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Summary

Humans have the ability to learn. Having seen an object we can recognise it later. We
can do this because our nervous system uses an efficient and robust visual processing
and capabilities to learn from sensory input. On the other hand, designing algorithms to
learn from visual data is a difficult task.

More than fifty years ago, Rosenblatt proposed the perceptron algorithm. The per-
ceptron learns from data examples a linear separation, which categorises the data in
two classes. The algorithm served as a simple model of neuronal learning. Two further
important ideas were added to the perceptron. First, to look for a maximal margin of
separation. Second, to separate the data in a possibly high dimensional feature space,
related nonlinearly to the initial space of the data, and allowing nonlinear separations.
Important is that learning in the feature space can be performed implicitly and hence
efficiently with the use of a kernel, a measure of similarity between two data points. The
combination of these ideas led to the support vector machine, an efficient algorithm with
high performance.

In this thesis, we design an algorithm to learn the categorisation of data into multiple
classes. This algorithm is applied to a real–time vision task, the recognition of human
faces. Our algorithm can be seen as a generalisation of the support vector machine to
multiple classes. It is shown how the algorithm can be efficiently implemented. To avoid
a large number of small but time consuming updates of the variables limited accuracy
computations are used. We prove a bound on the accuracy needed to find a solution.
The proof motivates the use of a heuristic, which further increases efficiency. We derive a
second implementation using a stochastic gradient descent method. This implementation
is appealing as it has a direct interpretation and can be used in an online setting.

Conceptually our approach differs from standard support vector approaches because
examples can be rejected and are not necessarily attributed to one of the categories. This
is natural in the context of a vision task. At any time, the sensory input can be something
unseen before and hence cannot be recognised.

Our visual data are images acquired with the recently developed adaptive vision sensor
from CSEM. The vision sensor has two important features. First, like the human retina,
it is locally adaptive to light intensity. Hence, the sensor has a high dynamic range.
Second, the image gradient is computed on the sensor chip and is thus available directly
from the sensor in real time. The sensor output is time encoded. The information about
a strong local contrast is transmitted first and the weakest contrast information at the
end.

To recognise faces, possibly moving in front of the camera, the sensor images have to be
processed in a robust way. Representing images to exhibit local invariances is a common
yet unsolved problem in computer vision. We develop the following representation of the
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sensor output. The image gradient information is decomposed into local histograms over
contrast intensity. The histograms are local in position and direction of the gradient.
Hence, the representation has local invariance properties to translation, rotation, and
scaling. The histograms can be efficiently computed because the sensor output is already
ordered with respect to the local contrast.

Our support vector approach for multicategorical data uses the local histogram fea-
tures to learn the recognition of faces. As recognition is time consuming, a face detection
stage is used beforehand. We learn the detection features in an unsupervised manner
using a specially designed optimisation procedure. The combined system to detect and
recognise faces of a small group of individuals is efficient, robust, and reliable.
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Zusammenfassung

Der Mensch besitzt die Fähigkeit zu lernen. Er kann Objekte wiedererkennen, die er zu
einem früheren Zeitpunkt gesehen hat. Der Ursprung dieser Fähigkeit liegt in einer ef-
fizienten und robusten Verarbeitung der visuellen Information in unserem Nervensystem.
Einen Algorithmus zu entwerfen, der von visuellen Daten lernen kann, ist dagegen eine
schwierige Aufgabe.

Vor über fünfzig Jahren entwickelte Rosenblatt den Perceptron Algorithmus. Das
Perceptron lernt an Hand von Beispielen eine lineare Separation der Daten in zwei
Klassen. Der Algorithmus diente als einfaches Modell des neuronalen Lernens. Zwei
weitere wichtige Ideen wurden dazugefügt: Erstens sollten die gegebenen Beispiele maxi-
mal separiert werden. Zweitens versuchte man, die Beispiele in einem Merkmalsraum
von möglicherweise grosser Dimension zu separieren, wobei die Daten nichtlinear in
diesen Raum abgebildet werden. Dies ermöglicht ein nichtlineares Separieren der Daten.
Wichtig ist dabei, dass man implizit, und deshalb effizient, im Merkmalsraum lernen
kann. Dazu benutzt man einen Kern, ein Mass der Ähnlichkeit zwischen zwei Beispielen.
Die Kombination dieser Ideen führte zur Support Vector Maschine, einem effizienten,
leistungsfähigen Algorithmus.

In der vorliegenden Dissertation entwickeln wir einen Algorithmus, der an Hand von
Beispielen lernt, Daten zu klassifizieren. Der Algorithmus wird verwendet, um Gesichter
in Echtzeit wiederzuerkennen. Unser Algorithmus kann als Verallgemeinerung der Sup-
port Vector Maschine gesehen werden. Es wird gezeigt, wie er effizient implementiert
werden kann: Um eine grosse Anzahl kleiner aber zeitaufwändiger Änderungen der Vari-
ablen zu verhindern, rechnen wir mit beschränkter Genauigkeit. Wir beweisen eine obere
Schranke für die benötigte Genauigkeit, um eine Lösung zu finden. Der Beweis motiviert
den Gebrauch einer bestimmten Heuristik, die die Effizienz weiter steigert. Eine zweite
Implementierung benützt eine stochastische Gradientenmethode. Diese ist deshalb in-
teressant, da sie eine direkte Interpretation besitzt und in einer online Situation benützt
werden kann.

Im Unterschied zum üblichen Kontext fordern wir nicht, dass alle neuen Daten zu
einer vorgegebenen Klasse gehören. Neue Daten können zurückgewiesen werden. Für
die Anwendung zur Klassifizierung visueller Daten ist das eine natürliche Anforderung.
Denn zu jedem Zeitpunkt können neue, zuvor ungesehene sensorielle Daten ankommen,
die dann nicht wiedererkannt werden.

Unsere visuellen Daten bestehen aus Bildern, aufgenommen mit einer neu entwickelten
Kamera von CSEM. Das Herzstück der Kamera ist ein adaptiver Sensor, der sich durch
die folgenden Eigenschaften von herkömmlichen Sensoren unterscheidet: Erstens adap-
tiert sich der Sensor lokal an die gegebenen Lichtverhältnisse und kann deswegen mit
lokal sehr unterschiedlichen Lichtintensitäten umgehen. Zweitens wird der Gradient der
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Intensität des Lichtes, das auf den Sensor fällt, direkt im Sensorchip berechnet. Deswe-
gen ist der Gradient in Echtzeit verfügbar. Diese Information wird zeitlich codiert. Der
Sensor übermittelt erst die Information von starken und danach diejenige von schwachen
Kontrasten.

Damit Gesichter, die sich möglicherweise vor der Kamera bewegen, wiederekannt wer-
den können, werden die Bilder entsprechend verarbeitet. Bilder so darzustellen, dass sie
lokal invariant sind, ist ein bekanntes Problem im Gebiet der Computer Vision. Wir
entwickeln die folgende Darstellung. Der Gradient der Bilder wird in lokale Histogramme
zerlegt. Es wird gezeigt, dass daraus die Invarianz bezüglich kleinen Translationen, Ro-
tationen und Massstabsänderungen folgt. Die Histogramme bezüglich dem Betrag des
Gradienten können effizient berechnet werden, da der Sensor die Gradienteninformation
in geordneter Reihenfolge ausgibt.

Unser Algorithmus benützt die lokalen Histogramme als Merkmale. Er lernt mit
Hilfe einer Menge von Bildern der Gesichter einer kleinen Gruppe von Personen, diese
wiederzuerkennen. Da das Erkennen rechenaufwendig ist, wird zuerst eine Detektions-
stufe benutzt. Ein speziell entwickeltes Optimierungsproblem wird gelöst, um die Ge-
sichter zu detektieren. Das ganze System zur Detektion und Wiedererkennung von
Gesichtern ist robust, effizient und zuverlässig.
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Notation

When we define variables or functions v1, v2, ...vm we will often talk of the variables vi,
which means all the variables vi, i = 1, ..,m, but for convenience we suppress the values
of the index if it is clear form the context which set is meant.

We will define algorithms with respect to example data {x1, ..., xl}. Mathematically
correct would be to denote by X1, ..., Xl random variables to define the algorithm and
then to denote samples by x1, ..., xl in experiments. Again, for ease of notation, we will
use the same symbols x1, ..., xl.

The following symbols will be used in the thesis. If not otherwise stated, their meaning
is as indicated:

X a nonempty set
x, y, xi elements of X
S a training set
l the size of the trainings set
Y a set of labels
c, ci labels, elements of Y
m the number of labels in Y
k a kernel
H a Hilbert space
·, <·, ·>H scalar products
φ a feature map
[·]+ the positive part function, it is

the identity if the argument is
positive, otherwise zero

[·]− the negative part function, it is
zero if the argument is positive,
otherwise minus the argument

d·e the smallest integer larger or
equal to the argument

b·c the largest integer smaller or
equal to the argument
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Chapter 1

Introduction

Learning from data instead of designing by hand is an appealing methodology. Categori-
sation of data is a classical application of this learning strategy. The goal is to learn from
a set of labelled data, a representation of the classes. We are interested in support vector–
type learning algorithms. During the learning phase, these algorithms select from a large
set of examples a characteristic subset and estimate an elaborate combination thereof,
which then serves to define a decision function and to possibly classify new examples.
In this thesis we develop and apply support vector–type algorithms. Our algorithms
are then applied to object recognition. Our objects are the faces of a small number of
individuals.

The key question we ask in this thesis is how to build efficiently support vector represen-
tations of multiple objects. In addition to obvious demands like efficiency and robustness,
there are practical requirements. In a vision application, sampling in a representative
manner the whole space of visual input is difficult. Hence, learning should be done from
positive examples, that is, faces only.

1.1 Organisation of the thesis

The thesis is organised as shown on page 2. In chapters 2 and 3 we start by reviewing
important mathematical techniques used throughout the thesis. In chapter 2, we discuss
Reproducing Kernel Hilbert spaces. These spaces serve as our feature spaces. We look
at the structure induced by a kernel and show an application of how geometrical consid-
erations can be used to increase the performance of support vector machines. Chapter 3
is a brief overview of regularisation and statistical learning theory to motivate the devel-
opment of support vector type algorithms. After that, the chapters 4 to 7 are devoted to
the development and analysis of algorithms and implementations. These are algorithms
closely related to the well–known support vector machines. In chapter 4, we designed a
new optimisation problem for the categorisation of data into multiple classes. In chapter
5, we propose an efficient implementation to solve the optimisation problem. Chapter 6
is devoted to an online learning rule, and in chapter 7 we use a modified version of our
cost function for unsupervised learning.

Chapters 8 and 9 present an application. We use our algorithms to recognise faces. For
this, we develop a suitable representation of images acquired with the CSEM vision sensor.
In chapter 9 we learn to detect and recognise faces. Finally, there is a conclusion, where
we review the main results achieved in this thesis and point out future developments.

1



CHAPTER 1. INTRODUCTION

Mathematical
techniques:

Reproducing kernel Hilbert spaces

Regularisation and Statistical learning

Algorithms:

Support Vector Representation of
multi–categorical data

Efficient optimisation of the
multiclass problem

Simple optimisation of the
multiclass problem

Unsupervised learning

Application:

Locally invariant image representation

Recognition of faces
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Chapter 2

Reproducing kernel Hilbert spaces

In this chapter, we review mathematical concepts and notations that will be central for
the thesis. That is why we have chosen a more formal style for the chapter. In section
2.4 we use these concepts for optimising the decision hyperplane in a normalised feature
space.

Throughout this thesis we assume the following situation. We are given data x1, ..., xl
and possibly some additional information. For example, the data points could be labelled,
that is, for each example xi we are given a label ci in form of a positive integer. We assume
for the moment that these data points belong to Rn for a positive integer n. The goal is
to estimate one or multiple functions f of the form

f =
∑
i

αi <xi, ·> +ρ, (2.1)

with real coefficients αi and a margin ρ ∈ R. Here <·, ·> denotes the scalar product of
R
n. These functions f represent the data, in a sense to be defined later. To allow for

more general representations, we will replace the scalar product <·, ·> through a kernel,
a symmetric real–valued function, which can be nonlinear in each argument. Then, we
are interested in estimating functions of the form

f =
∑
i

αik(xi, ·) + ρ, (2.2)

for the kernel k. The kernel k can be interpreted as a measure of similarity. If k(x, y)
takes a large value, then x and y are considered to be similar. On the other hand, if
k(x, y) has a small value, x and y are considered to be dissimilar. In the rest of this
chapter, these concepts will become clearer. In section 2.1 we define a class of kernels,
the positive definite kernels, and show the connections between (2.1) and (2.2). In section
2.2 we describe how kernels can be constructed and in section 2.3 we indicate the relation
of a kernel and the metric properties of the underlying space.

2.1 Reproducing kernel Hilbert spaces

In this section we present the theory of reproducing kernels, which goes back to Aronszajn
[5]. It was introduced to machine learning in the sixties [1], and was used extensively
in other areas as approximation and regularisation theory [76] or signal processing [73].
More recently, the potential of the approach for machine learning has been recognised.
Today, it can be found in textbooks on machine learning [23, 63].
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CHAPTER 2. REPRODUCING KERNEL HILBERT SPACES

Let X be a nonempty set, which contains our data x1, ..., xl and potentially many
other points. For example, X could be the Rn.

Definition 1 Given a function k : X ×X → R and points x1, ..., xl ∈ X, then the l × l
matrix K with elements

Kij = k(xi, xj) (2.3)

is called the Gram matrix or kernel matrix of k with respect to x1, ..., xl.

If we think of a kernel as a measure of similarity, the kernel matrix consists of the pairwise
similarity of the data points x1, ..., xl.

Definition 2 A symmetric matrix K ∈ Rl×l is called positive definite if∑
i,j

cicjKij ≥ 0, (2.4)

for all ci, cj ∈ R.

Now we can define the class of kernels we are interested in.

Definition 3 A symmetric function k : X×X → R which for any m points x1, ..., xl ∈ X
gives rise to a positive definite Gram matrix is called a positive definite kernel.

For ease of notation in the remaining chapters, we will often talk of a kernel, but if not
otherwise stated, a positive definite kernel is meant.

Let now k be a positive definite kernel on the set X. The idea to relate (2.1) to (2.2)
is the following. We want to construct a Hilbert space H of features, together with a
mapping φ : X → H, such that for points x, y ∈ X we have

<φ(x), φ(y)>H= k(x, y), (2.5)

where < ·, ·>H denotes the scalar product in H. In words, the similarity of two points
measured with the kernel is the scalar product of the two points mapped into the Hilbert
space H. Then, estimating a function of the form (2.2) in X is equivalent to estimating a
function of the form (2.1) in H, with the xi replaced by φ(xi). To construct the desired
Hilbert space, we set H ′ to be the vector space of all linear combinations of the form

m∑
i=1

αik(xi, ·), (2.6)

for m ∈ N, points x1, ..., xm ∈ X, and αi ∈ R. For

f =
l∑

i=1

αik(xi, ·)

4



2.2. CONSTRUCTING KERNELS

and another function with potentially different points y1, ..., ym,

g =
n∑
j=1

βjk(yj, ·)

we define

<f, g>H′=
l∑

i=1

n∑
j=1

αiβjk(xi, yj). (2.7)

Then, it is straightforward to verify that <·, ·>H′ is an inner product on H ′. This inner
product defines a metric d on H ′ by

d(f, g) = (<f − g, f − g>H′)
1/2 (2.8)

and we let H be the completion of H ′ with respect to this metric. Then H together with
the scalar product <·, ·>H defined with (2.7) is a Hilbert space. For f ∈ H we find that
k is the representer of evaluation,

<f, k(x, ·)>H= f(x) (2.9)

and especially
<k(x, ·), k(y, ·)>H= k(x, y). (2.10)

Because of these properties, k is called a reproducing kernel and H a reproducing kernel
Hilbert space, RKHS for short. Later, if it is clear from the context which scalar product
is meant, we write < ·, ·> or just a · for short. Furthermore, we define the feature map
φ : X → H by

φ(x) = k(x, ·). (2.11)

With (2.10) we find
<φ(x), φ(y)>H= k(x, y), (2.12)

as desired.

