j = 1, ..., 3N . (2.89)

45



Chapter 2. Existence and Uniqueness of Power-Flow Solutions in Multi-Phase
Networks

We obtainW�1Y�1
LLHT

�
diag(HWu)�1s∆ � diag(HWu)�1ŝ∆

�
1
� ξ∆(sY,∆ � ŝY,∆)

β(v̂)� ρ ,

(2.90)

W�1Y�1
LLHT

�
diag(HWu)�1ŝ∆ � diag(HWû)�1ŝ∆

�
1
� ξ∆(ŝY,∆)ρ�

β(v̂)� ρ
�
β(v̂)

.

(2.91)

By combination of equations (2.83)–(2.85) and (2.90)–(2.91), we get

G̃sY;�(u)� û

1
�
ξY (sY,∆ � ŝY,∆) +

ξY (ŝY,∆)

α(v̂)
ρ

α(v̂)� ρ +

ξ∆(sY,∆ � ŝY,∆) +
ξ∆(ŝY,∆)

β(v̂)
ρ

β(v̂)� ρ .

(2.92)

This implies that
G̃sY;�(u)� û


1
� ρ, since ρ satisfies condition (2.44).

Contraction Property

In this part, we assume that u and u0 are arbitrary elements in D̃ρ(v̂). Our goal is to

show
G̃sY;�(u) � G̃sY;�(u0)


1
< ku � u0k1. Similar to the proof of self-mapping

property, we first take the subtraction

G̃sY;�(u)� G̃sY;�(u0) =W�1Y�1
LLW

�1
�

diag(u)�1sY � diag(u0)�1sY
�

+ W�1Y�1
LLHT

�
diag(HWu)�1s∆ � diag(HWu0)�1s∆

�
.

(2.93)

Then, there isG̃sY;�(u)� G̃sY;�(u0)

1
�
W�1Y�1

LLW
�1
�

diag(u)�1sY � diag(u0)�1sY
�
1

+
W�1Y�1

LLHT
�

diag(HWu)�1s∆ � diag(HWu0)�1s∆
�
1

�

0@ ξY (sY,∆)�
α(v̂)� ρ

�2 +
ξ∆(sY,∆)�
β(v̂)� ρ

�2

1Aku� u0k1 (2.94)

Since ρ satisfies condition (2.45), we have
G̃sY;�(u)�G̃sY;�(u0)


1
< ku�u0k1, which

completes the proof.
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�

2.F Proof of Theorem 2.2

Given conditions (2.47)–(2.48) are satisfied, we need to show that conditions (2.44)–
(2.45) are true for ρ 2

h
ρyY,∆(v̂, ŝY,∆, sY,∆), ρzY,∆(v̂, ŝY,∆)

i
.

First, notice that

ξY (sY,∆ � ŝY,∆) +
ξY (ŝY,∆)

α(v̂)
ρ

α(v̂)� ρ +

ξ∆(sY,∆ � ŝY,∆) +
ξ∆(ŝY,∆)

β(v̂)
ρ

β(v̂)� ρ

�
ξY (sY,∆ � ŝY,∆) +

ξY (ŝY,∆)

γ(v̂)
ρ

γ(v̂)� ρ +

ξ∆(sY,∆ � ŝY,∆) +
ξ∆(ŝY,∆)

γ(v̂)
ρ

γ(v̂)� ρ

=

ξY,∆(sY,∆ � ŝY,∆) +
ξY,∆(ŝY,∆)

γ(v̂)
ρ

γ(v̂)� ρ . (2.95)

Analogous to the derivation of (2.63), we have

ξY,∆(sY,∆ � ŝY,∆) +
ξY,∆(ŝY,∆)

γ(v̂)
ρ

γ(v̂)� ρ � ρ , (2.96)

for ρ 2
h
ρyY,∆(v̂, ŝY,∆, sY,∆), ρzY,∆(v̂, ŝY,∆)

i
. In this way, we obtain that condition (2.44)

is true for ρ 2
h
ρyY,∆(v̂, ŝY,∆, sY,∆), ρzY,∆(v̂, ŝY,∆)

i
.

Next, we consider that

ξY (sY,∆)�
α(v̂)� ρ

�2 +
ξ∆(sY,∆)�
β(v̂)� ρ

�2

� ξY (sY,∆)�
γ(v̂)� ρ

�2 +
ξ∆(sY,∆)�
γ(v̂)� ρ

�2

=
ξY,∆(sY,∆)�
γ(v̂)� ρ

�2 . (2.97)
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By analogy to the derivation of (2.70), we have

ξY,∆(sY,∆)�
γ(v̂)� ρ

�2 < 1 , (2.98)

for ρ 2
h
ρyY,∆(v̂, ŝY,∆, sY,∆), ρzY,∆(v̂, ŝY,∆)

i
. In this way, we obtain that condition (2.45)

is true for ρ 2
h
ρyY,∆(v̂, ŝY,∆, sY,∆), ρzY,∆(v̂, ŝY,∆)

i
, which completes the proof.

�

2.G Proof of Proposition 2.2

For the First Item

In order to prove that JFY;�(v̂, î∆) is non-singular, we need to show

JFY;�(v̂, î∆) �
"
d

g

#
= 0 )

"
d

g

#
= 0 . (2.99)

Similar to the proof of Proposition 2.1, we show by contradiction. First, we assume that

there exists a

"
d

g

#
6= 0 such that JFY;�(v̂, î∆) �

"
d

g

#
= 0. Clearly, for any ε > 0, ε

"
d

g

#
satisfies

JFY;�(v̂, î∆) �

0@ε"d
g

#1A = 0 . (2.100)

Then, let

"
vε
0

(i∆ε )0

#
=

"
v̂ + εd

î∆ + εg

#
and

"
vε
00

(i∆ε )
00

#
=

"
v̂ � εd
î∆ � εg

#
. Notice that, these two system

electrical states correspond to the same system power injection, i.e., FY,∆(vε
0, (i∆ε )0) =

FY,∆(vε
00, (i∆ε )

00
).

Next, we find a small enough ε� > 0 such that

� The system power injection FY,∆(vε
0, (i∆ε )0) satisfies condition (2.48),

� Both vε
0 and vε

00 are included in domainDρ(v̂) with ρ = ρzY,∆(v̂, ŝY,∆).

This creates a contradiction, since Theorem 2.2 and equation (2.39) enforce that"
vε
0

(i∆ε )0

#
=

"
vε
00

(i∆ε )
00

#
. Therefore, both d and g must be 0, and JFY;�(v̂, î∆) is non-singular.
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For the Second Item

As the guaranteed solution v belongs to domainDρ(v̂) with ρ = ρzY,∆(v̂, ŝY,∆), we have

γ(v̂)� ρzY,∆(v̂, ŝY,∆) �α(v̂)� ρzY,∆(v̂, ŝY,∆)

�α(v) , (2.101)

γ(v̂)� ρzY,∆(v̂, ŝY,∆) �β(v̂)� ρzY,∆(v̂, ŝY,∆)

�β(v) . (2.102)

Combining the two inequalities, we get

γ(v̂)� ρzY,∆(v̂, ŝY,∆) � γ(v) . (2.103)

Furthermore, by (2.98), there is

ξY,∆(sY,∆) <
�
γ(v)

�2
, (2.104)

which is equivalent to ρzY,∆(v, sY,∆) > 0 and completes the proof.

�
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3 Admissibility of Uncertain Power
Injections

She melts into the throng with trails of scents.
In the crowd once and again,
I look for her in vain.
When all at once I turn my head,
I find her there where lantern light is dimly shed.

The Lantern Festival Night
XIN QIJI

3.1 Introduction

Motivation

In the last chapter, we have studied the existence and uniqueness of the power-flow
solution that is used to determine whether, for a target system power injection, there
exists a system electrical state that satisfies the security constraints. In this chapter, we
continue focusing on the network security and take into account that the actual system
power injection might be uncertain and different from the target one in practical ADNs
due to, for example, uncaptured system dynamics, reaction delays, and disturbances
from the nature of renewable energy.

Formally, let us assume that the distribution network is steered by a network control
system (e.g., the Commelec [16, 17]). At some time t0, the network control system
obtains the initial system electrical state vinitial via state estimation processes and
decides the target system power injection for some future time instant t1. During the
time interval [t0, t1], the actual system power injection is uncertain and is supposed to
reside in some set Suncertain that includes both the initial and the target system power
injections. As a result of the uncertainty in the system power injection, the actual
system electrical state cannot be predicted precisely during [t0, t1], which makes it
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difficult to ensure the satisfaction of the security constraints.

The above issue motivates another inverse problem that is referred to as the “ad-
missibility problem”. More precisely, let set V? collect all system electrical states that
satisfy the security constraints and the non-singularity of the power-flow Jacobian.
Consider that the system electrical state typically evolves as a continuous function
of time due to the physical nature, our goal is to see whether we can ensure that the
continuous path of the actual system electrical state remains in V?, given that (i) it
starts at vinitial 2 V?, and that (ii) the corresponding path of the actual system power
injection belongs to Suncertain. If we can, then we say that Suncertain is admissible for
vinitial. To solve the admissibility problem, a major difficulty is that each system power
injection might correspond to zero or multiple system electrical states. Specifically,

1. Some of the system power injections in Suncertain might not have corresponding
system electrical states in V?. As a result, it is impossible for the system electrical
state to stay in V? when any of these system power injections is implemented.

2. Even if every system power injection in Suncertain has at least one corresponding
system electrical state in V?, we still might not be able to ensure that the system
electrical state remains in V?. For example, let us consider the single-phase radial
network given in [18], which is shown in Figure 3.1.

210
Slack Bus P Q Bus 1 P Q Bus 2

1:02 � |3:585 1:02 � |3:585
v0 = 1

Figure 3.1 – The radial network in [18]. The slack-bus voltage and line parameters are
given in p.u.

In this network, a system electrical state satisfies the security constraints if the
nodal voltage magnitudes at both PQ buses are between 0.9 and 1.1 p.u. With
per-unit initial system power injection sinitial=(�1.105 + 1,�1 + 1.105)T , there
are two system electrical states inV?. They are marked by “diamond” and “square”
in Figure 3.2. Now, let Suncertain collect all system power injections that are ob-
tained by linearly scaling the initial system power injection with a real factor in
[0.992, 1]. Suppose that the system electrical state is initialized at the diamond
in V? and continuously moves along the “Voltage Branch A” in Figure 3.2. In
the meantime, the system power injection continuously decreases in Suncertain.
As can be seen, the system electrical state immediately exits V?. But, there is
a corresponding system electrical state in V? on “Voltage Branch B” for every
system power injection in Suncertain.

Evidently, the admissibility problem is harder than the AC power-flow problem.
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Voltage Branch A
Voltage Branch B
Initial Voltage on Branch A
Initial Voltage on Branch B

0.2 0.3 0.4 0.5
Real

-1.1

-1

-0.9

-0.8

Im
ag

Complex Voltage at PQ Bus 2
Voltage Branch A
Voltage Branch B
Initial Voltage on Branch A
Initial Voltage on Branch B

0.9 p.u.

1.1 p.u.
Singular Points

0.9 p.u.

1.1 p.u.
Singular Points

Figure 3.2 – For initial system power injection sinitial=(�1.105 + 1,�1 + 1.105)T , there
are two system electrical states in V?. They are marked by “diamond” (0.901\ �
0.886, 1.043\� 0.857)T and “square” (0.923\� 1.255, 1.065\� 1.209)T . If we continu-
ously scale down the system power injection by a real factor from 1 to 0.992, then the
system electrical state moves along either “Voltage Branch A” or “Voltage Branch B”,
depending on its own initialization.

Contributions and Chapter Outline

In Section 3.3.1, we mathematically formulate the admissibility problem.

In Section 3.3.2, we layout the theoretical foundations for solving the admissibility
problem:
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1. We introduce the auxiliary concept of V-control. More precisely, we say that S is
a “domain of V-control” if: any continuous path of the system electrical state that
starts in V must stay in V , as long as the corresponding path of the system power
injection is constrained in S. With the concept of V-control, the admissibility
problem consists in whether there exists a set V � V? such that (i) vinitial 2 V ,
and (ii) Suncertain is a domain of V-control.

2. According to our discussions at the beginning of this chapter, we see that V-
control might not hold due to zero or multiple power-flow solutions. This could
lead to a conjecture that V-control holds if and only if there exists a unique power-
flow solution v 2 V for every s 2 S. We disprove this conjecture by examples.
Specifically,

� We give an example where there exists a unique power-flow solution v 2 V
for every s 2 S, but S is not a domain of V-control.

� We give another example where S is a domain of V-control, but there exists
more than one power-flow solution in V for almost every s 2 S.

3. For S to be a domain of V-control, we give sufficient conditions in Lemma 3.1,
including

� the openness of V ,

� the existence of a unique power-flow solution v 2 V for every s 2 S,

� the continuity of the inverse power-flow mapping from S to V .

By using the inverse function theorem, we replace the continuity condition in
Lemma 3.1 with the non-singularity of the power-flow Jacobian in V , which gives
us Theorem 3.1. Compared to Lemma 3.1, Theorem 3.1 has better practical appli-
cability.

Further, by the real-quadratic nature of F in rectangular coordinates, we ob-
tain Theorem 3.2 as an alternative to Theorem 3.1. The difference between the
two theorems is that the non-singularity condition in Theorem 3.1 is replaced by
the openness of S in Theorem 3.2.

4. We give Theorems 3.3 and 3.4 that can be used to ensure the existence of a unique
power-flow solution v 2 V for every s 2 S. Specifically,

� In Theorem 3.3, we show that if V is convex and the power-flow Jacobian
JF is non-singular everywhere in V , then V is a domain of uniqueness (i.e.,
F(v) = F(v0)) v = v0, 8v,v0 2 V).

� In Theorem 3.4, we provide sufficient conditions to ensure that there exists
a power-flow solution v 2 V for every s 2 S, by exploiting the topological
properties of V and S.
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5. We incidentally obtain in Theorem 3.5 that JF is non-singular throughout V if V
is open and a domain of uniqueness. Note that

� this is the converse of the inverse function theorem,

� this is true due to the real-quadratic nature of F in rectangular coordinates.

In Section 3.4, we develop a first solution method for the admissibility problem, using
Theorems 3.1, 3.3, and 3.4. Specifically,

� In Section 3.4.1, we establish a high-level framework that contains the general
ideas and the key steps of our first solution method. The framework requires an
explicit condition on the non-singularity of JF and needs to perform infeasibility
check for a group of optimization problems.

� In Section 3.4.2, we concretize the high-level framework and obtain our first
solution method. During the infeasibility check, this method employs the semi-
definite programming relaxation of polynomial optimizations [59, 60, 61].

Through numerical examples, we see that this method is tight in the sense that it almost
finds the largest Suncertain that is admissible for some given vinitial 2 V?. However, we
also see that the method has a relatively high computational complexity and requires
large memory for data storage and manipulation. Thus, this method is not suitable for
real-time applications in large networks.

In Section 3.5, we develop a second solution method for the admissibility problem,
using Theorem 3.2 and the results in Chapter 2. Compared to the first solution method,
this second solution method is less tight. But, it is suitable for real-time applications in
large networks.

3.2 State of the Art

In the pioneering work of Commelec [16, 17], the authors investigate how to ensure
that the actual system electrical state satisfies the security constraints, given that the
actual system power injection is constrained in the uncertainty set. There, the main
idea is to check whether the extreme values of the nodal-voltage and branch-current
magnitudes violate the security constraints. To this end, the authors assume:

(A1) For any system power injection in the uncertainty set, if there exists a power-flow
solution that satisfies the security constraints, then this solution is unique.

(A2) The nodal-voltage magnitudes and the branch-current magnitudes are mono-
tonic functions of the nodal power injections; the extreme values of the nodal-
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voltage and branch-current magnitudes are obtained at the extreme values of
the nodal power injections.

However, these two assumptions might not hold in practice:

� As shown in Figure 3.2, there can be more than one power-flow solution satisfying
the security constraints.

� In Section 3.5.3, we give an example where the extreme values of the nodal-
voltage magnitudes are not obtained at the extreme values of the nodal power
injections.

In [62], another method is developed to ensure that the security constraints are always
satisfied, given that the system power injection is constrained in the uncertainty set.
The development of this method is based on the results in [63, 64] that are originally
established for robust optimal power flow. In order to apply this method, the following
assumptions are made:

(A1’) There exists a high-voltage power-flow solution for every system power injection
in the uncertainty set.

(A2’) All possible low-voltage power-flow solutions can be precluded by some lower
bounds on the nodal-voltage magnitudes.

If both (A1’) and (A2’) are true, then the method is able to determine whether the
security constraints are always ensured, by relaxing the multi-dimensional power-flow
equation and iteratively solving a collection of optimization problems. Note that this
method is problematic, because

� There is no means to guarantee that (A1’) and (A2’) are true.

� There is no theoretical guarantee on the performance and convergence.

� There is no proof for the ensured satisfaction of the security constraints.

In [65], rigorous sufficient conditions are proposed to ensure that, for every system
power injection in the uncertainty set, there exists a system electrical state that satisfies
the security constraints. These conditions exploit the non-singularity of the power-flow
Jacobian as well as the topological properties in both the space of system electrical
states and the space of system power injections, which essentially share the same spirit
with the conditions in our Theorem 3.4. In addition to the proposed sufficient condi-
tions, a practical method is developed for testing whether the sufficient conditions
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are satisfied by the uncertainty set. This method uses the semi-definite programming
relaxation of polynomial optimizations, which is inspired by the works [66, 67, 68].

Note that the results in [65] do not solve the admissibility problem, as the existence of
a power-flow solution v 2 V? for every s 2 Suncertain is only a necessary condition for
the admissibility.

