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ABSTRACT. We study the flow of an incompressible viscous fluid through a
long tube with compliant walls. The flow is governed by a given time dependent
pressure head difference. The Navier-Stokes equations for incompressible viscous
fluid are used to model the flow, and the Navier equations of a curved, linearly
elastic membrane to model the wall.

Employing the asymptotic techniques typically used in thin domains, we
derive a set of effective equations that hold in medium-to-large compliant vessels
for laminar flow regimes. The fluid and the wall are coupled either through
the undeformed interface (linear coupling) or the deformed interface (nonlinear
coupling), depending on the size of the wall deformation, given via our a priori
estimates. Using typical ad hoc closure assumptions and linear coupling we
recover standard, effective, one-dimensional models, widely used in engineering
literature. We show that nonlinear coupling gives rise to a new model. A
bifurcation diagram showing the set of parameters for which one or the other
model should be used is presented.

A major contribution of this paper is the derivation of the effective equations
that do not assume any ad hoc closure. Introducing a novel approach based on
homogenization techniques typically used in porous media flows, we obtain a
closed system of effective equations that are of Biot type with memory. Our
analysis shows, among other things, that typical ad hoc closure assumptions
give rise to an error of order one in the non-stationary solution of flow with
moderate Reynolds’ numbers.

1 INTRODUCTION

In this paper we derive the effective equations that describe the flow of a viscous,
incompressible Newtonian fluid in a long elastic tube. The paper is motivated by the
study of blood flow in compliant arteries. Although blood is not a Newtonian fluid
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(it is a suspension of red blood cells, white blood cells and platelets in plasma), the
Newtonian assumption is considered acceptable as a first approximation for the flow in
medium-to-large vessels, see e.g., [18, 24, 31]. To model arterial walls we employ the
Navier equations for a linearly elastic membrane, as suggested in [10, 16, 18, 31]. They
model “effective” response of arterial walls, consisting of three layers (intima, media
and adventitia), to the forces induced by the pulsatile blood flow.

In spite of all the simplifying assumptions made so far, the mathematical and numer-
ical study of the fluid-structure interaction simulating blood flow in compliant arteries,
is a difficult one. The primary reason lies in the relatively large wall deformations (the
diameter of an artery in a healthy human varies up to 10% of the unstressed configu-
ration). Another difficulty comes from the fact that the density of the fluid is close to
that of the interface, giving rise to the “fully” coupled dynamics.

Although various numerical methods have been successfully proposed to study fluid-
structure interactions arising in cardiovascular problems (see e.g. [11, 12, 22, 25, 26,
31]) they are still rather involving and time-consuming whenever larger 3-dimensional
sections of the cardiovascular system are simulated. This is because the underlying
phenomena are intringically complex and multiscale in nature. Simplified, effective
models are called for.

In this vein, this paper addresses the derivation of a self-consistent, effective system
of equations describing the flow of an axially symmetric, Newtonian fluid through an
elastic tube with aspect ratio ¢ = R/L (R=radius, L=length of the tube). Using
rigorous mathematical approach typical for problems in thin domains (see e.g. [7]), we
derive the energy and the apriori solution estimates that provide the information about
the size of the vessel wall displacement and the flow regime, in terms of the parameters
of the problem (Young’s modulus of the vessel wall, inlet and outlet pressure data, vessel
wall thickness, e.t.c.). The apriori estimates provide optimal scalings for the coupled
fluid-structure interaction problem. They are used in the asymptotic expansions to
obtain the effective equations. First we derive the averaged, one-dimensional equations.
Assuming ad hoc closure and linear coupling we recover standard models typically used
in current bioengineering literature, see e.g., [3, 4, 8, 14, 22, 23, 27, 31]. Assuming
nonlinear coupling we derive a new model. A bifurcation diagram, showing the values
of peak systolic pressure and vessel wall stiffness for which linear vs. nonlinear coupling
should be used, is obtained.

To avoid using ad hoc closure, in this manuscript we introduce a novel approach
that leads to a set of closed effective equations. The approach is based on the standard
homogenization techniques used in porous media problems [19, 17]. Using this approach
we obtain closed effective equations that are of Biot type, [1], with memory. They solve
the original, 3-dimensional problem, to the €2 accuracy. As pointed to us by L. Tartar,
memory terms are typical in effective equations describing wave-like phenomena, in the
underlying physics. In our case they describe the coupling between the waves in the
fluid and the elastic structure. Our analysis shows, among other things, that standard
ad hoc closure assumptions give rise to an O(1)-error in the solutions of current one-
dimensional, time-dependent models corresponding to moderate Reynolds’ numbers.

This paper is organized as follows. We start by defining the problem in Section 2.
Global weak formulation is presented in Section 3.1 and energy estimates are derived
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in Section 3.2. Based on the energy estimates we obtain apriori solution estimates first
in the case when the pressure drop is zero, see Section 4.1 and then in the general
case, see Section 4.2. The apriori solution estimates define the leading order behavior
in asymptotic expansions, discussed in Section 5. In Section 5 we also derive a set of
reduced, two-dimensional equations assuming linear and nonlinear coupling. The aver-
aged, one-dimensional equations using standard ad hoc closure are derived in Section 6.
Finally, in Section 7 we obtain the self-contained, simplified, effective one-dimensional
equations without an ad hoc closure. We study two laminar flow regimes: one with
zero Strouhal number and small Reynolds’ number, corresponding to the creeping flow,
discussed in Section 7.1, and the other with nonzero Strouhal number and moderate
Reynolds’ number, discussed in Section 7.2. In the second case we study two scenarios.
One corresponding to large and the other to small deformations of the vessel wall. In
the case of small deformations we perform asymptotic expansions with respect to the
deformation. We obtain the effective, one-dimensional, closed equations corresponding
to nonlinear and linear coupling presented in Sections 7.2.3 and 7.2.5, respectively.

2 STATEMENT OF THE PROBLEM

We consider the unsteady axisymmetric flow of a Newtonian incompressible fluid in
a thin elastic right cylinder whose radius is small with respect to its length. Define
the aspect ratio (the ratio between the radius and the length of the cylinder) to be
€ = R/L. For each fixed € > 0 introduce

Q:(t) = {z € R*z = (rcosd,rsind,z), r < R+1°(z,t), 0<z< L}. (2.1)

Domain €.(t) is filled with the fluid modeled by the incompressible Navier-Stokes
equations. Assuming zero angular velocity, in cylindrical coordinates the Eulerian
formulation of the equations in Q.(t) x IRy reads

{vi L Ovs Bv } (BQUﬁ 0%ve  10ve vf) dp°
+= +

=0, (2.2
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=0. (24

We assume that the lateral wall of the cylinder, ¥.(¢) = {r = R+ 7n°(2,t)} x (0, L), is

radial displacement

viscous, Newtonian fluid

linearly elastic membrane

FIGURE 2.1: Domain Q. (%)
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elastic and allows only radial displacements. Its motion, described in Lagrangian coor-
dinates, is modeled by the Navier equations for the linearly elastic curved membrane.
The radial contact force is given by

€ 2 ,.€ 2 €
£ = MO T h@cere L - phe (25)

where F, is the radial component of external forces (coming from the stresses induced by
the fluid), 7° is the radial displacement from the reference state X0 := %.(0), h = h(e)
is the membrane thickness, p,, the wall volumetric mass, E = E(e) is the Young’s
modulus, 0 < o < 0.5 the Poisson ratio, G = G(¢) is the shear modulus and k& = k()
is the Timoshenko shear correction factor (see [16, 31]). The parameter values used
in this paper, corresponding to the aortic segment including descending, thoracic and
abdominal aorta, are shown in Table 2.

| PARAMETERS | VALUES \
€ 0.06
Characteristic radius: R 0.012 m, [31]
Characteristic length : L 0.2 m
Dynamic viscosity: u 3.5 x 1073 kg (ms) '
Young’s modulus: E 10° — 8 x 10° Pa:%, [18]
Shear modulus: G E/(2(1 4+ 0)), [9, 18]
Wall thickness: h 2 x 1073 m [31]
Wall density: py, 1.1kg/m?, [31]
Blood density: p 1050kg/m?
Reference pressure: P 13000 Pa = 97.5 mmHg
(Normalized) pressure drop for the aorta | 2.67 Pa= 0.02 mmHg [15]
Dinlet — Dref around 1800 Pa= 13.5 mmHg

TABLE 2.1: Parameter values

The fluid equations are coupled with the membrane equation through the lateral
boundary conditions requiring continuity of velocity and continuity (balance) of forces.
Depending on the size of the displacement, provided by the apriori estimates presented
in Section 4.2, the coupling is evaluated at the non-deformed interface ¥.(0) in case
when the deformations are small (i.e., linear coupling), or at the deformed interface,
Yc(t), in case when the deformations are large (i.e., nonlinear coupling). In either case,
the coupling is performed in the Lagrangian framework, namely, with respect to the
reference configuration ©.2. More specifically, if we assume nonlinear coupling, then we
require that the fluid velocity evaluated at the deformed interface (R + 7°, z,t) equals
the Lagrangian velocity of the membrane. Recalling that we only consider non-zero
radial displacements this reads

8 =
Wi(B+1,2,t) = Z-(2,t) on (0,L) x Rs, (2.6)
vi(R+1%,2,t) =0 on (0,L) x R;. (2.7)
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Next we consider balance of forces by requiring that the radial force given by (2.5),
equals the radial component of the contact force exerted by the fluid to the membrane.
The fluid contact force is typically given in Eulerian coordinates and it reads

((ps - pref)I - QMD(UE))neT;
where D(v°) is the rate of strain tensor, i.e., the symmetrized gradient of the velocity
1
D(w®) = i(Vvs + (Vo©)h).
To perform the coupling in the Lagrangian framework we need the Jacobian of the

transformation from the Eulerian to the Lagrangian coordinate system. For this pur-
pose we consider Borel subsets B of £¥ and require that

£ £ £ 877 2 _
/B ((0° — pres)I — 2uD(v%))ne, (R + 1 (z,t))“ 1+ (&) dz = /B —F.Rdz, (2.8)

2
for all B C XY, where J := /1 + (%Lz) is the Jacobian determinant of the mapping
. d¥.(t) e 0
transforming dz to ol Pointwise we get that on 3] x IR
T
n an°\”
—F, = ((¢p° — preg)I — 2puD(v°))n - €, (1 + E) 1+ ( 5 ) . (2.9)