2.2 Constructing kernels

Let us take a look at how we can construct new kernels from known kernels. Up to now,
we know that inner products in Hilbert spaces are kernels. The next proposition will
show several methods to construct new kernels.

Proposition 4 Let k1 and k2 be kernels over X ×X, with X a nonempty set, a ∈ R+,
f a real–valued function on X, φ : X → H, and k3 a kernel over H. Then the following
functions are kernels:

1. k(x, y) = k1(x, y) + k2(x, y),

2. k(x, y) = ak1(x, y),

5



CHAPTER 2. REPRODUCING KERNEL HILBERT SPACES

3. k(x, y) = f(x)f(y),

4. k(x, y) = k3(φ(x), φ(y)),

5. k(x, y) = exp(k1(x, y)),

6. k(x, y) = exp(−||x− y||2/a),

where in 6. the set X is a subset of Rn.

The proof can be found in [23]. The kernel in 6. is called Gaussian kernel, and we will
use it in combination with these construction techniques later on to build appropriate
kernels for face detection and recognition. Note that these and other techniques to
construct kernels can be found in many papers, for example [37] and [77] constructed
kernels on discrete structures such as text. Many other methods can be found in [63]. We
will see in chapter 9 examples of how to construct kernels for computer vision applications.

2.3 The metric induced by a kernel

An advantage of kernel algorithms is, that the only structure needed is the kernel itself.
From data points {x1, ..., xl} ⊂ X, where X is any nonempty set, we can learn properties
of the data with a kernel algorithm if we find a suitable kernel on X ×X. In fact, apart
from the kernel, no other structure in X is needed. This is contrary to other statistical
methods. For example, an underlying vector space structure is needed to estimate the
mean of a set of samples. On the other hand, if the kernel induces all the needed structure,
it is no surprise that it is by no means a trivial problem to choose a suitable kernel for a
given problem.

Let us have a closer look at structures induced by the kernel. To do this, let X be a
nonempty set, k : X × X → H a kernel, and let us denote by φ the feature map from
(2.11). Then, the kernel k defines a metric dX on X by

dX(x, y) = d(φ(x), φ(y)) =
(
k(x, x) + k(y, y)− 2k(x, y)

)1/2
. (2.13)

For the second equality sign we have used (2.8), that is,

d(φ(x), φ(y)) =
(
<φ(x)− φ(y), φ(x)− φ(y)>H

)1/2

=
(
<φ(x), φ(x)>H + <φ(y), φ(y)>H −2 <φ(x), φ(y)>H

)1/2
,

(2.14)

together with (2.12). The metric dX is called the pull–back of the metric d from (2.8) by
φ. If the feature map is ”sufficiently nice” such that φ(X) is a submanifold of H, then
there is another natural metric on φ(X), namely the intrinsic metric, where distances are
measured along the submanifold. Again, this metric can be pulled back to a metric g on
X. To discuss this, let us suppress the technical details. We refer the reader to [70] for
the geometric framework. We suppose in addition, that our data lives in X ⊂ Rn and the
feature mapping φ : X → H maps the data to the submanifold φ(X) ⊂ H. The scalar

6



2.4. APPLICATION: MAXIMAL MARGIN CLASSIFICATION

product in H defines a Riemannian metric in the submanifold φ(X). This Riemannian
metric can be pulled back to a new metric g in the input space given by

gx(v, w) =<Dxφ(v), Dxφ(w)>H , (2.15)

for x ∈ X. Here D denotes the derivative. Note that measuring the distance of two
points x, y ∈ X with g is equivalent to measuring the distance of the points φ(x), φ(y) in
the feature space along the submanifold. This geometric interpretation has been used to
analyse and improve the performance of support vector machines in [16, 4].

2.4 Application: Maximal margin classification in a normalised
feature space

After this review of mathematical concepts, we use a kernel induced metric for the opti-
misation of the decision hyperplane in a normalised feature space. This was a first, short
part of my thesis research and led to a publication [32]. The idea is to normalise the
data and use the metric g from (2.15) to readjust the decision function of support vector
machines to improve their performance. In more detail, suppose our data is in X ⊂ Rn.
The feature map is the projection on the unit sphere,

φn : x→ x/||x||, (2.16)

which normalises the data. Hence the distance of two points x and y measured by g
is the distance of φn(x) and φn(y) measured along the unit sphere, which is the angle
between the two vectors x and y, see figure 2.1.A. Suppose we are given data examples
belonging to two different classes. We use this data to train a support vector machine
on the normalised data. As solution, we find two parallel margin hyperplanes, separating
the data of the two classes maximally apart. Then, we set the decision hyperplane to
be in the middle of the margins measured along the surface. Hence, the hyperplane is
sitting at half the angle, see figure 2.1.B. In contrast to this, a standard support vector
machine puts the decision hyperplane at half the distance of the two margin hyperplanes
measured along a line orthogonal to the planes.

As a second step, the normalisation can be done on the data mapped in the feature
space H. Let φ : X → H be a feature map, which maps the data from X into the Hilbert
space H. We normalise the data mapped into H. Our combined feature map is then

φn ◦ φ : X → SH , x 7→ φ(x)

||φ(x)||H
, (2.17)

where SH denotes the unit sphere in H. If we chose two points x, y ∈ X, the scalar
product of the mapped points (φn ◦ φ)(x) and (φn ◦ φ)(y) can be calculated by

k(x, y)√
k(x, x)k(y, y)

. (2.18)
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A

x

y

φ(y)

φ(x)

B

d

Figure 2.1: Readjusting the separating hyperplane: In A the distance between x and y
using the metric g is measured along the unit hyper sphere (dotted line) and is equal to
the angle between the vectors. In B the decision hyperplane d is readjusted to be at half
angle between the margin hyperplanes (dotted lines). Note that now the distance of the
decision hyperplane to the two margins, measured along an orthogonal vector, is not the
same.

Here, we used the kernel k(x, y) =<φ(x), φ(y)>H . Therefore, we can normalise the data
implicitly in feature space.

The margin hyperplanes are learnt using a support vector machine with kernel (2.18),
thus separating the data, which sits on the unit sphere SH . Let us denote by (w, b) the
solution of the support vector machine. Hence, the margin hyperplanes are given by

{f ∈ H| <w, f>H +b± 1 = 0}. (2.19)

Let us denote by m+ and m− the distance from the margin hyperplanes to the origin,

m± =
b± 1

||w||H
. (2.20)

A short calculation shows, that the decision hyperplane, sitting in between the two margin
hyperplanes, measured along the sphere SH is

{f ∈ H| <w, f>H +||w||b̄ = 0}. (2.21)

Here, b̄ is given by

b̄ = cos
(1

2

(
arccos(m+) + arccos(m−)

))
. (2.22)

One can see that the decision hyperplane can be calculated using the kernel evaluations
only, without explicitly calculating points φ(x) in feature space.

Let us make a remark concerning standard choices of kernels. For the Gaussian kernel
(6) the data is automatically normalised in feature space, as k(x, x) = 1 for all x. Thus,
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when using a Gaussian kernel, the decision hyperplane can be calculated as described
above.

For a homogeneous polynomial kernel, a kernel of the form k(x, y) = (< x, y >)p,
normalisation in feature space is equivalent to the normalisation in the space X. Hence,
for a homogeneous polynomial kernel, the above procedure makes sense even if the data
is normalised in the initial space X.

In [32] it was shown that in an object recognition task, normalising the data in feature
space and setting the decision hyperplane as described above, increases the performance
of support vector machines.

2.5 Discussion

In this chapter we reviewed how the kernel induces geometrical structures. We proposed a
method to use this geometrical structure to optimise the decision hyperplane of a support
vector machine in a normalised feature space to increase performance.

9
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Chapter 3

Regularisation and Statistical learning

To learn to categorise data can be a difficult task, as the determination of a suitable op-
timisation problem is non–trivial. Not only should one estimate a representation of the
data that generalises well, but it should be possible to solve the corresponding optimisa-
tion problem efficiently. In this chapter we review very briefly two theoretical branches,
regularisation and statistical learning theory, which can help to determine suitable op-
timisation problems and determine their properties. We start by introducing the basic
concepts of loss and risk. We show how this is connected to regularisation theory and
finally, how we can use results from statistical learning theory to motivate the algorithms
developed in the following chapters. More details can be found in the books [74, 63, 23].

In classification, the general setting as follows. Given a set X, the set of all possible
data examples, and a finite set Y = {1, ...,m} of labels. Furthermore the set X × Y is
equipped with a probability measure P . From P we can derive conditional distributions,
for example, P (·|x). Intuitively, for c ∈ Y we interpret P (c|x) as the probability that a
data example x belongs to class c. Our goal is to predict, for a new point (x, c) ∈ X×Y ,
the class label c by knowing x. We do this with a classification rule. A classification rule,
or classifier for short, is a function f : X → Y , assigning to each x a class label c. To
estimate the classification rule, we are given a set of labelled data

S = {(x1, c1), ..., (xl, cl)}, (3.1)

the training data. The set S consists of independent samples drawn from X according to
P . To quantify the quality of the classification rule, we specify a loss function L, assigning
a real value L(x, c, f(x)) to each classifier f and labelled example (x, c). A classifier with
a small value of the loss function is a good predictor of the labels.

As example, we take a look at binary classification. Here, Y = {0, 1} and a standard
loss function is the 0− 1–loss, counting the number of misclassifications,

L(x, c, f(x)) =

{
0 iff(x) = c

1 otherwise.
(3.2)

For a test set {(x′1, c′1), ..., (x′l′ , c
′
l′)} the test error or risk on the test set is the expected

loss on the test set,

Rtest(f) =
1

l′

l′∑
i=1

∑
c∈Y

L(x′i, c, f(x′i))P (c|x′i). (3.3)

11
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If the test set is known, this is the quantity we are interested in minimising. In other
words, we try to find a strategy to construct from the training sample a classifier f
minimising Rtest(f). If we have no knowledge about the test set, we should minimise the
expected loss over all possible test patterns. Thus, we should minimise the risk

R(f) =

∫
X×Y

L(x, c, f(x))dP (x, c). (3.4)

In general, direct minimisation of the risk is not a tractable strategy. For a training set
S we estimate the risk by the empirical risk of f given by

Remp(f) =
1

l

l∑
i=1

L(xi, ci, f(xi)), (3.5)

which is the risk of the classifier f with respect to the empirical probability measure. As
is well known, minimisation of the empirical risk can be critical, if no measures against
overfitting are taken.

To illustrate this, we look at a classical example from binary classification, see (3.2).
A minimiser of the empirical risk is given by the function

f(x) =

{
ci if x = xi

0 otherwise
(3.6)

but in general this is not a good prediction rule.
To avoid overfitting, one can choose a suitable restricted set of classifiers F , and

minimisation of the empirical risk is performed over the set F . From a computational
point of view it is often more efficient to consider a larger class of functions, but to
restrict the minimum to a restricted set by adding a regularisation term Ω : F → R to
the optimisation. In summary, the optimisation problem is

min
f∈F

Ω(f) +Remp(f). (3.7)

We call Ω + Remp a regularised risk functional. Later, we discuss various optimisation
problems. They are all of the general form of (3.7). The question of how to choose a good
regularisation term is not an easy one. The regularisation terms we use are motivated
mainly by the geometric interpretation of our optimisation problems.

The following questions arise naturally. Which regularisers should be chosen ? How
good is the approximation of the minimum of the risk by the minimum of the regularised
risk functional. In statistical learning theory, one tries to bound the risk in terms of the
empirical risk and a dependency of a measure of capacity of the set of functions F . These
bounds are typically of the form

R(f) ≤ Remp(f) + C(F), (3.8)

and hold with probability 1 − ε. Here the constant ε can be chosen arbitrarily, but ε
appears in the term C(F) on the right hand side. As one can expect, measuring the
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capacity of the set F is a nontrivial thing and different measures exist. These measures
can serve as a motivation to choose a regularisation term. In machine learning, a very
well known measure of the complexity of F is the VC–dimension [74]. Multiple other
bounds can be found in [23, 63] and the references therein. Some of these bounds serve as
a motivation for the maximal margin regulariser in the support vector machines. Below
we discuss a specific measure together with the corresponding term C of (3.8). Even
though it is designed for a slightly different situation, it serves as an illustration and
motivation for the algorithm discussed in chapter 4.

The measure of capacity in our example is the cardinality of the set F . This is
very attractive, because in contrast to the VC–dimension, which can be very difficult to
calculate or even estimate, cardinality is easily determined. The following result is of the
form of inequality 3.8, where C(F) depends essentially on the cardinality of F .

Consider a binary classification problem with loss function (3.2). Let X be any
nonempty set and Y = {0, 1}. We denote by S = ((x1, c1), ..., (xl, cl)) a labelled training
set, and by S ′ = ((x′1, c

′
1), ..., (xl, c

′
l)) a test set. Both consist of independent, identically

distributed samples from a probability measure P on X × Y . We are allowed to use the
trainings set S and the test points x′1, ..., x

′
l. The goal is to predict the test labels c′1, ..., c

′
l.

The set of hypothesis is F = {f1, ..., fM}, the set of possible decision functions. It can
either be chosen in advance, without looking at the data, or it can be chosen in a data
dependent way. But if we chose the set F in a data dependent way, we have to do it
by looking only at the data points x1, ..., xl, x

′
1, ..., x

′
l. Furthermore, each fi must depend

in an exchangeable way on S and S ′, that is, by exchanging xi with x′i the function fi
should not change. For example, we can define a hypothesis depending on the mean of
x1, ..., xl, x

′
1, ..., x

′
l. Another example is the following. For each pair xi, x

′
i we can define

a hypothesis fi in the following way. First, we sort the xi, x
′
i in lexicographic order and

take for fi the classifier responding 0 on all points closer to the first one and 1 on all the
points closer to the second one.