3.3 Admissibility Problem and Theoretical Foundations of So-
lution Methods

3.3.1 Definition of Admissibility and Problem Formulation

Let Suncertain be the uncertainty set that constrains the actual system power injection.
Additionally, let

V? =

�
v : f`(v) > 0, ` 2 f1, ..., Lsecureg, and JF(v) is non-singular

�
, (3.1)

where

� f`, ` 2 f1, ..., Lsecureg are continuous functions,

� f`(v) > 0, ` 2 f1, ..., Lsecureg are security constraints on the system electrical
state.

In this chapter, we consider the linear relation (2.1) between the branch currents ijk
and the complex nodal voltages vj , vk, and we take the following concrete forms of
f`(v) > 0, ` 2 f1, ..., Lsecureg:

vmin
j < jvj j < vmax

j , j 2 N n f0g , (3.2a)

jAj,kvj �Cj,kvkj < imax
jk , jk 2 E , (3.2b)

where

� vmin
j 2 RNphase

, vmax
j 2 RNphase

, imax
jk 2 RNphase

are some pre-determined positive
real security bounds,

� < means the component-wise less-than inequality,1

� j � jmeans the component-wise absolute value.

1Similar definitions hold for >,�, and�.
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The security constraints (3.2a)–(3.2b) can also be written as the following 2-degree
polynomial inequalities in <(v) and =(v),

diag
�
jvj j
�
jvj j � diag

�
vmin
j

�
vmin
j > 0 , j 2 N n f0g ,

(3.3a)

�diag
�
jvj j
�
jvj j+ diag

�
vmax
j

�
vmax
j > 0 , j 2 N n f0g ,

(3.3b)

�diag
�
jAj,kvj �Cj,kvkj

�
jAj,kvj �Cj,kvkj+ diag

�
imax
jk

�
imax
jk > 0 , jk 2 E ,

(3.3c)

which are useful in Section 3.4.2.

As discussed at the beginning of this chapter, we are interested in ensuring v 2
V? by maintaining s 2 Suncertain, for which we introduce the following definition of
“admissibility”.

Definition 3.1

Given any initial system electrical state vinitial and uncertainty set Suncertain of
system power injections such that

(I1) vinitial 2 V?,

(I2) F(vinitial) 2 Suncertain.

We say Suncertain is admissible for vinitial if, for any continuous function v(t), t 2
[0, 1] such that v(0) = vinitial and F(v(t)) 2 Suncertain,8t 2 [0, 1], we have that
v(t) 2 V?, 8t 2 [0, 1].

Clearly, given any vinitial and Suncertain that satisfy (I1)–(I2) in Definition 3.1, if Suncertain

is admissible for vinitial and the system electrical state moves as a continuous function
of time, then the system electrical state must stay in V?.

Using the above formal definition of admissibility, we formulate the problem of
interest as follows.

Problem 3.1 (Admissibility Problem)

Given an initial system electrical state vinitial and an uncertainty set Suncertain of
system power injections that satisfy the conditions (I1)–(I2) in Definition 3.1, is
Suncertain admissible for vinitial ?
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3.3.2 Theoretical Foundations of Solution Methods

In this section, we progressively layout the theoretical foundations for solving the
admissibility problem.

Auxiliary Concept of V-Control and Its Relation with Admissibility

First, we introduce the following auxiliary concept of V-control.

Definition 3.2

For a set V of system electrical states and a set S of system power injections:
S is a domain of V-control if, for any continuous path v(t), t 2 [0, 1] such that
v(0) 2 V and F(v(t)) 2 S,8t 2 [0, 1], we have v(t) 2 V,8t 2 [0, 1].

In Definition 3.2, the concept of V-control can be interpreted as: keeping the continu-
ous path v(t) in V by maintaining the continuous path s(t) in S. For S to be a domain
of V-control, a necessary condition is the existence of a power-flow solution in V for
every s 2 S.

Through comparison between Definitions 3.1 and 3.2, we have:

Suncertain is admissible for vinitial if there exists a set V such that

(O1) V � V?,

(O2) vinitial 2 V ,

(O3) Suncertain is a domain of V-control.

As can be seen, in order to solve the admissibility problem, we need to find sufficient
conditions for V-control.

Existence and Uniqueness of the Power-Flow Solution < V-Control

According to our discussions at the beginning of this chapter, we see that V-control
might not hold due to zero or multiple power-flow solutions. This could give us a
wrong impression that V-control holds if and only if there exists a unique power-flow
solution v 2 V for every s 2 S. We clarify this by the following two examples.

(E1) First, we give an example where there exists a unique power-flow solution v 2 V
for every s 2 S, but S is not a domain of V-control.
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Consider again the single-phase network in Figure 3.1. In this network, when
s = 0.999915sinitial, the corresponding system electrical state on “Voltage Branch
A” of Figure 3.2 touches the lower voltage-security bound. In view of this, let us
assume that

– S = SA
SSB where

� SA = fs : s = κsinitial, κ 2 (0.999915, 1]g,
� SB = fs : s = κsinitial, κ 2 [0.999, 0.999915]g.

– V = VA
SVB where

� VA = fv 2 Voltage Branch A : F(v) 2 SAg,
� VB = fv 2 Voltage Branch B : F(v) 2 SBg.

Clearly, for any s 2 S, there exists a unique v 2 V such that F(v) = s. But S is
not a domain of V-control. To prove this, we show VA and VB in Figure 3.3, by
magnifying the regions near the “diamond” and “square” in Figure 3.2. Suppose
that the system electrical state is initialized at the “diamond” in Figure 3.3(a)
and moves along “Voltage Branch A” from the “diamond” to the “ring”. Once
the system electrical state reaches the “ring”, it exits V . Nonetheless, the system
power injection s still belongs to S, which completes the proof.

(E2) Second, we give an example where S is a domain of V-control, but there exists
more than one power-flow solution in V for almost every s 2 S.

Consider a single-phase two-bus network where the only PQ bus is connected to
the slack bus via a purely resistive transmission line. Assume that

– the slack-bus voltage is 1 p.u.,

– the resistance of the transmission line is 1 p.u.,

– S = fs : <(s) 2 [�0.25, 0] , =(s) = 0g.

Then, it can be derived that for any s 2 S, the power-flow solution v must satisfy:

– <(v)
�
<(v)� 1

�
= <(s),

– =(v) = 0.

As a consequence,

– there exists a unique power-flow solution v = 0.5 p.u. for s = �0.25 p.u.,

– there exist two power-flow solutions, 0.5�
p

0.25 + <(s), for every

s 2 S n f�0.25g.

It can be easily verified that S is a domain of V-control for V = fv : <(v) 2
[0, 1] , =(v) = 0g. However, there exists more than one power-flow solution in V
for all but one s 2 S.
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Figure 3.3 – In (a), “diamond” and “ring”, respectively, represent the system electrical
states on the “Voltage Branch A” in Figure 3.2 for s = sinitial and s = 0.999915sinitial. In
(b), “circle” and “hexagram”, respectively, represent the system electrical states on the
“Voltage Branch B” in Figure 3.2 for s = 0.999915sinitial and s = 0.999sinitial.
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Sufficient Conditions for V-Control

We start with the following lemma that mainly relies on the openness of V and the
continuous inverse of F from S to V . The proof is included in Appendix 3.A. It is easy
to see that the important hypotheses of the openness and the continuity in this lemma
are violated in the previous example E1.

Lemma 3.1

Assume that

1. V is open,

2. For any s 2 S, there exists a unique v 2 V such that F(v) = s,

3. The unique v 2 V depends continuously on s 2 S.

Then S is a domain of V-control.

As the continuity of the inverse is hard to ensure in practice, we give below a theorem
that contains sufficient conditions for the continuity. These sufficient conditions are
obtained using the inverse function theorem. Detailed proof is included in Appendix
3.B.

Definition 3.3

A set V of system electrical states is non-singular if the Jacobian JF(v) is non-
singular 8v 2 V .

Theorem 3.1

Assume that

1. V is open and non-singular,

2. For any s 2 S, there exists a unique v 2 V such that F(v) = s.

Then there is a continuous mapping Φ : S ! V such that F(Φ(s)) = s,8s 2 S,
and S is a domain of V-control.

By virtue of the real-quadratic nature of F in rectangular coordinates, we can replace
the condition of the non-singularity in Theorem 3.1 and obtain the following alternative
theorem for V-control. Its proof is given in Appendix 3.F.
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Theorem 3.2

Assume that

1. V is open,

2. S is open,

3. For any s 2 S, there exists a unique v 2 V such that F(v) = s.

Then, JF(v) is non-singular at any v 2 V such that F(v) 2 S. Moreover, there
exists a continuous mapping Φ : S ! V such that F(Φ(s)) = s,8s 2 S, and S is
a domain of V-control.

In the forthcoming Section 3.4 and Section 3.5, we will use Theorem 3.1 and The-
orem 3.2, respectively, to develop practical solution methods for the admissibility
problem.

Beyond V-Control

A key component of the obtained sufficient conditions for V-control is the existence
of a unique power-flow solution v 2 V for every s 2 S. In the following, we give
Theorem 3.3 and Theorem 3.4 that can be used to satisfy this key component. Their
proofs are included in Appendices 3.C and 3.D. Note that

� the proof of Theorem 3.3 uses only the real-quadratic nature of F in rectangular
coordinates,

� the proof of Theorem 3.4 essentially depends on the differentiability of F.

Definition 3.4

A set V of system electrical states is a domain of uniqueness if F(v) = F(v0))
v = v0, 8v,v0 2 V .

Theorem 3.3

If a set V of system electrical states is non-singular and convex, then it is a
domain of uniqueness.
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Theorem 3.4

Let V be a set of system electrical states, S be a set of system power injections,
and ∂V denote the topological boundary of V . Assume that

1. V is bounded, open and non-singular,

2. S is connected,

3. F(V)
TS is non-empty,

4. F(∂V)
TS is empty.

Then, for any s 2 S, there exists a v 2 V such that F(v) = s.

Besides Theorems 3.3 and 3.4, we incidentally find that the local uniqueness in a
neighborhood of a system electrical state v implies the non-singularity of JF(v). This
is true due to the real-quadratic nature of F in rectangular coordinates. Moreover, this
is the converse of the inverse function theorem. To formalize, we give the following
theorem and prove it in Appendix 3.E.

Theorem 3.5

If V is open and a domain of uniqueness, then V is non-singular.

Remark 3.1 (Interpretation of Theorem 3.4)

In essence, Theorem 3.4 asserts that every s 2 S has a corresponding system
electrical state in V , provided that

� V is bounded, open and non-singular,

� S is connected,

� At least one s� 2 S has a corresponding system electrical state in V ,

� It is impossible for any s 2 S to have a corresponding system electrical state
on the boundary of V .

Intuitively, this is because: if there would be an s�� 2 S that has no corresponding
system electrical state in V , then in order to continuously move from s� to s��, the
corresponding path in the system electrical state space must either hit a singular
point in V or exit V by crossing the boundary ∂V ; but this is made impossible by
conditions 1 and 4 in Theorem 3.4.
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3.4 A First Solution Method for the Admissibility Problem

In this section, we develop a first solution method for the admissibility problem.
Specifically,

� In Section 3.4.1, we establish a high-level framework that contains the general
ideas and the key steps of our first solution method. In the framework, we need
to find a V � V? such that Suncertain is a domain of V-control. To this purpose, we
apply Theorem 3.1 for V-control. Additionally, to satisfy condition 2 in Theorem
3.1 (i.e., the existence and uniqueness of the power-flow solution), we employ
Theorems 3.3 and 3.4.

� In Section 3.4.2, we concretize the framework and obtain our first solution
method. Here, we would like to emphasize that the concretization of the frame-
work is not unique, and we just explore one possibility.

Through numerical examples in Section 3.4.4, we demonstrate that

� The obtained solution method is tight in the sense that it almost finds the largest
Suncertain that is admissible for some given vinitial 2 V?.

� However, the obtained solution method has a relatively high computational
complexity and requires large memory for data storage and manipulation, which
makes it unsuitable for real-time applications in large networks.

3.4.1 Framework for Development of the First Solution Method

As we have observed in Section 3.3.2, Suncertain is admissible for vinitial if there exists a
set V such that

(O1) V � V?,

(O2) vinitial 2 V ,

(O3) Suncertain is a domain of V-control.

By this observation, our framework consists in constructing a large set V such that the
hypotheses (O1)–(O3) are satisfied:

� In step 1, we find a large open set Ṽ such that its closure cl(Ṽ) is non-singular and
convex, using some sufficient conditions on non-singularity. Then, let V be the
intersection of Ṽ and V?, which fulfills (O1). Note that the obtained set V is open
and non-singular. Moreover, by Theorem 3.3, it is also a domain of uniqueness.
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� In step 2, we first verify (O2) by inspection. Then, we test whether 8s 2 Suncertain,
there is no corresponding system electrical state on the boundary ∂V . This is
done by checking the infeasibility of a number of optimization problems (see
detailed descriptions below). By Theorem 3.4, this will guarantee that there exists
a corresponding system electrical state v 2 V for every s 2 Suncertain. Further, by
Theorem 3.1, this will guarantee that (O3) is satisfied.

According to the above reasoning, the framework is as follows.

Framework

Input: An initial system electrical state vinitial and a connected uncertainty setSuncertain

such that (I1)–(I2) in Definition 3.1 are satisfied.

Output: Suncertain is admissible for vinitial, or we are unsure of the admissibility.

(Step 1) Construct V as follows:

� Find some appropriate continuous functions f`, ` 2 fLsecure + 1, ..., Lg
such that Ṽ = fv : f`(v) > 0, ` = Lsecure + 1, ..., Lg is large and its closure
is non-singular and convex, 2

� Then, let V = fv : f`(v) > 0, ` = 1, ..., Lg (i.e., let V = ṼTV?).

(Step 2) Test whether

� vinitial 2 V ,

� The following optimization problems are infeasible for all `.

[P0(`)] min

NphaseNX
j=1

�
<
�

(v)j

�
+ =

�
(v)j

��
s.t. : f`0(v) � 0 , 8`0 2 f1, ..., Lg n f`g ,

f`(v) = 0 ,

F(v) 2 Suncertain .

If both tests succeed, then declare that Suncertain is admissible for vinitial.
Otherwise, we are unsure of the admissibility.

2The closure of ~V is cl(~V) = fv : f‘(v) � 0; ‘ = Lsecure + 1; :::; Lg.
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Set V?

Step 1

Step 2

vinitial &
Suncertain

Set V

Declare that Suncertain is admissible for vinitial

OR
We are unsure of the admissibility

Network Parameters

Figure 3.4 – Flow chart of the framework.

For this framework, we highlight its structure in Figure 3.4 and propose the follow-
ing theorem on its validity (proof can be found in Appendix 3.G).

Theorem 3.6

The proposed framework is correct in the sense that, whenever it declares
Suncertain admissible for vinitial, it is so.

Before proceeding to the next section, we would like to emphasize that it is always
beneficial to have V as large as possible in step 1 of the framework. This might not be
obvious at the first glimpse, since the fact that Suncertain is a domain of V-control might
not automatically extend to a superset of V . However, this extension of V-control is
not an issue in our framework, as we use Theorems 3.3 and 3.4. To formalize this point,
we give below a theorem and prove it in Appendix 3.H.
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Theorem 3.7

Assume that we are given two implementations, A and A0, of the framework,

where, in step 1, A constructs V and A0 constructs V 0 � V . Also assume that
the ground truth is that Suncertain is admissible for vinitial. If A declares Suncertain

admissible for vinitial, then so does A0.

3.4.2 Concretization of the Framework and the First Solution Method

Now we show one concretization of the framework, which gives us the first solution
method. Corresponding to the framework, this first solution method has two steps.

Step 1 of the First Solution Method

As in step 1 of the framework, we need to find an open set Ṽ such that its closure cl(Ṽ)

is non-singular and convex. For this purpose, take into account that

� The singularity of the power-flow Jacobian JF usually occurs due to high power
generation and high power consumption,

� High power generation and high power consumption are both linked to large
magnitudes of the branch and nodal currents.

Therefore, for cl(Ṽ) to be non-singular, we need to ensure that no system electrical
state in cl(Ṽ) has very large branch and nodal currents. Based on this consideration,
we let Ṽ be

Ṽ =

�
v : Inequalities in (3.3c) are satisfied, and

�
���Rowj(YLL)(v �w)

���2 +
�
Inode
j

�2
> 0, 8j 2 f1, ..., NphaseNg

�
,

(3.4)

where Inode
j are some auxiliary constants.

Obviously, the set Ṽ defined in (3.4) is open and has a convex closure. Thus, we
only need to find appropriate values for constants Inode

j , j 2 f1, ..., NphaseNg such that
the set cl(Ṽ) is non-singular. To this end, we recall that a necessary condition for JF(v)

to be singular is given by (8) in [69] as follows:

9m 2 f1, ..., NphaseNg such that
NphaseNX
n=1

���(Y�1
LL)m,n(i)n

��� � j(v)mj. (3.5)

68



3.4. A First Solution Method for the Admissibility Problem

Clearly, if none of the elements in cl(Ṽ) satisfies this necessary condition for singularity,
then cl(Ṽ) is non-singular. This leads to the following proposition. The corresponding
proof can be found in Appendix 3.I.

Proposition 3.1

For the set Ṽ in (3.4), its closure cl(Ṽ) is non-singular if the following second-
order cone programming problems are infeasible for all m,n 2 f1, ..., NphaseNg
and ψ, φ 2 f1,�1g.