Initially, the cylinder is filled with fluid and the entire structure is in an equilibrium.
The equilibrium state has an initial reference pressure Py = p..s and the initial velocity
zero. If we denote by T' the (membrane) stress tensor, then in the equilibrium (unper-
turbed) state only the T, and Tyy components of the stress tensor corresponding to
the curved membrane ¥, are not zero (see [16, 31]). Their values are kG and RAP,/h,
respectively, where AP, is the difference between the reference pressure in the tube
and the surrounding tissue. For simplicity we assume that APy = 0, hence Tyy is zero
in the unperturbed state. Therefore, the initial data are given by

_or°
ot

£

=0 on (0) x {0} (2.10)

A time-dependent pressure head data at the inlet and at the outlet boundary drive
the problem. We also assume that the end-points of the tube are fixed, namely that
the radial component of the velocity and the radial displacement are equal to zero.
Therefore, we have the following inlet and outlet boundary data

vE =0, p°+p(v5)?/2=Pi(t) +pref on (0Q(t) N{z=0}) x Ry, (2.11)
vE =0, p° + p(v5)?/2 = Pa(t) + pres on (00 N{z=L}) x Ry, (2.12)
n°=0 for z=0, n°=0 for z=L andVte R,. (2.13)

We will assume that the pressure drop A(t) = Pi(t) — Pa(t) € C§°(0, +00).
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Note that physically (physiologically) one should expect non-zero displacements at
the end points of the tube (vessel). Fixed outlet boundary typically gives rise to the
formation of a boundary layer in the reduced set of equations, see [5, 6]. In Refs. [5, 6] we
constructed the boundary layer and showed that it contaminates the flow only in a small
neighborhood near the boundary (the boundary layer decays exponentially away from
the fixed-end boundary). Although the boundary layer analysis in [5, 6] was performed
for the Stokes problem we expect similar results to hold for the Navier-Stokes equations.
It has also been our experience that periodic boundary conditions, although natural in
rigid-wall geometries, do not give rise to well-posed limiting (reduced) problems when
compliant walls are considered. Therefore, when studying effective, reduced equations
for initial-boundary value problems in compliant vessels it is important to take two
considerations into account. One is a requirement that the full 3-D axially symmetric
problem is well-posed, and the other is that the reduced, effective, 1-D problem be well-
posed. These were the primary reasons behind conditions (2.11), (2.12) and (2.13).

Therefore, in this paper we study the following initial-boundary-value problem for
a coupled fluid-structure interaction driven by a time-dependent pressure head:

Problem P¢:

For each fixed € > 0, find a solution to (2.2), (2.3) and (2.4) in domain Q.(t) defined
by (2.1), with an elastic lateral boundary ¥.(t). The lateral boundary conditions are
given by the continuity of the velocity (2.6) and (2.7), and by the continuity of radial
forces (2.5) , where the left hand-side of (2.5) is substituted by (2.9). The boundary
conditions at the inlet and outlet boundaries are (2.11) and (2.12) and the behavior of
the elastic wall there is prescribed by (2.13). The initial data is given by (2.10).

We note that in the rest of the paper we will be using several different terms to
describe the vessel wall: tube wall, elastic wall, membrane and structure. They should
all be assumed equivalent in this manuscript.

3 WEAK FORMULATION AND ENERGY ESTIMATES

3.1 GLOBAL WEAK FORMULATION

We consider global weak formulation of the coupled problem between the fluid and
the structure. In contrast with the approach proposed by Quarteroni and Nobile in
[22], where weak formulation is designed for the use of the implicit, fully coupled
Arbitrary Lagrangian Eulerian (ALE) algorithms, we present here a weak formulation
that is based on a fixed-point approach and apriori solution estimates, suitable for the
existence proof of a solution to the nonlinear, coupled problem.

The main difficulties in defining a weak formulation stem from the following two
facts:

1. The coupling is nonlinear. The domain geometry is time-dependent. More pre-
cisely the position of the lateral boundary (in Lagrangian coordinates) is deter-
mined by its interaction with the fluid (in Eulerian formulation), and

2. The fluid equations are nonlinear.

We deal with the first difficulty by deriving the apriori estimates that provide a bound
on the radial displacement which determines the domain size at every time step. The



FLUID-STRUCTURE INTERACTION

apriori solution estimates are obtained in terms of the elasticity constants that describe
the properties of the vessel wall, and the inlet and the outlet pressure that drive the
problem. Once we have found the information about the maximum size of the domain,
we introduce a fixed, “fictitious” domain of a larger radius, and consider the space of
velocity functions defined on the entire fictitious domain, satisfying the apriori bounds
that ensure the required size of the radial displacement. We define a solution set
to consist of all such velocities and of the interfaces that satisfy the “continuity of
velocity” condition at the interface. Among all such candidates we look for the functions
that satisfy the integral form of the fluid equations with a lateral boundary condition
describing continuity of forces. This is where the second difficulty arises. To deal with
the nonlinearity of the equations and with the nonlinear coupling at the same time,
we introduce a linearization that does not change the energy of the original problem,
and then define a solution to the nonlinear problem as a fixed-point of the associated
nonlinear mapping.

We start by introducing the norms that will be used to measure the size of the inlet
and the outlet boundary data. Recall that the inlet and the outlet pressure head data
(in fact, the deviation from the reference pressure) are denoted by P;(t) and Ps(t),
respectively, and that the pressure head difference P»(t) — P;(t) is denoted by A(t).
Define

1 (T 9
||P12(q,T)|I%ZmaX{IIPflloo,llelloo}+4q2T2—/ max{P'}(q7), P'5(g7)} dr, (3.1)

1
1A T)Zrer = = / Algr)P? dr, (3.2)
P? = ||Poafg, )13 + 247°T | A(g, T)|Zuer (3.3)

where g is the frequency of oscillations. For the data presented in Table 2 a rough value
of P is around 1800Pa (it is close to the difference between the maximum pressure
and the reference pressure, since the pressure drop in the abdominal aorta is small).
Motivated by the apriori estimates introduced in Section 4.2 we consider the radial
displacements 7° and the velocities v® such that

sup § eI Ol + H O G Ot
o?) 2

o<e<T | B(1 -
G(e)h(e)R  On° , . .o R3L(1-0%) _,
Z <o A 7 .
2 I 0z (t)||L2(0’L) <2 h(e)E(e) 34
2u [T 9 2 RPL(1-0%)
— <2————=P~. .
v ), 1@ opdr + 5 s 10 Olifsauiy <2050 P (39
REMARK: In particular, using the estimate
maXIU | < fll ||1/2||77 12,
we calculate that if B 3/2
16LRP? < h(e)? G(e)( (5)2) (3.6)
l1-0

7
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then the maximum radial displacement 7° satisfying (3.4) is 50 percent of the non-
stressed vessel radius R, namely,

2| =

sup_||n° (@)l cpo,r) <
0<t<T

For the data presented in Table 2 the left hand side of (3.6) is approximately 107,
and the right hand side is of order 108, so we expect that the radial displacement in
a healthy aorta will always be less than 50 percent of the non-stressed radius. This is
a reasonable result since it is expected that the radial displacement in healthy human
arteries does not typically exceed 10 percent.

We are now ready to introduce the solution spaces I' and U corresponding to the
radial displacement and the velocity. Denote by Rpax any number greater than or
equal to the maximum radius obtained from (3.4) and let Qg . = (0, Rmax) X (0, L).

DEFINITION 1. (SOLUTION SPACES)

e The space T’ consists of all the functions v € L>(0,T; H' (0, L))NW 1> (0, T; L*(0, L))
such that y(t,0) = vy(t,L) = 0 and such that the bound (3.4) is satisfied.

e The space U consists of all the functions u = (up,u,) € L2(0,T; H'/?>7%(Qpg,...) ¥
H'(Qg,,. ) )NL>®(0,T; L2(Qr,,,)?) for some § > 0, such that divu =0 in Qg xR,
up =0 for z =0, L and the bound (3.5) is satisfied.

We look for a solution among all the functions v € I' and v € U that satisfy the
continuity of the velocity condition at the interface v and are extended to the rest of
the fictitious domain in a manner specified below. More precisely, let

0, (t) = {(r, 2) |0<r<R+v(tz), ze€0, L)} (3.7)

and X,(t) ={r=R+~(t,2)} x (0,L).

DEFINITION 2. The set of solution candidates K consists of all the functions (vy,u),
where u are axially symmetric, such that

K={(0) €D x U | wnlr;,8) = 51z, ) for Ro+7(4,2) <7 < B
ur € HY(Q,(t)) and u,(r,z,t) =0 for R+v(t,2) <r< Rmax}. (3.8)

REMARK: Note that K is bounded but it is not convex. Also note that the trace
of ur at 7 = R + 7(t,z) exists at least as an element of H~'/2 since div v = 0 and
uy(R+ 7v(t,2),2,t) =0.

To study the integral form of the coupled fluid-interface equations we define the
space of test functions.

DEFINITION 3. (THE TEST SPACE) Let

V(ny(t)) = {‘P = prer + e, € HI(Q’Y(t))2 | (Pr('ra O) = (Pr('ra L) =0,

@o(R+7(z,t),2) =0 and div =0 in 0 (1) a.e} .

The test space is the space H'(0,T;V (£2,(t)).
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Recall that for an axially symmetric vector valued function ¥ = ¥.e, + 1, e, we have

Oy L0y, O,
or £ ( 0z + or )
D(¢) = 0 - 0
r
L0y, | 0, s
( 0z + or ) 0 0z
Define the matrix norm | - | through the scalar product

E:0=T.(E-0%, E,¥ec R

For each £ > 0 we study the following evolution problem.
For a given (v,u) € K find (v¢,vS,7°) € K such that Vo € H'(0,T;V (24(t))) we
have

2u D(v*) : D(p) rdrdz + p/ {(% (u(t)V)vs}go rdrdz
Qy(t) o, L Ot
g on° 0 h{e)E(e) n°
+8 [ {GEMITL or(R .50+ ﬁﬁ%(m%z,ﬂ} d:
L 2 6
+Rpwh/ 52 ——pr(R+7(t,2),2,t) / {Pa(qt) — =(uzv5)|2=1}@z|e=1rdr
R
+/ {Pi(qt) - §(UzU§)|z:0}90z|z:07“d7“, (3.10)
0
and e
£ = 871 =0 on (0,L)x {0} and v*(r,z,0) = 0. (3.11)

Scalar products with %L: and a;T"; should be understood as duality pairings.
The problem (3.10)-(3.11) defines a nonlinear mapping ® defined on K. The apriori
estimates, presented in Section 4.2, imply that ® maps K to K.