We consider the xi, x
′
i as random variables on X. Hence, the empirical risk and the

risk on the test set are random variables. The result of Catoni [18] states that with
probability 1− ε the following bound holds

Rtest(f̂) ≤ 3Remp(f̂) + 2
1

l
log

M

ε
, (3.9)

with

f̂ = arg min
f∈F

Remp(f). (3.10)

In words, with probability 1 − ε, the risk on the test set is bounded by three times the
empirical risk plus a term depending on the cardinality M of the set F , the size l of the
training and test set and on ε, the confidence, with which the bound holds. This is a
so–called union bound [63], hence the dependency on M/ε. Even though the situation
here is different from our situation in chapter 4, this result can serve us as motivation.
We will see in chapter 5 that our classification algorithm uses finite accuracy calculations.
We will choose finite accuracy computations for efficiency reasons. As a consequence, the

13



CHAPTER 3. REGULARISATION AND STATISTICAL LEARNING

set of hypothesis F is finite. According to the above result, having a small cardinality
can limit the capacity and thus gives a smaller risk.
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Chapter 4

Support Vector Representation of Multi–categorical Data

In this chapter, we propose a new optimisation problem for the categorisation of data
into multiple classes. Our approach can be viewed as a generalisation of the well known
support vector machines to multiple classes and includes the two–class problem as a
special case. For one class only it reduces to a single–class support vector machine,
whose solution can be seen as an estimate of the support of a distribution. We discuss
the properties of our strategy and relate it to other multi–class approaches. In chapters
5 and 6 we will propose efficient algorithms to solve the optimisation problem. The
algorithm in chapter 5 is directed to find the global optimum, whereas the algorithm of
chapter 6 uses a stochastic gradient descent method to find an approximate solution.

4.1 Introduction

Given a set of examples belonging to different categories or classes, the problem is to
learn from these examples a decision function which assigns to new examples one of the
classes or possibly rejects them. At present one of the best performing methods are the
support vector machines [14]. They were originally designed for binary decision problems
with two classes only. In the case of more than two categories, there exist many different
strategies to combine several support vector machines. Examples are the combination
of one–versus–rest trained machines or of pairwise trained ones for all pairs [45, 29], or
of pairwise trained ones, using a directed acyclic graph [54]. Furthermore, one can use
error correcting output codes [24, 3] to combine the output of several binary classifiers.
From a conceptual point of view, it would be more satisfying to be able to train directly
a classifier for multiple classes. Different generalisations of support vector machines have
been proposed so far [74, 78, 15, 46, 33]. Unfortunately, these generalisations need to
estimate for each training example at least m parameters simultaneously, where m is
the number of classes. They are therefore in practical applications often too complex to
be used. Another multi-categorical generalisation was proposed by Cramer and Singer
[21]. As above, they estimate m parameters for each example, but the advantage of their
formulation is that it allows a more efficient implementation.

We present a simple algorithm, which can be seen as a generalisation of the support
vector machine to multi–categorical data. It was proposed in [12]. This algorithm needs
to learn only one parameter for each training example, as explained in subsection 4.2.5.
For only one class it reduces to a one-class support vector machine [62], which yields an
estimate of the support of a distribution.

The idea is to represent each class c by a vector wc, which can be expressed as a

15
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linear combination of the data in its class only. Then a decision function for each class
is defined in the following way: The value of the decision function of class c for a data
point x is the scalar product of x with the representative vector wc minus the scalar
product with the average w̄c of the other representatives, and this is compared to a learnt
margin, see Figure 4.1.A–C. If it is larger than the margin, the data point x is accepted
to be of this class, and otherwise not. To allow for nonlinear separations, we apply the
well-known kernel trick reviewed in chapter 2, that is, we map the data in a reproducing
kernel Hilbert space [49, 5] and perform the linear separations there. Then the preimages
of these separations are possibly nonlinear separations in the space of the data. We will
call the family of decision functions a representation of the multi–categorical data.

We want to point out two conceptual differences between our approach and the exist-
ing generalisations. First, we have a parameter that controls the influence of other classes
on a given one. In the extreme, the representation of each class is learnt independently
of the other classes, that is, our method reduces to support estimation [62]. Furthermore
in our approach, we will not assume that each data point belongs exactly to one class.
Data points may belong to several classes or to none at all. However, in the standard
approaches mentioned at the beginning of this section [74, 78, 15, 46, 33], the goal is
the assignment of each example to a single class. This is achieved in two steps. First,
just as in our approach, there is a decision function for each class. The final decision,
however, is made according to the decision function, whose value is maximal for a data
point. Therefore, every point is assigned to exactly one class, except the rare event of
having multiple decision functions giving exactly the same value to a data point.

4.2 The optimisation problem

We start this section by introducing some useful notation to describe the multi–class
learning problem. Then, in subsection 4.2.2, we introduce a cost function, whose mini-
mum will be the desired representation of the multi–categorical data. In subsection 4.2.3,
we show how our cost function reduces for certain choices of parameters to other well–
known cost functions. Especially, we will see that in the case of two classes only, our
approach reduces to a support vector machine. Because there are already approaches to
the generalisation of the binary support vector machine, we discuss their relation to our
approach. In subsections 4.2.5 –4.2.7, the dual problem will be calculated, an equivalent
optimisation problem of simpler form, and its properties will be analysed. We then con-
clude the section by illustrating the categorisation performance for a two–dimensional
toy problem.

4.2.1 Representation of multi–categorical data

Given is a set X and a positive integer m. In this set, we are given subsets Sc ⊂ X
for c = 1, ..,m, called classes or categories. Note that we make no assumption that the
subsets are pairwise disjoint, even though this will often be the case. Later, we will simply
refer to class c for the subset Sc. Normally, these subsets are unknown, but we are given
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A B C D

Figure 4.1: The idea of the decision functions and our cost function for three classes ◦, •,
� and the parameter γ = 1. Plot A shows the vector wc of each class. Plot B shows the
vectors wc for each class (dashed arrows), and wc− w̄c for the class � (solid arrow). In C,
we see the vector wc− w̄c together with the separating hyperplane, which is the zero level
of the function dc, for the class �. The length of the dashed lines are proportional to the
empirical risk Remp,c for this class, see (4.2). In D, we see the separating hyperplanes for
all three classes. Points inside the triangle spanned by the three lines are categorised as
not belonging to any class.

examples of each subset, in the form of labelled training examples (x1, c1), ..., (xl, cl). Here
xi is an element of the set X and the label ci is an element of the set {1, ...,m}, the class
to which xi belongs, that is xi ∈ Sci . Let us denote by lc the number of training examples
in class c, and, as before, by m the number of classes. The learning problem consists of
finding a representation of the subsets S1, ..., Sm, that is a family of real–valued functions
(d1, ..., dm), called decision functions, such that for a new point x the values of these
functions at x give information about the class of x.

4.2.2 The cost function

Let k : X×X → R be a positive definite kernel and H the associated reproducing kernel
Hilbert space (RKHS) [5]. We recall that, in particular, k(x, ·) ∈ H and that the inner
product is defined by linear continuation of the fundamental equation k(x, ·) · k(y, ·) =
k(x, y), where · denotes the scalar product in H. We denote by φ : X → H the mapping
x 7→ k(x, ·), therefore φ(x) · φ(y) = k(x, y).

Let us now apply these concepts to our multi–class problem. For each class c we seek
a vector wc ∈ H and a real value ρc determining a decision function of the form

dc(x) = (wc − γw̄c) · φ(x)− ρc, (4.1)

where w̄c = 1
m−1

∑
d6=cwd. Note that for m = 1 the sum is indexed by an empty set and

therefore w̄c is defined to be zero. The parameter γ ∈ [0, 1] lets us adjust the influence of
the other classes relative to class c. The sign of dc(x) decides if example x is accepted to
be an element of class Sc or is rejected, that is, is not accepted to be of class Sc, see Figure
4.1.A, B. We will use the shorthand notations d = (d1, ..., dm) for the m decision functions,
w = (w1, ..., wm) for the m representative vectors, ρ = (ρ1, ..., ρm) for the margins, and
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so on. For the training examples {(xj, c)|xj ∈ Sc} of class c and a parameter ν ∈ (0, 1],
the empirical risk of dc is

Remp,c(dc) =
1

νlc

∑
xi∈Sc

[dc(xi)]−, (4.2)

where the negative part [·]− maps a real argument x < 0 to −x and x ≥ 0 to zero, see
Figure 4.1.C. The constant 1/ν was chosen because ν has a direct interpretation, see
subsection 4.2.6.

For a parameter γ ∈ [0, 1] we define the regulariser

Ω(d) =
∑
c

(1

2
||wc||2 −

1

2
γwc · w̄c − ρc

)
, (4.3)

where d = (d1, ..., dm) is defined in (4.1). Intuitively, the regulariser is small if the vectors
wc all have a small norm, and the margins ρc are large, which tries to separate one class
as much as possible from the origin. This is as in the single class support vector machine.
The term wc · w̄c is specific to our approach, and later we will see that this term in
the regulariser puts more weight on the discriminative examples, see Figure 4.4.B-D. In
summary, we arrive at the optimisation problem

minimise Ω(d1, ..., dm) +
m∑
c=1

Remp,c(dc). (4.4)

We are faced with the problem of finding m vectors w1, ..., wm in the possibly very
high dimensional feature space together with the margins ρ1, ..., ρm. A priori, this is a
very difficult problem, but we will show next that each of the vectors wc can be expressed
as a linear combination of the training data mapped into the feature space. This reduces
the problem of finding the optimal w1, ..., wm to determining their expansion coefficients.

Lemma 1 (Representer Theorem) Let d = (d1, ..., dm) be a tuple minimising the reg-
ularised risk functional

m∑
c=1

Remp,c(dc) + Ω(d). (4.5)

with dc given by (4.1). Then each wc admits a representation of the form

wc =
l∑

i=1

λc,iφ(xi), c = 1, ..,m, (4.6)

for some real coefficients λc,i.

The proof can be found in section 4.4 at the end of this chapter. The idea of the
lemma goes back to Kimeldorf and Wahba [42]. Our formulation is close in spirit to the
form of Schölkopf and Smola [63] but differs from the above in that we look for multiple
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elements in H. Note that from lemma 1 we can not conclude that the vectors wc are
expressible in terms of the data of their class only. But later we will see that this is the
case. In contrast to the above lemma, which has counterparts for a wide class of objective
functionals, the next lemma is more specific.

Lemma 2 The function Ω(d1, ..., dm) +
∑m

c=1 Remp,c(dc) is bounded from below and con-
vex.

Again, the proof can be found in the appendix.

For the discussion in the remainder of the chapter, it is useful to rewrite the optimi-
sation problem (4.4) as a constrained optimisation problem

minimise Ω(d1, ..., dm) +
l∑

i=1

1

νlci
ξi

subject to (wci − γw̄ci) · φ(xi) ≥ ρci − ξi
ξi ≥ 0 .

(4.7)

The constraints tell us that if a training example is not assigned to its class by (4.1), then
the corresponding ξi is positive and this is penalised in the cost function. In addition, the
cost function favours vectors wc of small norm and large values of ρc. With γ close to 1,
the second term in the regulariser Ω moves the vectors wc towards the most discriminant
examples. We mention that for γ = 0 we have m independent problems. With the
parameter ν the number of outliers can be controlled, see subsection 4.2.6.

By lemma 2, instead of optimising (4.7) we can equivalently optimise the dual problem
[10], as indicated in section 4.2.5. Before we do so, let us discuss the relation of our
approach to other well known paradigms.

4.2.3 Special Cases

Let us note the following special cases.

Estimating the Support of a Distribution:

If we have only one class, m = 1, problem (4.7) reduces to

minimise
1

2
||w||2 − ρ+

1

νl

∑
i

ξi

subject to w · φ(xi) ≥ ρ− ξi, ξi ≥ 0 ,

(4.8)

which tries to separate the data in feature space from zero [62].
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Support Vector Machine:

In the case of two classes and γ = 1, we define w = w1 − w2, b = 1
2
(ρ1 − ρ2) and

ρ = 1
2
(ρ1 +ρ2). Furthermore, we define labels yi = 1 if the example xi is in the first class,

and yi = −1 otherwise. Then (4.7) reduces to

minimise
1

2
||w||2 − ρ+

1

ν

∑
i

1

lci
ξi

subject to yi(w · φ(xi)− b) ≥ ρ− ξi, ξi ≥ 0 .

(4.9)

This is the well-known ν–SVM of [65] with the following three differences: First, there is
no restriction on ρ to be positive. Therefore, if we find a solution with a positive ρ, we
would find the same solution with a ν–SVM, otherwise not. Note that if we find a negative
value of ρ, the classes are not well separated. Dropping the positivity condition for ρ can
in our case still result in a solution with few support vectors. The second difference is
that the constant 1/ν is in front of the last term in the cost function instead of a constant
ν in front of ρ. See exercise 7.16 in the book of Schölkopf and Smola [63], showing that
this yields the same decision function. Third, the penalty ξi for each outlier is weighted
by a factor one over the number of examples in its class, instead of the total number of
examples. This is necessary for the objective function to be bounded, otherwise the value
for ρ can grow infinitely large. This can be seen in one dimension, for example, for one
class consisting of one data point at +1 and many data points of the other class at 0.
Now setting ν = 1, fixing the vector w = 1, varying ρ, and setting b = ρ, one can observe
that the empirical risk grows slower than ρ does, and therefor the cost function is not
bounded from below.

Reformulation of the regulariser for γ = 1:

For γ = 1 a direct calculation shows∑
c

||wc − w̄c||2 = mΩ. (4.10)

Therefore, in this case the solution of the optimisation problem separates the data of any
class c maximally from the origin in direction wc − w̄c.

Translation invariance for γ = 1:

For γ = 1, both the decision function (4.1) and the objective function (4.4) are trans-
lation invariant with respect to the vectors wc. In other words, let v ∈ H be a fixed
vector and denote w′c = wc + v and d′c(x) = (w′c − w̄′c) · φ(x) − ρc. Then d′c = dc and
therefore Remp,c(d

′
c) = Remp,c(dc). Furthermore, from (4.10) follows that Ω(d′1, ..., d

′
m) =

Ω(d1, ..., dm) holds.
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4.2.4 Difference to other multi–class approaches

As mentioned in 4.1 there exist already different multi-class approaches for Support Vector
Machines. We will recall the associated optimisation problem and state the differences
to our approach. Vapnik [74], Weston and Watkins [78] learn a decision function

d(x) = arg max
c
wc · φ(x) + bc, c = 1, ..,m, (4.11)

and minimise the cost function

Ω + C
∑
d6=c

l∑
i=1

[(wc − wd) · φ(xi) + bc − bd + 2]−, (4.12)

with a constant C, and a regulariser Ω = 1
2

∑
c ||wc||2. Each of the vectors wc is expressed

as a linear combination of the whole training data and therefore they need to estimate
ml expansion coefficients, compared to l in our approach, see subsection 4.2.5 below.
Furthermore, their decision function aims at a situation where every new example is
assigned to exactly one of the classes, contrary to our approach. A similar optimisation
problem as (4.12) is used in Bredensteiner and Bennet [15] and Guermeur [33] but with
different regularisers Ω = 1

2

∑
c<d ||wc − wd||2 + 1

2

∑
c ||wc||2 and Ω = 1

2

∑
c<d ||wc − wd||2,

respectively.

The approach from Cramer and Singer [21] follows the above ones, with a modification
of the empirical error term, and without bias terms bc. This results in a more ’compact’
quadratic optimisation problem, for which they present in a clear manner the details of
an efficient implementation. But again, one has to estimate ml expansion coefficients.