[P1(m,n, ψ, φ)] min
NphaseNX
j=1

�
<
�

(v)j

�
+ =

�
(v)j

��
s.t. : v 2 cl(Ṽ) ,

kRowm(Y�1
LL)k1

�
ψ<
�

Rown(YLL)(v �w)
�

+ φ=
�

Rown(YLL)(v �w)
��
� j(v)mj ,

ψ<
�

Rown(YLL)(v �w)
�
� 0 ,

φ=
�

Rown(YLL)(v �w)
�
� 0 .

By synthesizing the above discussions, we develop step 1 of the first solution method
as follows.

First Solution Method (Step 1)

(1-a) Choose some positive reference values for Inode
j and denote them by Înode

j , j 2
f1, ..., NphaseNg. Here, we could let Înode

j be the peak value of the nodal-

current magnitude j(i)j j in real-world operation, or simply let all Înode
j be

the same.

(1-b) Next, let Inode
j = λÎnode

j , 8j 2 f1, ..., NphaseNg, where λ is a positive scal-
ing factor that will vary in the subsequent (1-c). In addition, for every j,
specify some positive threshold Ithreshold

j that should be an upper bound
on the largest possible value of the nodal-current magnitude j(i)j j. These
thresholds are used as stopping criteria of the subsequent (1-c).

(1-c) We start with a sufficiently small λ 2
�

0,minj
Ithreshold
j

Înode
j

�
such that the prob-

lems P1(m,n, ψ, φ) are all infeasible, and we gradually increase it by a fixed
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step size ∆λ until either (i) P1(m,n, ψ, φ) are no longer simultaneously infea-

sible for all m,n 2 f1, ..., NphaseNg, ψ, φ 2 f1,�1g, or (ii) λ � minj
Ithreshold
j

Înode
j

.

(1-d) With the penultimate value of λ, we obtain Inode
j , 8j 2 f1, ..., NphaseNg and

the set Ṽ that is defined in (3.4).

(1-e) Last, we let V = ṼTV?.

Step 2 of the First Solution Method

According to step 2 of the proposed framework, our main task amounts to checking
the infeasibility of P0(`) for every ` 2 f1, ..., Lg. Observe that for each optimization
problem P0(`), we have that

� The objective function is polynomial in <(v), =(v),

� By (3.3)–(3.4), f`(v), ` 2 f1, ..., Lg are all polynomial in <(v), =(v),

� F(v) is a collection of polynomials in <(v) and =(v).

Therefore, P0(`), 8` become standard polynomial optimization problems if we add the
following assumption.

Assumption 3.1

Suncertain is the Cartesian product of Suncertain
j , 8j 2 f1, ..., NphaseNg, and each

Suncertain
j is either a convex polygon or a singleton.

Note that Suncertain is a connected set under Assumption 3.1, as it is path-connected.
Furthermore, note that these polynomial optimization problems are not convex. To
address this issue, we could apply convex relaxation to them and check whether the
relaxed problems are infeasible. Indeed, the infeasibility of the relaxed problem im-
plies the infeasibility of the original problem. As proposed in [59], these non-convex
polynomial optimization problems can be effectively approximated by a hierarchy of
semi-definite programming relaxations. This hierarchy is arranged by a positive integer
called relaxation order. As the relaxation order increases, the relaxed problem becomes
closer to the original problem, in terms of the optimal value and feasibility. Despite
the theoretical beauty of this hierarchy of relaxations, it gradually becomes computa-
tionally intractable as the number of variables and the relaxation order increase. To
cope with this, a sparsity-exploiting counterpart of this hierarchy is developed later
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in [60, 61], where the level of sparsity depends mainly on the cross terms in the poly-
nomial constraints. For completeness, a brief description for the sparsity-exploiting
hierarchy of semi-definite programming relaxations is included in Appendix 3.K.

Taking the above into consideration, we develop step 2 of the first solution method
below.

First Solution Method (Step 2)

(2-a) Given the set V obtained in First Solution Method (Step 1), check whether
vinitial 2 V .

(2-b) With this V and the sparsity-exploiting hierarchy of semi-definite program-
ming relaxations in [60,61], check whether the relaxed P0(`) are all infeasible
for some relaxation order.3

(2-c) If both (2-a) and (2-b) are true, then we declare that Suncertain is admissible
for vinitial. Otherwise, we are unsure of the admissibility.

3.4.3 Computational Complexity and Implementation Issues of the First
Solution Method

Computational Complexity

We give below a proposition on the computational complexity of the first solution
method. Its proof is straightforward and can be found in Appendix 3.J.

3Under Assumption 3.1, an empirically good choice of the relaxation order is 2.
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Proposition 3.2

For the proposed first solution method, we have:

� The complexity of step 1 is equal to that of at most

4
�
NphaseN

�2
&

min
j

Ithreshold
j

Înode
j ∆λ

’

second-order cone programming feasibility problems, where d�emeans
ceiling.

� Under Assumption 3.1, the complexity of step 2 is equal to that of

Nphase
�

3N + card(E)
�

semi-definite programming feasibility problems,

where card(�) means cardinality.

From the theoretical perspective, the complexity of a second-order cone programming
feasibility problem and the complexity of a semi-definite programming feasibility
problem remain as open research topics [70, 71, 72]. Despite this fact, in practice, these
feasibility problems can be solved efficiently. This can be seen in Table 3.1 of the next
section.

Implementation Issues

We present some implementation issues as follows:

� Given the network configuration (i.e., topology and line parameters), step 1 of
the method needs to be implemented only once.

� In step 1 of the method, the infeasibility of each P1(m,n, ψ, φ) can be checked in-
dependently. Thus, step 1 of the method can be implemented in parallel through
a multi-core CPU/GPU or a networked computing infrastructure. Similarly, in
step 2 of the method, the infeasibility of each relaxed P0(`) can also be checked
independently. Therefore, step 2 of the method can be implemented in parallel
as well.

3.4.4 Numerical Evaluation of the First Solution Method

In this section, we evaluate the performance of the first solution method, using one
meshed grid and two benchmark radial grids in [55, 56, 73]. Topologies of these grids
are shown in Figures 3.5, 3.6 and 3.7, respectively.4 In all evaluations, we assume

4For the convenience of branch references, we adjust the bus indexes in the benchmark networks.
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that (i) the slack-bus voltage is nominal, and that (ii) the semi-definite programming
relaxation order is 2.

Note that the results in this chapter are generated on a Macbook Pro that is equipped
with a 3.0 GHz Intel Core i7 CPU and 16 GB 1600 MHz DDR3 memory. In particular, we
implement the method using MATLAB tools YALMIP, Mosek and SparsePOP [74,75,76].
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Figure 3.5 – Topology and uncertainty set (in p.u.) for the meshed network, where κ is
a positive real parameter.
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Figure 3.6 – Topology of the IEEE 13-Bus Test Feeder.
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Figure 3.7 – Topology of the CIGRE North American LV Distribution Network (residen-
tial part).

Evaluation 1

We consider the single-phase meshed network shown on the left-hand side of Figure
3.5. Assume that (i) each transmission line has a series admittance 5 � 3.6 p.u., (ii)
the security bounds on the nodal-voltage magnitudes are 0.95 and 1.05 p.u., (iii) the
security bounds on the branch-current magnitudes are 0.6 p.u., and (iv) 8j, (s)j belongs
to the triangular region on the right-hand side of Figure 3.5 that specifies Suncertain. 5

Clearly, this grid is stressed when parameter κ 2 (0,1) increases.

Now, let vinitial = w. We would like to find the maximum value for κ such that
Suncertain is admissible for vinitial. In step 1 of the method, we choose Inode

j = 0.8 p.u.
for all j, and obtain a valid V . Then, in step 2 of the method, we verify that vinitial 2 V
and find that the maximum value for κ to preserve admissibility is 0.35. With κ = 0.35

and (s)j = �κ p.u. for all j, we find that there is a corresponding system electrical state
that has the following features:

� All nodal-voltage magnitudes are 0.9506 p.u., which indicates that the method is
tight in terms of the obtained maximum value of κ,

� All branch-current magnitudes are much lower than the security bounds,

� For all j, j(i)j j is far below Inode
j , which means that the introduction of Inode

j does
not limit the performance.

5We intentionally choose the triangular shape to demonstrate that our method works for polygonal
uncertainty sets.
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Evaluation 2

The IEEE 13-Bus Test Feeder shown in Figure 3.6 is a medium-voltage network that has
shunt elements and a MV/LV transformer.6 In this network, we (i) take IEEE benchmark
configuration 602 for all transmission lines, (ii) remove the regulator between buses 0
and 1, and (iii) do positive-sequence analysis for the network.

Let sinitial be the initial system power injection, for which (sinitial)j is the phase-
average of the IEEE benchmark power injections at bus j. In addition, let vinitial be
its corresponding state that is guaranteed to be unique around w by Theorem 2.1. To
ensure that vinitial satisfies the security constraints, we let

� the security bounds on the nodal-voltage magnitudes be 0.9 and 1.1 p.u.,

� the security bounds on the branch-current magnitudes be:

– 1 p.u. for branches 01 and 10,

– 0.45 p.u. for branches 16 and 61,

– 0.3 p.u. for the remaining branches.

Assume that the system power injection fluctuates significantly in this network. More
precisely, Suncertain is a set such that 8j, Suncertain

j = [κ<((sinitial)j), 0]�[κ=((sinitial)j), 0],
where κ 2 [1,1) is a scalar. As κ increases, Suncertain will eventually violate the admissi-
bility for the given vinitial. Hence, in the following, we look for the maximum value of κ
such that Suncertain is admissible for vinitial.

According to the method, we first obtain a set V , by choosing Inode
j , 8j as: Inode

1 =

Inode
6 = 0.2 p.u., Inode

2 = Inode
3 = Inode

4 = Inode
5 = Inode

8 = 0.15 p.u., and Inode
7 = Inode

9 =

Inode
10 = Inode

11 = Inode
12 = 0.1 p.u. Next, in step 2 of our method, we have that vinitial 2 V

and the maximum value for κ to preserve admissibility is 1.96. When κ = 1.96, we find
that κsinitial has a corresponding system electrical state that possesses the following
features:

� The lowest nodal-voltage magnitude is j(v)8j = 0.9016 p.u.,

� The branch-current magnitudes between buses 1 and 6 are 0.4128 p.u., and all
the other branch-current magnitudes are far below the security bounds,

� j(i)j j < Inode
j , 8j.

6The transformer lies between buses 2 and 3. By [36] and [37], it is modeled as the serial combination
of a winding admittance and an ideal MV/LV transformer. We describe the voltage and current at bus 3 by
their equivalents at the MV side of the ideal transformer. Moreover, we do not consider any power limit of
this transformer.
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Thus, the method almost finds the largest possible value for κ.

In addition to the tightness, we show the measured time in Table 3.1. Here, note
that the time of step 1 is reported per choice of λ. Clearly, for the IEEE 13-Bus Test
Feeder, the method does not have a real-time performance. As the computational
complexity increases along with the size of the network, we know that the method is
not suitable for real-time applications in large networks.

Table 3.1 – The measured time for Evaluations 2 and 3.

Execution Time of Accumulated Time of
Parallel Implementation Sequential Implementation

(in seconds) (in minutes)
Step 1 Step 2 Step 1 Step 2

Evaluation 2 less than 1 4–9 9 6
Evaluation 3 roughly 1 7–15 12–13 10

Evaluation 3

The residential part of the CIGRE North American LV Distribution Network in Figure
3.7 is a low-voltage network, where every bus is either on the main lateral or directly
linked to the main lateral. In this network, jijkj = jikj j holds everywhere, since shunt
elements are completely ignored due to short transmission lines. Additionally, the R/X
ratios are much larger than 1, which is different from the previous network.

We assume that each of the buses 1–4 has an extra energy source. Moreover,

� Each of these sources is balanced across the neutral line,

� Each of these sources has a real-valued power in [(1� κ)� 20, (1 + κ)� 20] kW,
where scalar κ 2 [0, 1),

� These sources are independent of each other.

By fixing the benchmark peak power injections for the other buses, we construct a
set Suncertain. Now, let (i) sinitial be the central point in Suncertain, and (ii) vinitial be the
corresponding system electrical state that is guaranteed to be unique around w by
Theorem 2.1. To ensure that vinitial satisfies the security constraints, let

� the security bounds on the nodal-voltage magnitudes be 0.95 and 1.05 p.u.,

� the security bounds on the branch-current magnitudes be:
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– 1 p.u. for branches 01 and 10,

– 0.8 p.u. for branches 12 and 21,

– 0.6 p.u. for branches 23 and 32,

– 0.5 p.u. for branches 34 and 43,

– 0.4 p.u. for the remaining branches.

Similarly to the last evaluation, we look for the maximum value of κ such that Suncertain

is admissible for vinitial. In step 1 of the method, we choose Inode
j = 0.6 p.u. for all j. In

this way, we obtain a set V . Next, in step 2 of the method, we find that vinitial 2 V and
the maximum value for κ to preserve admissibility is 0.11. When κ = 0.11, if each of
the four extra sources at buses 1–4 has a power injection equal to (1 + κ)� 20 kW, then
there is a resultant system electrical state that has the following features:

� All nodal-voltage magnitudes are close to 1 p.u.,

� The branch-current magnitudes between buses 0 and 1 are 0.9498 p.u.,

� The branch-current magnitudes between buses 1 and 2 are 0.7813 p.u.,

� The branch-current magnitudes between buses 2 and 3 are 0.5428 p.u.,

� The other branch-current magnitudes are far below their security bounds,

� j(i)j j < Inode
j , 8j.

The method is tight in the sense that it almost finds the largest possible value for κ.

In terms of the measured time, we give the details in Table 3.1. Same as before, the
time of step 1 is reported per choice of λ. Again, we observe that the method is not
suitable for real-time applications in large networks.

3.5 A Second Solution Method for the Admissibility Problem

In this section, we continue making Assumption 3.1 and develop a second solution
method for the admissibility problem. In this method, we apply Theorem 3.2 for V-
control and the results in Chapter 2 for the power-flow solvability.

Through numerical examples, we demonstrate that this method is less tight than
the first solution method, but it can solve the admissibility problem in real time for
large networks.
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3.5.1 Development of the Method

According to our observation in Section 3.3.2, Suncertain is admissible for vinitial if there
exists a set V such that

(O1) V � V?,

(O2) vinitial 2 V ,

(O3) Suncertain is a domain of V-control.

By Theorem 3.2, we could instead see whether there exists a set V such that

(O1) V � V?,

(O2) vinitial 2 V ,

(O3a) V is open and a domain of uniqueness,

(O3b) F(V) is open and includes Suncertain.

Indeed, if V satisfies (O3a) and F(V) is open, then F(V) is a domain of V-control by
Theorem 3.2. Furthermore, if Suncertain is a subset of F(V), then we have that Suncertain

is also a domain of V-control.

In the following, we gradually develop a method that determines whether there exists
a set V such that (O1)–(O3b) are satisfied.

Candidate Pair and Its Solution Set

First, we show how to construct a set of system electrical states that is non-singular
and a domain of uniqueness. This is useful for the satisfaction of hypotheses (O1)
and (O3a). To make the construction computationally efficient under Assumption 3.1,
we exploit the results in Chapter 2 rather than Theorems 3.3 and 3.4. The thorough
complexity analysis as well as the detailed implementation issues will be given later in
Section 3.5.2.

As the results in Chapter 2 rely on a reference system electrical state v̂, we assume
the knowledge of such v̂ in the subsequent development. With v̂, we introduce the
following definitions of the candidate pair and its solution set.
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Definition 3.5

For a reference system electrical state v̂ and a set S of system power injections:
We say that (v̂,S) is a candidate pair if

1. ρz(v̂) > 0,

2. ξ(s� F(v̂)) <
�
ρz(v̂)

�2
, 8s 2 S.

In addition, whenever (v̂,S) is a candidate pair, we define its solution set as

V(v̂,S) =
n

v : F(v) 2 S, v 2 Dρ(v̂), ρ = ρz(v̂)
o
. (3.6)

By Theorem 2.1, if (v̂,S) is a candidate pair, then its solution set V(v̂,S) is a domain of
uniqueness. Furthermore, by Proposition 2.1, we have that the solution set V(v̂,S) is
also non-singular. These findings are summarized in the following proposition.

Proposition 3.3

For any candidate pair (v̂,S), the solution set V(v̂,S) is non-singular and a
domain of uniqueness.

Satisfaction of the Security Constraints by Elements in a Solution Set

Now, we derive conditions to ensure that all system electrical states in V(v̂,S) satisfy
the security constraints. This is useful for the satisfaction of hypothesis (O1). To this
end, we give several auxiliary notations to ease the exposition of the conditions.

� �`(v̂, s) = α(v̂)js` � F`(v̂)j + ρy(v̂, s)jF`(v̂)j, where w` 2 CNphase
is the zero-

injection nodal voltage at bus ` and F` is the function that maps v to s`.

� Γj,` is the Nphase-by-Nphase sub-matrix formed by rows from
�
Nphase(j � 1) + 1

�
to (Nphasej) and columns from

�
Nphase(`� 1) + 1

�
to (Nphase`) of Y�1

LL.

� Υjk,` is an Nphase-by-Nphase matrix defined by

Υjk,` =

8><>:
�Cj,kΓk,` , j = 0, k 6= 0 ,

Aj,kΓj,` , j 6= 0, k = 0 ,

Aj,kΓj,` �Cj,kΓk,` , j 6= 0, k 6= 0 .

(3.7)

With the above auxiliary notations, we give the following proposition that contains
bounds on vj and ijk for each system electrical state in V(v̂,S). The corresponding
proof is in Appendix 3.L.
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Proposition 3.4

Let (v̂,S) be a candidate pair, V(v̂,S) be its solution set, and îjk = Aj,kv̂j �
Cj,kv̂k, 8jk 2 E .