LEMMA 3.1. ®(K) C K.

DEFINITION 4. (WEAK SOLUTION) The triple (vE,v5,nm°) € K is a weak solution for
the problem P¢ if it is a fixed point for the mapping ®.

Existence of a weak solution is studied in [20]. A related work on the existence of
a solution to an incompressible fluid-elastic structure coupled problem can be found
in [13]. In this paper we present the energy estimate and the apriori estimates that
determine the “optimal” leading order behavior of the solution in terms of the small
parameter € which we will use to derive the reduced, effective equations.

3.2 ENERGY ESTIMATE

The energy of this problem, obtained by using the velocity field as a test function
n (3.10), consists of the elastic energy of the membrane, the kinetic and the viscous
energy of the fluid, and the energy due to the outside forcing.
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To get to the energy estimate we start by conveniently rewriting the elastic energy
of the membrane, defined by
L 2
On° 8*n° | h(e)E(e) n° O°
a = R h(e)G(e)k(e)—5— —

el /0 { G F Gt 10 m o
82,’76 8,’76 s
ot? ot

+ Rpyhle)

in the following form.
LEMMA 3.2. The displacement n° satisfies

_ d L oonf Lo
fa = Ryg{oune) [(1507 s+ ueGERE [ 1500

0
h(e)E(e) [T 7 2
1—02 /0 | R | } ’

This will be used in Proposition 3.3 to obtain the variational equality from which
the energy estimate will follow.

Next we introduce a time scale in the problem. We are interested in the oscillations
of the membrane that are due to the coupled fluid-structure response to the time-
dependent pressure (pressure head) drop A(t) and the main pressure head at the inlet
and at the outlet boundary, P;(t) and P,(t). These oscillations generally occur at a
different time scale than the physical time ¢. The time scale should depend not only
on the pressure head data but also on the parameters in the problem. For example, for
a stiffer wall, the vibrations of the wall occur at a shorter time scale (high frequency)
than the oscillations of a more elastic wall. To capture the waves of the coupled fluid-
structure response to the outside forcing we introduce

t=wt (3.13)

(3.12)

where the characteristic frequency w® will be specified later, see (4.10).
From this point on we use the rescaled time ¢ and drop the symbol wiggle.
We now derive the variational equality. The following identities will be useful.

0" d / 2, L / 2
OJE 1)5 diL‘:wE_ Ust diL‘—— Ust Ust ndS 3.14
/Qs(t) ot 5 o O =5 [, OPO (3.14)

/ (v° - VYo v dg = + / v® (B)2F () - m. dS (3.15)
Q. (1) 2 Jon.(t)
/ (Vp°® — pAv®) -v° dz = / Div (p°I — 2uD(v%))v® dz =
Qe (t) Qe(t)
2,u||D(vs(t))||%2(Qs) + /an " (p°I — 2uD(v®))m° dS (3.16)

Furthermore, using (2.6) in (2.9) we have

L €
/ (p°I — 2uD(v°))no® dS = —/ F.(t, z)w® o (t, 2) dz. (3.17)

By keeping the rescaled time in mind, and by using the expression for the elastic energy
(3.12) and the above identities we obtain

10
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PROPOSITION 3.3. (VARIATIONAL EQUALITY) Solution (vE,v5,n°) of problem (3.10)-
(8.11) satisfies the following variational equality

(€)k(e)

wsh(e)%{pfgs(t) (@) pw (0,L)

(3.18)

+1 02 ”71

(0,L } p2u711' 2dt||” (t )”%2(95(1:)) + %”D(”s(t))”%%n ) —
- Pg(qt)vs(t, r, L) rdr + RPl(qt)vs t,7,0) rdr,
0 z 0 z

£

on

with vi(t, R+ n°,2z) = w® v

t,z) and vi(t, R+ n°,2) =0 on (0,L) x (0,T).
z

Here g corresponds to the frequency of the time-oscillations of the inlet and of the
outlet boundary data. Even thought nothing in the analysis presented in this paper
requires time-periodic data, we have introduced the explicit frequency parameter g to
suggest that the blood flow application typically exhibits time-periodicity.

To get the energy estimate in terms of the data we need to estimate the right hand
side of the variational equality. Notice that since the axial component of the velocity
at the inlet and at the outlet boundary is not prescribed we need to estimate the right
hand-side in terms of the data and the energy of the problem. Notice that on the left
hand side we only have the L2-norm of D(v¢) and not the L?-norm of Vv°, and so
the standard approach based on using the Gronwall estimate and the L?-norm of the
velocity, p fQ |ve(t)|? rdrdz, is insufficient to guarantee the correct order of magnitude
of the veloc1ty To get around this difficulty we transform the right hand side term in
(3.18) into a combination of a volume term and a lateral boundary term as follows

R R
—/ Py(gt)vi(t,r, L) rdr +/ Py (gt)vi(t,r,0) rdr =
0

Alqt) / z Ny
- vy dz + Agt)— + Pi(qt))vi(t, R, 2)— dX.(t) =
L oot o AT+ R R 25 a0

Aldt) e " At o' (1) _
_/Qs(t) 27TL dx + Rw® /0 (A(qt)z +P1(qt)) 5t (t,2) dz =
A(qt) . .d [T
_/Qs(t) 2L dz + Rw dt/ (A( )L +P1(qt)) £(t) dz—
L
Rws/o (Al(qt)L + P{(qt))n°(t, 2) dz, (3.19)

where n, =1/4/1+ |a%z(t)|2 and n,J = 1.
We first estimate the lateral boundary terms from (3.19). The following notation
will be useful

t
IP(t)|13, = max{PZ(qt), P3(qt)} + ¢° /0 max{P'}(qr), P'3(q7)} dr.

11
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LEMMA 3.4. Let o > 0. Radial displacement n° satisfies the following estimate

L B . Epno ]
Rws(/o (A(qt)z + Pi(qt))n°(t, z)dz — /0 /0 (A (qT)Z + P'y(gm))n° (T, z)dz;lT) |
3.20

3 _0.2 Wt
< I sy + o [ W aayir} + I PO

To estimate the volume forcing term in (3.19) we have two possibilities. The first
one is to get an estimate in terms of the viscous energy via a variant of Korn’s and
Poincaré’s inequalities. This approach, however, leads to an estimate in terms of the
L*norm of n¢, which we do not control. The second approach is to estimate the volume
term via the inertia term. This will lead to the energy estimate (3.23). More precisely,
we have the following.

LEMMA 3.5. The following estimate holds

Afgt) 3RV Algt)? | ow'p 37| A(gt)
L amvscrird] < S5 SO+ IOl + g e I oy
(3.21)
Proof. We have
A{qt Afgt
o v rards) < E el 001 <
wp 2 | A(gt)?
T a0y + e 1060 (322)
As |Q:(8)| = 7 [ (R +1°)? dz we get (3.21) . O

Finally, after integrating (3.18) with respect to time, and using (3.19) and the
time-integrated (3.21), we get

THEOREM 3.6. (ENERGY ESTIMATE) Radial displacement 1, the displacement gradi-
ent On° [0z, the kinetic energy of the membrane pw||aait(t)||%2(07L), the viscous energy
,u||D(vs)||%2(Qs) and the kinetic energy p||vs||%2(ﬂs) of the fluid, satisfy the following
energy estimate

e _Me)E(e) ey3h(e)pu R On°

w ﬁ” 7 O3200,1) + (@) T”ﬁ(ﬂ”%%o,m

+ar SR I gy 4 2 [ IDEO DMy + 2210 (o <
2 o) [t

8 [ sy i+ e ||H+2R2PZ [ 14 ar

(3.23)

We use this energy inequality to obtain the apriori solution estimates.

12
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4 APRIORI SOLUTION ESTIMATES

We first focus on the case when the pressure head difference between the inlet and the
outlet boundary is zero, A(t) = 0.

4.1 APRIORI SOLUTION ESTIMATES WHEN A(t) = 0.

We are interested in studying the coupled response of the fluid and the structure to a
time-dependent pressure head with a zero pressure (pressure head) drop. The energy
stored in the membrane due to the time-dependent pressure head will impact the move-
ment of the fluid in the tube. Our result presented below shows that the estimates for
the radial displacement of the tube and for the velocity of the fluid are independent of
the time scale w®. The amplitude of the oscillations as well as the magnitude of the
fluid velocity depends on the elasticity properties of the tube walls, as well as on the
radius, the length of the tube and the magnitude and frequency of the pressure head.

LEMMA 4.1. Let A(t) = 0. Then the estimates for n° and v¢ are independent of w® and
they read

h{(e)E(e) , ¢ Py e
m”ﬂ Ol720,ry + %”U (D2 (e <

2R°L(1 — o) 2 a1l [T
 Me)E(e) r 27T | 1P(an)l? T 41
h(e)E(e) | oster 1(gt) +2¢°T" /0 [P’ (gr)|* dr ¢, Yt € [0,T] (4.1)

Proof. Denote

t
v) = [ { e Oy + 21 () ary } o

Suppose that the time oscillations in P; are of order ¢, i.e., that the period of oscillations
T = 2m/q. Then for any o > 0 we have

0<t<T

2R3L(1 — 02){

' 2 @ [* o 2
() < ayt)+ LA max PR+ L [P ar s ) =0, (42)

By applying the Gronwall inequality and by choosing o = % we get

h(e)E(e) | . P e
R(1—0?) [l (t)”%P(O,L) + g”” (7')”%2(95(7)) <
AR3L(1 — 02) {

t
NOER | o2 Prat) +2¢°T /0 [Py (gr)? dT} vt € [0, 7.

0<t<T

13
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4.2 APRIORI SOLUTION ESTIMATES IN THE GENERAL CASE.

In this case we will see that the apriori solution estimates depend on frequency w®.
Define

€ ¢ h(E)E(E) I 2 P e 2
y(t) = w /0 { R = oI Oy + S O e (4
Then, energy inequality (3.23) implies
1272[| Al F oo (g 5y B(L — 0%)

V0 < (04 —eEe Bera )Y

3101 — o) 2 ot
= ff((el)E(e)) { max{P(qt), P3(at)} + L /0 max (P} (gr), P'3(q7)} dr}

12R2 2
awspL / |A(gT)|? dr;  y(0) = 0. (4.4)

Without loss of generality suppose
127r2||A||%00(07t)R(1 —0?)