In [46] a decision function (4.11) is used with the regulariser Ω = 1
2

∑
c ||wc||2, but

with a different empirical risk term. Their empirical risk is for each example the term∑
c′ 6=ci [−1/(m− 1)− dc′(xi)]− with the decision functions dc(x) = wc · φ(x)− bc for each

class. They put a further constraint on these functions to sum to zero. This constraint
couples the otherwise independent optimisation problems for dc to one problem. Again,
the whole training data appears in the expressions for each decision function dc and thus
they need ml parameters for each class.

In general, our approach differs from the above in that the false positives do not appear
in our empirical error term. This results in putting fewer constraints and therefore yields
fewer parameters to be learnt. This puts our approach in a different context. We do not
assume that each data point belongs to exactly one class.

4.2.5 The Dual Problem

To determine the dual of (4.7) we set f = Ω +
∑m

c=1 Remp,c and consider the Lagrangian

L(w, ρ, ξ) = f(w, ρ, ξ)−
∑
i

αi
[
(wci − γw̄ci) · φ(xi)− ρci + ξi

]
−
∑
i

βiξi (4.13)
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with multipliers αi, βi ≥ 0. Setting the derivatives with respect to wc, ρc, ξi equal to zero
yields a system of linear equations, which is solved by

wc =
∑
i∈c

αiφ(xi) , (4.14)

αi =
1

νlci
− βi ≤

1

νlci
,
∑
i∈c

αi = 1 , (4.15)

where we used βi ≥ 0 for the inequality in (4.15). Equation (4.14) shows that the vector
wc representing class c can be expressed as a linear combination of examples in class
c only. Note that for γ = 1 the solution for wc is not unique, as we know from the
paragraph on translation invariance in 4.2.3. However, the cost function of all these
solutions has the same value so that we can work with the solution (4.14). The examples
xi with αi 6= 0 are called support vectors. Substitution of (4.14) and (4.15) in L and using
k(xi, xj) = φ(xi) · φ(xj) yields the dual problem

maximise − 1

2

∑
i,j

αiαjyijk(xi, xj)

subject to 0 ≤ αi ≤
1

νlci
,
∑
i∈ci

αi = 1

(4.16)

with

yij =

{
1 if ci = cj

−γ 1
m−1

if ci 6= cj .

We recall that the dual is a concave function [10]. When solving the dual problem we
find the optimal values for the multipliers αi. Note that these are l real values to be
determined. Then with (4.14) we find the optimal vectors wc. We will see in the next
subsection, when we discuss the so called ν-property, how we can find the optimal values
for ρc and ξi given the optimal w1, ..., wm. We note that the constraint

∑
i∈ci αi = 1

means geometrically that the vector wc lies in the convex hull of the data points xi ∈ Sc.

4.2.6 The ν-property

We will show that our representation has the ν-property [65]. For this, let us fix w1, ..., wm.
Given w, the optimal values for ρ1, ..., ρm are easily obtained from (4.7). First, we note
that these optimal values can be found for each class separately. Consider a class c and
set ai = (wc − γw̄c) · φ(xi) for all xi in class c, see Figure 4.2.A. We want to

minimise − ρc +
1

νlc

∑
i:xi∈Sc

ξi subject to ai ≥ ρci − ξi, ξi ≥ 0. (4.17)

For fixed ρc the optimal value of ξi is the positive part of ρc − ai. If we change ρc in the
negative direction, the term 1

νlc

∑
ξi will change proportionally to the relative number of
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aiaj

ξi

ξj

ρc

A

︸ ︷︷ ︸
outliers ρc

B

Figure 4.2: The ν-property: The dots show the points ai(xi). It is a one dimensional
problem to determine the optimal value for ρc. Figure A shows how the empirical risk
changes when changing ρc. Figure B shows the optimal value for ρc with ν = 0.3. The
points ai corresponding to support vectors are marked with a circle, ◦, around the dot.

points xi that have a nonzero ξi, that is, points with ai < ρc, called outliers. Changing
ρc in the positive direction changes the sum proportional to the number of points with
ai ≤ ρc. Let us now sort the set {ai|i : xi ∈ Sc} according to magnitude,

ai1 ≤ ai2 ≤ ... ≤ ailc .

We denote by i∗ the index in with n = dνlce, where d·e denotes the smallest integer
greater or equal to the argument. Then the optimal value for ρc is

ρc = ai∗ . (4.18)

In other words, consider the set {ai|ai = wc · xi, xi ∈ Sc}. Hence, ρc is equal to the
ν–quantile of the empirical distribution over the set of all ai, see figure 4.3. Note that
when νlc is an integer, the values ρc and ξi are not necessarily unique.

If we denote by nSV
c the number of support vectors and by nOL

c the number of outliers,
we have proved that

nOL
c ≤ νlc ≤ nSV

c . (4.19)

Let us see what happens if we have more and more examples, that is lc →∞. We make
the assumption that the training data of each class {xi|xi ∈ Sc} be i.i.d. samples from
a distribution Pc. If the kernel k and the distribution are such that for any decision
function of the form (4.1) the zero level dc

−1({0}) has measure zero under Pc, then in the
limit lc →∞ the equalities

nOL
c /lc = ν = nSV

c /lc (4.20)

hold. To see this, consider the set of examples that lie exactly on the margin, {xi ∈
Sc|dc(xi) = 0} and let nOM

c be the number of those points. Then nSV
c = nOM

c + nOL
c and

by the assumptions, nOM
c /lc → 0.

Let us take a look at the implications of the ν-property for the dual variables α1, ..., αl.
The values (αi) are optimal values if and only if the Karush–Kuhn–Tucker conditions
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ν

1

wc · x1

wc · x2

ρc = wc · x3

wc · x4

wc · x5

Figure 4.3: Setting the margin at the ν–quantile: shown is the representative vector
wc and the data examples xi of class c, for i = 1, .., 5. The function is the empirical
cumulative distribution, and the margin ρc is set to the ν–quantile.

(KKT)

dc(xi) > 0 =⇒ αi = 0 (4.21)

dc(xi) < 0 =⇒ αi =
1

νlci
(4.22)

are satisfied [10], see Figure 4.2.B. If we look at (4.20) we can see that in the limit of
lc →∞, the relative number of support vectors xi whose multipliers αi are not at bound
is zero, and therefore the representative vector wc of class c is the mean of the outliers,

1

νlc

∑
xi:dc(xi)<0

φ(xi) −→ wc. (4.23)

We will use this fact in section 5.1 to develop a fast algorithm to solve the optimisation
problem.

Note that we could choose a different parameter ν for each class. For ease of presen-
tation we did not do so, but imagine a situation in which we had some prior knowledge
on the expected number of outliers of each class. If they were very different, it would be
suitable to use a different constant ν for each class. Lin et al. [47] investigated these so
called non–standard situations for support vector machines.

4.2.7 A parametrised family of representations

Let us have a look at the dual problem (4.16) and let F (α, γ) denote its cost function,
as a function of the vector α = (α1, ..., αl) and the parameter γ ∈ [0, 1]. Let us choose a
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A B C D

Figure 4.4: A toy example with the three classes ◦, •, and �. For each class, the line
shows the zero level of the decision function (4.1) for the solution. We used a Gaussian
kernel and maximal coupling γ = 1 for A,B, γ = 0.5 for C, and γ = 0 for D. Plot
A shows the solution with ν = 0.4 and B,C,D with ν = 0.1. The support vectors are
marked with a ©. We can see how the parameter ν controls the number of outliers in
A,B. From B to D the parameter γ is decreasing and a change in the selection of the
support vectors can be seen.

strictly positive definite kernel k. Then for each fixed γ ∈ [0, 1), the function F (·, γ) is
strictly concave and the solution of (4.16),

αmax = arg max
α

F (α, γ), (4.24)

where the maximisation is done over all α fulfilling the constraints, is unique. Therefore,
the mapping γ 7→ αmax is well defined. Because each αmax defines a representation of our
data, γ parametrises a family of representations. When we look at the toy example in
Figure 4.4, we can see how the support vectors and therefore their multipliers α1, ..., αl
change with a change in γ. By subsection 4.2.6 above, as the number l of examples
grows, the relative number of multipliers not at bound goes to zero. Informally speaking,
we expect to have most of the α1, ..., αl at bound, either zero or 1/νl, and the only
multipliers not at bound belong to support vectors sitting exactly on the margin, that is,
are mapped to zero by the decision function. So one can wonder if the support vectors
suddenly appear or disappear as we change γ. This is not the case, that is, by changing
γ continuously none of the optimal multipliers (α1, ..., αl) jumps, but they all change
continuously as well.

Lemma 3 With the above notations, the mapping γ 7→ αmax is continuous.

The details of the argumentation and the proof of the lemma can be found in the appendix.

4.2.8 Toy Experiment

We tested the algorithm on artificial data in two dimensions, see figure 4.4. Each of the
three clusters represents a class and we plotted the lines where the decision functions
(4.1) are zero. One can easily check the ν–property. In 4.4.A with ν = 0.4, we should
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have at least 4 support vector of the 10 vectors in each class, and maximally 4 outliers.
If we look at B to D, there the parameter γ is decreasing from 1 to 0, and therefore the
influence of the other two classes to a given one is reduced. One can see the tendency of
the support vectors to be closer to the other classes for large γ. Note that if γ is equal
to zero, the representation of each class is learnt independently of the other classes, just
as in Schölkopf et al. [62].

4.3 Discussion

We proposed a new supervised algorithm to learn representations of multi–categorical
data. The main inspiration for our algorithm came from the resemblance of the support
vector algorithms for one and two classes. We have seen that in the case of two classes,
there is a difference in our algorithm to the standard support vector machine, as we put
no constraint on the margin ρ to be positive. This has the advantage that even if the
classes are not well separated, we can arrive at a solution with few support vectors.

A possible generalisation of our algorithm to the so called non–standard situations is
possible, either by choosing a different νc for different classes c to weight the whole classes
differently, or to include a weighting factor in front of each summand in the empirical
risk, as in the support vector machine case [47]. We did not do any experiments in this
direction.

4.4 Details and Proofs ∗

Here, we will give the proofs of the lemmata in the text.

Proof of lemma 1: Let us write w = (w1, ..., wm) and define gc(w) = ||wc||2−γwc · w̄c.
For m > 1 a short calculation shows

∑
c

gc(w) =
m

m− 1

(
(m− 1 + γ)

1

m

∑
c

||wc||2 − γm||
1

m

∑
c

wc||2
)
.

With m−1+γ ≥ γ(m−1)+γ = γm , for γ ∈ [0, 1], and Jensen’s inequality [8] it follows

∑
c

gc(w) ≥ 0 . (4.25)

Note that strict inequality holds for γ < 1.

Now we proof the representer theorem. Let us write for c = 1, ...,m,

wc = w||c + w⊥c =
∑
i

λc,iφ(xi) + w⊥c ,
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with w⊥c in the orthogonal complement of the span of φ(x1), ..., φ(xl). Now

dc(xj) = (wc − γ
1

m− 1

∑
d6=c

wd) · φ(xj)− ρc

= (w||c − γ
1

m− 1

∑
d6=c

w
||
d) · φ(xj)− ρc,

because w⊥c · φ(xj) = 0 for all j = 1, ..., l. Thus the value of Remp,c(dc) is independent of
w⊥c . Let us write the dependence of the decision function dc on w explicitly as dc(w) and
accordingly we use d(w). To proof the lemma, we will show that Ω(d(w)) ≥ Ω(d(w||)).
We have

Ω(d(w)) =
∑
c

(gc(w
|| + w⊥)− ρc) =

∑
c

(gc(w
||) + gc(w

⊥)− ρc).

But (4.25) implies
∑

c gc(w
⊥) ≥ 0 and the claim follows. �

Now let us show lemma 2.
Proof of lemma 2: To see that the cost function (4.4) is bounded from below we
argue as follows. The empirical risk is a positive function. We write for the regulariser
Ω =

∑
c(gc − ρc). By (4.25) above, for Ω to take arbitrary large negative values, ρc must

take arbitrary large values. Now look what happens for ρc > maxwc · φ(xi). Increasing
ρc by ∆ρc yields a decrease ∆ρc in Ω but an increase lc/(νlc)∆ρc ≥ ∆ρc in the empirical
risk term. Therefore the cost function is bounded. To see the convexity choose t ∈ [0, 1]
and another vector v = (v1, ..., vm). One calculates

tgc(w) + (1− t)gc(v)− gc(tw + (1− t)v) = t(1− t)gc(w − v) , (4.26)

and because of (4.25) the sum over all classes of (4.26) is greater or equal to zero, thus∑
c gc is convex. Therefore Ω as the sum of a convex function and the linear function∑
c ρc is convex and because the empirical risk is convex, the sum of them as well. �

Proof of lemma 3: To proof that the mapping γ 7→ αmax(γ) is continuous let us
choose a value γ̄ ∈ [0, 1) and a sequence (γn) converging to γ̄, in short, (γn)→ γ̄. We will
show that the induced sequence (αmax(γn)) converges to αmax(γ̄) by contradiction. Let us
write shortly αn for αmax(γn). Because the sequence αn is bounded, there is a convergent
subsequence and therefore without loss of generality we assume that (αn) converges to
ᾱ. Consider the combined sequences (αmax(γ̄), γn)→ (αmax(γ̄), γ̄) and (αn, γn)→ (ᾱ, γ̄).
Because the function (α, γ) 7→ F (α, γ) is a polynomial, it is continuous and therefore
F (αmax(γ̄), γn) → F (αmax(γ̄), γ̄) and F (αn, γn) → F (ᾱ, γ̄). If now ᾱ 6= αmax(γ̄) then
by the strict convexity of F (·, γ) we have F (αmax(γ̄), γn) > F (αn, γn) and therefore
F (αmax(γ̄), γ̄) ≥ F (ᾱ, γ̄). But by definition of αmax(γ̄), we have F (αmax(γ̄), γ̄) < F (ᾱ, γ̄),
a contradiction. �
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Chapter 5

Efficient optimisation of the multiclass problem

In this chapter we propose an algorithm to find an exact solution of our multi-class opti-
misation problem 4.2 and test the performance on a real–world task. In detail, we start in
section 5.1 by introducing our algorithm, which is an adaptation of the Sequential Mini-
mal Optimisation algorithm [53, 62]. We will show that the algorithm can be efficiently
implemented, using finite accuracy computations to avoid a large number of small but
time consuming updates of the variables. We prove termination of the algorithm after a
finite number of steps and give a bound on the accuracy needed to find a solution. In
section 5.2 we test the recognition performance of our algorithm on a standard handrit-
ten digit recognition task and show how our finite accuracy implementation speeds up
optimisation.

5.1 The algorithm

The quadratic problem (4.16) can be solved in a standard way. We choose a small
subset of variables and try to find their optimal values while keeping the other variables
fixed. Then we repeat this step with different subsets until the algorithm converges. Our
algorithm is based on the Sequential Minimal Optimisation algorithm [53, 62], which we
have adapted to our problem. The idea is to solve the smallest possible subproblem.
Because of the constraint ∑

i∈c

αi = 1,

a change of only one variable is not possible. The smallest possible subproblem is to
modify two multipliers simultaneously, where these multipliers belong to examples of
the same category. In order to make this elementary step for one class c, it is enough
to know the mean vector w̄c =

∑
j /∈c αjk(xi, ·) of all the other classes. The algorithm

proceeds by iterating this elementary step and observing optimality conditions to check
if the optimum is reached. The values (αi) are optimal values if the Karush–Kuhn–Tucker
conditions (4.21) and (4.22) are satisfied. Figure 5.1 gives an overview of the algorithm,
which is described in detail in the text.