Then, for any system electrical state v 2 V(v̂,S), we have that the complex
nodal voltages vj , j 2 N n f0g satisfy

jvj � v̂j j � �j(v̂, s) , (3.8)

�j(v̂, s) =

NP̀
=1

jΓj,`jjdiag(w`)
�1j�`(v̂, s)

α(v̂)
�
α(v̂)� ρy(v̂, s)

� . (3.9)

In addition, the branch currents ijk = Aj,kvj �Cj,kvk, jk 2 E satisfy

jijk � îjkj � � jk(v̂, s) , (3.10)

� jk(v̂, s) =

NP̀
=1

jΥjk,`jjdiag(w`)
�1j�`(v̂, s)

α(v̂)
�
α(v̂)� ρy(v̂, s)

� . (3.11)

Using Proposition 3.4 and the triangle inequality, we obtain the following proposition
in which we give conditions to ensure that all system electrical states in V(v̂,S) satisfy
the security constraints. The proof is included in Appendix 3.M.

Definition 3.6

A candidate pair (v̂,S) is strongly secured if

vmin
j + �j(v̂, s) <jv̂j j < vmax

j � �j(v̂, s) , 8j 2 N n f0g , (3.12)

ĵijkj < imax
jk � � jk(v̂, s) , 8jk 2 E , (3.13)

are satisfied 8s 2 S.

Proposition 3.5

If (v̂,S) is a strongly secured candidate pair, then the security constraints (3.2a)–
(3.2b) are satisfied for all system electrical states in V(v̂,S).
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Consistency Between Candidate Pairs and Patching of Their Solution Sets

So far, if the uncertainty set Suncertain is not very large, then the admissibility problem
could be solved by the already obtained results. Specifically, let S̃ be an open super-
set of Suncertain. If (vinitial, S̃) is a strongly secured candidate pair, then we have that
V(vinitial, S̃) satisfies the hypotheses (O1), (O2), (O3a), (O3b):

� V(vinitial, S̃) � V?, according to our previous discussion.

� vinitial 2 V(vinitial, S̃), as F(vinitial) 2 Suncertain and Suncertain � S̃.

� V(vinitial, S̃) is open, since (i) V(vinitial, S̃) is included in the interior ofDρ(vinitial),
ρ = ρz(vinitial), and (ii) V(vinitial, S̃) is included in the pre-image of the open set S̃
under continuous function F.

� V(vinitial, S̃) is a domain of uniqueness, by our previous discussion.

� F
�
V(vinitial, S̃)

�
= S̃ is open and includes Suncertain.

However, in the case where Suncertain is very large, there might not be an open set S̃
such that (vinitial, S̃) is a strongly secured candidate pair. To address this issue, our
idea is to first cover Suncertain by overlapped smaller pieces such that we can construct
a strongly secured candidate pair for every piece, and then patch the solution sets
together. This gives rise to a question whether multiple solution sets can be compatibly
patched (in the sense that the union of these solution sets is a domain of uniqueness).
In what follows, we give a proposition that answers this question. The proof is in
Appendix 3.N.

Definition 3.7

Candidate pairs (v̂,S), (v̂0,S 0) are consistent if

kW�1(v̂ � v̂0)k1 < max

�
ρz(v̂)� sup

s02S0
ρy(v̂0, s0), ρz(v̂0)� sup

s2S
ρy(v̂, s)

�
.

(3.14)

Proposition 3.6

Let L be a finite collection of candidate pairs. If (v̂,S) and (v̂0,S 0) are consistent
8(v̂,S), (v̂0,S 0) 2 L, then

S
(v̂,S)2L V(v̂,S) is a domain of uniqueness.

Based on Proposition 3.6, we arrive at the following theorem. This theorem lays out
the theoretical foundation for our second solution method. The corresponding proof
can be found in Appendix 3.O.
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Theorem 3.8

Suppose that the uncertainty set Suncertain is compact.

If we have a finite collection L of candidate pairs such that

1.
S

(v̂,S)2L S = Suncertain,

2. v̂ = vinitial for at least one (v̂,S) 2 L,

3. 8(v̂,S) 2 L, S is closed and includes F(v̂),

4. 8(v̂,S) 2 L, (v̂,S) is strongly secured,

5. 8(v̂,S), (v̂0,S 0) 2 L, (v̂,S) and (v̂0,S 0) are consistent.

Then there exists a set V that satisfies requirements (O1), (O2), (O3a), (O3b),
hence Suncertain is admissible for vinitial.

From Theorem 3.8 to the Second Solution Method

The second solution method is developed on the basis of Theorem 3.8. In the method,
we assume that vinitial satisfies ρz(vinitial) > 0, which is usually the case during real-
world operation. The purpose of this method is to incrementally construct a collection
L of candidate pairs that satisfy the five items in Theorem 3.8. To do so, we dynamically
maintain an auxiliary collection Laux that represents the “unsolved” fraction of the
admissibility problem. Each element in Laux is a pair (v̌,S) such that

� S is closed and includes F(v̌),

� S is contained in the closure of Suncertain nS(v̂0,S0)2L S 0.

In the initial stage of the method, we let L = f(vinitial, fF(vinitial)g)g and Laux =

f(vinitial,Suncertain)g. Then, in the intermediate stage of the method, we take out the
elements from Laux one at a time and heuristically transform each of them into either
a new element of L, or multiple new elements of Laux. In both cases, we ensure that

� L fulfills items 3–5 in Theorem 3.8,

�
�S

(v̌,S)2Laux S
�S�S

(v̂0,S0)2L S 0
�

= Suncertain.

In the final stage of the method, we declare that Suncertain is admissible for vinitial ifLaux

becomes empty (otherwise, we are unsure of the admissibility).
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The full description of our second solution method is given below. Note that As-
sumption 3.1 is made, as we mentioned at the beginning of this section. Moreover,
for all elements in L and Laux, we always ensure that S is the Cartesian product of Sj ,
j = 1, ..., NphaseN , where each Sj is either a convex polygon or a singleton.

Second Solution Method

Input: An initial system electrical state vinitial and a compact uncertainty set Suncertain

such that (I1)–(I2) in Definition 3.1 are satisfied.

Output: Suncertain is admissible for vinitial, or we are unsure of the admissibility.

Initial Stage: Let L = f(vinitial, fF(vinitial)g)g and Laux = f(vinitial,Suncertain)g.

Intermediate Stage: Repeat the following steps until Laux is empty or some pre-
defined maximum round of repetition is exceeded.

(Step 1) Take an element (v̌,S) out of Laux.

(Step 2) Let vector sc 2 CNphaseN be such that (sc)j , 8j is the arithmetic mean of all
vertices in Sj , which can be viewed as the center of S. In addition, let

ŝ =

0@1�min

( �
ρz(v̌)

�2

2ξ(sc � F(v̌))
, 1

)1AF(v̌) +

0@min

( �
ρz(v̌)

�2

2ξ(sc � F(v̌))
, 1

)1Asc ,

(3.15)

which is close to sc and satisfies ξ(ŝ� F(v̌)) � 1
2

�
ρz(v̌)

�2
.

(Step 3) Compute the power-flow solution v̂ for the system power injection ŝ, via
(2.18) with v(0) = v̌.

(Step 4) Check whether (v̂,S) is a strongly secured candidate pair that is consistent
with all elements in L. 7

(Step 5) If it does, then add it to L; otherwise, partition S and update Laux in the
following way (see Figure 3.8):

� Find index j� such that the convex polygon Sj� has the largest area,

7�z(v̂) > 0 is guaranteed by Proposition 2.1 .
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� Partition Sj� into smaller pieces by connecting (ŝ)j� to the middle points
of all edges in Sj� ,

� Cut every non-convex piece into two smaller triangular pieces along the
diagonal stemming at (ŝ)j� ,

� For each piece, first obtain a new system power injection set by replacing
Sj� of S with the closure of this piece, then add to Laux an element
formed by v̂ and the resultant new system power injection set.

Final Stage: Check whether Laux is empty. If yes, then declare that Suncertain is admis-
sible for vinitial. Otherwise, we are unsure of the admissibility.

... ... ... ... ... ...

... ... ... ... ... ...

S1

S2

S3

Sj�

...

...

Old S Resultant New SPartition

represents (ŝ)j�b

b

Figure 3.8 – Illustration of step 5 in the intermediate stage of the second solution
method. The leftmost column represents the original system power injection set S.
First, we find the Sj� that has the largest area, which is a rectangle in the example.
Then, we connect (ŝ)j� (shown with a �) to the middle points of all edges in Sj� , hence
break Sj� into four pieces. Next, taking into account that the Boomerang-like piece on
the top-left corner of Sj� is non-convex, we therefore cut it into two triangular pieces.
All of these procedures can be efficiently realized in computer programming. After
partition, the original S is broken into five new system power injection sets, every of
which contains ŝ. As a result, we need to add five elements to Laux in this illustration.
Each of the five elements is a pair formed by v̂ and one of the five new system power
injection sets.
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For the second solution method, we give the following theorem on its validity. The
corresponding proof is included in Appendix 3.P.

Theorem 3.9

The proposed second solution method is correct in the sense that, whenever it
declares Suncertain admissible for vinitial, it is so.

3.5.2 Computational Complexity and Implementation Issues

In what follows, we analyze the computational complexity of our second solution
method. Meanwhile, we show that some steps can be implemented in parallel.

� For Step 2 in the Intermediate Stage: The computational complexity of sc de-
pends linearly on the number of vertices in Sj , j = 1, ..., NphaseN . In addition, the
computational complexity of ŝ is quadratic in NphaseN , according to our analysis
in Remark 2.1.

� For Step 3 in the Intermediate Stage: If the iterative method (2.18) is imple-
mented by following the procedures in Remark 2.1, then each iteration has a
computational complexity approximately linear in the number of buses and
physical branches.

� For Step 4 in the Intermediate Stage:

(i) In order to check whether (v̂,S) is a strongly secured candidate pair, we need
to find the following values.

– maxs2S ξ(s� F(v̂)),

– maxs2S ρ
y(v̂, s),

– maxs2S

�
�j(v̂, s)

�
`

, j = 1, ..., N , ` = 1, ..., Nphase,

– maxs2S

�
� jk(v̂, s)

�
`

, j = 1, ..., N , ` = 1, ..., Nphase.

Taking into consideration that

– The NphaseN entries in js� F(v̂)j are independent of each other,

– ξ(s� F(v̂)) = max
m=1,...,NphaseN

NphaseNP
n=1

�����W�1Y�1
LLW

�1
�
m,n

���� j(s� F(v̂))nj,

– ρy(v̂, s) is a monotonically increasing function of ξ(s� F(v̂)),

– All entries in �j(v̂, s), � jk(v̂, s) are monotonically increasing with respect to
both ρy(v̂, s) and the entries in js� F(v̂)j,
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we obtain

– maxs2S ξ(s� F(v̂)) = ξ(s� � F(v̂)),

– maxs2S ρ
y(v̂, s) = ρy(v̂, s�),

– maxs2S

�
�j(v̂, s)

�
`

=
�
�j(v̂, s

�)
�
`

, j = 1, ..., N , ` = 1, ..., Nphase,

– maxs2S

�
� jk(v̂, s)

�
`

=
�
� jk(v̂, s

�)
�
`

, j = 1, ..., N , ` = 1, ..., Nphase,

with s� 2 S being a vector such that (s�)j maximizes j(s�)j�(ŝ)j j, j = 1, ..., NphaseN .
As each Sj is either a polygon or a singleton, the computational complexity of
s� depends linearly on the number of vertices in Sj , j = 1, ..., NphaseN . Further,
as the entries in s� are independent, we can assign the computation of each
entry in s� to a thread of multi-core CPU and GPU. In this way, the computation
can be executed in parallel for acceleration. With the obtained value of s�, we
can compute �j(v̂, s�), � jk(v̂, s�) in parallel via a group of threads, since these
variables are also independent of each other.

(ii) In order to determine whether (v̂,S) is consistent with an element in L,
we need to verify the condition (3.14). The computational complexity of this
verification is linear in NphaseN , due to the left-hand side of (3.14). Note that the
verification for different elements in L can be executed in parallel, since they do
not rely on each other.

� For Step 5 in the Intermediate Stage: The major computational complexity
comes from the identification of the index j�. To find j�, we first need to compute
the area for every Sj . This process can be executed in parallel, and the corre-
sponding computational complexity for each Sj depends linearly on the number
of vertices in Sj [77]. Then, we compare the computed areas and obtain the value
of j�, for which the computational complexity is linear in NphaseN .

3.5.3 Numerical Evaluation

In this section, we give numerical examples on modified IEEE Test Feeders [55], [56].
Specifically, we first illustrate the second solution method in Section 3.5.1 on a modified
IEEE 13-Bus Test Feeder. Then, we evaluate the performance and scalability of the
method on modified IEEE 37-Bus and 123-Bus Test Feeders.

Illustration of the Method

We modify the IEEE 13-Bus Test Feeder by (i) taking the three-phase configuration
602 for all transmission lines, and (ii) removing the regulator. Denote the benchmark
system power injection of this network by sinitial, and let vinitial be the corresponding
system electrical state around w that is guaranteed by Theorem 2.1. Let us assume:

86



3.5. A Second Solution Method for the Admissibility Problem

� For phase b at bus 634, phase c at bus 671, and phase a at bus 652, the power
injections are uncertain and belong to the domains in Figure 3.9.

� For the other phases and buses, the power injections are fixed to the benchmark
values.

This specifies the uncertainty set Suncertain. Clearly, Suncertain includes sinitial. As some
of the nodal-voltage magnitudes are below 0.95 p.u. and some of the branch-current
magnitudes are over 0.3 p.u. for vinitial, we let

� the security bounds on the nodal-voltage magnitudes be 0.9 and 1.1 p.u.,

� the security bounds on the branch-current magnitudes be 0.4 p.u.

Bus 634, Phase b Bus 671, Phase c Bus 652, Phase a

F(vinitial)

-600 -200

-400

-600 -200 -600 -200

-400 -400

P (kW) P (kW) P (kW)

Q (kvar) Q (kvar) Q (kvar)

Figure 3.9 – The uncertainty set of system power injections.

In Figure 3.10, we show a step-by-step illustration of the second solution method.
After the initial stage of the method, we enter the 1-st round of the intermediate stage.
In this round, (v̂,S) is not a strongly secured candidate pair. Therefore, we partition
the system power injection set and add four elements to Laux. Next, in the 2-nd to
4-th rounds, we sequentially add three elements into L. However, in the 5-th round,
(v̂,S) is not a strongly secured candidate pair again. Hence, we partition the system
power injection set and add four elements to Laux. Then, in the 6-th to 9-th rounds, we
sequentially add four elements to L and stop the intermediate stage. In the final stage,
we declare that Suncertain is admissible for vinitial, since Laux is empty.

The example is completed in 0.07 seconds, using non-parallel MATLAB implemen-
tation.
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Bus 634 Bus 671 Bus 652
Phase b Phase c Phase a

Round
#

1

2

3

4

5

6

7

8

9

Strongly
secured

candidate
pair

Consistent
with

elements
in L

Action

No
Partition

Add 4
elements
to Laux .

bus 671
phase c ;

Yes Add 1
element
to L .

Yes

Yes Add 1
element
to L .

Yes

Yes Add 1
element
to L .

Yes

No
Partition

Add 4
elements
to Laux .

bus 634
phase b ;

Yes Add 1
element
to L .

Yes

Yes Add 1
element
to L .

Yes

Yes Add 1
element
to L .

Yes

Yes Add 1
element
to L .

Yes

F(v̂) F(�v) S Suncertain

Figure 3.10 – Illustration of the second solution method.

Performance Evaluation

Consider that the number of partitions is a major factor that affects the computational
complexity of the method, we keep the security bounds in the previous example and
analyze this factor via two new examples on a modified IEEE 37-Bus Test Feeder.

1. In the first example, we denote the benchmark system power injection by sinitial,
and let vinitial be its solution around w that is guaranteed by Theorem 2.1. In
addition, we assume that there is a single-phase power source, for which the
power injection is uncertain and belongs to the domain in Figure 3.11. We attach
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this power source to the phase c of a previously unloaded bus, and fix the power
injections of the other phases and buses. In this way, we specify the set Suncertain.

� Case 1: If the power source is attached to bus 702 that is close to the slack
bus, we have that the needed number of partitions increases faster as κ gets
closer to 1. When κ = 1, one of the branch-current magnitudes reaches its
security bound.

� Case 2: If the power source is attached to bus 709 that is in the middle of
this network, we again have that the needed number of partitions increases
faster as κ gets closer to 1. When κ = 1, one of the nodal-voltage magnitudes
reaches its upper security bound.

� Case 3: If the power source is attached to bus 711 that is almost the farthest
from the slack bus, we obtain a result that is similar to the one in Case 2.

Clearly, in all three cases, we need no partition for κ � 0.75 and at most 2–3
partitions for κ � 0.938. For κ = 0.992, the method terminates in approximately
0.2 seconds.

As a by-product, in Cases 2 and 3, we notice that the monotonicity assump-
tion in [16] does not hold, since the lowest value of the nodal-voltage magnitudes
is achieved at (κPmax,0).