< 4.
Q) EE L2 (W) = (45)
and then choose 1
o = E. (4.6)

Let us note that w® has dimension sec™! and that o and T are dimensionless. Also T
is of order one.

Let ty € [0,T] be such that y'(ty) = maxo<;<7y'(t). Then, instead of using the
Gronwall inequality to estimate y'(t) we express y(t) on the right hand-side of (4.4) in
terms of y/(%p), and use (4.5) to get

3 _ 0.2 Wt
Vo) < 207y (1) + S T L WP} (4)

1 /T 0 2 48R*m°T? 1
+4q°T? /0 max{P"}(qr), P'3(qr)} dT} Yl T

y(0) = 0. (4.8)

T
| A(gr)[? dr;

By choosing « as given in (4.6) and by utilizing the notation for the norms defined in
(3.1) and (3.2), we get

1, ORPL(1 — 02)uf 48R2 2T2
— < _— .
2y (tO) > h(E)E(E) ”Pl?(qa )”V + ”A(Qa )”aver (4 9)

Now we choose the characteristic time scale, or the characteristic frequency w®, by
requiring to see the effects of both the pressure head data, P;(t) and P»(t), as well
as the pressure drop data, A(t). More precisely, we choose w® in (4.9) so that the
coeflicients on the right hand-side have the same “weight” in e. This leads to

£

2
T\ Bol—o?) (4.10)
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Notice that ¢ = Lw*® is the characteristic wave speed (the local pulse wave velocity or
sound speed). Expression (4.10) leads to the same characteristic wave speed as obtained
in equation (16) in Fung’s “Biomechanics: Circulation”, [9]. For the data presented in
Table 2 this leads to the pulse wave velocity at the order of 10 m/s, for the vessel wall
having the Young’s modulus around 6 x 10% Pa. This is in good agreement with the
measured pulse wave velocity presented in [21].

With this choice of the time-scale we obtain the following apriori estimate.

LEMMA 4.2. The radial displacement 1n° and the fluid velocity v° satisfy

h(E)E(E) € 2 T 2 R3L(1 — 02) 2
m”n (t)”L2(0,L) + ;”U (T)”L2(Qs(7-)) = 4W ;

where P is given by (3.3).

Notice that with this choice of w® inequality (4.5) reads

h(e) E(e)

47T (1 — 0®)|| All oo 0,1y < R

(4.11)
which holds true for our data since Table 2 implies that the left hand side of (4.11) is
approximately equal to 10~!, whereas the right hand side is greater than 10%.

After summarizing those estimates, we get an estimate which is crucial in deter-
mining the leading-order behavior in asymptotic expansions. The estimate is a basis
for the apriori solution estimates in terms of the small parameter e.

PROPOSITION 4.3. (APRIORI ESTIMATES WHEN INERTIAL FORCES DOMINATE VISCOUS
FORCES) Solution (v:,vS,n°) of problem (3.10)-(3.11) satisfies the following apriori
estimates

fllns(t)lliz(o,L)£4% 2 (4.12)

1071220 ) < 47TR;€(S)_Z )p2 (4.13)

[ i+ 1 0 + 15 S 0
[ {15 0 + 155 dfg;'i G

Proof. First notice that (4.12) and (4.13) are obvious consequences of (4.4). Next,
(4.14) follows from

[

/ 1D )2 dr < ™

1 Bv Bv

ovs 2 ()
| | (? } rdrdzdr =

1—02)

(4.16)

15
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It remains to prove (4.15). We start from estimate (4.16) for the shear stress term
in D(v®). It reads

t pL pRA7° OE o OvE Owe e 9 R2 R(l _ 02) )
T T 4 4 < -~ .
/0 /0 /0 {( 0z ) +2 0z Or + or ) } rdrdzdr L h(e)E(e)pP

The difficulty comes from the term which is the product of two off-diagonal gradient

terms %Uzﬂ %f. We can estimate this term by using the boundary behavior of v*, 9,v5 = 0

at z =0, L, and the incompressibility condition (2.4) to obtain

Ot Ovg B 0, OVS
/Qs(t) 5% Or rdrdz = / ()UZBT( 5% )drd

.08 0 . 0v v
= /s(t) v, 522 rdrdz = —/ 0.t Bz 5% /s(t) ( Bz) rdrdz.

The rest of the proof is now immediate. O

COROLLARY 4.4. We have

1, 0n° 2R%(1 — 0?)
= P S
o5z Ol < Gkh(e)2E(e)

Ll @)l OL)s%\/RL(l—cﬂ) e

P? (4.17)

Gk
TR2L — o2 \R2
1Q:(t)] < 3 ]; 1+ 2}521(6) E()j? P?) (4.19)
— o2 e
17 ()l 100,y < %\/RL(I - 0?) %ﬁp (4.20)

Proof. Estimate (4.17) follows from the basic apriori estimate. To show (4.18) we
calculate

i (1, 2)[ = (/Oz (1,690 /|n t£|2ds(/0| 2 dg)

which implies
g 4 ° 9 2
[ €A e < ANy I Ol 01y
Estimate (4.19) is immediate. Finally, (4.20) follows from

o’ 1/2 1/2
a0 2)| < VI oyl (B 1y

16
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Notice that these estimates are “reasonable”. They say, among other things, that
the size of the radial wall displacement is inversely proportional to the elasticity of the
wall (the stiffer the wall, the smaller the amplitude of the displacement), and directly
proportional to the pressure head data and to the radius of the unstressed vessel. In
addition to this “general”, intuitive information, our apriori estimates are “optimal” in
the sense that they provide “optimal” powers describing the dependence of n° and v*®
on the parameters in the problem.

REMARK 1. Obtaining the precise a priori estimate for the pressure p° is quite technical
and we don’t present it here. Since the flow is incompressible pressure is a Lagrange
multiplier and we can always adjust it with respect to the velocity . In the case of small
Reynolds numbers such estimate was obtained in [6] . The important property of the
pressure estimates is the smallness of the derivative with respect to the radial variable.

REMARK 2. Qur goal is to obtain an effective 1D model. Clearly, the result will be
local and it doesn’t depend on the choice of the inlet/outlet boundary conditions. We
used the given pressure head at the inlet/outlet boundaries just in order to get a simple
derivation of the energy estimate. Imposing instead the pressure field at the inlet/outlet
boundaries leads to complications and the energy estimate could be obtained only for
the pressure drop smaller than a critical value.

5 ASYMPTOTIC EXPANSIONS AND THE REDUCED EQUATIONS

5.1 LEADING-ORDER ASYMPTOTIC EQUATIONS IN NON-DIMENSIONAL FORM

To obtain the reduced equations we write the problem in non-dimensional form. Intro-
duce the non-dimensional independent variables 7 and Z

r = RF, z=LZ, (5.1)
and recall that the time scale for the problem is determined by

1 1 hE
t= 1, where w® = — ([ —— . 5.2
st where w® = — Ro(l — o) (5.2)

Using the data presented in Table 2, with E = 5 x 10° Pa for the Young’s modulus,
we obtain that w® = 51 and the time scale is around 0.02 of the physical time. For
the less stiff vessels, the time-scale is closer to the physical time scale (the frequency of
oscillations is smaller).

Based on the apriori estimates presented in Proposition 4.3 we introduce the fol-
lowing asymptotic expansions

R(1 — 02
v© = V{t®+et' +..}, withV = %P (5.3)
R%(1—o?
= E{’+eit+..}, withE= %P (5.4)
p° o= oV {p'+ep +..}. (5.5)
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The approximate values of the scaling parameters, based on the values presented in
Table 2 with E = 6 x 10° Pa are V = 0.17 m/s, and = = 0.0002 m. The scale value for
the velocity is in good agreement with the results in [29] and the scale value = of the
radial displacement is about 2 percent of the unstressed vessel radius, which is in good
agreement with the observations performed in human subjects for which an average
radial displacement is around 5% of the unstressed vessel radius.

We plug this into equations (2.2), (2.3) and (2.4) and collect the powers of €. The
incompressibility condition implies

) o 9 oot o
-1 ~=~0 z sl ) ~it2 —
R T gy Y gt Te e { o7 T forl U )} 0 (56
Relation (5.6) gives
3¢ =0, and (5.7)
8(’62 + 5'5%) 0 a1 ~ONy
a3 * ar (7(07 + €v7)) = 0. (5.8)

Because the first term in the expansion for the radial component of the velocity is zero,
and since only the first two terms in the dependent variable expansions will contribute
to the leading order equations, we introduce the following notation

By = O} + ed?, so that v = eV (@, + O(e?)),
@, = 00 + e, so that v5 =V (3, + O(¢?)),
pi=p° +6p so that pf = pV2 (5 + O(?)),
7i:== 7" + &fj" so that ° = = (7 + O(e?)) .
After ignoring the terms of order £2? and smaller, the leading-order asymptotic equations

describing the conservation of axial and radial momentum, and the incompressibility
condition in non-dimensional variables read

o, 0, 06, 0p 1 [18 (.85,\)
Sha”ﬂzaz”TWJr&_E{ a~( ar)}—o’ (5.9)
op
5z =0, (5.10)
o, . 0 ..
o (70,) + % (F1,) =0, (6.11)

where Sh := L“j.’ and Re := ”‘; Using the values from Table 2 we get Sh = 61 and
Re = 35 and so the viscous coefﬁc1ent is of order 1/Re = 0.03 = ¢/2.

One interesting consequence of our results is that the non-dimensional parameters
Sh and Re which are typically used to determine the flow regimes, are given, as a
consequence of our apriori estimates, in terms of the parameters in the problem, such as
the Young’s modulus, the Poisson ratio, etc. They incorporate not only the information
about the fluid part of the problem (given via V and u, for example) but also the
information about the behavior of the membrane (given via E, w® and o). These
parameters reflect the important information about the true nature of the coupling

between the fluid and the membrane.
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We continue by obtaining the leading order asymptotic equations describing the
balance of forces at the vessel wall. The leading order Navier equations for the linearly
elastic membrane read

. G(e)k(1 — 0?)e? 6%7
—F, = - O(e 5.12
= {i- S ST o (5.12)
Depending on the sizes of the parameters in the problem, the last term in this expression
may or may not be neglected

This force is balanced by the contact force coming from the fluid. Using (2.9) the
agymptotic form of the contact force becomes

(0 = pres)I — 2uD(v%))ner = pV? (B — Bres + O(e?)) (1 + %n)

'QCJ'(

.1 COUPLING THROUGH THE NON-DEFORMED INTERFACE
V2 s
R

lST)

. If we assume that
is small (of order &£° of smaller), then the coupling takes place through the
undeformed lateral boundary # = 1. In this case the leading order coupling reads

pV?