Let us first describe the elementary step, the optimisation of two multipliers of the
same category. Then we will describe how we iterate this elementary step to find the
solution. Finally, we will describe how one can deal with finite accuracy calculations,
which leads to the modified algorithm in Figure 5.2. We start similar to [62].
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5.1.1 The elementary step

Suppose we want to optimise the variables αi and αj while keeping the other multipliers
fixed. Therefore, we have to maximise the cost function (4.16) as a function of αi and
αj. Let us write F for minus the cost function,

F (αi, αj) =
1

2

∑
i′,j′

αi′αj′Ki′j′ , (5.1)

with Kij = k(xi, xj)yij. Let us denote by αnewl the value of the multiplier αl after the
elementary step. At the optimum, the gradient of F is perpendicular to the 1-dimensional
subspace, spanned by the equality constraints

αi + αj = ∆, with ∆ = 1−
lc∑

l 6=i,j

αl.

Therefore, ∂αiF −∂αjF = 0 at (αnewi , αnewj ). With ∂αiF (αnewi , αnewj ) =
∑

l α
new
l Kil we get

αnewi = αi +
dc(xj)− dc(xi)

K11 +K22 − 2K12

, (5.2)

where we used
∑

l αl(Kjl −Kil) = dc(xj)− dc(xi). If αnewi is outside the feasible interval
[0, 1/νlc], we take the closest value in this interval for αnewi . From this we find αnewj =
∆− αnewi . Again, it is possible that αj is not in the feasible interval. So we project αnewj

in the feasible region and recompute αi. Now, we found the optimal values for the two
points, keeping all the other points fixed.

5.1.2 Optimisation algorithm

We initialise the algorithm by choosing randomly a fraction ν of multipliers of each
category c and setting them to 1/νlc. If νlc is not an integer, one more multiplier is
chosen and set to a value in (0, 1/νlc) to ensure that the multipliers of each class sum to
one.

We proceed by iterating over all categories. For each category c we calculate dc(xi),
for all xi ∈ Sc, choose two multipliers αi, αj, and perform an elementary step to optimise
them. For the choice of the multipliers we use the KKT conditions. In practical cases,
we compute with a finite accuracy, so we should replace the comparisons in equation
(4.21) and (4.22) with ε tolerant comparisons. We do this, but rewrite the conditions in
a slightly different form,

dci(xi)αi < ε (5.3)

dci(xi)(αi −
1

νlci
) < ε, (5.4)

which we call the relaxed conditions or ε–KKT conditions. It is easily verified that for ε =
0 these two conditions are equivalent to (4.21) and (4.22). This form is useful because it
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choose γ, ν, ε
initialise all αi
while the ε–KKT conditions are not satisfied [(5.3),(5.4)]

repeat for all classes c
compute dc(xi) for all xi ∈ Sc, and compute ρc [(4.1),(4.18)]
repeat multiple times

choose αi, with ci = c, a violator of ε–KKT [(5.3),(5.4)]
choose αj with cj = c
perform the elementary step with αi, αj [(5.2)]
update dc(xi) for all xi ∈ Sc, ρc [(5.5),(4.18)]

end repeat
end repeat

end while

Figure 5.1: The standard version of the main algorithm, as described in the text. In
square brackets at the end of each line are the relevant equations to perform the described
actions.

measures the KKT–Gap [10] and therefore bounds the difference of the objective function
to a solution of the relaxed conditions (5.3) and (5.4) to the true minimum by lε.

We scan over all multipliers of class c until a violator αi of (5.3) or (5.4) is found.
When one is found, choose a second multiplier of the same class. Then, do an elementary
optimisation step with αi, αj. Now, the values dc(xm), xm ∈ Sc are updated,

dc(xm)← dc(xm) +
∑
l=i,j

(αnewl − αoldl )k(xl, xm) (5.5)

where αoldl denotes the value of αl before and αnewl its value after the elementary step.
Next, the margin ρc is recomputed according to (4.18). After we have scanned over all
multipliers αi of class c, we go to the next class. We iterate until there are no violations
of the relaxed conditions. In practice, we perform multiple iterations over the same class
before going to the next one. This is possible, because the multipliers of one class depend
on the other classes only through the mean of all other wc, and therefore changing the
multipliers of one class has a small influence on the other classes.

Up to now, we have described the basic algorithm to solve the optimisation problem.
Unfortunately, in practice this does not yet yield an efficient implementation. We need a
good choice heuristics for the pairs αi, αj we want to optimise at each elementary step.
Otherwise, it can happen that we make a lot of small changes instead of a few large
ones, which dramatically slows down optimisation. For support vector machines, there
already exist many good heuristics, see Platt [53], Joachims [40], Keerthi et al. [41], or
the overview in Schölkopf and Smola [63]. We will deal in the next section with finite
accuracy computations and see how that can circumvent in a natural manner the problem
of performing small changes.
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5.1.3 Finite accuracy

Recall from subsection 4.2.6 that for a large training set we expect to have very few points
that lie exactly on the margin. But according to the optimality conditions (4.21) and
(4.22), these are the only points xi whose multipliers αi can have a value not at bound.
All the other multipliers αi are saturated at one of the bounds, either 0 or 1/(νlci).
Therefore, it is natural to ask if we can find a good approximation to the solution with
each αi taking only one of the two values {0, 1/(νlci)}. We will see in the next section
that the answer is no, at least in the general case. An illustration is given in Table 5.2,
where we compare the performance of this binary algorithm with the exact solution on a
handwritten digit recognition task. Nevertheless, it is possible to start the algorithm in
an initial phase with binary weights. The idea is to allow the multipliers at the beginning
of optimisation to take only the two extreme values, therefore preventing small changes,
and then during optimisation to allow more and more intermediate values.

Recall from subsection 4.2.6 that we can choose a different parameter ν, called νc,
for each class c. We will do this in the following way. For a given ν, we choose the
closest νc, separately for each category, such that νclc is an integer. This is for the sake
of convenience only; for large datasets, the values of ν and νc will be very close. For each
class c the possible values for αi, i ∈ c are in the interval [0, 1

νclc
]. Let us choose an integer

p. We define the accuracy for the multipliers of each class to be

δc = 1/(pνclc) (5.6)

and choose as possible approximations of αi the p + 1 values {0, δc, ..., pδc}. Next, we
have to modify the elementary step from 5.1.1 such that the multipliers always take one
of the allowed values. Suppose we want to do this new elementary step for the multipliers
αi, αj. We will use the symbol αnewl , l = i, j to denote their new values. We know that
αnewi + αnewj = αi + αj, therefore once αnewi is found we use this equation to find αnewj .
We first calculate the optimal value of αi according to (5.2). Let us denote this value by
αopti . We determine an integer q such that

qδc ≤ αopti < (q + 1)δc. (5.7)

Now either qδc = αopti , and then αopti is the new value of the multiplier, or we have to
round αopti to one of the two bounds of (5.7). We take the better one by checking the
value of the dual objective function. Concretely, with the notations of 5.1.1, we test if

F (qδc, αi + αj − qδc) < F ((q + 1)δc, αi + αj − (q + 1)δc) (5.8)

and if so, αopti = qδc otherwise αopti = (q + 1)δc.
The whole algorithm with finite accuracy is as follows, see Figure 5.2. We start with

p = 1. Then, the multipliers can take only the values 0 and 1/(νclc). Now we are running
the loop, see Figure 5.1. The computational costly part of the algorithm is the update of
the values dci(xi) after a change in the multipliers. As we allow the multipliers to have
only one of the two values {0, 1/(νlci)} we do few and large changes. We run the algorithm
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choose γ, ν, ε
set p = 1
initialise all αi ∈ {0, 1}
while the ε–KKT conditions are not satisfied [(5.3),(5.4)]

repeat for all classes c
compute dc(xi) for all xi ∈ Sc, and compute ρc [(4.1),(4.18)]
repeat multiple times

if p does not exceed the bound [(5.9)]
choose αi, αj, with ci = c, cj = c, with maximum heuristic [(5.10)]

else
choose αi, with ci = c, a violator of ε–KKT [(5.3),(5.4)]
choose αj with cj = c

end if
perform the elementary step with αi, αj [(5.2),(5.7),(5.8)]

update dc(xi) for all xi ∈ Sc, ρc [(5.5),(4.18)]
end repeat

end repeat
if none of the αi was changed

p← p · 100
end if

end while

Figure 5.2: The final version of the algorithm, which uses finite accuracy computations
and the maximum heuristic (5.10) to choose a pair of multipliers. Again, the relevant
equations to perform the described actions are in square brackets at the end of each line.
The vertical lines mark the difference to the standard algorithm in Figure 5.1. The thin
lines mark the changes for the finite accuracy computations. The changes needed to
include the maximum heuristic are indicated by the bold line.
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until there are no KKT violations or until no positive progress is made. Because there is
only a finite number of possible changes, we will come to this point after a finite number
of steps. If the relaxed KKT conditions are not yet satisfied we change the value of p to
a larger value, for example we multiply p by 100, and redo the optimisation steps until
the relaxed KKT–conditions are satisfied. We will state next that this procedure comes
to an end.

Proposition 5 The finite accuracy algorithm terminates after a finite number of steps.
More precisely, if ε > 0 is the relaxation of the KKT–conditions, it will stop if

p > 2M
1

ε
max
c

( 1

νclc

)2

, (5.9)

with M = maxi ||φ(xi)||.

Proof : Let us say that the multipliers (α1, ..., αl) are p–accurate if the algorithm with
an accuracy δc = 1/(pνclc) for each c either stops or does not yield any positive progress.
We will show that for any ε > 0 we can choose an integer p such that any p–accurate
multipliers fulfil the relaxed KKT–conditions. Let us fix a class c. Define

i = arg max
l:xl∈Sc

αldc(xl)

j = arg max
l:xl∈Sc

(
αl −

1

νclc

)
dc(xl).

(5.10)

Thus, if there are violators of the relaxed KKT–conditions (5.3) and (5.4), then xi, xj
yield a maximal violation. By the definition of ρc in (4.18) and the constraints in (4.16)
on αl we have at any time of the algorithm

dc(xi) ≥ 0, dc(xj) ≤ 0.

Because the multipliers are p–accurate, no elementary step (5.2) is made, thus

dc(xi)− dc(xj) < δc
(
k(xi, xi) + k(xj, xj)− 2k(xi, xj)

)
.

Therefore,

αidc(xi) ≤ αi
(
dc(xi)− dc(xj)

)
< αiδc

(
k(xi, xi) + k(xj, xj)− 2k(xi, xj)

)
≤ 1

νclc

1

pνclc
2M.

If we choose p according to (5.9), there will be no violators of (5.3). An analogous
argument shows that there will be no violators of the second condition (5.4). �

One may wonder if we could use (5.10) as a heuristic for the choice of the two mul-
tipliers for an elementary step. Note that we did not prove that with such a choice the
algorithm can find the optimal solution. But we still can use (5.10) as a heuristic in the
following way. We run the algorithm, with a pair of multipliers for an elementary step
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5.2. PERFORMANCE TEST

false accept false reject number SV

γ = 1 75 245 580
γ = 0.5 188 248 569
γ = 0 223 685 515
6×SVM 71 241 2530

Table 5.1: Results on the USPS handwritten digits dataset: The algorithm was trained
on the digits 0 to 5 and tested on all the digits 0 to 9. For all the results we chose a
parameter ν = 0.05. The algorithm was trained with different parameters γ, given in
the first column. The second and third column show the number of false accepted and
rejected test examples, respectively. The fourth column gives the number of Support
Vectors. The results of our algorithm are compared with a ν–support vector machine,
trained one–against–all. There, the decision function is given by an adjusted margin as
described in the text.

chosen according to (5.10). We iterate until the relaxed KKT–conditions are satisfied
or until the accuracy is such that p fulfils (5.9). If the second is true, and if we cannot
fulfil the KKT–conditions with this maximum heuristic (5.10), we just look for a pair of
multipliers according to our more general choice, see Figure 5.1. Now with lemma 5, we
will find a solution of the relaxed conditions without further increasing the accuracy. In
Figure 5.2 we show the final version of the algorithm. The differences to the algorithm
in Figure 5.1 are highlighted by the vertical lines.

Figure 5.3 shows the convergence of the algorithm with and without finite accuracy
computations, and with and without the heuristic (5.10). We can see that the combination
of the two yields a very efficient algorithm. See section 5.2 for a detailed discussion and
the exact parameters of the experiment.

5.2 Performance test

In this section we present different experiments with our algorithm. Recall that for m = 1
and m = 2 all the results of the one class and the ν–support vector machine with ρ ≥ 0
can be reproduced. In the case of three classes we have already seen various toy examples.
Figure 4.1.C shows the solution found by our algorithm for a linear kernel and γ = 1, and
in Figure 4.4 the dependence of the solution with a Gaussian kernel on the parameters
ν, γ is illustrated. In the next subsection we will perform experiments on real–world data.

5.2.1 Real–world data

We test the algorithm on the US postal service database of handwritten digits, a standard
dataset for multi–categorical classification. The digits run from 0 to 9 and are images
of size 16 × 16. This can be considered as a ‘closed’ data base: Each image necessarily
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belongs to one of the ten classes. In real–world applications, however, data comes from an
‘open’ scenario. The classifier trained to recognise digits must also respond to non–digit
images, such as characters, lines, drawings, etc.. In order to mimic such an open situation
we trained the algorithm on the digits 0 to 5 only. The test set, however, contains also
samples from digits 6 − 9. Ideally these additional test examples should be classified as
belonging to none of the classes. There are 4896 examples in the training set. The data
was normalised, such that all components of a data vector lie in the interval [−1/16, 1/16].
For optimisation, we used a Gaussian kernel of variance 0.1, which is a suitable value for
this task [60]. We tested the model on 2007 examples of the digits 0 to 9. Remember that
we did not present examples of 6 to 9 to the algorithm during learning. We say that an
example of class c is accepted, if the decision function (4.1) is positive, and otherwise it
is rejected. Note that one example can be falsely accepted by more than one class. The
results are summarised in Table 5.1.
The results are compared with a ν-support vector machine, trained one–against–all on
the examples of 0 to 5. For the ν–support vector machine we used the libsvm package
[20]. To accept or reject examples, one needs a threshold value for each support vector
machine. Let us denote by (vc, bc, µc) the solution of support vector machine c, where vc
is the normal vector of the separating hyperplane, bc is the offset and µc the margin. We
found that neither the hyperplane nor the margin are suitable thresholds, in other words
the test vc · φ(x)− bc ≶ 0 accepted too many wrong examples (337 false acceptances, 66
false rejections), whereas the test vc · φ(x) − bc ≶ µc reject too many positive examples
(13 false acceptances, 368 false rejections). Therefore, we defined a threshold θc for each
classifier to be the νlc–smallest value of the set {vc ·φ(xi)|xi ∈ Sc}, where li is the number
of examples in class i, and the test for acceptance or rejection is vc · φ(x) ≶ θc.