2. In the second example, we let vinitial = w and assume that the real and imaginary
parts of all power injections can vary independently between 0 and κ times of
their benchmark values (i.e., κ = 1 corresponds to the benchmark values). In
this way, we specify the set Suncertain such that each of the 32 loaded phases has a
rectangular domain of uncertain power injections. Obviously, as κ increases, (i)
the size of Suncertain grows, and (ii) the worst-case voltage/current magnitudes
move toward the security bounds. Taking these into account, we increase the
value of κ from 0 and observe the number of partitions. Through numerical
experiments, we find that the method terminates in around 0.01 to 0.02 seconds
without performing any set partition for κ 2 [0, 1.15]. After κ = 1.15, the number
of partitions starts to increase exponentially with respect to κ, which follows the
heuristic nature of the method. This example demonstrates the applicability
of the method to real-world problems, because (i) Suncertain represents the un-
certainty of 32 phases, (ii) the size of Suncertain is large for κ = 1.15. Apart from
this, we have that the method is not conservative in terms of tightness, as the
lowest nodal-voltage magnitude for κ = 1.15 is only 0.017 p.u. away from the
corresponding security bound.
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is located at

Figure 3.11 – Performance evaluation. κ 2 [0, 1] is a real scaling factor.

Scalability Test

Now, we take a modified IEEE 123-Bus Test Feeder for scalability test. Specifically,
we (i) take the three-phase configuration 1 for all transmission lines, (ii) model the
switches by 10-feet lines, (iii) remove the regulators, and (iv) keep the security bounds
the same as before. Similarly to the previous evaluation on IEEE 37-Bus Test Feeder,
we are interested in the needed number of partitions.
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3.6. Conclusions

Denote the benchmark system power injection by sinitial, and let vinitial be its solu-
tion around w that is guaranteed by Theorem 2.1. Consider that if v0 = (1, e

�|2�
3 , e

|2�
3 )T ,

then the lowest nodal-voltage magnitude in vinitial is already below the corresponding
security bound. Therefore, we take v0 = (1.05, 1.05e

�|2�
3 , 1.05e

|2�
3 )T .

In this example, we assume that the real and imaginary parts of all power injections
can vary independently between 1� κ

2 and 1 + κ
2 times of their benchmark values (i.e.,

κ = 0 corresponds to the benchmark values). In this way, we specify the set Suncertain

such that each of the 95 loaded phases has a rectangular domain of uncertain power
injections.

Same as in the previous example, as κ increases, (i) the size of Suncertain grows,
and (ii) the worst-case voltage/current magnitudes move toward the security bounds.
Let us increase the value of κ from 0 and observe the number of partitions. Through
numerical experiments, it is found that the method terminates in around 0.03 seconds
without performing any set partition for κ 2 [0, 0.31]. After κ = 0.31, the number of
partitions starts to increase exponentially with respect to κ. For κ = 0.31, we find that
the highest branch-current magnitude is only 0.032 p.u. below the corresponding
security bound. This example demonstrates that the method is efficient for large
networks and is not conservative in terms of tightness.

3.6 Conclusions

We have studied the admissibility problem in ADNs. In order to solve this problem,
we have introduced the auxiliary concept of V-control. Specifically, given a set S of
system power injections and a set V of system electrical states, we say that S is a
domain of V-control if: any continuous path of the system electrical state that starts in
V must stay in V , as long as the corresponding path of the system power injection is
constrained in S. With the concept of V-control, the admissibility problem consists in
whether there exists a set V � V? such that (i) vinitial 2 V , and (ii) Suncertain is a domain
of V-control. We have shown that the “existence of a unique power-flow solution v 2 V
for every s 2 S” alone is neither sufficient nor necessary to ensure that S is a domain
of V-control. For S to be a domain of V-control, we have given additional conditions
that complement the existence and uniqueness of the power-flow solution. Moreover,
we have proposed theorems to ensure that there exists a unique power-flow solution
v 2 V for every s 2 S. Due to the real-quadratic nature of the multi-dimensional
power-flow equation, we have incidentally discovered that local uniqueness implies
non-singularity. This is the converse of the inverse function theorem. Using a subset of
the theoretical results in this chapter, we have developed a first solution method for the
admissibility problem. This method is tight, but not suitable for real-time applications
in large networks. With another subset of the theoretical results in this chapter and the
results in Chapter 2, we have developed a second solution method for the admissibility
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problem. This method is less tight than the first solution method, but it is suitable for
real-time applications in large networks.

Appendix

3.A Proof of Lemma 3.1

Let v : [0, 1]! CNphaseN be a continuous path such that v(0) 2 V and F(v(t)) 2 S,8t 2
[0, 1]. We want to show that v(t) 2 V, 8t 2 [0, 1].

First, denote the continuous inverse of F from S to V by Φ. As F(v(t)) 2 S,8t 2
[0, 1], we have that Φ(F(v(t))) 2 V is well-defined. Next, let T = ft 2 [0, 1] : v(t) 2 Vg.
Note that T can also be represented by ft 2 [0, 1] : v(t) = Φ(F(v(t)))g due to the
following reasons:

� v(t) 2 V ) v(t) = Φ(F(v(t))), since v(t),Φ(F(v(t))) 2 V have the same image
by F.

� v(t) 2 V ( v(t) = Φ(F(v(t))), since Φ(F(v(t))) 2 V .

Now, let us prove v(t) 2 V,8t 2 [0, 1] by showing that T = [0, 1]. Consider:

� T is non-empty because 0 2 T .

� T is open in [0, 1] because T = ft 2 [0, 1] : v(t) 2 Vg, V is an open set, and v is
continuous.

� T is closed in [0, 1] because T = ft 2 [0, 1] : v(t) = Φ(F(v(t)))g, and v, F, Φ are
continuous.

It follows that T is a non-empty, closed and open subset of [0, 1]. Since [0, 1] is con-
nected, its only closed and open subsets are the empty set and itself. Thus, T = [0, 1],
which means that S is a domain of V-control.

�

3.B Proof of Theorem 3.1

For s 2 S, let Φ(s) be the unique v 2 V such that F(v) = s. This defines the mapping
Φ. Consider that set V is open and non-singular. By the inverse function theorem,
for any s 2 S, there exist neighbourhoods Uv � V of Φ(s) and Us of s such that F
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3.C. Proof of Theorem 3.3

maps Uv bijectively to Us, and its inverse (say Φs) is differentiable hence continuous.
Clearly, for any s0 2 Us

TS, we have Φs(s0) 2 Uv � V . Since uniqueness is assume in
the second item of this theorem, there is Φ(s0) = Φs(s0),8s0 2 Us

TS. This proves that
Φ is continuous at s. Moreover, as this is true for every s 2 S, we conclude that Φ is
continuous in S. Finally, by Lemma 3.1, it follows that S is a domain of V-control.

�

3.C Proof of Theorem 3.3

We prove by contradiction. Let set V be non-singular and convex. In addition, suppose
that there exist v, v0 2 V such that (i) F(v) = F(v0), and (ii) v 6= v0. Owing to convexity,

there is
v + v0

2
2 V . Furthermore, according to the non-singularity of V , JF

�
v + v0

2

�
is non-singular. However, by the Property 1 in [78], JF

�
v + v0

2

�
should be singular,

since F is real-quadratic in rectangular coordinates. This creates a contradiction.

�

3.D Proof of Theorem 3.4

We need to show that S � F(V), i.e., F(V)
TS = S. Since S is connected by condition

2, its closed and open subsets are S and the empty set. Based on this, consider that (i)
F(V)

TS � S, and (ii) F(V)
TS is not empty by condition 3, we can prove F(V)

TS =

S by showing that F(V)
TS is both closed and open in S, which we do next.

First, the openness of V implies ∂V = cl(V) n V , where cl(V) is the closure of V (i.e.,
the set of limit points that can be approached from V). As V is bounded, we have that
the closure cl(V) is compact. Therefore, by continuity of F, F(cl(V)) is compact and
F(cl(V))

TS is closed in S. By condition 4, F(cl(V) n V)
TS is empty. Thus, we have

F(cl(V))
TS = F(V)

TS. So, F(V)
TS is closed in S.

Second,V is open and non-singular by condition 1. By the inverse function theorem,
F(V) is open and therefore F(V)

TS is open in S. Thus, F(V)
TS is a non-empty,

closed and open subset in S, which means that F(V)
TS = S and completes the proof.

�
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3.E Proof of Theorem 3.5

First, we show that if JF(v) is singular, then there is a non-zero vector � 2 CNphaseN

such that F(v + θ�) = F(v � θ�), 8θ 2 R. To this end, let � be an eigenvector with
eigenvalue 0 of the Jacobian JF(v), i.e., JF(v) � � = 0. For θ 2 R, define Ψ(θ) =

F(v+θ�). Since F is real-quadratic in rectangular coordinates, there exist some vectors

a, b, c 2 CNphaseN such that Ψ(θ) = θ2a + θb + c. Consider that
dΨ(θ)

dθ
= 2θa + b and

by chain rule
dΨ(θ)

dθ

����
θ=0

= JF(v) � �. We obtain b = 0. Thus, Ψ(θ) = θ2a + c = Ψ(�θ).

Next, we prove the theorem by contradiction. Assume that there exists v 2 V
such that JF(v) is singular. Then, there is a non-zero vector � such that F(v + θ�) =

F(v � θ�), 8θ 2 R. As V is open, there is some ε > 0 such that v + θ� 2 V whenever
jθj < ε. This contradicts that V is a domain of uniqueness, and completes the proof.

�

3.F Proof of Theorem 3.2

Let F�1(S) = fv 2 CNphaseN : F(v) 2 Sg. Because F is continuous and S is open,
we have that F�1(S) is open. Therefore, V 0 = F�1(S)

TV is open and a domain of
uniqueness. Further, by Theorem 3.5, V 0 is non-singular.

According to Theorem 3.1, S is a domain of V 0-control. As the unique solution in V
is in V 0, we have that S is also a domain of V-control.

�

3.G Proof of Theorem 3.6

We need to show that Suncertain is a domain of V-control. By Theorem 3.1, as V is already
open and non-singular, we only need to prove that 8s 2 Suncertain, there exists a unique
v 2 V such that F(v) = s.

According to Theorem 3.3, V is a domain of uniqueness because it is included in a
non-singular and convex set. In this way, it suffices to show that there exists a v 2 V
such that F(v) = s, for every s 2 Suncertain. To this end, we check the four conditions in
Theorem 3.4.

In Theorem 3.4, conditions 1 and 2 are automatically satisfied by construction.
Condition 3 follows from F(vinitial) 2 Suncertain.
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3.H. Proof of Theorem 3.7

Now, let us focus on condition 4. Since P0(`) are infeasible for all `, we have that set

F

0@ L[
`=1

(
v : f`(v) = 0 and f`0(v) � 0, `0 2 f1, ..., Lg n f`g

)1A
has an empty intersection with Suncertain. Therefore, we can complete the proof by
showing that the boundary ∂V is contained in the set

L[
`=1

(
v : f`(v) = 0 and f`0(v) � 0, `0 2 f1, ..., Lg n f`g

)
.

Consider that all f` are continuous and the topological boundary of V is the set of
points that are both limit points of V and limit points of the complement of V . If
v 2 ∂V , then v is the limit of some infinite sequence v(n) 2 V , thus f`(v(n)) > 0 and
f`(v) � 0 for all ` 2 f1, ..., Lg. Also, v is the limit of some infinite sequence v0(n) outside
V . Since there are only finitely many inequalities, there must be at least one inequality,
say with index `�, such that f`�(v0(n)) � 0 for an infinite number of superscripts n. It
follows that f`�(v) � 0 and thus f`�(v) = 0.

�

3.H Proof of Theorem 3.7

By hypothesis, we have that Suncertain and V satisfy the four conditions in Theorem 3.4.
In addition, in step 1 of A0, we have an open set Ṽ 0 such that (i) its closure cl(Ṽ 0) is
non-singular and convex, and (ii) V 0 = Ṽ 0TV?. All we need to show is that Suncertain

and V 0 satisfy the four conditions in Theorem 3.4, which we do next.

First, the open set Ṽ 0 is non-singular, since its closure cl(Ṽ 0) is non-singular. There-
fore, V 0 = Ṽ 0TV? is bounded, open and non-singular, which means that condition 1
in Theorem 3.4 holds.

Next, condition 2 in Theorem 3.4 holds by hypothesis, and condition 3 in Theorem
3.4 holds because

� F(V)
TS is non-empty,

�
�

F(V)
TS� � �F(V 0)TS�.

Then, we show condition 4 in Theorem 3.4 by contradiction. Suppose that there exists
v 2 ∂V 0 such that F(v) 2 Suncertain. Let s = F(v) and consider:
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� Suncertain and V satisfy all the conditions in Theorem 3.4,

� V � V 0, both of which are open and have empty intersection with ∂V 0.

We have that there exists v� 2 V such that F(v�) = s and v� 6= v. In this way, we obtain
two distinct elements in cl(Ṽ 0) that both correspond to s 2 Suncertain. However, this
cannot be the case, since cl(Ṽ 0) is a domain of uniqueness according to Theorem 3.3.
As a result, we have that condition 4 in Theorem 3.4 holds, which completes the proof.

�

3.I Proof of Proposition 3.1

First, let us construct in (3.16) a collection of sets:

Vm,n =

�
v 2 cl(Ṽ) :

Rowm(Y�1
LL)


1

����<�Rown(YLL)(v �w)
����

+
���=�Rown(YLL)(v �w)

����� � j(v)mj
�
,

(3.16)

where m,n 2 f1, ..., NphaseNg. By inspection, we have that Vm,n is empty when
P1(m,n, ψ, φ) is infeasible 8ψ, φ 2 f1,�1g.

Next, we show that when Vm,n is empty for allm,n 2 f1, ..., NphaseNg, the condition
in (3.5) holds nowhere in cl(Ṽ). Specifically,

� By the triangle inequality, the emptiness of Vm,n implies that the following in-
equality holds 8v 2 cl(Ṽ).Rowm(Y�1

LL)


1

���Rown(YLL)(v �w)
��� < j(v)mj . (3.17)

� Consequently, for each m 2 f1, ..., NphaseNg, the following inequality holds 8v 2
cl(Ṽ). Rowm(Y�1

LL)


1

YLL(v �w)

1

=
Rowm(Y�1

LL)


1
kik1 < j(v)mj . (3.18)

� Furthermore, for each m 2 f1, ..., NphaseNg, the following inequality holds 8v 2
cl(Ṽ).

NphaseNX
n=1

���(Y�1
LL)m,n(i)n

��� � Rowm(Y�1
LL)


1
kik1 < j(v)mj . (3.19)
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3.J. Proof of Proposition 3.2

Thus, the closure of the set Ṽ in (3.4) is non-singular if the problems P1(m,n, ψ, φ) are
all infeasible.

�

3.J Proof of Proposition 3.2

In step 1 of the method, we have at most

&
minj

Ithreshold
j

Înode
j ∆λ

’
choices of λ, which cor-

respond to at most

&
minj

Ithreshold
j

Înode
j ∆λ

’
choices of Inode

j , 8j 2 f1, ..., NphaseNg. For each

λ, we need to solve 4
�
NphaseN

�2
second-order cone programming feasibility prob-

lems. Therefore, we solve at most 4
�
NphaseN

�2
&

minj
Ithreshold
j

Înode
j ∆λ

’
second-order cone

programming feasibility problems in total.

In step 2 of the method, we have that the total number of continuous functions is

L = Nphase
�

3N + card(E)
�

. As a result, we have Nphase
�

3N + card(E)
�

semi-definite

programming feasibility problems to solve (namely, one feasibility problem per ` 2
f1, ..., Lg).

�

3.K Basics for the Sparsity-Exploiting Hierarchy of Semi-Definite
Programming Relaxations

In the following text, we give a brief description of the sparsity-exploiting hierarchy
of semi-definite programming relaxations. Our description is based on the tutorial
in [79].

Consider following polynomial optimization problem:

min f0(x)

s.t. : fk(x) � 0 , 8k 2 K ,

where (i)K = f1, ...,Kg is an index set, and (ii) f0 and fk, k 2 K are all polynomials in
x 2 RM .

For each polynomial f of x, we can express it generically as f(x) =
P

�2NM cf (�)x�

with some cf : NM ! R, where x� = xα1
1 � � �xαMM . Then, let us define
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� M = f1, ...,Mg,

� ωf = ddeg(f)/2e, where deg(f) is the degree of f ,

� Ifk = fj 2M : 9� 2 NM such that αj > 0 and cfk(�) 6= 0g, 8k 2 K, 8

� Ef0 = ffj, `g � M : 9� 2 NM such that αj > 0, α` > 0 and cf0(�) 6= 0g, 9

� Efk = ffj, `g � M : j, ` 2 Ifkg, 8k 2 K,

� ACω = f� 2 NM : αj = 0,8j 62 C and
PM

j=1 αj � ωg, where C � M,

� ’(x,ACω) is a column vector formed by all monomials x�,� 2 ACω.

To exploit sparsity, we need to first construct a graph with node setM and edge set
Ef0

S � � �S EfK . Next, we find a chordal extension of this graph [80], and denote the
maximal cliques of this chordal extension by Cr, r 2 R = f1, ..., Rg with R being the
total number of maximal cliques. Clearly, there exists an index mapping θ : K ! R
such that Ifk � Cθ(k),8k 2 K.

Now, the original polynomial optimization problem can be equivalently trans-
formed as follows:

min f0(x)

s.t. : ’(x,AC�(k)

!�!fk
)’(x,AC�(k)

!�!fk
)T fk(x) � 0 , 8k 2 K ,

’(x,ACrω )’(x,ACrω )T � 0 , 8r 2 R ,

where ω � maxfωf0 , ..., ωfKg and “� 0” means positive semi-definite.

Observe that the above formulation can be re-written as

min
X

�2
SR
‘=1A

C‘
2!

cf0(�)x�

s.t. :
X

�2
SR
‘=1A

C‘
2!