L . Gk 824
"~ (p— 22\ — 5 — 2 2 2
5 (B — Bres + O€?)) =1 56 (1= 0?55 + O(e?)
L= O0n
r(Z,1,1 —, ]
(2, 1,t) = 57 v

If G()

(1 — 0?) < 1 we recover the Law of Laplace, which written in dimensional
varla les reads

D — Pref = (%) % (5.13)

5.1.2 COUPLING THROUGH THE DEFORMED INTERFACE. Notice that in non-dimensional

variables the deformed interface is defined by 7 =1 + gﬁ(i t). The leading-order cou-
pling across the deformed lateral boundary reads

pV?

= 2>
5 (p Dref + O(e )) (1+§ﬁ):ﬁ—i;(2)k(l—a2)e2g + O(e?)
(zl+R(zt)t) gg, %, = 0.
If Gk

£ (1 — 0?) < 1, the shear modulus term is ignored and the pressure-radial dis-
placement relationship is given by

pv?

7 (D — Dref) (1 + E”) = 1.

In dimensional variables this reads

En n
- = . 5.15

We call it the “nonlinear coupling version” of the Law of Laplace

(5.14)
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5.2 THE REDUCED TWO-DIMENSIONAL COUPLED PROBLEM

We summarize here the two-dimensional reduced coupled problem in non-dimensional
variables. Define the scaled domain

OF) ={(z7) e R?|F <1+ %ﬁ(z,f),o <#<1},

and the lateral boundary £(f) = {7 = 1 + %ﬁ(%,f)} x (0,1). The problem consist of
finding a (¥, ¥, 7j) such that in () x IR* the following is satisfied

ov, . 0v, .00, Op 1 (10 (.00,
Nl Py r A= e - 5 Y= — , 1
Shat +v 0z +v 8r+82 Re{rar(rar)} (5.16)
0 ,_. 0 ..
P (70,) + % (70,) =0, (6.17)
L P 1 . G(e)k 9 28277)
— Pref — = - 1-— po , 5.18
bt = iy 5y U 5 0o (5.18)
. = - o0n .
r(2, 1+ =17(2, 1), —, U,=0, 5.19
Or(Z 14 gz t),t) = o5, 0 (5.19)
with the initial and boundary conditions given by
. 07 -
=—==0 at {t=0}, 5.20
=5 =0 =0} (520)
% =0 and p=Pi(f) +prer on (OQE)N{Z=0}) x Ry, (6.21)
5 =0 and p= Po(f) +prey on  (0Q(F) N {z=1}) x Ry, (5.22)
=0 for 2=0, f=0 for 2=1 and Vi € IR, (5.23)

This is a closed, free-boundary problem for a two-dimensional degenerate hyperbolic
system with a parabolic regularization.

REMARK 3. We don’t discuss here the asymptotic behavior close to the inlet/outlet
boundaries. With our data the term p(v0)?/2 is negligible compared with the pressure
and we drop it.

In Section 7 we obtain an equivalent system in a much simpler form, which is an
g2-approximation of the above problem. In fact, when radial displacement is small, we
obtain a linear system which is an e2-approximation to this two-dimensional problem.
Tts existence, uniqueness and regularity is discussed in Appendix 2.

6 THE AVERAGED EQUATIONS

To simplify the problem even further and obtain the effective equations in one space
dimension we use a typical approach of averaging the two-dimensional equations across
the vessel cross-section. Introduce A = (1 + %7)? and /i = AU where

B 9 1424 92 1+24
U = — / 7,7dF and &= = / D27 dF.
A? Jp A202 J,
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We integrate the incompressibility condition and the axial momentum equations with
respect to 7 from 0 to 1+ %7 and obtain, after taking into account the no-slip condition
at the lateral boundary,

0A Eom
TR Y (6:1)
om 9 [ _m? ~ 0D 2 = [ 0D,

As always when averaging of nonlinear systems is concerned, one needs a closure
condition. In our case this amounts to describing the axial velocity profile. There are
several ad hoc approaches in the literature. They assume the Poiseuille velocity profile

s T i
0,=—U/[1- = (6.3)
(- ()

where v = 2, an ”almost flat” velocity profile corresponding to (6.3) with v =9 which
accounts for the non-Newtonian nature of blood [27], the flat velocity profile (“plug
flow”), or the flat velocity profile with a small linear boundary layer (Bingham flow)
suggested in [23]. In Section 7 we obtain a rigorous closure describing the velocity profile
in the original three-dimensional problem approximated to order 2. Qur analysis in
Section 7 shows that ad hoc closures mentioned here will give rise to an error of order
one in the solution of the reduced equations for moderate Reynolds numbers.

In order to compare our results thus far with those already existing in the literature,
in this section we assume one of the ad hoc velocity profiles mentioned above. Namely,
we consider the axial velocity profile

s T i
0,=—7U|[1- = . (6.4)
(- () )

Smith, Pullan and Hunter report that v = 9 seems to be a good fit for the blood flow
data [27]. This gives rise to o = 1.1. With this assumption, the term on the right
hand-side of the momentum equation becomes

—r+2%. (6.5)

The pressure term is specified by studying the fluid-structure coupling.

6.1 COUPLING THROUGH THE NON-DEFORMED INTERFACE

If the coupling is performed via a non-deformed interface then we get

9~
ﬁ_ﬁref = P (77 - Cgfe))k (1 - 02)52 2;27) . (6'6)

This leads to the following axial momentum equation in non-dimensional form

spdm O (&m—f) + A—( P R(ﬁ—l)):—%(v+2)@

ot 9z \ A 8z \pV2 E ; A (6.7)
. P RO - :
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where C¢ is defined by

Gk(1 — o?) R?
Ce = — 5 I (6.8)
In dimensional variables the system reads
0A Om
—+——=0 6.9
o oz (6.9)

8_m+2 m_2 +é2 hiE A_l __2_'u( +2)T
at "0z \"4 )" paz\R1-02) \V 4 Ty

Ad o2 A
- sl -1 ]- 1
+p Ep (Gth8z2 ( A )) (6.10)
Here we used R? = Ay. If we assume o = 0.5 and compare the advection pressure

term R(h—_Eag—) (1 / Aio — 1) with the Law of Laplace prap(A4) = % (1 / A% — 1) then we
see that they are identical. This system has been widely used by many authors (see
e.g., [14, 23, 31, 9, 8, 4, 3, 18, 27]). Our analysis shows that this system is obtained by
enforcing linear fluid-structure coupling.

Assuming nonlinear coupling, we get a new set of reduced, one-dimensional equa-
tions.

6.2 COUPLING THROUGH THE DEFORMED INTERFACE

. . < n < n 2~ .
Using (5.14) we obtain A% = p%A% (H%ﬁ - %(1 —0%)e? 1+1%ﬁ 37'2’) . Keeping

in mind that A = (1+ 1%77)2 the axial momentum equation reads

Sha—m+ﬁ(&m—~2) I R\/%(\/z—l))z—i(v+2)@

of 9z \ A 9z \ pV2E Re

~0 [ P R 1 62 =
T A% WECG\/%@(VZ*))’

(6.11)
where C¢ is defined by (6.8). In dimensional variables we get
dA  Om
T 12
o T, (6.12)

8_m+3 am_2 +é3 hiE’ ﬂ i_l —_2_'u( +2)T
at "0z \"A) T paz\RA-0)V 4 \V 4 PR
A0 [Ay 82 /A
—— — —=1]]. 1
+p Ep (Gth 1 552 ( A (6.13)
We see that this system differs from (6.9)-(6.10) by an additional factor of 1/A¢/A in
front of the corresponding terms arising from the leading order force balance equation.

In the bifurcation diagram shown in Figure 6.1 we show the values of the parameters
P (the peak systolic pressure) and E (Young’s modulus of the vessel wall) for which
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Linear vs. Nonlinear Coupling
T T

180

170+

in mmHg

e
5
3

NONLINEAR COUPLING

B =
5 @
3 8
T T
3

maximum inlet/outlet pressure
)
8

120F

110- LINEAR COUPLING

E=Youngs modulus in Pa < 16°

FI1GURE 6.1: Bifurcation diagram showing the region of parameters £ and Maximum
Systolic Pressure for which linear or nonlinear coupling should be used.

linear vs. nonlinear coupling should be used. A simple calculation shows that the
condition %% < €? is equivalent to % < g. If we assume fixed values of R,L and A
given in Table 2 and take o = 0.5, the curve % = ¢ is the boundary of the parameter
region for which the linear or the nonlinear coupling should be used. We see from
Figure 6.1 that to simulate the flow of blood in the abdominal aorta in subjects with
the systolic peak pressure of around 120 mmHg linear coupling can be used whenever
the aortic wall is stiffer than E = 1.4 x 10°Pa. Also, the diagram shows that in
hypertensive subjects nonlinear coupling should be used for a wider range of stiffness
parameters of the abdominal aortic wall.

We conclude this manuscript by a derivation of a self-contained, effective model,
without assuming ad hoc closure assumptions.

7 AN £2-APPROXIMATION WITHOUT THE AD HOC CLOSURE ASSUMPTION

In this section we obtain the one-dimensional, closed, effective equations that are an &2

approximation of the original 3-D axially symmetric fluid-structure interaction problem.
The equations are simpler than those presented in (5.9)-(5.12). They can be easily
solved numerically.

With our data we suppose from now on that %(ss)k(l —0?) € 1. As in the pre-
vious section, this agssumption leads to the Laplace’s law linking the pressure and the
radial displacement. As in the linear case (see [6]) the boundary conditions for radial
displacement 7 are lost if and there is a boundary layer. Only the boundary condition
for the pressure is kept at the inlet/outlet boundaries and the corresponding boundary
conditions for the radial displacement are calculated using the Laplace’s law.

We consider two flow regimes. One is the creeping flow, discussed in Section 7.1,
and the other is the flow regime typical for the abdominal aorta, namely moderate
Reynolds number, discussed in Section 7.2.

In the creeping flow regime it is well known that the Poiseuille profile is the unique
velocity solution to the equations. We show that the displacement is described by a
one-dimensional, parabolic, semi-linear equation, see (7.11), first obtained by Canié
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and Mikeli¢ in [5, 6].