The same parameters are used for the SVM as for our algorithm, in particular the
kernel, the parameter ν, and the accuracy of the solution. It should be pointed out that
the SVM needs six times more parameters because one has to learn a multiplier for each
example and each of the six classifiers. Noted in the table are the median values over five
runs, with a high accuracy of 10−6 for the relaxed KKT conditions, therefore the number
of false acceptance and false rejections respectively did not change across different runs
by more than one (except in the case γ = 0, where we found a maximal difference of 4
examples). One can see that for higher values of γ the performance is better. This is
expected, as for γ = 0 the representation is learnt for each class separately, and the higher
the value of γ, the more information of the other classes is used to estimate the vector
wc of class c. We calculated the lower bound of the number of support vectors according
to subsection 4.2.6, which is 241. The actual solution uses 500-600 support vectors. This
indicates that we are still far from the limit, where the inequality (4.19) turns into an
equality. More interesting is that the number of support vectors is small compared to the
total of 2530 support vectors of all the six SVMs together. Note that a support vector
machine trained on all digits 0-9 achieves an error of about 80-90 examples, but uses the
additional knowledge that each shown new example belongs exactly to one class [60].
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false accept false reject number SV

standard algorithm 75 245 580
binary algorithm 176(4) 252(21) 241

Table 5.2: Comparison of the true solution with an finite accuracy solution, where each
multiplier αi can only take either of the two values {0, 1/(νlci)}. The numbers for the
standard algorithm are the ones taken form table 5.1, for the binary algorithm they are
the mean over five runs, with standard deviation in parenthesis.

5.2.2 Testing finite accuracy

Let us investigate the influence of the finite accuracy computations on the behaviour of
the algorithm. We do the same digit experiment as above with the same parameters. We
choose an initial value p = 1. First, we wanted to test if we can find a good approximation
of the solution with each multiplier αi taking one of the two values {0, 1/(νlci)} only, that
is, for each class the vector wc will be the mean of the outliers. Because we kept a very
small value ε = 10−6 for the relaxation of the KKT conditions, the algorithm was not able
to fulfil them and therefore we stopped when no positive progress was made. We tested
the solution found on the test set and compared it with the precise solution, see Table
5.2. One can see that for the reasonable choice of ν = 0.05 the approximate solution has
a lot more false acceptances than the true one. When comparing the number of support
vectors, we can see that the precise solution has many more, and therefore many support
vectors sitting exactly on the margin.

Next, we repeated the same experiment. However, when there was no positive
progress, we multiplied p by 100 and continued the optimisation. We repeated this
until the relaxed KKT–conditions were satisfied, as described in Figure 5.2. In Figure
5.3 we show the value of the objective function as a function of the number of changes
made by an elementary step. This is an indicator for the speed of the algorithm, because
after a change by an elementary step, we recompute the values dc(xi) which is the time
consuming part of it. The solid lines show the cases where we used the finite accuracy
modification, whereas for the dashed lines we did not. Note that to choose a pair of
multipliers, we either scanned in a double loop over all pairs of multipliers belonging to
the same class, where the outer loop checks for a KKT–violation (thin line), or we used
the maximum heuristic (5.10) to choose a pair (bold line). Note that in the first case, we
made ten times the outer loop for each class, before changing to the next class, whereas
in the second case, we made 100 elementary steps for the same class before changing to
the next.
For the finite accuracy modifications, it occurred twice that there was no positive progress
and therefore we augmented the accuracy by multiplying p with 100 to a final value of
p = 104. The theoretical bound of lemma 5 is p > 2 ∗ 106 ∗ 1/282 ≈ 2600. The verti-
cal arrows mark this increase in accuracy for the fastest algorithm using finite accuracy
and the maximum heuristic. One can see that an increase in accuracy yields a smaller
slope of the objective function, as expected, because smaller steps are made. Because
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F ↑

50 100 5001000 5000

plain algorithm
finite accuracy
max heuristic
finite accuracy +
max heuristic

Figure 5.3: The log–log plot shows the value of the objective function F from (5.1) with
respect to the number of changes made by an elementary step of the algorithm. For the
solid lines we used the finite accuracy calculations, but not for the dashed lines. For the
bold lines we used the maximum heuristic, but not for the thin lines. The vertical arrows
mark the moment of an increase in accuracy for the bold line, that is, when using finite
accuracy and the maximum heuristic. See the text for more details.

the moment of convergence is not well visible in figure 5.3, we give an average number of
changes made by an elementary step for the different algorithms in Table 5.3. We can see
that the combined version of finite accuracy and maximum heuristic is the most efficient
method.
Note that by using the maximum heuristic, but without finite accuracy computations, it
is not sure that the algorithm finds a solution. In our example it always did.

When we evaluate the kernel only when needed and keep these values in memory, we
need for the best version about 6 ∗ 106 kernel evaluations. This is few compared to the
about 25 ∗ 106 entries of the kernel matrix. To have an idea of training time, our Java
implementation took about 30−40 seconds to find the solution on a Sun–Blade (running

algorithm number of changes in

elementary step

- - plain algorithm �50’000
– finite accuracy 9810 (390)
- - max heuristic 5640 (610)
– finite accuracy + max heuristic 3320 (160)

Table 5.3: Average number of changes made by an elementary step until convergence
with its variance in parenthesis. See Figure 5.3 and text for details.
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at 500MHz), having enough memory to store all needed kernel evaluations.

5.3 Discussion

In this chapter we showed how to solve the optimisation problem of section 4.2 efficiently.
We proved that our finite accuracy algorithm terminates after a finite number of steps,
but we did not tell how long one has to wait for that. One can see that the proof is
actually constructive in the sense that it could be used to calculate a bound on the
number of iterations. This is a subject for future work.

Eventually, we want to point out that there exist more possibilities to further speed
up the algorithm. For example, one could do several elementary steps before updating
the decision function and the margin. Many of these possibilities are discussed elsewhere
[40, 53, 21, 19], and could be combined with the proposed approach.

The experiments showed a good performance of our algorithm on the USPS dataset.
They confirmed that our approach uses less parameters and less support vectors than a
standard one–versus–all approach using binary support vector machines. We recall, that
we did not use the standard closed scenario, in which one knows, that every test example
belongs to one of the learnt classes. But we mention here that we tried our algorithm on
the closed scenario. In more detail, we used all the ten digits to train the algorithm and
then classified the test examples. The class c is attributed to the test example x if the
decision function dc of class c takes a maximal value dc(x) among the decision functions of
all classes. In this situation, we noted a significant decrease in performance with respect
to a standard one–versus–all approach using binary support vector machines. This comes
with no surprise, as in our empirical risk term only positive examples lying on the wrong
side of the margin are penalised, and therefore, our approach is not designed for this
situation.
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Chapter 6

Simple optimisation of the multiclass problem

In this chapter we derive a stochastic gradient descent algorithm to solve the optimisation
problem 4.4. Intuitively, this type of algorithm is called an online algorithm, because at
each iteration of the algorithm, only a fraction of the training data is available, and is
used immediately by the algorithm to optimise the parameters. This is in contrast to
the so-called batch algorithms, where at any time the whole training data can be used
for optimisation. The algorithm in chapter 5 was an example of a batch algorithm. Even
though at each elementary step only two samples are used, we need access to all examples
to select the two most relevant ones. This is different from the online algorithm in this
section, where at each step we are not free to choose the examples.
We will start by deriving the learning rule in section 6.2, that is, the update rule of the
parameters at each iteration. Then, in section 6.3, we will apply the online algorithm
to a toy problem and to the handwritten digit problem of section 5.2. Finally, we will
discuss our results.

6.1 Introduction

The classical perceptron algorithm by Rosenblatt [56] is one of the simplest online algo-
rithms for learning a separating hyperplane. At each instant, a new example is shown
and if it is misclassified, the hyperplane is moved toward the misclassified point, oth-
erwise it is kept unchanged. If the data is linearly separable, the perceptron algorithm
converges, but it is not sure that the resulting hyperplane has a large margin. Although,
margins were used right from the beginning, their size was fixed beforehand, see [25] and
the references therein. A large margin perceptron algorithm was proposed by Freund and
Schapire [28], where the margin is optimised during training. The idea is to learn multiple
perceptrons, each with a weight factor. Then, the decision rule is given by the sign of
the weighted perceptrons. An online maximum margin perceptron rule was proposed by
Kowalczyk [44]. The idea is to generate a solution by approximating the closest points
of the convex hulls of the data points of both classes. A modification of the perceptron
algorithm to multiple classes was proposed by [22].

Our approach relies on the idea of Kivinen et al. [43] and uses their framework. The
idea is to use a gradient descent method, but instead of using all the data to calculate
the empirical risk term, we use only one example of each class to estimate its value at a
given time step. The resulting algorithm is of the same form as the perceptron algorithm:
at each instant a few examples are shown, tested, and an update is performed depending
on the outcome of the test.
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6.2 Learning rule

We will consider the following situation. At each time step t we have an estimate wt =
(wt,1, ..., wt,m) and ρt = (ρt,1, ..., ρt,m) of the minimum of (4.4). Furthermore, some new
examples are shown and used for an update of the parameters. We concentrate on the
case of γ = 1 and additionally suppose that at each time t one example of each class,
denoted by xt,c, is available. Thus, our estimate of the empirical risk (4.2) at moment t
is

R̂emp(t) =
1

ν

∑
c

[dc(xt,c)]− (6.1)

We perform a stochastic gradient descent, with updates

(wt+1, ρt+1)← (wt, ρt)− (∂w, ∂ρ)(Ω + R̂emp(t)). (6.2)

Calculating the partial derivatives ∂wc and ∂ρc is straightforward, but we will discuss the
derivative ∂wc in more detail. We get

∂wcΩ = wc −
1

m− 1

∑
d6=c

wd (6.3)

and for the derivative of the estimate of the empirical risk

∂wcR̂emp(t) =
1

ν

(
θc(t)k(xt,c, ·)−

1

m− 1

∑
d6=c

θd(t)k(xt,d, ·)
)
, (6.4)

with the function θc given by

θc(t) =

{
1 if dc(xt,c) < 0

0 otherwise.
(6.5)

We note that the negative part function [·]−, which takes the value −x if the argument
x < 0 and zero otherwise, is not differentiable in 0. But let us for the moment suppress
this detail. From section 4.2.5 we know that the final solution has the advantage that
each vector wc is expressible as a linear combination of the data in its class only. But the
components of the gradient vector at a non optimal point do not share this property, as
one can see from (6.3) and (6.4). We profit now from the restriction to the case γ = 1
and recall the translation invariance 4.2.3 of the decision function and the regulariser.
Accordingly, we can add the same vector v to each of the wc without changing the decision
function nor the value of the cost function. Therefore, if at each update (6.2) we add

v =
1

m− 1

∑
d

(
wt,d + θd(t)k(xt,d, ·)

)
(6.6)
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A

wt,c
wt+1,c

xt

B

wt,c
wt+1,c

xt

Figure 6.1: Illustration of the learning rule, shown is the estimate at time t of the repre-
sentative vector wt,c of class c (solid arrow) and the zero level of the decision function dc
(solid line). In A the new point xt is correctly classified, and the updated representative
vector wt+1,c and zero level are shown (dashed). In B the new point is on the wrong side
of the margin, as indicated by the dotted line. Therefore wt+1,c is turned in direction of
xt and the margin is reduced (dashed line).

to each wt+1,c, the representative vectors remain expressible as a linear combination of
the data of their class only and we derive the following simple update rule:

wc ← (1− η m
m−1

)wc+

{
η 1
ν

m
m−1

k(xt,c, ·) if dc(xt) < 0

0 otherwise
(6.7)

ρc ← ρc + η−

{
η 1
ν

if dc(xt) < 0

0 otherwise
(6.8)

with wc =
∑

s αsk(xs,c, ·). The above learning rule has a the following interpretation, see
figure 6.1. The first term on the right hand side of (6.7), and the first two terms of (6.8),
respectively, decreases wt,c and increase ρt,c at each iteration. These terms correspond to
the partial derivatives of the regulariser and will increase the separation of the classes.
On the other hand, the last terms correspond to the empirical risk. They are zero, if at
time t example xt,c is classified correctly. If not, then we move the vector wt,c in direction
of xt,c and decrease the margin ρt,c. Note how the ν–property is reflected in the update
rule (6.8). At each step we increase ρt,c by the learning rate η, but if an example if
rejected by error, then the margin is decreased by η1/ν. Therefore, we will always find
approximately a fraction of ν of outliers.

Let us take a look at our estimate wt,c of the representative vector at time t. We can
write it as an expansion

wt,c =
∑
s

αsk(xs, ·). (6.9)

From section 4.2.5, we know that the coefficients should sum to one,
∑

s αs = 1. We
argue that this is the case for our online algorithm, too. Let us define a random variable

43



CHAPTER 6. SIMPLE OPTIMISATION OF THE MULTICLASS PROBLEM

A B C

Figure 6.2: Toy experiment: A shows the initial situation. In B, the estimates of the
zero level of the decision function dc of each class are shown by the solid line after 800
iterations. In C, the support vectors are shown. The circles indicate the value of the
corresponding multiplier. Parameters: η = 0.005, ν = 0.1.

St, which is the sum of the expansion coefficients of wt,c at time t,

St =
∑
s

αs, (6.10)

with αs given by (6.9). Suppose now that St = 1, and we show that the expected value
for St+1 is equal to one, under the assumption that all points are drawn from a fixed
distribution. Because the online algorithm fulfils the ν–property, a new point of class c is
on the correct side of the margin with probability 1− ν. This will decrease St by a factor
(1− η m/(m− 1)), by (6.7). On the other hand, the new point is with probability ν on
the wrong side of the margin and this decreases St as above, but adds a new coefficient
with value η1/ν m/(m− 1). Together, the expectation of St+1 is given by

E(St+1) = (1− ν)(1− η m

m− 1
)St + ν(1− η m

m− 1
)St + νη

1

ν

m

m− 1
= 1. (6.11)

One can see that if an example xt,c has dt,c(xt,c) < 0, then it will be and remain a
support vector. Therefore, we expect the number of support vectors to be considerably
higher than the number of support vectors of the exact solution. Even worse, if we
continue to show new data points, the expansion continues to grow. A possible solution
is to truncate the expansion after a fixed number of terms, as proposed in [44], where
the truncation error can be estimated by a direct calculation. Note further that the
computation cost for each iteration is at least the prediction cost, as we have to predict
the class of the examples available at that time step.

6.3 Experiments

We start with a toy example in two dimensions. The examples of each class are drawn
from a uniform distribution with rectangular support. We used a Gaussian kernel. Figure
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false accept false reject number SV

exact solution 75 245 580
stoch grad 229 179 1027

Table 6.1: The same experiment on the USPS handwritten digits dataset as described in
section 5.2. The result from table 5.1 of the exact solution (first line) is compared to a
stochastic gradient solution (second line), where we ran 103 iterations with η = 10−4. The
second and third column show the number of false accepted and rejected test examples,
respectively. The fourth column gives the number of Support Vectors. For more details
see the text.

6.2.A shows the initial situation, with each wc initialised to the mean of ten samples. Then
we run our online algorithm for 800 iterations, and after that the estimate of the solution
is shown in figure 6.2.B. The solid line shows the zero level of the decision function of
each class. For each of the closed solid lines, points inside are attributed to belong to the
class, where points outside not. The points show the support vectors. One can easily see,
how the support vector tend to be close to the border. Note that most of the multipliers
corresponding to the support vectors are actually close to zero, which can be seen in C.
Here, the size of the circles around each support vector is proportional to the size of the
corresponding multiplier.