Lk(�, ω)x� � 0 , 8k 2 K ,

X
�2

SR
‘=1A

C‘
2!

Mr(�, ω)x� � 0 , 8r 2 R ,

for some real symmetric matrices Lk(�, ω) and Mr(�, ω).

In this way, a semi-definite programming relaxation of the original problem is

8I.e., j is in Ifk if xj explicitly shows up in the polynomial fk.
9I.e., fj; ‘g belongs to Ef0 if xj ; x‘ explicitly appear together in a monomial of f0.
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obtained by replacing each monomial x� with a single real variable y�:

min
X

�2
SR
‘=1A

C‘
2!

cf0(�)y�

s.t. :
X

�2
SR
‘=1A

C‘
2!

Lk(�, ω)y� � 0 , 8k 2 K ,

X
�2

SR
‘=1A

C‘
2!

Mr(�, ω)y� � 0 , 8r 2 R ,

y0 = 1 .

Obviously, by varying ω, the size of the above semi-definite programming relaxation
changes. In the literature, this parameter ω is referred to as the relaxation order. With ω
being positive integers, we have a hierarchy of semi-definite programming relaxations.

3.L Proof of Proposition 3.4

(Since ŝ` = F`(v̂), we use the notation ŝ` in this proof for ease of exposition.)

First, let us derive (3.8)–(3.9). Consider that, 8j 2 N n f0g, we have

vj = wj +
NX
`=1

Γj,`diag(v`)
�1s` , (3.20)

v̂j = wj +
NX
`=1

Γj,`diag(v̂`)
�1ŝ` . (3.21)

Taking the subtraction of these equations, we get

vj � v̂j =

NX
`=1

Γj,`

�
diag(v`)

�1s` � diag(v̂`)
�1ŝ`

�
. (3.22)
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Further, by taking the component-wise absolute value of (3.22), there is

jvj � v̂j j

�
NX
`=1

jΓj,`j
���diag(v`)

�1s` � diag(v̂`)
�1ŝ`

���
�

NX
`=1

jΓj,`j
���diag(v`)

�1s` � diag(v`)
�1ŝ`

���
+

NX
`=1

jΓj,`j
���diag(v`)

�1ŝ` � diag(v̂`)
�1ŝ`

��� . (3.23)

For the first term on the right-hand side of (3.23), we have

NX
`=1

jΓj,`j
���diag(v`)

�1s` � diag(v`)
�1ŝ`

���
=

NX
`=1

jΓj,`j
���diag(v`)

�1
���js` � ŝ`j

�

NX
`=1

jΓj,`j
���diag(w`)

�1
���js` � ŝ`j

α(v̂)� ρy(v̂, s)
. (3.24)

For the second term on the right-hand side of (3.23), we have

NX
`=1

jΓj,`j
���diag(v`)

�1ŝ` � diag(v̂`)
�1ŝ`

���
=

NX
`=1

jΓj,`j
���diag(v`)

�1 � diag(v̂`)
�1
���jŝ`j

�
ρy(v̂, s)

NX
`=1

jΓj,`j
���diag(w`)

�1
���jŝ`j

α(v̂)
�
α(v̂)� ρy(v̂, s)

� . (3.25)
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Note that, in the last step of (3.25), we take account of���� 1

(v)m
� 1

(v̂)m

����
=
j(v)m � (v̂)mj
j(v)mjj(v̂)mj

� ρy(v̂, s)j(w)mj�
α(v̂)� ρy(v̂, s)

�
j(w)mjj(v̂)mj

� ρy(v̂, s)

α(v̂)
�
α(v̂)� ρy(v̂, s)

�
j(w)mj

. (3.26)

Therefore, by definition of �` and inequalities (3.23)–(3.25), we have

jvj � v̂j j �

NX
`=1

jΓj,`j
���diag(w`)

�1
����`(v̂, s)

α(v̂)
�
α(v̂)� ρy(v̂, s)

� , (3.27)

which completes the proof of (3.8)–(3.9).

Next, let us cope with (3.10)–(3.11). Consider that, 8jk 2 E , we have

ijk � îjk =
�
Aj,kvj �Cj,kvk

�
�
�
Aj,kv̂j �Cj,kv̂k

�
= Aj,k(vj � v̂j)�Cj,k(vk � v̂k) . (3.28)

Further, plug (3.22) into (3.28) and consider the definition in (3.7), there is

ijk � îjk =
NX
`=1

Υjk,`

�
diag(v`)

�1s` � diag(v̂`)
�1ŝ`

�
. (3.29)

Observe that (3.29) shares exactly the same structure with (3.22). Thus, similar to the
derivations for (3.8)–(3.9), we obtain

jijk � îjkj �

NX
`=1

jΥjk,`j
���diag(w`)

�1
����`(v̂, s)

α(v̂)
�
α(v̂)� ρy(v̂, s)

� , (3.30)

which completes the proof of (3.10)–(3.11).

�

101



Chapter 3. Admissibility of Uncertain Power Injections

3.M Proof of Proposition 3.5

For any v 2 V(v̂,S), let s = F(v) be its corresponding system power injection in S. By
Proposition 3.4 and the triangle inequality, we have

jvj j � jv̂j j+ �j(v̂, s) , 8j 2 N n f0g , (3.31a)

jv̂j j � �j(v̂, s) � jvj j , 8j 2 N n f0g , (3.31b)

jijkj � ĵijkj+ � jk(v̂, s) , 8jk 2 E . (3.31c)

Further by Definition 3.6, we have

jv̂j j+ �j(v̂, s) < vmax
j , 8j 2 N n f0g , (3.32a)

vmin
j < jv̂j j � �j(v̂, s) , 8j 2 N n f0g , (3.32b)

ĵijkj+ � jk(v̂, s) < imax
jk , 8jk 2 E . (3.32c)

Combining them together gives

vmin
j <jvj j < vmax

j , 8j 2 N n f0g , (3.33a)

jijkj < imax
jk , 8jk 2 E , (3.33b)

which completes the proof.

�

3.N Proof of Proposition 3.6

To prove that
S

(v̂,S)2L V(v̂,S) is a domain of uniqueness, we have to show that 8v,v0 2S
(v̂,S)2L V(v̂,S), F(v) = F(v0)) v = v0. To do so, we let (v̂,S) 2 L be any candidate

pair such that v 2 V(v̂,S), and discuss as follows:

1. If v0 2 V(v̂,S), then F(v) = F(v0) ) v = v0 because V(v̂,S) is a domain of
uniqueness.

2. Otherwise, let (v̂0,S 0) 2 L be any candidate pair such that v0 2 V(v̂0,S 0), and take
into account that

� V(v̂,S) � Dρ(v̂) with ρ = sup
s2S

ρy(v̂, s),

� Dρ(v̂), ρ = sup
s2S

ρy(v̂, s) is contained inDρ(v̂0), ρ = ρz(v̂0) whenever

kW�1(v̂ � v̂0)k1 + sup
s2S

ρy(v̂, s) < ρz(v̂0).

In this way, v 2 Dρ(v̂0), ρ = ρz(v̂0) when kW�1(v̂ � v̂0)k1 + sup
s2S

ρy(v̂, s) < ρz(v̂0).
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3.O. Proof of Theorem 3.8

Since v0 is the unique power-flow solution inDρ(v̂0), ρ = ρz(v̂0) for system power
injection F(v0), there is F(v) = F(v0) ) v = v0. In a similar way, we have
F(v) = F(v0) ) v = v0 when kW�1(v̂0 � v̂)k1 + sup

s02S0
ρy(v̂0, s0) < ρz(v̂). As we

have (3.14) according to Definition 3.7, it is ensured that F(v) = F(v0)) v = v0.

Therefore,
S

(v̂,S)2L V(v̂,S) is a domain of uniqueness.

�

3.O Proof of Theorem 3.8

First, for every (v̂,S) 2 L, let set S̃ collect all s̃ that satisfy the following items:10

1. ξ(s̃� F(v̂)) <
1

2

��
ρz(v̂)

�2
+ max

s2S
ξ(s� F(v̂))

�
,

2. (3.12)–(3.13),

3. ρy(v̂, s̃) <
1

2

�
ρz(v̂0) + max

s2S
ρy(v̂, s)� kW�1(v̂ � v̂0)k1

�
, 8(v̂0,S 0) 2 L such that

ρz(v̂0)�max
s2S

ρy(v̂, s) � ρz(v̂)�max
s02S0

ρy(v̂0, s0).

As can be seen, (i) S̃ is open and contains S, (ii) (v̂, S̃) is a candidate pair.

Then, let L̃ be the collection of all candidate pairs (v̂, S̃). We have:

1.
S

(v̂,S̃)2L̃ V(v̂, S̃) satisfies (O1), as every (v̂, S̃) is strongly secured by construction.

2.
S

(v̂,S̃)2L̃ V(v̂, S̃) satisfies (O2), since we assume in the theorem that at least one

v̂ equals vinitial.

3.
S

(v̂,S̃)2L̃ V(v̂, S̃) is open, due to the openness of every V(v̂, S̃).

4.
S

(v̂,S̃)2L̃ V(v̂, S̃) satisfies (O3b) because F
�S

(v̂,S̃)2L̃ V(v̂, S̃)
�

is open and includes

Suncertain.

Clearly, the proof can be completed by showing that
S

(v̂,S̃)2L̃ V(v̂, S̃) is a domain of
uniqueness, which we do next. Since 8(v̂,S), (v̂0,S 0) 2 L, we have

kW�1(v̂ � v̂0)k1 < max
n
ρz(v̂)�max

s02S0
ρy(v̂0, s0), ρz(v̂0)�max

s2S
ρy(v̂, s)

o
.

It follows that
10Here, the maximum exists in the definition of ~S, since S is closed.
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1. If ρz(v̂0)�max
s2S

ρy(v̂, s) � ρz(v̂)�max
s02S0

ρy(v̂0, s0), then

kW�1(v̂ � v̂0)k1 <
1

2

�
ρz(v̂0)�max

s2S
ρy(v̂, s) + kW�1(v̂ � v̂0)k1

�
�ρz(v̂0)� sup

s̃2S̃
ρy(v̂, s̃)

�max

�
ρz(v̂)� sup

s̃02S̃0
ρy(v̂0, s̃0), ρz(v̂0)� sup

s̃2S̃
ρy(v̂, s̃)

�
.

(3.34)

2. Similarly, if ρz(v̂)�max
s02S0

ρy(v̂0, s0) � ρz(v̂0)�max
s2S

ρy(v̂, s), then

kW�1(v̂ � v̂0)k1 <ρz(v̂)� sup
s̃02S̃0

ρy(v̂0, s̃0)

�max

�
ρz(v̂)� sup

s̃02S̃0
ρy(v̂0, s̃0), ρz(v̂0)� sup

s̃2S̃
ρy(v̂, s̃)

�
.

(3.35)

By combining the above two cases, we obtain that (v̂, S̃) and (v̂0, S̃ 0) are consistent.
According to Proposition 3.6,

S
(v̂,S̃)2L̃ V(v̂, S̃) is a domain of uniqueness, which com-

pletes the proof.

�

3.P Proof of Theorem 3.9

We show that L satisfies the five items in Theorem 3.8 when Laux becomes empty.
Specifically,

� The method always ensures that
�S

(v̌,S)2Laux S
�S�S

(v̂0,S0)2L S 0
�

= Suncertain.

Therefore, the first item
S

(v̂,S)2L S = Suncertain holds when Laux becomes empty.

� The second item is satisfied in the initial stage.

� For every element in L and Laux, S is closed. Moreover, S is convex and contains
the ŝ obtained in (3.15). Therefore, all elements in L satisfy the third item.

� An element is added to L only if it is a strongly secured candidate pair and
consistent with all the existent elements in L. In this way, the fourth and fifth
items are also fulfilled.

�
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4 Multi-Phase Optimal Power Flow
with Wye/Delta Load/Source Con-
nections and Non-Singularity
Constraint

All appearances are illusory.

The Diamond Sutra
BUDDHA

4.1 Introduction

Motivation

In this chapter, we shift our focus to network optimality and consider an AC optimal
power flow problem in multi-phase ADNs. Specifically,

� We assume that

– The network topology is generic,

– The buses are linked via either π-modelled transmission lines or complex-
ratio transformers,

– The system power injection is unbalanced,

– The loads and sources have various connections, including wye, delta, and
a combination thereof.
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� Our goal is to find a system power injection sY,∆ =

"
sY

s∆

#
and a corresponding

power-flow solution v such that

– (v, sY,∆) minimizes an objective function that is convex in both v and sY,∆.1

– sY,∆ belongs to a given convex and compact set.

– v satisfies the nodal-voltage and branch-current security constraints (3.2a)–
(3.2b).

– The power-flow Jacobian JFY;�

�
v, diag

�
Hv
��1

s∆

�
(defined in (2.49)) is

non-singular.2

This problem is meaningful for the operation of real-world ADNs. However, it is
technically challenging. In detail,

� It is non-convex and NP-hard [82].

� It cannot be addressed by existent linearization and convex-relaxation methods
(see Section 4.2).

Contributions and Chapter Outline

In Section 4.3, we give the mathematical formulation of the multi-phase optimal power
flow problem and show that

� This problem might not be feasible, due to the non-singularity constraint.

� Even if it is feasible, it might not have an optimal solution.

1For example, assume that we would like to minimize the total monetary cost fexternal(s0)+f local(sY;�),
where

� fexternal is a convex function of the slack-bus power s0 and represents the monetary cost of importing
power from the external networks.

� f local is a convex function of sY;� and represents the monetary cost of the local power generation.

By (2.10a) in Chapter 2, the slack-bus power s0 equals diag(v0)
�
Y00v0 + Y0Lv

�
. As v0, Y00, Y0L are

known and fixed, we have that the slack-bus power s0 is an affine function of v. Therefore, the objective
function can be written as ~fexternal(v) + f local(sY;�), which is convex in both v and sY;�.

2This is of practical interests, as non-singular power-flow Jacobian indicates the static voltage stability
and cannot be implied by the satisfaction of the security constraints [81].
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4.2. State of the Art

In Section 4.4, we present a successive local exploration method for solving the
multi-phase optimal power flow problem. Specifically,

� In Section 4.4.1, we recall the results in Chapter 2 and show that, by properly
restricting the system power injection to some local domains, we can obtain an
explicit convex proxy for the feasible set of this problem.

� In Section 4.4.2, we exploit the finding in Section 4.4.1 and develop the successive
local exploration method. In each iteration of the method, we obtain a feasible
point of this problem, by exploring around the feasible point obtained in the
previous iteration. We ensure that the objective-function values at the obtained
feasible points are monotonically non-increasing. For two consecutive iterations,
if the difference between the objective-function values is less than some pre-
specified error bound, then we terminate the method.

� In Section 4.4.3, we give theoretical results for the successive local exploration
method. Specifically,

– We guarantee that the objective-function values at the obtained feasible
points converge to a finite limit.

– If the objective function does not explicitly contain v, then we give a-
posteriori conditions to determine the local optimality for both the obtained
feasible points and their limit points.

In Section 4.5, we numerically evaluate the successive local exploration method.

In Section 4.6, we compare with our work [83].

4.2 State of the Art

To solve the considered problem, a fundamental method consists in replacing the
non-singularity constraint by some indicator of non-singularity [84, 85] and applying
the sequential linear programming technique [86]. However,

� The convergence of this method is not guaranteed. If it does not converge, then
it might yield a solution that does not satisfy the security constraints.

� This method does not provide any information on the optimality of its solutions.
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In [87], the authors attempt to address the unbalanced three-phase optimal power
flow problem. Specifically, they replace the security constraints with a security-related
penalty term in the objective function. As a result, the multi-dimensional power-
flow equation is left as the only constraint. Then, they apply the well-known Newton
iteration to solve this equality-constrained problem and obtain the optimal power flow
solution. Their method has two major issues. First, it cannot ensure the satisfaction of
the security constraints. Second, it has neither a guarantee on the convergence nor a
result on the optimality.

The same problem is also studied in [88, 89]. Similarly to those of [87], the authors
of [88, 89] handle the problem by well-known generic solvers and do not provide any
results on the convergence and optimality.

In [90], the authors try to address the general multi-phase optimal power flow
problem. To do so, they assume that all the constant-power loads/sources can be
equivalently replaced by some constant-current loads/sources. In this way, the non-
linear multi-dimensional power-flow equation is replaced by a linear relation between
the nodal currents and the nodal voltages. Then, they solve the resultant problem by
generic solvers, without giving any information of the convergence and optimality.

Different from the method in [90], a semi-definite programming relaxation method
is proposed in [91] for solving the multi-phase optimal power flow problem. Specifi-
cally, the authors of [91] relax the original non-convex problem into a semi-definite
programming problem. Then, they give a-posteriori rank conditions to guarantee that
the optimal solution of the semi-definite programming problem is globally optimal for
the original non-convex problem. This method has the following shortcomings:

� The computational complexity for solving a semi-definite programming problem
does not scale well with respect to the size of the network. To cope with this issue,
the authors develop a distributed semi-definite programming solver based on the
ADMM technique [92]. Although this solver reduces the runtime for acquiring
the solution, it is still inefficient for relatively large networks, due to the inevitable
communication costs and the long-tail convergence property.

� The method does not consider delta and combined wye/delta connections, and
it cannot be straightforwardly adapted for these connections.

� The method does not ensure that the obtained solution satisfies the non-singularity
of the power-flow Jacobian.
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4.3. The Multi-Phase Optimal Power Flow Problem

The computational efficiency of the semi-definite programming relaxation method
is improved in [93]. But the improvement is achieved for only radial networks that do
not have any shunt element and any transformer. Furthermore, this improvement
cannot be straightforwardly extended for delta and combined wye/delta connections.