In the moderate Reynolds’ number regime, we consider two cases. One case corre-
sponds to large and the other to small displacements (E/R < €). In the case of large
radial displacements, the effective equations for the zero-th order velocity approxima-
tion form a nonlinear free-boundary problem, see (7.29)-(7.31). The e-correction for
the velocity is recovered by solving a linearized, fixed boundary problem. Both prob-
lems have simpler form than (5.10)-(5.12). In the case of small radial displacements,
we expand the solution in terms of the small parameter Z/R and obtain a linear system
of equations of Biot type, see [1]. This is obtained in Section 7.2.5. These equations
can be easily solved using, for example, the Laplace transform, see Appendix 1. We
obtain that for a time-periodic flow regime the resulting velocity profiles are an e-order
correction of the Womersley profile in elastic tubes [32].

We begin our analysis with the two-dimensional system (5.9)-(5.11). Our goal is to
obtain an equivalent effective problem which is closed, and for which we could show the
existence of a unique solution. Furthermore, the calculation of the solution for such a
system should be simple.

Motivated by the results of [17] where closed effective porous medium equations
were obtained using homogenization techniques, we would like to set up a problem
that would mimic a similar scenario. In this vein, we introduce

= -z
Y=

and assume periodicity in y of the domain and of the velocity and pressure. Further-
more, recalling that we have a “thin” long tube with ¥ = %27“ = <7, We can assume
periodicity in the radial direction thereby forming a network of a large number of
strictly separated, parallel tubes. This now resembles a porous medium problem but
with no flow from one horizontal tube to another. See Figure 7.1. We homogenize
with respect to all directions. Since there is nothing in the physics of the problem that
depends periodically on y we expect to get the effective equations and the solution
independent of y. Indeed, this is obtained in Sections 7.2.3 and 7.2.5. We note that
thanks to the fact that the model contains a hydrostatic approximation of the pressure
in straight tubes, the methods we use in this paper are much simpler than those used
in [17]. For more details about the homogenization methods in porous media, see e.g.
[19].

More precisely, we start with the following relations between the “slow” variables
(r and z (or Z)) and “fast” variables (7 and y)

z =Lz := Ley = Ry, r = Rf. (7.1)

We are looking for an e2-approximation of the solution to system (5.9)-(5.11) in the
form of a sum of two functions: the zero and the first order approximations with respect
to . We use scaling (7.1) and dependent variable expansions given in (5.3) and (5.4)
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FI1GURE 7.1: Homogenization domain.

to rewrite system (5.9)-(5.11). The equations at zero order read

ov; + (V)30 + %pg + % - R%O {%% (f%?) %2;22} =0, (7.2
Vigh =0, (7.4)
% (792) + % (782) =0, (7.5)
with
#0,9° and $ 1— periodicin y and 9% =# =0 at 7 =1+ %ﬁ, (7.6)

where Shg := 61{‘;’5 and Rej := u . Notice Shyg = ¢Sh and Re = ¢Rey. For the values
from Table 2, Shy is of order 1 (Shg € (3,4)) and Rey is around 600. We remark that
equation (7. 4) corresponds to the e ! term. Here, a new scaling for the pressure was
used to obtain equations (7.2)-(7.4). This “z-blown up” pressure scaling reads

1 ~ ~
p="——p=pV? D= pV?p, so p=ep. (7.7)

The leading order Navier equations for the membrane force are unchanged, see (5.12).
We now focus on the two cases corresponding to the different magnitudes of the
parameters Shy and Reg.
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7.1 CASE I: Shg =0 AND Rey SUFFICIENTLY SMALL

In this case the Poiseuille profile

~0

. op .. - (1L+E7/R)? — 2
0

0, = —Re % (2,t) 1

, 90 =0 (7.8)

is the unique velocity which solves (7.2)-(7.6). To complete the solution we need to cal-
culate the pressure and the radial displacement. They are related through the coupling
and the lateral boundary

Pret = oy = 1 = 02)LP

p 7. (7.9)

Here, for simplicity, we are assuming that the shear modulus term is negligible. We
average the continuity equation

0

57 (797) + ed (79;) + e2 (799) + 29 (79;) =0,

or 0% 0%
keeping in mind that 90 = 0, 4} = 97°/0%, and ignoring the term at €2. As before, we
get the following
A  Eom
—+=——=0 7.10
o7 "Raz (7.10)
where A = (1 + E7°/R)2. Express 7 explicitly using the Poiseuille velocity profile
(7.8), namely

. 1+27°/R
m =AU =2 / FO0dF,
0

to obtain the following semilinear parabolic equation for the cross-sectional area

9A _Re B[ hBp 9 (:,0VA\ _ReR 3 (:,0V4A 7.11)
ot 8 pVL\ R(1 —02) 02 02 | 8 Loz 0z |- '
In dimensional variables this reads
DA RE 8 [ ,0VA
on___ B9 , 12
Su ot R*(1-o02)0z (A 0z ) (7.12)

This is a semi-linear variant of the equations obtained by Canié and Mikelié¢ in [6],
where a parabolic equation for the pressure was obtained. The effective equation holds
in axi-symmetric domains, and it is an e2-approximation of the 3-D axially symmetric
flow away from the boundary. There was no ad hoc closure assumption made on the
form of the velocity profile.

We proceed in the same spirit, but for a more complicated scenario.
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7.2 CASE II: Shyg > 0 AND MODERATE Reg

In this case, for a given pressure gradient %, the non-stationary, axially symmetric
system (7.2)-(7.6) admits a unique unidirectional, but strongly non-stationary solution.
The unidirectional solution refers to a solution independent of y. We will write the
solution of system (7.2)-(7.6) as a sum of this unidirectional solution and a small
perturbation of it. This perturbation satisfies a linearized system, see (7.2)-(7.6), where
the linearization is calculated around the unidirectional solution. This system is closed.

7.2.1 THE ZERO-TIg ORDER APPROXIMATION: THE UNIDIRECTIONAL FLOW. For
every given smooth p , system (7.2)-(7.6) has a unique strong solution (see e.g., [30])

70 = w(F, 2,t), 92 =0, (7.13)
where w satisfies
ow 1 18 (0w ap . Eh o7’
Sholo — = -9 (&) = (9 14
O8f T Reo7 07 (T Bf) a7 &Y (PL(I - 02)) 87 (7.14)
w(0, Z,%) bounded, w(1 + Z7°(%,1)/R, %,f) = 0 and w(7, %,0) = 0. (7.15)

Furthermore, solution ;51 is a linear function of y, independent of 7. Due to 1-periodicity
with respect to y we get ;51 = ;51(2, 1).

This is a free-boundary problem because the condition at the lateral boundary
depends on the solution. For a known pressure or the radial displacement (or the
cross-sectional area) this is well-posed. However, to close the system for the unknown

. =0 ~ . .. ..
functions w, p- and 7° we need to specify one more condition. The averaged continuity
equation provides the necessary closure. Therefore, the following closed system provides
the unidirectional solution

0h Eom _
ot ROz ’
20
ow 8;5 .~ 1190 Eh -0
Shogr + 555D = g ( ) = (pra =027
with w(O %,1) bounded, w(l + Z7°(3,1)/R, 3,t) = 0 and w(#, £,0) = 0. We can elimi-
nate p and use the definitions of A and 77 to write this in terms of w and A as

%—A %%/ﬁ%wdf = 0, (7.16)
R\’R 0VA 118 (. 0w
%2+ (2) 155 = masor () (17
with
w(0, 7, 1) bounded, w(VA, 51 = 0 (7.18)
A(3,0) =0, w(730) = 0 (7.19)
A(0,1) = A(D), AL,D) = A(d). (7.20)

This is a two-dimensional, free-boundary problem of hyperbolic-parabolic type. It
has a simpler form than system (5.9)-(5.11).
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7.2.2 'THE FIRST-ORDER CORRECTION: PERTURBATION OF THE UNIDIRECTIONAL
FLOW. We will be using the zero-th order approximation to the solution consisting of
the velocity (w,0) and displacement 7° (or, equivalently, the pressure ;50) to find an
e-correction by solving (5.9)-(5.11), linearized around the zero-th order approximation:

ool (95 8w 0% 8 8p 1 (18 [.o5l\ 0%
Sho 5 +UZ{8y +¥}+“T ot %z a—y—R—%{W (ﬂmz)* ayQ}
(7.21)
ovl 85 8p 1 (10 (.90 0%
Shogr +9: 5, W—R—%{W(Taf)wyz} (7.22)
8 1\, 0 4 0%

~1 ~1 =2 ST .~1_87A7'0 ~0 ~ E~0

0,,0,,p 1—periodicin y; 0, = o 0, =0 at F=1+ = (7.24)

This is a linear system which is known as a non-stationary Oseen’s system. Since 7
is known from the previous calculation, the problem is posed on a fixed cylindrical
domain of radius 7 = 1 + %ﬁo. Notice, however, that the system does not appear to
be closed since ;51 = ;51 (2,1) and ;52 = ;52(F, y,%,t) are unknown as well. Nevertheless,
since ;51 = ;51(2, t) is zero at the boundary # = 14+ Z7°/R and it depends only on (%, 1),
;51 must be zero. We will show below that ;52 = 0 which will lead to a closed system. To

show that this is, indeed, the case we first suppose that 9. = 1(7,%,%) and calculate

1

! using (7.23). We get an explicit formula for #} (7, Z,f) in terms of the unidirectional
solution
. 977° 1+27°/R 550 _
7oy (7, 2,1) = (1 + Ei°/R) = + / —Z2(&5,1) ¢ de. (7.25)
ot 7 0z

Next using (7.22) we find ;52 in the form ;52 = o7, 2,1) + oy, 2,t), where ¢ is an
arbitrary function, 1-periodic in y. If we plug this into the axial momentum equation
for )

ol 1 10 (.00} op, . - 1080 8 (39?2
MG~ marer (Fae) g i = ot - (5h ) oo
(0, 2,1) bounded, #,(1 + E7°(%,1)/R, ,1) =0 (7.27)
oL(7,2,0) =0 (7.28)

we see that the axial momentum equation implies, together with the periodicity in
y, that ¢ = 0. Since a(F,%,1) is zero at # = 1 + Z°/R we conclude that p, = 0.
Therefore, correction (7}, 3}), (5',5°) = (0,0) is obtained by solving (7.26)-(7.28) with
= ;51 = 0. This way we have obtained a closed problem.

Functions (%9 + 9}, e9}) and 7° (namely, ;50) also satisfy problem (5.16)-(5.23) to
g2-order. More precisely, since ;50 = ¢p and due to the boundary conditions for the

~0 . ~ ~
pressure, we have that p is of order . Consequently, both 40 and @ are of order e.
We have
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PROPOSITION 7.1. The velocity field (32 +e9}) and the pressure field %;50 satisfy equa-
tions (5.16)-(5.23) to O(£?).