Next we use the dataset of handwritten digits and perform the same experiment as
described in section 5.2. We initialise each representative vector w0,c to be the mean
of 100 randomly chosen examples of class c. At each iteration, we show one example
of each class, randomly chosen among all examples of the class. Table 6.1 shows the
results and compares them to the exact solution of section 5.2. We can see that the
error is higher than the one of the exact solution and, as expected, has considerably more
support vectors.

6.4 Discussion

In this chapter we derived a stochastic gradient decent rule to solve the multi–class
optimisation problem 4.2. As expected, we found more support vectors as for the exact
solution. To circumvent this problem, the solution could be truncated [43]. On the other
hand, the algorithm is appealing, because it has a direct interpretation and is very easily
implemented.
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Chapter 7

Unsupervised Learning

In unsupervised learning one is concerned with the problem of finding structure in given
data. In this chapter we modify our algorithm to categorise labelled data into an algo-
rithm that estimates clusters of the data. The data is equipped with a kernel measuring
the pairwise similarity of data examples. We start the chapter by reviewing related unsu-
pervised learning algorithms and clustering strategies. We will focus on approaches close
to ours, especially on algorithms using kernels. In section 7.1 we propose the initial idea
of our kernel clustering algorithm. We will see that we have to modify our first approach
to get a useful cost function. We propose two possible modifications in sections 7.2 and
7.3 and show an example application.

7.1 Introduction

The kernel trick, reviewed in chapter 2, paved the way to use nonlinear kernels and turn
algorithms that extract linear structure in data into algorithms that detect nonlinear
structure. Examples of this are kernel Principal Component Analysis [64], kernel Inde-
pendent Component Analysis [6], or the estimation of the support of a distribution [62].
Different kernel clustering algorithms can be found in the literature [30, 31, 9]. In [30],
each point is mapped into a feature space and clusters c are estimated by estimating their
centres mc. The centres are estimated in feature space, such that the average squared
norm, averaged over all clusters and points belonging to the cluster, is minimised. The
clusters in feature space can be learnt implicitly by using a kernel. An other kernel
clustering algorithm was proposed by Graepel and Obermayer [31]. It is similar to the
above mentioned algorithm, but a further neighbourhood relation is introduced among
the clusters. This leads to a topographic arrangement of the clusters.

In this chapter we propose two unsupervised algorithms. Both are modifications of
an initial optimisation problem. They can be interpreted as kernel clustering algorithms.
The main idea was published in [13]. The difference to the above algorithms is that not
every point belongs to one of the clusters. The idea is to estimate multiple vector and
margin pairs, each separating a fraction of the data from the rest and thus defining a
cluster. The cost function penalises two such vectors if they point in a similar direction,
but we put no constraint on orthogonality of these vectors, unlike for example in Principal
Component Analysis. In more detail, we are given a set of data examples

S = {x1, .., xl} (7.1)

from a nonempty set X. Let k denote a kernel on X×X and φ denotes the mapping from
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Figure 7.1: Extracting one linear feature: Shown are the data points, the vector w1 and
the hyperplane w1 · x− ρ1 = 0, which separates one cluster from the rest of the data.

X into the Hilbert H space induced by k. We recall the relation φ(xi) ·φ(xj) = k(xi, xj).
Here, the · denotes the scalar product in the Hilbert space H. The general idea is the
following. Consider a vector wc and a margin ρc ∈ R. Then this pair defines a cluster,
namely all points for which the function

dc(x) = wc · φ(x)− ρ (7.2)

is larger than zero. Figure 7.1 shows one vector with its margin separating one cluster
from the rest of the data. A candidate to learn such a pair of vector and margin is the
cost function of the one–class support vector machine [62], which tries to separate the
data as far as possible from the origin, with a fraction ν of outliers. Let us denote this
cost function by

fc(wc, ρc) =
1

2
||wc||2 − ρc +

1

νl

∑
i

[dc(xi)]−. (7.3)

Now, the following two questions arise.
Question 1: This cost function allows to learn only one pair of vector and margin. We
have to find a way to combine several of these cost functions to learn multiple vector and
margin pairs.
Question 2: As shown in figure 7.1, we would like to separate a fraction of the data only
to form a cluster. Even though we can adjust the number of outliers by the parameter ν
in the last term of (7.3), they are penalised by this term. Therefore, it is not sure if by
choosing a large fraction ν of outliers we can learn a meaningful cluster.

Let us start by tackling the first question. We can learn multiple pairs by just adding
multiple cost functions. But by adding the cost functions, we have independent optimi-
sation problems for each pair and thus, we will find the same solution for each of the
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pairs (wc, ρc). To find different pairs, we add a penalty term

G(w1, ..., wm) =
∑
c,d 6=c

wc · wd, (7.4)

penalising pairwise vectors pointing in the same direction. Together, the optimisation
problem reads

minimise
∑
c

fc + γG. (7.5)

The minimisation is done over all ((w1, ρ1), ..., (wm, ρm)) ∈ (H × R)m. The parameter γ
weighs the penalty term G.

To answer the second question, we analyse the optimisation problem (7.5). Let us
denote by m the number of vector and margin pairs we would like to learn. Furthermore,
we denote by

F : (H × R)m → R (7.6)

the cost function of (7.5). We show in 7.5 at the end of the chapter that for a suitable
choice of the parameter γ the cost function F is bounded from below and convex. Let
us choose such a value for γ. Suppose we have found a solution (w1, ρ1), ..., (wm, ρm) of
(7.5). We choose two indices, i, j and interchange the pairs (wi, ρi) and (wj, ρj) along a
straight line τ : [0, 1]→ (H × R)m,

τ(t) = (1− t)((w1, ρ1), ..., (wi, ρi), ..., (wj, ρj), ..., (wm, ρm))+

t((w1, ρ1), ..., (wj, ρj), ..., (wi, ρi), ..., (wm, ρm)).
(7.7)

We note that the cost function is invariant to the interchange of two vector and margin
pairs. This implies F (τ(0)) = F (τ(1)). But because F is convex, F takes the same value
at all points sitting on the straight line between these two points, that is,

F (τ(t)) = F (τ(0)), for all t ∈ [0, 1]. (7.8)

Let us denote by (w̄, ρ̄) the mean of all the pairs (wl, ρl) from our solution. Continuing
with the same argumentation, we can show that the value of F on our solution is equal
to the value of the cost function at the point ((w̄, ρ̄), ..., (w̄, ρ̄)). Therefore, by solving
(7.5) we can always find a solution in which all the vectors and margins are equal. But
such a solution is not very meaningful.

To solve this problem, we propose two modifications. In section 7.2 we modify the
empirical risk term, the last term in (7.5), such that only a fraction of points are penalised
by the empirical risk of each cluster. The second proposed solution is then discussed in
section 7.3, where we calculate and modify the dual problem of (7.5). In addition, a third
modification is used in chapter 9. Because the situation is slightly different, we explain
the details there.
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7.2 Modifying the cost function

In this section we propose a modification of our initial cost function (7.5). The idea is
very simple. We constrain each point to belong to maximally one cluster. We do this by
introducing a binary value λc,i ∈ {0, 1} indicating if the point xi belongs to cluster c or
not. We denote by lc the number of points in cluster c. Not every point belongs to one of
the clusters, and the fraction of points not belonging to any of the clusters is controlled
by the parameter νtot ∈ [0, 1]. For simplicity, we choose equally many points in each of
the clusters. In summary, we have the following constraints:

λc,i ∈ {0, 1},
∑
i

λc,i = lc, and lc =
⌊(1− νtot)l

m

⌋
, (7.9)

with b·c denoting the largest integer smaller or equal to the argument. As in our ini-
tial idea, a cluster is defined by a separating hyperplane allowing a fraction ν of out-
liers. Using the indicators λ = (λc,i)c,i ∈ {0, 1}ml and using the shorthand (w, ρ) =
((w1, ρ1), ..., (wm, ρm)) the empirical risk term reads

Remp(w, ρ, λ) =
∑
c

1

νlc

∑
i

λc,i[wc · φ(xi)− ρc]−. (7.10)

In words, a point xi yields a positive empirical risk if it belongs to cluster c, that is,
λc,i = 1, but is on the wrong side of the margin, wc · xi < ρ. We use a regulariser, which
is just the remaining part of (7.5) but with a small modification. We penalise two vectors
wc, wd only if the angle between them is less than π/2. This makes the optimisation
problem slightly more complicated. However, as we will use a gradient method, it is still
tractable. Explicitly, the regulariser is

Ω(w, ρ) =
1

2

∑
c

||wc||2 + γ
∑
c,d 6=c

[wc · wd]+ −
∑
c

ρc. (7.11)

The interpretation of the regularising term is as follows. We seek vectors wc of small norm
and large margins ρc, the first and the last term in (7.11). Together they try to separate
the clusters as far away from the origin as possible. The middle term puts a penalty
on vectors pointing in a similar direction and helps to get clusters sitting in different
directions of the data space. In summary, the optimisation problem reads

minimise Ω +Remp

subject to λc,i ∈ {0, 1},
∑
i

λc,i = lc.
(7.12)

The minimisation is done over (w, ρ, λ) ∈ (H × R)m × {0, 1}ml. In the next subsection,
we describe how we find an approximate solution of the optimisation problem (7.12).
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7.2.1 Two–step optimisation

We propose a two–step procedure to optimise (7.12). The algorithm proceeds by al-
ternating the two steps, until it has converged or a maximal number of iterations was
performed. We recall that the variables are the cluster indicators λc,i, the vectors wc and
the margins ρc. Our method is similar in spirit to the k–means algorithm [25]. Mathe-
matically speaking, it is a coordinate descent: In the first step, we fix the variables λc,i
and ρc and update the variables wc with a stochastic gradient descent, as in section 6.2.
In the second step, we fix the variables wc and update the variables λc,i and ρc. Because
the variables λc,i are binary, we do not use a gradient method but rather we will see that
we can directly guess a close to optimal point. In detail, the two steps are the following.

Step one: Let the variables λc,i and ρc be fixed. We will compute the partial derivative
of the cost function (7.12) and perform an update

wc ← wc − η∂wc(Ω +Remp), (7.13)

with learning rate η. For efficiency, we do not use all the data to estimate the empirical
risk, but rather use only a subset of s examples. We draw these examples randomly from
our dataset. Let us denote the set of chosen examples at step t by St. A short calculation
gives the update rule

wc ← (1− η)wc − ηγ
∑

d:wc·wd>0

wd + η
m

ν(1− νtot)s
∑
xi∈St

θc,iλc,iφ(xi). (7.14)

Here θc,i ∈ {0, 1} is zero if wc · xi > ρc and 1 otherwise. We recall that νtot is the relative
number of examples, which do not belong to any cluster. The value ν is the relative
number of points in each cluster, which are on the wrong side of the margin. The integer
s is the number of examples in St. The factor m/ν(1− νtot)s in front of the last term in
(7.14) is just one over the expected number of examples in St, which belong to cluster c
and are on the wrong side of the margin.

We want to mention a technical detail. The negative part function [·]−, which assigns
x the value −x if x < 0 and zero otherwise, is not differentiable at 0. By our algorithm
described below there are points xi with wc · xi = ρc. In rare cases, for example when
dνlce = 1 this yields problems. Therefore, in these cases the negative part function has
to be replaced in a small neighbourhood of zero, such that it is differentiable.

Step two: In this step we fix the variables wc and optimise with respect to the variables
λc,i and ρc. The algorithm will proceed by first choosing good values for the indicators
λc,i and then given these values, determine the optimal margins ρc.

To motivate the choice of good values for the indicators, we first look at the optimal
value given the binary values λc,i. Thus, suppose each point xi is assigned to one cluster
according to (7.9). Setting the optimal margin ρc is now an independent problem for each
cluster c. In analogy to the ν–property discussed in section 4.2.6, the optimal values of
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the margins are set as follows. For a cluster c define ac,i = wc · xi for all xi belonging to
c and sort the values ac,i in ascending order,

ac,j1 ≤ ac,j2 ≤ ... ≤ ac,jlc . (7.15)

Then we set

ρc = ac,jn , with n = dνlce. (7.16)

Hence, ρc is sitting at the ν–quantile of the empirical distribution of {ac,j1 , ..., ac,jlc}, see
figure 4.3.

From the above we see that suitable values for the indicators λc,i are values that allow
large values of ρc, because the margins have to be maximised by (7.11). According to
(7.16), we should choose points xi to belong to cluster c if their dot product with wc is
large. For this we chose the simplest possible strategy. We iterate over all clusters. For
the first cluster we calculate the values ac,i = w1 · xi for all points xi and select lc points
with a maximal value of ac,i. For these points we set the indicator λ1,i = 1. Now suppose
the indicators for clusters 1 to c−1 are set. Then for cluster c we calculate the values ac,i
for all points xi, which do not already belong to one of the previous clusters. Again, we
set the indicators λc,i = 1 for the points xi with maximal values ac,i. After the indicators
are set for all clusters, the optimal margins ρc are determined according to (7.16) and
step two is finished.

From the point of view of efficiency, we can adjust the complexity of the first step by
choosing a suitable fraction of the data to estimate the empirical risk term. In step two,
all the scalar products of the data with the vectors wc have to be computed. Therefore,
the complexity of one iteration is of the order of ml.

7.2.2 Example

We show a toy problem in two dimensions. We sampled 40 points from four uniform
distributions with a rectangular support. The points are shown as the dots in figure 7.2.
The data has zero mean. Suppose we are given this data, but do not know its structure.
We try to find three clusters, which give us information about the structure of the data.
We use the parameters γ = 1/4, νtot = 0.4 and ν = 0.3. Hence, 60% of the data belong
to one of the cluster and in each cluster 30% are on the wrong side of the margin. The
learning rate was η = 0.01. We run 200 iterations. The vectors wc found by optimisation
are shown in the figure by the three arrows. The perpendicular lines are the hyperplanes
{x|wc · x = ρc}. The circles indicate the points belonging to one of the clusters.