In a recent work [94], the authors assume quadratic objective functions and for-
mulate the multi-phase optimal power flow problem as a non-convex quadratically-
constrained quadratic programming problem. Then, they solve this problem by apply-
ing the iterative convex approximation method in [95]. It is shown that this iterative
method converges and returns a KKT point of the multi-phase optimal power flow
problem. Moreover, if the method starts with a point that satisfies the security con-
straints, then the obtained KKT point also satisfies the security constraints. Despite
the theoretical merits, this work handles only wye connections and cannot be easily
adapted for the other connections.

4.3 The Multi-Phase Optimal Power Flow Problem

In the chapter, we make the following assumption on the network model.

Assumption 4.1

� The network topology is generic (i.e., radial or meshed),

� The buses are linked via either π-modelled transmission lines or complex-
ratio transformers,

� The system power injection is unbalanced,

� The loads and sources have various connections, including wye, delta, and
a combination thereof.

Based on this assumption, we formulate the multi-phase optimal power flow problem
as follows.
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Problem 4.1 (Multi-Phase Optimal Power Flow Problem)

Given that the network model follows Assumption 4.1. Solve

[GOPF] min f(v, sY,∆)

s.t. : sY,∆ 2 SY,∆ ,

v = GsY;�(v) ,

vmin � jvj � vmax ,

jiE(v)j � imax ,

JFY;�

�
v, diag

�
Hv
��1

s∆

�
is non-singular ,

where

� f is a function that is convex in both v and sY,∆,

� SY,∆ is a convex and compact set of sY,∆,

� v = GsY;�(v) is the fixed-point power-flow equation (2.42),

� vmin � jvj � vmax collects the nodal-voltage security constraints in (3.2a),

� jiE(v)j � imax collects the branch-current security constraints in (3.2b),

� JFY;�

�
v, diag

�
Hv
��1

s∆

�
is the power-flow Jacobian defined by (2.39) and

(2.49).

In this problem, the first four constraints

sY,∆ 2 SY,∆ ,

v = GsY;�(v) ,

vmin � jvj � vmax ,

jiE(v)j � imax

specify a closed set of (v, sY,∆). However, the non-singularity of the power-flow Jaco-
bian (i.e., the last constraint) specifies an open set of (v, sY,∆). As a result, this problem
might not be feasible. Furthermore, even if it is feasible, it might not have an optimal
solution (see Figure 4.1 for an illustration).

For such a problem, we develop a solution method in the next section. As long as
the problem is feasible, our solution method at least finds sub-optimal solutions.
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4.4. Solving the Multi-Phase Optimal Power Flow Problem by Successive Local
Explorations

v

f(sY;�)

sY;�

sY;�

Power-ow

Objective

curve

function

This point minimizes f ,
but is singular.

SY;�

vmax

vmin

Assume imax is
large enough.

Figure 4.1 – Assume that the objective function does not explicitly contain v (i.e., it
can be written as f(sY,∆)). Then, for the case shown in this figure, GOPF is feasible but
does not have an optimal solution.

4.4 Solving the Multi-Phase Optimal Power Flow Problem by
Successive Local Explorations

In this section, we present a successive local exploration method for solving the multi-
phase optimal power flow problem, GOPF . Specifically,

� In Section 4.4.1, we recall the results in Chapter 2 and show that, by properly
restricting the system power injection to some local domains, we can obtain an
explicit convex proxy for the feasible set of GOPF .

� In Section 4.4.2, we exploit the finding in Section 4.4.1 and develop the successive
local exploration method.

� In Section 4.4.3, we give theoretical results for the successive local exploration
method.
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4.4.1 An Explicit Convex Proxy for the Feasible Set of GOPF

Let (v̂, ŝY,∆) be a known feasible point of GOPF and define

εmax
v̂,ŝY;� =

�
ρzY,∆(v̂, ŝY,∆)

�2
, (4.1)

Baux(ŝY,∆, ε) =

�
sY,∆ 2 SY,∆ : ξY,∆

�
sY,∆ � ŝY,∆

�
< ε

�
, (4.2)

where ρzY,∆, ξY,∆ are given in Table 2.3 of Chapter 2.

By Theorem 2.2 and Proposition 2.2,

� If (v̂, ŝY,∆) satisfies ρzY,∆(v̂, ŝY,∆) > 0, then for any sY,∆ 2 Baux(ŝY,∆, εmax
v̂,ŝY;�

), there

is a unique power-flow solution v 2 Dρ(v̂) with ρ = ρzY,∆(v̂, ŝY,∆) (see (2.21) for
the definition ofDρ).

� Moreover,

– jv � v̂j is controlled by ξY,∆
�
sY,∆ � ŝY,∆

�
, which implies that jiE(v)� iE(v̂)j

is also controlled by ξY,∆
�
sY,∆ � ŝY,∆

�
.

– ρzY,∆(v, sY,∆) > 0 and the power-flow Jacobian JFY;�

�
v,diag

�
Hv
��1

s∆

�
is

non-singular.

Based on these results, we give the following lemma and prove it in Appendix 4.A.

Lemma 4.1

Given a feasible point (v̂, ŝY,∆) of GOPF that satisfies

(a1) vmin < jv̂j < vmax,

(a2) jiE(v̂)j < imax,

(a3) ρzY,∆(v̂, ŝY,∆) > 0.

For any sY,∆ 2 Baux(ŝY,∆, εmax
v̂,ŝY;�

), let v be the unique power-flow solution in

Dρ(v̂), ρ = ρzY,∆(v̂, ŝY,∆) that is guaranteed by Theorem 2.2.

We have that there exists ε0(v̂, ŝY,∆) 2 (0, εmax
v̂,ŝY;�

) such that for any sY,∆ 2

cl

�
Baux

�
ŝY,∆, ε0(v̂, ŝY,∆)

��
, (v, sY,∆) is a feasible point of GOPF and satisfies

(a1)–(a3).
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By Lemma 4.1, if (v̂, ŝY,∆) satisfies (a1)–(a3) and ε 2 (0, εmax
v̂,ŝY;�

) is appropriately con-

trolled, then for any sY,∆ 2 cl
�
Baux(ŝY,∆, ε)

�
, there exists a v such that (v, sY,∆) is a fea-

sible point of GOPF (see Figure 4.2 for an illustration). This means that cl
�
Baux(ŝY,∆, ε)

�
is an explicit convex proxy for the feasible set of GOPF . Namely, knowing that sY,∆ 2
cl
�
Baux(ŝY,∆, ε)

�
permits us to “forget” the constraints on v.

SY;�

ŝY;�

fsY;� : �Y;�(sY;� � ŝY;�) � �g

(v̂; ŝY;�)

Feasible set
of GOPF

cl(Baux(ŝY;�; �))

sY;�

(v; sY;�)

Space of sY;� Space of (v; sY;�)

Figure 4.2 – If (v̂, ŝY,∆) satisfies (a1)–(a3) and ε 2 (0, εmax
v̂,ŝY;�

) is appropriately controlled,

then for any sY,∆ 2 cl
�
Baux(ŝY,∆, ε)

�
, there exists a v such that (v, sY,∆) is a feasible

point of GOPF .

4.4.2 The Successive Local Exploration Method

In Section 4.4.1, we have shown that: if (v̂, ŝY,∆) satisfies (a1)–(a3) in Lemma 4.1 and ε

is appropriately controlled, then cl
�
Baux(ŝY,∆, ε)

�
is an explicit convex proxy for the

feasible set of GOPF . In what follows, we use this result to develop a successive local
exploration method for solving GOPF .

To begin with, let us introduce a linear approximation of v as follows:

vapprox
v̂ (sY,∆) = w + Y�1

LL

�
diag

�
v̂
��1

sY + HTdiag
�
Hv̂
��1

s∆

�
. (4.3)

This linear approximation is the first step of the iterative power-flow method in (2.46).
It generalizes the single-phase linear approximation in [30]. Compared to the common
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first-order Taylor approximation, it has a much lower computational complexity.

With the linear approximation (4.3), we introduce the following optimization problem

[LOPF(v̂, ŝY,∆, ε)] min f
�
vapprox

v̂ (sY,∆), sY,∆
�

s.t. : sY,∆ 2 cl
�
Baux(ŝY,∆, ε)

�
,

which is a convex approximation of GOPF . Using [LOPF(v̂, ŝY,∆, ε)], we develop the
successive local exploration method as follows:

� In the initialization, we assume that there is a known feasible point
�
v(0), (sY,∆)(0)

�
of GOPF that satisfies (a1)–(a3) in Lemma 4.1. Additionally, we specify some pa-
rameters ζ 2 (0, 1), εbound > 0, and ErrBound � 0.

� Then, in each iteration k � 0, we find a feasible point
�
v(k+1), (sY,∆)(k+1)

�
of

GOPF such that

– f
�
v(k+1), (sY,∆)(k+1)

�
� f

�
v(k), (sY,∆)(k)

�
,

–
�
v(k+1), (sY,∆)(k+1)

�
satisfies (a1)–(a3) in Lemma 4.1.

To do so, we initialize n = 0 and take the following explorational steps:

(S1) We solve the optimization problem LOPF
�
v(k), (sY,∆)(k), ζn+1εmax

v(k),(sY;�)(k)

�
and obtain a minimizer s̃Y,∆.

(S2) For s̃Y,∆, we compute the corresponding power-flow solution ṽ that is guar-
anteed by Theorem 2.2.

(S3) With the obtained (ṽ, s̃Y,∆), we consider the following cases:

� In the case where vmin < jṽj < vmax, jiE(ṽ)j < imax and f(ṽ, s̃Y,∆) �
f
�
v(k), (sY,∆)(k)

�
, we let

�
v(k+1), (sY,∆)(k+1)

�
be (ṽ, s̃Y,∆).

� In the case where vmin < jṽj < vmax, jiE(ṽ)j < imax and f(ṽ, s̃Y,∆) >

f
�
v(k), (sY,∆)(k)

�
, we proceed according to the value of ζn+1εmax

v(k),(sY;�)(k) .

If ζn+1εmax
v(k),(sY;�)(k) � εbound, then we have already done enough explo-

rations and should stop by letting
�
v(k+1), (sY,∆)(k+1)

�
be
�
v(k), (sY,∆)(k)

�
.

� In all the other cases, we have not yet done enough explorations. Con-
sequently, we should increase n by 1 and repeat the explorational steps
(S1)-(S3).

� When
���f�v(k+1), (sY,∆)(k+1)

�
� f

�
v(k), (sY,∆)(k)

���� < ErrBound, we terminate the

method.
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In the following, we give the pseudo code of the method and illustrate it in Figure 4.3.

Successive Local Exploration Method

Input: 1. Feasible point
�
v(0), (sY,∆)(0)

�
of GOPF that satisfies (a1)–(a3) in Lemma 4.1.

2. Parameter ζ 2 (0, 1).
3. Parameter εbound > 0.
4. Parameter ErrBound � 0.

Output:
n

v(k), (sY,∆)(k), (εseq)(k)
o

1: k  0, flagA 1
2: while flagA do
3: n 0, flagB 1
4: while flagB do
5: ε(n)  ζn+1εmax

v(k),(sY;�)(k)

6: Solve LOPF
�
v(k), (sY,∆)(k), ε(n)

�
and obtain a minimizer s̃Y,∆

7: For s̃Y,∆, compute the corresponding ṽ that is guaranteed by Theorem 2.2
8: if vmin < jṽj < vmax and jiE(ṽ)j < imax then

9: if f(ṽ, s̃Y,∆) � f
�
v(k), (sY,∆)(k)

�
then

10: v(k+1)  ṽ, (sY,∆)(k+1)  s̃Y,∆, (εseq)(k)  ε(n), flagB 0
11: else if ε(n) � εbound then
12: v(k+1)  v(k), (sY,∆)(k+1)  (sY,∆)(k), (εseq)(k)  ε(n), flagB 0
13: else
14: n n+ 1
15: end if
16: else
17: n n+ 1
18: end if
19: end while
20: if

���f�v(k+1), (sY,∆)(k+1)
�
� f

�
v(k), (sY,∆)(k)

���� < ErrBound then

21: flagA 0
22: end if
23: k  k + 1
24: end while
25: return

n
v(k), (sY,∆)(k), (εseq)(k)

o
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SY,∆

(sY,∆)(0)

cl(Baux((sY,∆)(0); (�seq)(0)))

(sY,∆)(1)
(sY,∆)(2)

cl(Baux((sY,∆)(1); (�seq)(1)))

cl(Baux((sY,∆)(2); (�seq)(2)))

(sY,∆)(3)

Space of sY;�

Figure 4.3 – Illustration of the successive local exploration method.

Remark 4.1 (Comments on the Successive Local Exploration Method)

For the successive local exploration method, we have the following comments:

� In the initialization, we can either obtain
�
v(0), (sY,∆)(0)

�
by state estimation

processes or simply set it to (w,0).

� For (ṽ, s̃Y,∆), we do not need to verify ρzY,∆(ṽ, s̃Y,∆) > 0, as it is guaranteed by
Proposition 2.2.

� If the objective function does not explicitly contain v, then the condition
in pseudo-code line 9 is always satisfied. Consequently, pseudo-code lines
11–14 do not come into effect.

4.4.3 Theoretical Results for the Successive Local Exploration Method

We give the following theoretical results for the successive local exploration method.
The proof is included in Appendix 4.B.
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4.4. Solving the Multi-Phase Optimal Power Flow Problem by Successive Local
Explorations

Theorem 4.1

For the successive local exploration method:

1. In each iteration that is indexed by k, the inner loop (i.e., pseudo-code
lines 5-18) terminates with a finite value of n.

2. When ErrBound = 0, we get an infinite sequence
n

v(k), (sY,∆)(k), (εseq)(k)
o

.

(a)
�
f
�
v(k), (sY,∆)(k)

��
converges to a finite limit.

(b) For each k � 1, if (sY,∆)(k) 2 Baux
�

(sY,∆)(k�1), (εseq)(k�1)
�

and the

objective function does not explicitly contain v, then
�
v(k), (sY,∆)(k)

�
is a locally optimal solution to GOPF .

(c) Assume that

εmin = lim inf
k!1

(εseq)(k) > 0 . (4.4)

Then for any limit point
�
v�, (sY,∆)�

�
of
n

v(k), (sY,∆)(k)
o

, we have

(i) JFY;�

�
v�,diag

�
Hv�

��1
(s∆)�

�
is non-singular,

(ii)
�
v�, (sY,∆)�

�
is a locally optimal solution to GOPF if the objective

function does not explicitly contain v.

(d) Assume that

εmax = lim sup
k!1

(εseq)(k) > 0 . (4.5)

Then there exists a limit point
�
v�, (sY,∆)�

�
of
n

v(k), (sY,∆)(k)
o

such

that 2(c)(i)–2(c)(ii) hold.

3. When ErrBound > 0, the method terminates after solving a finite number
of LOPF problems.

Remark 4.2 (On the Optimal Power Flow Solutions)

In general, it is technically challenging to find an optimal solution to GOPF , be-
cause GOPF is a non-convex and NP-hard problem. According to the discussion in
Section 4.3, GOPF might not have an optimal solution, due to the non-singularity
constraint. For such a problem, our successive local exploration method at least
finds sub-optimal solutions.
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Moreover, in the case where the objective function does not explicitly contain
v, we give a-posteriori conditions on the optimality:

� For each obtained
�
v(k), (sY,∆)(k)

�
, if (sY,∆)(k) 2 Baux

�
(sY,∆)(k�1), (εseq)(k�1)

�
,

then
�
v(k), (sY,∆)(k)

�
is a locally optimal solution to GOPF .

� If condition (4.4) holds, then any limit point
�
v�, (sY,∆)�

�
of
n

v(k), (sY,∆)(k)
o

is a locally optimal solution to GOPF . Further, if a milder condition (4.5)
holds, then there exists such a limit point. Note that if (4.5) does not hold,

then we have that a limit point of
n

v(k), (sY,∆)(k)
o

is an approximation of a

locally optimal solution.

4.5 Numerical Examples

In the following, we give the illustration and performance evaluation for the successive
local exploration method. We assume that (i) the slack-bus voltage is nominal, (ii) the
security bounds on the nodal-voltage magnitudes are 0.9 p.u. and 1.1 p.u., (iii) the
security bounds on the branch-current magnitudes are 0.5 p.u., (iv) εbound = 0.01, (v)
ErrBound = 0.0001.

Illustration

Let us consider a single-phase two-bus network, where

� The PQ bus is directly linked to the slack bus via a transmission line.

� The transmission-line impedance is 0.3 + 0.7 p.u.

� At the PQ bus, the power injection belongs to the triangular region in Figure 4.4,
which specifies SY,∆.

� f is quadratic and does not explicitly contain v:

f(sY,∆) =


"
<(sY,∆)

=(sY,∆)

#
�
"

3

0

#
2

2

. (4.6)
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4.5. Numerical Examples

Power Injection at the PQ Bus

6
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Figure 4.4 – The power injection at the PQ bus belongs to the triangular region. For
each path of sY,∆, the leftmost point represents (sY,∆)(0). (The thin colorful curves
express the contour levels of the objective-function value.)
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Nodal Voltage at the PQ Bus

1.1 p.u.

0.9 p.u.

Figure 4.5 – The paths of v that correspond to those in Figure 4.4. For each path, the
lowest point represents v(0).
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In this network, if
�
v(0), (sY,∆)(0)

�
= (w,0) and ζ = 0.9, then the method termi-

nates after solving 3 instances of LOPF problems. We plot the path of (sY,∆)(k) in Figure
4.4 and the corresponding path of v(k) in Figure 4.5 via thick solid lines. As can be seen,
(sY,∆)(k) converges to 0.5, which means that we reach the unique minimum value of f

in SY,∆. Similarly, we pick some other values for
�
v(0), (sY,∆)(0)

�
and plot the obtained

paths in Figures 4.4, 4.5 via dashed lines of different thickness. As can be seen, for
every path, we have that (sY,∆)(k) converges to 0.5 .