Proof. The functions (30 + £#!) and %;50 satisfy conservation of momentum (5.16) and
conservation of mass (5.17) to order O(e®) and O(e?) respectively:

19p

9,0, -1 0, -0 0, 1y, 00 0, 1y, 10D
Sho=(0; +eb;) + (U7 + 0;) 52 (U +e0;) + 07 52 (07 +e0;) + — o2

L oy ay (50005 00 100 9000 o3
ReAr(vz +evz)—e(vz 9z +9, CF: + 0, P + &0, 5 = 0(e°)
19 ~~1 0 ~0 ~1y 8’5; . 9
and faf(rvT) + Bé(vz +ev,)=c¢ o = O(?).

In the pressure-radius relationship, ignoring the shear modulus term, and recalling that
the relation between the pressure and the radial displacement was used up to order €2,
we see that the functions (30 + £9l) and %;50 satisfy (5.16)-(5.23) to O(g?). O

We summarize the main steps in the derivation of the model and the final equations
in dimensional form. The summary is provided as a self-contained algorithm ready for
the development of a numerical solver.

7.2.3 SUMMARY: THE PROBLEM WITH NONLINEAR COUPLING IN DIMENSIONAL
FORM. The following is an e2-approximation of the 3-D axially symmetric flow of an
incompressible, Newtonian fluid in an elastic tube described in Section 2 as Problem P¢.
The unknown functions are the velocity (v0 +¢ev},ev}) and the radial displacement 7°.
The pressure p = pyf +p° is then recovered via the pressure-radius relationship (7.34).
The radius of the deformed vessel at every time step is given by ry.qe] = B+ n%(z,t).

STEP 1.(THE ZERO-TH ORDER APPROXIMATION)
Look for v = vY(r, z,t) and n° = °(z,t) and then recover p® = p’(2,t) by solving the

z,1
following free-boundary problem defined on the domain 0 < z < L, 0 < r < R+1%(2,1)

0y2 R+1°
W + % / roldr =0, (7.29)
0
vy, 0 ( hE ((R+n") 19 ( 8
z v _1 _ 10 2 .
pat +8Z (R(]_—O'2) ( R2 )) 'urar ('I" 8’]“)’ (730)
v(0, z,t) bounded, v2(R + 1°(2,t),2,t) = 0 and v2(r, z,0) = 0, (7.31)

with the following inlet and outlet boundary conditions

p=P(t)+pres for 2=0,0<r<R and Vi€eR,, (7.32)
p=P(t)+preg for z=L, 0<r<R and VtelR,. (7.33)

The pressure p is linked to n° by

0 2 2
p(2,t) = pres + R(lhf"ﬁ) ((R+" (20" _ 1). (7.34)

R2
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STEP 2.(THE &-CORRECTION FOR THE VELOCITY)

Solve for v} = vl(r, z,t) and v} = v}(r, z,t) by first recovering v} via

. 0.01° R+1° 5,0
rob(rat) = R+ G+ [ GEEm € de

and then solve the following linear fixed boundary problem for vl, defined on the
domain 0 <2< L, 0 <r < R+1%2,1t)
ov} 10 [ vl
ot Vror (7" gr ) = “Sunal)

v1(0, z,t) bounded, vl (R +1°(2,t),2,t) =0
vi(r,0,t) =vl(r,L,t) =0 and wl(r,20)=0,

where S,1(r, z,t) contains the already calculated functions and is defined by

1 OV + 20 v}
" or 0z

Here v = p/p is the kinematic viscosity coefficient. Notice that the boundary condition
is evaluated at the deformed boundary whose e2-approximation is obtained in the
previous step.

In the next section we obtain an e2-approximation of Problem P? in the case when
the radial displacement is small and so linear coupling between the flow and the elastic
structure is justified. In this case we expand the equations with respect to the radial
displacement and obtain a set of linear equations for the velocity and the displacement
that approximate the 3-D axially symmetric flow to the order 2.

Sp1(r,z,t) = v

7.2.4 EXPANSION WITH RESPECT TO THE RADIAL DISPLACEMENT: THE LINEAR
MODEL . Assume that % <e. Inﬂthis section we will show how the expansion with
respect to the radial displacement 77 leads to a linear problem of Biot type, [1], with
memory. As pointed out by Tartar, see [28], effective equations with memory typically
occur in problems with wave-like phenomena. Biot type equations have been used in
modeling seismic waves and in general, describing waves in deformable, porous media.

Introduce the following expansions of the dependent variables (w+¢9.,e%}), 7° and
=0

p:
~0 ~0,0 E ~0,1 =0 =0,0 = ~0,1
=0+ Za% . =p +=p +..
U U R77 ) p p Rp
w=uw'+Zw +..., 17;:6;’0+..., 6}:6}’0+....

R

Plug these expansions into (7.14)-(7.15) and obtain the following equations of order
zero and one, respectively:

ow® 118 [_ou . Eh 830
%~ mgror (ar ) =~ or &0 =~ (prieon) e 0
w?(0,%,%) bounded, w(1,%,1)=0 and w°(# %,0)=0, (7.36)
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and

Ow! 1 10 [.0w' 8~ Eh %!
507 ™ Rey 7 o7 (T o7 ) oz 51 = (PL(I —02)) oz (13D
0
w' (0, %,%) bounded, w'(1,%,1) = —7707088%(1,2,5) and w'(7,2,0) =0,  (7.38)

where we have linearized the lateral boundary condition. Note that 7%° 8“’ (1,2, =0
at t = 0. Both of these problems can be solved efficiently by using the auxiliary
(homogeneous) problem

a¢ 10 (.8 .
E — ;8’]“ ( 8’]“) 0 m (O, ]_) X (O, OO) (739)
((0,%) is bounded , ¢(1,4) =0 and ¢(7,0)=1. (7.40)

Then, by linear parabolic theory, f decays in time exponentially, with the rate equal to
the first zero of the Bessel function Jy. ¢ is non-negative by the maximum principle.
We set

R(t) =2 /0 L i (7.41)

We now solve equations (7.35)-(7.38). The following operators will be useful. Let
f = f(3,1). Define (f*f) (7,2,t) and (Ia*f) (2,%) to be the following integral oper-

ators with the kernels f and K respectively

> i t—r -
NI / . g G

(Rxf) .0 = /0 K SZO_RZO) £, 7)dr.

0,0

Then, the solution of (7.35) in terms of 22— can be written as

w(7, 3,1) = —% (5* 8’;—2) (7, %,1). (7.42)
0

Using
op " ( Eh )8770’0
0% ~ ‘PL(1 —o02)’ 03
and (7.42) in (7.10) we get the following equation for the first term of the radial
displacement, 7%, at the zero-th order, holding in (0, L) x (0, 00)

37700 N hE o [~ 3770’0 .
2S5hy——~— a7 (2,t) — maz (/C* - )(Z,t)—O. (7.44)

(7.43)

For the explicit formula for the Laplace transform of 7% see Appendix 1.
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Next we calculate ;%! by first expressing w'. Integrate (7.37) and take the linearized
boundary condition in (7.38) into account to obtain

0,1
R 0.0 0w - 1 [ Op° R
1 _ 0,0
ow -
_ | 700 iz 4
(e gl G| |)wad (7.45)

Here, the last expression means

ouw? - t—r ouw?
—_ |00 =5 ~0,0/5 YW o -
(C* [ v L ]) T, Z,t) / C ShoReo 87’ (77 (2,7) 5 (l,z,T)) dr.

From here we get the integral of w' in terms of the kernel K

L - ouw? - 1 - 8~ -
iz = 1\ sdgs =00 = R
2/0 w (T, Z,t) 7dF = —7 v (L,2,t) Sho (IC ) (2,t)

— H]) (3,1). (7.46)

Plugging (7.46) into (7.10) we obtain the equation for 7%! in (0, L) x (0, c0)

%! hE 0 (- 0%\ . . B s
25hg Fy i P — o) 5 (IC* EF: ) (2,t) = —Sﬁo,l(z,t), (7.47)

where

0,0 0 ~
Sqo1 (3, 1) := 2Shon® 00977 —Sho% (ﬁ‘%oaﬂ(m,t))

ot 0z or
3} 9 [ .90 0w’ =
+Shy % (IC* 5 [77 57 ~:1]) (2,t)

We perform the same expansions for the correctlon of order €. Equation (7.25) implies
the following zero-order approximation of ¢ 7 with respect to I%:

~0,0
up(r, 50 = 20 4 [0

255 (&% 1) € dt. (7.48)

Equations (7.26)-(7.28) imply, after taking into account ¢ = ;51 = 0, the following
zero-order equation for o, :

00 110 (. 00" B
S G " Repror " or ) = SaelhAD
9;°(0,%,7) bounded, 7;°(1,7,1) =0 and ©;°(7,7,0)=0

where

N ~1,0 ou’ o0 0w’

Sﬁ;,o(’lz, Z,t) =1, o7 w %5
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Therefore, the solution is given by

N 1t -
0G0 = g [ g8 E ) dr (7.49)

With the calculations presented in this section we have derived a set of linear equa-
tions that are an e2-approximation of Problem P¢ when Z/R < ¢. First one recovers
7% by solving (7.44) with the appropriate initial and boundary conditions. Next,
the zero-th approximation of the unidirectional velocity w® is recovered by calculating
(7.42). Pressure ;50’0 follows from (7.43). The 2nd-order correction 7i%:! for the displace-
ment is obtained by solving (7.47) with appropriate initial and boundary conditions.
This correction is necessary to recover the next term in the approximation of the uni-
directional flow w' via (7.2. 4) Finally, the e-correction for the unidirectional velocity
is obtained by recovering 4, and o} via (7.42) and (7.48) respectively.

Notice that since the radius of the vessel in non-dimensional variables reads

i1 S (P et +.) =1+ o= 14 (720 it + ...
+ i =1+ (7' + e +..) =1+ 5] +R((n +Rn ") et + ),
assumption % < ¢ implies that the €2 approximation of the solution is achieved already

with the 7%¥ term. However, we need to calculate #%! in order to recover the &2
approximation of the velocity. A similar argument holds for the calculation of the
scaled pressure p.

We summarize the main steps written in dimensional form, in the following section.