In addition to the above results, we verify that the power-flow Jacobian is non-singular
for all obtained paths. Moreover, if ErrBound is set to 0, we note that

lim inf
k!1

(εseq)(k) = lim sup
k!1

(εseq)(k) = 0.1211 ,

which means that (4.4) and (4.5) hold.

Performance Evaluation

We evaluate the performance of the successive local exploration method on the IEEE
123-Bus Test Feeder [55, 56]. To create combined wye/delta connections, we add an
additional delta-connected power injection (�0.03�0.01,�0.03�0.01,�0.03�0.01)T

p.u. to bus 1. Let us denote the modified benchmark system power injection by
(sY,∆)

bench
and take

SY,∆ =

�
sY,∆ : κ<

��
(sY,∆)

bench
�
j

�
� <

�
(sY,∆)j

�
� 0 ,

κ=
��

(sY,∆)
bench

�
j

�
� =

�
(sY,∆)j

�
� 0 , 8j

�
, (4.7)

where κ > 0.

Our goal is to analyze how the number of LOPF problems depends on κ and ζ. More
precisely,

� For a given ζ, we want to see whether the number of LOPF problems changes
rapidly along with κ.

� For a given large κ, we want to find the best choice of ζ.

For this purpose, we initialize with
�
v(0), (sY,∆)(0)

�
= (w,0) and take the objective

function as follows

f(v, sY,∆) =
diag(v0)

�
Y00v0 + Y0Lv

�2

2
+ 10ksY,∆ � ck22 . (4.8)
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4.6. Comparison with [83]

In this objective function,

� diag(v0)
�
Y00v0 + Y0Lv

�
is the slack-bus power (see (2.10a) in Chapter 2),

� The entries of c are independent and randomly generated by uniform distribution
over the square box [�0.1, 0.1]� [�0.1, 0.1].

With the above
�
v(0), (sY,∆)(0)

�
and f(v, sY,∆), we fix ζ = 0.6 and increase κ from 1 to

6. Using randomly generated objective functions, we obtain that

� For κ = 1, the method terminates after solving 2–3 instances of LOPF problems.

� For κ = 6, the method terminates after solving 9–15 instances of LOPF problems.

Thus, the number of LOPF problems is not very sensitive to κ.

Then, we fix κ = 6 and take ζ from f0.2, 0.4, 0.6, 0.8g. For each randomly generated
objective function, we obtain that

� The number of iterations (indexed by k) in the successive local exploration
method decreases as ζ increases.

� The average number of LOPF problems in the inner loop of each iteration in-
creases as ζ increases.

From the numerical experiments, the best choice of ζ lies between 0.4 and 0.6.

4.6 Comparison with [83]

In this section, we compare with our work in [83]:

� In both this chapter and [83], we consider the multi-phase optimal power flow
problem. Moreover, we make the same assumptions on the network topologies,
transmission devices, and load/source connections.

� In [83], we formulate the problem as follows

min f(sY,∆)

s.t. : sY,∆ 2 SY,∆ ,

v = GsY;�(v) ,

vmin � jvj � vmax .
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As can be seen,

– The objective function does not contain v hence cannot handle the slack-
bus power.

– The branch-current constraints and the non-singularity constraint are not
included.

� To solve this problem, we develop a successive linear approximation method
in [83]. This method is very similar to the successive local exploration method.
The major difference is that it successively solves the following local problem
instead of LOPF, where öjvjv(k),(sY;�)(k)(sY,∆) is a linear approximation of jvj.

min f(sY,∆)

s.t. : sY,∆ 2 SY,∆ ,

vmin �öjvjv(k),(sY;�)(k)(sY,∆) � vmax ,

ξY,∆
�
sY,∆ � (sY,∆)(k)

�
� ε(n) .

By inspection, the constraint vmin �öjvjv(k),(sY;�)(k)(sY,∆) � vmax introduces more
computational complexity and unnecessarily shrinks the feasible set of the local
problem. As a result, the solution obtained in this local problem cannot be better
than the one obtained in LOPF.

4.7 Conclusions

We have studied a multi-phase optimal power flow problem. In this problem, we have
made generic assumptions on the network topologies and transmission devices, and
we have considered various load/source connections. Moreover, we have incorporated
the non-singularity constraint. In order to solve this problem, we have first shown
that, by properly restricting the system power injection to some local domains, we can
obtain an explicit convex proxy for its feasible set. Based on this, we have developed
a successive local exploration method. In each iteration of the method, we obtain a
feasible point of the problem, by exploring around the feasible point obtained in the
previous iteration. We ensure that the objective-function values at the obtained feasible
points are monotonically non-increasing. We have guaranteed that they converge to
a finite limit. If the objective function does not explicitly contain v, then we have
given a-posteriori conditions to determine whether the obtained feasible points and
their limit points are locally optimal solutions. We have numerically evaluated the
successive local exploration method and have compared it with the successive linear
approximation method in our work [83].
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4.A. Proof of Lemma 4.1

Appendix

4.A Proof of Lemma 4.1

By Proposition 2.2, for any sY,∆ 2 Baux(ŝY,∆, εmax
v̂,ŝY;�

), we have that ρzY,∆(v, sY,∆) > 0

and the power-flow Jacobian JFY;�

�
v, diag

�
Hv
��1

s∆

�
is non-singular. Therefore, we

only need to show that there exists ε0(v̂, ŝY,∆) 2 (0, εmax
v̂,ŝY;�

) such that

ξY,∆(sY,∆ � ŝY,∆) � ε0(v̂, ŝY,∆)

) vmin < jvj < vmax ,

jiE(v)j < imax . (4.9)

By Theorem 2.2, v is located inDρ(v̂) with ρ = ρyY,∆(v̂, ŝY,∆, sY,∆). Since

� vmin < jv̂j < vmax,

� jiE(v̂)j < imax,

� ρyY,∆(v̂, ŝY,∆, ŝY,∆) = 0,

� ρyY,∆(v̂, ŝY,∆, sY,∆) is continuous in sY,∆,

we have that there exists ε0(v̂, ŝY,∆) 2 (0, εmax
v̂,ŝY;�

) such that

ξY,∆(sY,∆ � ŝY,∆) � ε0(v̂, ŝY,∆)

) vmin <
1

2
(vmin + jv̂j) � jvj � 1

2
(jv̂j+ vmax) < vmax ,

jiE(v)j � 1

2
(jiE(v̂)j+ imax) < imax , (4.10)

which completes the proof.

�

4.B Proof of Theorem 4.1

For Item 1

According to Lemma 4.1, there exists ε0
�
v(k), (sY,∆)(k)

�
2
�

0, εmax
v(k),(sY;�)(k)

�
such that

for ε(n) 2
�

0,min
n
ε0

�
v(k), (sY,∆)(k)

�
, εbound

o�
and s̃Y,∆ 2 cl

�
Baux

�
(sY,∆)(k), ε(n)

��
,

the corresponding ṽ computed in pseudo-code line 7 satisfies the conditions in
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pseudo-code lines 8 and 11, hence triggers the termination of the inner loop. As
ε(n) = ζn+1εmax

v(k),(sY;�)(k) and ζ 2 (0, 1), we know that there exists a finite integer ñ � 0

such that ε(ñ) 2
�

0,min
n
ε0

�
v(k), (sY,∆)(k)

�
, εbound

o�
, which completes the proof.

For Item 2(a)

Consider that

� f is continuous,

�
�
v(k), (sY,∆)(k)

�
belongs to a compact set,

� f
�
v(k+1), (sY,∆)(k+1)

�
� f

�
v(k), (sY,∆)(k)

�
.

We have that the sequence
�
f
�
v(k), sY,∆)(k)

��
is monotonically non-increasing and

bounded below. By the monotone convergence theorem [96],
�
f
�
v(k), (sY,∆)(k)

��
converges to a finite limit.

For Item 2(b)

In this case, the objective function becomes f(sY,∆). Accordingly, LOPF can be written

as LOPF
�

(sY,∆)(k�1), (εseq)(k�1)
�

.

Let us define the following set

B = Baux
�

(sY,∆)(k�1), (εseq)(k�1)
�\

Baux

�
(sY,∆)(k), ε0

�
v(k), (sY,∆)(k)

��
,

(4.11)

where ε0 is described in Lemma 4.1.

As (sY,∆)(k) minimizes LOPF
�

(sY,∆)(k�1), (εseq)(k�1)
�

, we have that f
�

(sY,∆)(k)
�
�

f(sY,∆), 8sY,∆ 2 B. Therefore,
�
v(k), (sY,∆)(k)

�
is a locally optimal solution to GOPF .

For Item 2(c)(i)

Consider that

� ρzY,∆ is continuous,
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� ρzY,∆
�
v(k), (sY,∆)(k)

�
> 0,

� εmax
v(k),(sY;�)(k) =

�
ρzY,∆

�
v(k), (sY,∆)(k)

��2

> (εseq)(k),

� εmin = lim infk!1(εseq)(k) > 0.

We have that ρzY,∆
�
v�, (sY,∆)�

�
> 0. Then, by Proposition 2.2, we have that the power-

flow Jacobian JFY;�

�
v�, diag

�
Hv�

��1
(s∆)�

�
is non-singular.

For Item 2(c)(ii)

In this case, the objective function becomes f(sY,∆).

Let fσ(k)g denote the indexes of a convergent sub-sequence that corresponds to�
v�, (sY,∆)�

�
.

We proceed by creating a contradiction. Suppose that
�
v�, (sY,∆)�

�
is not a locally

optimal solution to GOPF . Then, given any ε > 0, (sY,∆)� is not a minimizer of

LOPF
�

(sY,∆)�, ε
�

. In particular, there exists s̃Y,∆ 2 SY,∆ such that

ξY,∆
�
s̃Y,∆ � (sY,∆)�

�
< εmin , (4.12)

f
�
s̃Y,∆

�
< f

�
(sY,∆)�

�
. (4.13)

As

� (sY,∆)σ(k) ! (sY,∆)�,

� ξY,∆ is continuous,

there exists k0 such that ξY,∆
�
s̃Y,∆ � (sY,∆)σ(k0)

�
� εmin � (εseq)σ(k0). Consequently, we

obtain that s̃Y,∆ 2 cl

�
Baux

�
(sY,∆)σ(k0), (εseq)σ(k0)

��
.

Since (sY,∆)σ(k0)+1 is a minimizer in cl

�
Baux

�
(sY,∆)σ(k0), (εseq)σ(k0)

��
, it follows that

f
�
s̃Y,∆

�
� f

�
(sY,∆)σ(k0)+1

�
. (4.14)
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In addition, due to the fact that
�
f
�

(sY,∆)(k)
��

is a monotonically non-increasing

sequence, we have

f
�

(sY,∆)σ(k0)+1
�
� f

�
(sY,∆)�

�
. (4.15)

By combination of (4.14) and (4.15), we have

f
�
s̃Y,∆

�
� f

�
(sY,∆)�

�
, (4.16)

which contradicts (4.13) and completes the proof.

For Item 2(d)

By definition of lim sup, we know that

� There exists a sequence fς(k)g such that (εseq)ς(k) ! εmax as k !1.

� For any (εmin)0 2 (0, εmax), there exists K1 such that for all k � K1, we have that
(εseq)ς(k) > (εmin)0.

Let fσ0(k)g be a sub-sequence of fς(k)g such that
�
vσ
0(k), (sY,∆)σ

0(k)
�
!
�
v�, (sY,∆)�

�
for some

�
v�, (sY,∆)�

�
. Then, by replacing

� εmin with (εmin)0,

� fσ(k)gwith fσ0(k)g

in the proof for item 2(c), we complete the proof for item 2(d).

For Item 3

By item 2(a), the sequence
�
f
�
v(k), (sY,∆)(k)

��
converges. Therefore, given any

ErrBound > 0, there exists K2 such that���f�v(k+1), (sY,∆)(k+1)
�
� f

�
v(k), (sY,∆)(k)

���� < ErrBound , 8k � K2 .

This means that the method terminates within a finite number of iterations that are
indexed by k. Moreover, by item 1, we know that for each iteration k, there is a finite
number of LOPF problems to solve. In this way, we complete the proof.

�
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5 Conclusions

In the morning, I gathered the angelica on the mountains.
In the evening, I plucked the sedges of the islets.
The days and months hurried on, never delaying.
Springs and autumns sped by, in endless alternation.

Chu Ci
QU YUAN

In this thesis, we have addressed two inverse problems and one optimal power flow
problem for ADNs.

In the first inverse problem (Chapter 2), we have focused on the solvability of the
non-linear multi-dimensional power-flow equation in multi-phase ADNs. With respect
to the model of ADNs, we have assumed that the network topologies are generic and
the transmission devices can be either π-modelled transmission lines or complex-ratio
transformers. Due to the non-linearity of the power-flow equation, the existence and
uniqueness of the power-flow solution are not guaranteed in general. This creates
an issue for network security. More precisely, when we have a target system power
injection to implement, it is unknown whether this system power injection has a power-
flow solution. Even if there is a power-flow solution, it might not satisfy the security
constraints. To address the issue, we have first shown that the power-flow equation can
be written in a fixed-point form, which leads to the implicit Z-bus formulation of the
power-flow problem. Then, by applying the Banach fixed-point theorem to the implicit
Z-bus formulation, we have established explicit sufficient conditions on the existence
and uniqueness of the power-flow solution, which outperform the state of the art.
When the conditions are satisfied, we guarantee the existence of a power-flow solution
and analytically specify a domain in which this solution is unique. We have proved
that this solution satisfies the non-singularity of the power-flow Jacobian hence fulfills
the static voltage stability. To numerically compute this guaranteed solution, we have
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Chapter 5. Conclusions

developed an iterative method. Notably, the per-iteration complexity of this method is
much lower than that of the widely deployed Newton-Raphson method, which is of sig-
nificance for the real-time operation of ADNs. In addition to the above, we have further
taken into account the specific load/source connections and have correspondingly
extended all the established results. The considered load/source connections include
not only grounded wye and ungrounded delta, but also a combination of them.

In the second inverse problem (Chapter 3), we have considered that the actual
system power injection in ADNs might be uncertain and different from the target one.
Consequently, the actual system electrical state cannot be exactly predicted, which
makes it difficult to ensure the satisfaction of the security constraints. This issue moti-
vates the definition of admissibility. More precisely, given an initial system electrical
state vinitial that fulfills the security constraints and an uncertainty set Suncertain that
constrains the actual system power injection, we say that Suncertain is admissible for
vinitial if any continuous path of the system electrical state that starts at vinitial must
satisfy the security constraints. To determine the admissibility, we have introduced the
auxiliary concept of V-control. Specifically, given a set S of system power injections
and a set V of system electrical states, we say that S is a domain of V-control if: any
continuous path of the system electrical state that starts in V must stay in V , as long as
the corresponding path of the system power injection resides in S. With the concept of
V-control, Suncertain is admissible for vinitial if there exists a set V such that (i) every sys-
tem electrical state in V fulfills the security constraints, (ii) vinitial 2 V , and (iii) Suncertain

is a domain of V-control. Through examples, we have shown that the “existence of
a unique power-flow solution v 2 V for every s 2 S” alone is neither sufficient nor
necessary to ensure that S is a domain of V-control. For S to be a domain of V-control,
we have given additional conditions that complement the existence and uniqueness of
the power-flow solution. Moreover, we have proposed theorems to ensure that there
exists a unique power-flow solution v 2 V for every s 2 S. Due to the real-quadratic
nature of the multi-dimensional power-flow equation, we have incidentally discovered
that local uniqueness implies non-singularity, which is the converse of the inverse
function theorem. Using the established theoretical results, we have developed two
concrete methods for solving the admissibility problem. The first method is tight in the
sense that it almost finds the largest Suncertain that is admissible for some given vinitial.
However, due to relatively high complexity in both time and space, this method is not
suitable for real-time deployment in large ADNs. Differently from the first method,
the second method is less tight. But, through numerical evaluations, we see that it is
suitable for real-time applications in large ADNs.

In the optimal power flow problem (Chapter 4), we have studied how to determine
the optimal system power injection in generically modelled multi-phase ADNs. In
particular, we have considered wye/delta load/source connections and have incor-
porated the non-singularity constraint. This problem cannot be solved by existent
methods and might not have an optimal solution. To solve this problem, we have
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exploited the results in Chapter 2 and have shown that, by properly restricting the
system power injection to some local domains, we can obtain an explicit convex proxy
for the feasible set of this problem. Based on this finding, we have developed a succes-
sive local exploration method. In each iteration of the method, we obtain a feasible
point of this problem, by exploring around the feasible point obtained in the previ-
ous iteration. We ensure that the objective-function values at the obtained feasible
points are monotonically non-increasing. We have guaranteed that they converge
to a finite limit. If the objective function does not explicitly contain v, then we have
given a-posteriori conditions to determine whether the obtained feasible points and
their limit points are locally optimal solutions. We have numerically evaluated the
successive local exploration method and have compared it with the successive linear
approximation method in our work [83].

Based on the work done in this thesis, the following topics are suggested for further
studies:

� Improving the conditions on the existence and uniqueness of the power-flow
solutions.

� Enhancing the time and space efficiency for the first solution method to the
admissibility problem.

� Developing a-priori conditions to guarantee the optimality of the optimal power
flow solutions.

� Extending the results to the networks with PV buses.
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