7.2.5 SUMMARY: THE PROBLEM WITH LINEAR COUPLING IN DIMENSIONAL FORM.
Assuming that Z/R < & we are looking for an &2 approximation of the solution consist-
ing of: (1) the velocity field ((v5° +E/Rv>") +evi?®, evy°) where (v9° +2/Rvd*,0) is
the unidirectional velocity and (evs’, evs’) is its e-correction, (2) the radial displace-
ment 7% and (3) the leading-order pressure p = prer + p*°

STEP 1. (THE ZEROTH ORDER APPROXIMATION) Find vo*(r, z,t), 7°°(z,t) and
p"Y(2,t) such that

0,0
o(n )+ L 8/ rvg’odr:O

at ROz
ov’ 19 [ a2\ 9’ (o.1) ap™? s Eh o0
P or " FErar\"ar | T T8 Y e V¥ R2(1-02)) 0Oz
with ©29(0,2,t) bounded, v2%(R,z,t) =0,
p (Z, O) = Dref, 77070(2’ O) = ,0270(7“’ 2 O) = Oa
R2(1—a ) R%*(1 - 0?)
0,0 0,0 b Sl
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Then recover the E/R-correction vs’ (r, z,t), 1% (z,t) and p%!(z,t) by solving

om™) 19 [F o1,
En +E$/O rvy, dr =0

oyt 19 [ a3t op™! ap™! Eh 1\ on®!
o Mror ( o) =%t e = (man)

with

900
v31(0,z,t) bounded, vY'(R,z,t) = —no’lg—z(R;Zat)a
r
po’l(z,O) =0, 770’1(2,0) = vg’l(r,z,O) =0

n%1(0,t) = n®"(L,t) = 0.

We can solve these problems efficiently by considering the auxiliary problem

¢ 10 [ oC\ .
5% r o (’I“E) =0 in (0,R) x (0,00) (7.50)
¢(0,t) is bounded, ((R,t)=0 and ((r,0) =1, (7.51)

and the mean of ¢ in the radial direction

R
K(t) =2 /0 C(r,t) rdr, (7.52)

\ivhich can both pe evaluated in terms of the Bessel’s functions. One can show that
¢ = R%w®( and K = wfK. The unidirectional solution can then be written in terms of
the following operators

¢ -7
(cx D)zt = [ ot “(tp N\ f(zmyr,

p(t —7)

t
(Kx f) (2,8) = /0 K V(2 7)dr.

We write the explicit solution strategy below. We need to solve linear initial-value
problems of Biot type with memory. Denote C = Eh/(R?(1 — 02)).
STEP 1. REVISITED. (ExXpLICIT SOLUTION METHOD)

e STEP 1la. Find n%°,p% v2° by solving the following initial-boundary value
problem with memory:

0,0 2 0,0
2220 1) = 0 P ) o (0,0) x 0, 40)

n%%(0,t) = Pi(t)/C, n*(L,t) = Py(t)/C and #%%(2,0) =0.

0,0

0,0
Recover ap—(z, ty==C %

: 0
Calculate  v2%(r, z,t) = 5 (C* gz, ) (r, 2, t).
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e STEP 1b. Find %!, p%!, v2" by solving the following initial-boundary value
problem with memory:

2 0,1
% o1(2,1), on (0,L) x (0, +00)

770’1(0, t) = nO’I(L, t) =0 and 770’1(2, 0) =0,

0,1
22—

R o (z,t) — S,

1

where

9P o001 0 (00002 0 (1,9 (000"
Spo.1(z,t) .—QPCn p paz(n B |r:R)+paz K*Bt 0= =g | |-

Recover
Calculate

ov R Op%!
0,1 0,09V
vy (r,z,t) = —n o (R, z,t) P (C* % ) (ry2,1)

0,0
+R? (C* 4 [770’0 Bv_z ]) (r, 2, t).
r=R

ot or
This way we have recovered the unidirectional velocity (v2’0+%v2’1, 0), the e2-approximation
of the radial displacement 1%° and the e?-approximation of the pressure

hE (R + n*0(z,1))?
= —-1]. 7.53
STEP 2.(THE &-CORRECTION FOR THE VELOCITY)
Solve for v = v3%(r, z,t) and vp* = v}%(r, 2, 1) by first recovering vy via
8770’0 R 81)0’0
rolnat) = R+ | (6w t) € d

and then solve the following linear problem for vy

o’ 18 ( dvy”

a  “ror\ or
v19(0, z,t) bounded, v}*(R, z,t) =0
U;’O(T,O,t) = v;’O(T,L,t) =0 and v;’o(r,z,O) =0,

) =—8,10(r,2,t) on (0,R) x (0, L) x (0, 00)

where S, 1,0(r, z,1) contains the already calculated functions and is defined by

0,0 0,0

vy’ vy’

_  109% | 000V:
Svi,o(r,z,t) U o, + v, %

1
The solution is given by vi%(r, z,t) = —= (C *SU1,0) (r, 2, t).
p z

We have completed an algorithm for the calculation of an 2-approximation of the
solution to Problem P¢ in the case when Z/R < e. The solution consists of the velocity
(wI® + %vg’l + vy, evp?), the radial displacement 7%° and the pressure p determined
from %Y via (7.53).
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8 FINAL REMARKS

We conclude by a couple of remarks related to the validity of the models. Our ap-
proximations are expected to work not only at moderate but also at high but laminar
Reynolds numbers. In the turbulent flow regime, however, our approach in not likely
to work and it should be modified. Also, taking the limit as Re — oo in our analysis,
even if formally possible, would very likely lead to wrong models. The reader interested
in such flow regimes can look at [2] where the “Euler” variant of system (5.16)-(5.19)
was studied, corresponding to 1/Re = 0, with no-slip boundary conditions and with a
convex velocity profile.

9 APPENDIX 1. (EXPLICIT LAPLACE TRANSFORM SOLUTION)

In this Appendix we calculate the Laplace transform of the zero-th order approximation
of the displacement when linear coupling is considered. We apply the Laplace transform

to the auxiliary problem (7.39), (7.40). The Laplace transform ¢ of ¢ satisfies

s 19 (.80, .
P, 7) — 52 (Tg(p, 7“)) =1 on (0,1) (9.1)
(p,0) is bounded, C(p,1) = 0. (9.2)
This problem has a unique solution for all p > 0 and the solution is given by
2 ~ 1 J()(i p’lz)} 1 { I()(\/z_)’lz)}
F)=-41— Vol 21— 9.3
o=} By J " p U Tolyp) 3

where Jp is the Bessel function of order zero and Iy is the modified Bessel function of
order zero. The Laplace transform K of the convolution kernel K is
fC =2 12O""d"—2 L L 1~I #)dF
=2 [ ondr= 25— o [t

SHf1 Lni)
pl2 W h(yp )’
where I1(z) = —iJ1(iz) is the modified Bessel function of order 1.

We use this to explicitly calculate the Laplace transform of the solutions to the

evolution problems (7.44) and (7.47) for 7% and 7*!. The homogeneous problems for
both 7% and /%' have the form

877 82 . * ~ . -+
St~z { Bz #7} =0 i QxRS (0

where §y > 0 is a given constant. We apply the Laplace transform to (9.4), (9.5) and
obtain

2 . 2 82 2 .
Shop 1(p, Z) — PoReoSho ’C(RGOShop)@U(paz) =0,

7i(p,0) = io(p) and j(p, L) = 7r(p)-
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Let

B(p) := Shy

1)_2{1_ 2 Il(\/Re()Shop)}_l
Bo v ReogShop Io(v/RegShop) '

Then the solution of (9.4), (9.5) is given by

5 2):7271:(;0) p) cosh(+/B(p) L) sinh(
e, smh (v/B(p)L)

10 APPENDIX 2. (EXISTENCE, REGULARITY AND UNIQUENESS FOR THE BIOT SYs-
TEM)

B(p)2) + 1io(p) cosh(v/B(p)Z).  (9.6)

We prove here that the system studied in Section 7.2.4, has a unique solution.

Consider

on onL .

5t +f)/18 / rv, dr = — 5 (0,L) x (0,T), (10.1)
ov, 10 Ov,\ On onr, .
e 10 ( 8T) =20 0,1 < (0,0)x 0.1), (102
vz(1,2,8) =0, v,(0,2,¢) bounded, n(0,t)=n(L,t)=0 (10.3)
n(2,0) = v,(r,2,0) =0 on (0,1) x (0, L), (10.4)
where

nL(t) — no(t)
L

and 79, nr, € C5°(0,00), 71 and 2 are positive constants. System (10.1)-(10.4) implies
the following energy equalities

%%{/ |(zt)|2dz+ //|vzrzt)| rdrdz}
sz
//| 2p drdz= ndz—')q/ /rvz—drd (10.5)
0
%%{/ |2d +71/ / |sz rdrdz}
0

02 Uz 2 [T 3L 0n v, dnr,
/ /|8t8 rdrdz = r> Btd —71/ / 5% Br dr dz. (10.6)

Since (10.6) guarantees that %% € L2, we write (10.2) in the form

18 ( dv, % % 9,
—Ayvy = — (7“ v ) = —vga—Z(z,t) —’)/2£ - &

nr(z,t) = z+no(t),

ror or Oz ot

and, consequently

1 1

vo On Yo Oy, / _10v,

dr = —= " (z,1) — =~ — —A,) T —= dr.
/0 rv,dr 16 82(2 t) | r( ) dr
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Using this expression in equation (10.1) we get

ot 16 92 ot T 16 022

2 2
on _ mryedn L | M2 07 e / 131)sz.

aTIL:O

We multiply this equation by 1 and integrate. After taking into account that
we obtain a standard energy estimate for the heat equation

L
%/ |77(Zt 7172/ / |—|2dz dr = — / / 877L ndz dr
0
_40v On
')/1/0 /0 (/0 r(—Ay) 5t dr) % dz dr. (10.7)

The apriori estimates (10.5), (10.6) and (10.7) imply existence of a unique solution
fn,0,} € HY((0, L) x (0,T)) x H(0, L((0, 1) x (0, L)), /7% € HY(0,T; L2((0, 1) x
(0, L)) for the Biot system (10.1)-(10.4). This regularity guarantees uniqueness of a
solution to system (7.2)-(7.6). We have proved the following

THEOREM 10.1. The Biot system (10.1)-(10.4) has a unique solution {n,v,} € H'((0, L)x
(0,7)) x H'(0,4;T2((0,1) x (0, L)) with v/r%& € H'(0,T; L2((0, 1) X (0, L).

COROLLARY 10.2. A solution of system (7.2)-(7.6) is unique.
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