7.3 Modifying the dual problem

In this section we show a second modification of our initial optimisation problem (7.5). For
this, we calculate the dual problem, which can be easily interpreted. The interpretation
will show us that a change of the sign in the dual formulation can resolve the problems
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A

B C

Figure 7.2: A toy problem: We defined four uniform distributions with supports as
indicated in A. The dots shown in B and C are the data points consisting of ten samples
of each distribution. We plotted the solution for three clusters. In B with the standard
scalar product as kernel. Each cluster is represented by its vector wc (arrow) and the
margin. In C the solution for a Gaussian kernel is shown. The lines are the preimages
of the margin hyperplanes. The circles indicate the points belonging to a cluster. The
second larger circles in C are proportional to the size of the coefficients, used in the
expansion of the solution. See the text for details.

mentioned above in questions 1 and 2 on page 48. In section 7.5 we derive the dual
problem of (7.5), which is

maximise
αc,i

− 1

2

∑
c,d,i,j

αc,iαd,jycdk(xi, xj)

subject to 0 ≤ αc,i ≤
1

νl
,
∑
i

αc,i = 1,

(7.17)

with

ycd =

{
γ− if c = d

γ+ if c 6= d .
(7.18)

Here, the parameters γ−, γ+ are related to γ according to (7.32) in section 7.5. The dual
variables αc,i are related to the primal variables wc by

wc =
∑
d,i

αc,iycdφ(xi), (7.19)

see (7.33) in section 7.5, and each margin ρc is set to be the dνle–smallest element of
{wc · φ(xi)|i = 1, ..., l}.
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Lemma 5 in section 7.5 implies, that the dual problem is equivalent to the primal
problem (7.5) for 0 < γ < 1. With lemma 6 in section 7.5, we derive γ− > 0 and γ+ < 0.
In this case, maximising (7.17) means the following: For a cluster c we have to choose
values αc,1, ..., αc,l such that their sum is equal to one, and such that∑

i,j

αc,iαc,jk(xi, xj) (7.20)

is small. On the other hand, for two clusters c, d with c 6= d the values αc,i, αd,j should
be chosen such that ∑

i,j

αc,iαd,jk(xi, xj) (7.21)

is large. Therefore, at an optimal solution, two multipliers αc,i, αc,j of the same cluster
should be large if the points xi, xj are dissimilar. On the other hand, two multipliers
αc,i, αd,j of two different clusters should be large if the points are similar. One possible
solution is that for a given index i all the multipliers α1,i, ..., αm,i belonging to this point
are equal. This implies that all the vectors w1, .., wm are equal, exactly as we found in
7.8.

This is exactly the opposite of what a clustering algorithm should do. We would
expect that the vector wc of cluster c is expressed as a linear combination of similar
points. Thus, the multipliers αc,i, αc,j should be large if the points xi, xj are similar. On
the other hand, another vector wd should be expressed as a linear combination of points,
dissimilar to the points used to express wc. To do so, the easiest modification of (7.17) is
to change the sign of the constants γ− and γ+, which changes the sign of the optimisation
problem. Thus, in the following we will chose γ− < 0 and γ+ > 0. Furthermore, we will
later translate the data in feature space so that it has a mean of zero. This allows the
clusters to sit in different directions in feature space.

Let us take a look at what happens by changing the sign of the constants γ−, γ+. We
consider the ml ×ml matrix K̃ with entries

K̃cd,ij = ycdk(xi, xj). (7.22)

This is the matrix appearing in the dual problem (7.17).

Lemma 4 Fix γ− < 0. Choose γ+ ∈ [0,−1/(m− 1)γ−]. Then the matrix K̃ in (7.22) is
negative definite.

The proof can be found in section 7.5. From this lemma we conclude that by choosing
the parameters γ− < 0 and γ+ ∈ [0,−1/(m − 1)γ−], the cost function in the dual prob-
lem (7.17) is convex. Thus we try to maximise a convex function. This implies that
the optimal values of the multipliers αc,i lie at the border of the range allowed by the
constraints. In other words, at optimum each of the multipliers is either zero or equal to
1
νl

. Note that strictly speaking, this is only true if νl is an integer, otherwise there might
be some exceptions. This observation will lead us to a simple algorithm to optimise the
dual problem. Note that in the above mentioned parameter range, we still have the link
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A B

Figure 7.3: Toy example with m = 3 clusters and the same data as in figure 7.2. In A
for γ− = −2 and γ+ = 1 we find three different vector and margin pairs. B shows the
solution found for a Gaussian kernel. The three lines shown are the preimages of the
three hyperplanes wc · x− ρc = 0, c = 1, 2, 3 in the Hilbert Space H. We used ν = 0.8.

to the primal variables 7.19, but we are optimising the modified dual problem, which is
different from the initial problem (7.5).

7.3.1 Finding a local maximum

In this section we describe an algorithm to find a local maximum of the cost function
(7.17). As we argued above, we are faced with solving a binary quadratic program. In
general, the maximisation of an unconstrained quadratic program in zero–one variables

maximise
α

αTQα

subject to α ∈ {0, 1}n,
(7.23)

is a classical NP–hard combinatorial optimisation problem, even if the matrixQ is positive
definite [2]. We will not try to find a global maximum, but present a simple algorithm
to find a local maximum. In our experiments, we found that different local maxima are
qualitatively equivalent and we found no need to find the best of them.

Parameters: We start by choosing suitable parameters. The parameter ν ∈ [0, 1]
controls the fraction of data separated by each vector and margin pair. Let us choose for
convenience a value ν such that νl is an integer. Then we choose m the number of vector
and margin pairs to be estimated and finally we choose γ− < 0 and γ+ ∈ [0,−1/(m−1)γ−].

Mean zero in feature space: To evaluate the cost function, we have to compute the
kernel evaluations k(xi, xj). Note that we want the data to have zero mean in feature
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space. Therefore, if the data is not already centred in feature space, we do this implicitly
by replacing the kernel evaluation k(xi, xj) by

k′(xi, xj) = k(xi, xj)−
1

l

∑
j′

k(xi, xj′)−
1

l

∑
i′

k(xi′ , xj) +
1

l2

∑
i′,j′

k(xi′ , xj′), (7.24)

see [64]. If the matrix (k′(xi, xj))i,j is too large to be stocked in memory, we store the
sums

∑
j′ k(xi, xj′) and

∑
i′ k(xi′ , xj) and recompute (7.24) when needed.

Initialisation: We initialise the algorithm by choosing for each c ∈ {1, ...,m} a fraction
ν of the data randomly and setting their multipliers αc,i to the maximal value 1

νl
allowed

by the constraints.

Optimisation loop: In order to optimise (7.17) we proceed in a way similar to the
Sequential Minimal Optimisation algorithm [53]. At each iteration of the algorithm we
choose two different pairs of indices (c, i), (d, j) ∈ {1, ...,m} × {1, ..., l} and try to find
the optimal values for αc,i, αd,j while keeping all the other αc′,i′ fixed. If the two values
αc,i, αd,j are both zero or at maximum, we cannot change anything without violating the
constraints. Otherwise, we check if the cost function takes a higher value with the actual
choices of αc,i, αd,j or with the values interchanged, and we change the values of αc,i, αd,j
accordingly. We iterate this step until no changes are made anymore.

In that case we have found values αc,i, which lead to a high value of the cost function.
Unfortunately, we are not sure to have found the global maximum.

Computing wc and ρc: With the values of αc,i we can compute the corresponding
vectors wc by using (7.31) and (7.33). Then we compute the scalar product of each data
point mapped into feature space φ(xi) with each of the vectors wc and set ρc to be equal
to the νl-smallest value of the set {φ(xi) ·wc|i ∈ {1, ..., l}}, that is, to the ν–quantile, see
figure 4.3.

From the description of the optimisation loop we can derive the complexity of one
loop. For each cluster we have to check all pairs of multipliers, such that one of them is
zero and the other one not. Therefore, in one loop of optimisation we check m(νl)(l−νl)
many pairs. The complexity of one loop is of the order of ml2.

7.3.2 Experiments

We look first at a toy example in two dimensions. Figure 7.3 shows the solution found for
three clusters, in A with the standard scalar product as kernel and in B with a Gaussian
kernel.

Next, we tested the algorithm on the US postal service database of handwritten digits.
The digits are images of size 16×16. For convenience, we used only a subset of the whole
database consisting of 100 randomly chosen examples of each of the digits 0,1 and 2. The
data was normalised as in chapter 5. Now suppose one did not know that the database
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Figure 7.4: The three vectors wc found with a bilinear kernel, and the parameters m = 3,
γ− = −2, γ+ = 1 and ν = 0.8.

Figure 7.5: Each line shows the elements of a cluster found with a Gaussian kernel with
σ2 = 0.1, m = 5,γ− = −2,γ+ = 1 and ν = 0.98.

consisted of the digits 0,1 and 2. We wanted to know if our algorithm could detect this
structure in the database. We first choose the kernel to be the standard scalar product
in Rn. We set m = 3, and ν = 0.8, that is, each vector and margin pair separates one
cluster, consisting of 20% of the data from the rest. Figure 7.4 shows the three vectors
wc found by our algorithm. Note that black stands for negative values, white for positive
ones and zero is a grey level in between. One immediately sees that the first vector is a
detector for zeros. Forming the scalar product with a digit 0 and w1 yields large values,
while the black part makes the product with the digits 1 and 2 as small as possible. In
analogy, the second vector detects digit 1 and the third digit 2. Thus, from the solution
found we can see the structure of the dataset.

In the second experiment, we used a Gaussian kernel with σ2 = 0.1. We choose a
large value for ν, such that each vector and margin pair cuts off 5 digits from the whole
dataset. Furthermore, we choose m = 5 to have five of these small clusters. In figure 7.5
each line shows the five vectors forming a cluster. We see that from these clusters we can
learn a lot about the structure of the dataset. In each of the clusters are only the same
digits. Even more, the clusters consists of the same digits of the same style, for example,
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in the second row are bold and large zeros, whereas in the last row are thin and slim
zeros.

7.4 Conclusion

In this chapter we proposed two new unsupervised kernel algorithms, which can be inter-
preted as clustering algorithms. To optimise the cost function of the former, we developed
a two–step algorithm similar in spirit to the classical k–means algorithm. The second
algorithm optimises a binary quadratic program. Solving a binary quadratic program is a
classical combinatorial optimisation problem. Typical to our approach are the constraints
set on the variables. The optimisation procedure is appealing by its simplicity, but for
large datasets it is not efficient enough.

7.5 Details and Proofs ∗

We will give the proofs of the lemmata in the text:

Lemma 5 For 0 < γ ≤ 1 the function
∑

c gc(w) is bounded from below and convex

Proof : We calculate∑
c

gc(w) =
∑
c

||wc||2 + γ
∑
c

wc · (
∑
d

wd − wc)

= (1− γ)
∑
c

||wc||2 + γ||
∑
c

wc||2.
(7.25)

From this we see that
∑

c gc is bounded from below if 1 − γ is positive. For convexity
choose t ∈ [0, 1] and another vector v = (v1, ..., vm). One calculates

tgc(w) + (1− t)gc(v)− gc(tw + (1− t)v) = t(1− t)gc(w − v) (7.26)

and because of (7.25) the sum over all c of (7.26) is greater or equal to zero for 1−γ ≥ 0. �

To determine the dual of (4.7) we consider the Lagrangian

L(w, ρ, ξ) =
1

2

∑
c

fc +
1

2
γ
∑
c,d 6=c

wc · wd

−
∑
c,i

αc,i(wc · φ(xi)− ρc + ξc,i)−
∑
c,i

βc,iξc,i

(7.27)
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with multipliers αc,i, βc,i ≥ 0. Setting the derivatives with respect to wc, ρc, ξc,i equal to
zero yields

vc = wc + γ+

∑
d6=c

wd (7.28)

αc,i ≤
1

νl
− βc,i ≤

1

νl
(7.29)∑

i

αc,i = 1, (7.30)

with
vc =

∑
i

αc,iφ(xi). (7.31)

We want to solve (7.28) for wc and then use this with (7.29) and (7.30) to eliminate
the primal variables w, ρ, ξ from the Lagrangian. Let m > 1 and let us denote by
M(1, γ) ∈ Rm×m the matrix with 1’s on the diagonal and entries γ everywhere else.
Then (7.28) reads v = M(1, γ)w. Define δ = (1 − γ)(1 + (m − 1)γ). Then a direct
calculation shows the

Lemma 6 The matrix M(1, γ) ∈ Rm×m is invertible if and only if δ 6= 0. Furthermore,
if the matrix M(1, γ) is invertible, then M(1, γ)−1 = M(γ−, γ+) with

γ− =
1

δ
(1 + (m− 2)γ), γ+ = −1

δ
γ. (7.32)

From lemma 6 it follows that
w = M(γ−, γ+)v. (7.33)

Substitution of (7.28), (7.29) and (7.30) in the Lagrangian (7.27) and using k(xi, xj) =
φ(xi) · φ(xj) yields the dual problem

Let us poof Lemma 4 from the text.
Proof of lemma 4: We start by decomposing the matrix K̃ in

K̃ =
∑
c<d

J cd (7.34)

with the matrix J cd given by

J cdab,ij =


1

m−1
K̃aa,ij if a = b and ( a = c or a = d)

K̃ab,ij if a 6= b and (a = c, b = d or a = d, b = c)

0 otherwise.

(7.35)

It is enough to show that each of the matrices J cd is negative definite. By the choice of
kernel, the matrix K with entries Kij = k(xi, xj) is positive definite. A direct calculation
shows that for γ− < 0 and γ+ = 0 or γ+ = −1/(m − 1)γ− the matrix J cd is negative
definite. Because the set of negative definite matrices is a convex cone, the matrix J cd is
negative definite for all the choices of γ− < 0 and γ+ ∈ [0,−1/(m− 1)γ−]. �
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Chapter 8

Locally invariant image representation

Up to now, we have discussed various algorithms for supervised and unsupervised learn-
ing. In the rest of the thesis we discuss a real–world application of our algorithms. We
developed a face recognition system in collaboration with the Centre Suisse d’Electronique
et Microtechnique (CSEM) in Neuchâtel. The system consists of two main parts. First,
the camera, developed by the CSEM, which uses an adaptive vision sensor [7, 58]. Sec-
ond, our algorithmic strategies to learn to recognise faces. The CSEM set up has several
attractive features. The computation of local contrast and illumination gradient are im-
plemented in analog hardware on the sensor chip. Therefore, they are computed in real
time. In addition, the camera has a high dynamic range.

In this chapter we explain how the sensor processes its visual input and how we
post-process the sensor output to have a representation with local invariances. The next
chapter uses this representation and explains how our algorithms are applied to face recog-
nition. In section 8.1 we describe the main functional principles of this sensor. Then we
describe how to use the sensor output to construct locally invariant image representa-
tions. For this, we introduce a key tool to construct local representations in section 8.2,
which we apply in section 8.3 to the output of the vision sensor. Finally, in section 8.4 we
conclude by relating our image processing to biology, that is, to processing in the visual
pathway. We will see that even though the resources of biology are very different from
our hardware and software processing tools, we can find interesting functional parallels.

8.1 The CSEM adaptive vision sensor

We start by describing the vision sensor, following [58]. The vision sensor is the heart
of the CSEM camera. The main part of it is an array of 128 × 128 pixels. Each pixel
has the structure shown in figure 8.1. Let us explain the acquisition of a frame, that is,
the acquisition of an image, by focusing on what happens at the pixel level. Consider
a pixel sitting at position C. At the beginning of a frame acquisition the capacitors
CC , CL, CR, CT , CB are reset and the transistors ML,MR,MT ,MB are turned on. The
voltage VC , resulting from the integration of the photocurrent at the photodiode PD,
is dispatched to the four neighbours at the top, the bottom, to the left and to the
right. At the same time, the voltages VL, VR, VT , VB resulting from the integration of
the photocurrent at the four neighbouring positions are dispatched to pixel C. During
integration of the photocurrent, the voltage VC increases until it reaches a fixed voltage
level VREF . Let us call this time tC . At time tC the transistors ML,MR,MT ,MB are
turned off so that the four voltages VL(tC), VR(tC), VT (tC), VB(tC) of the neighbouring
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Figure 8.1: The pixel structure of the CSEM adaptive vision sensor.

pixels are hold by the capacitors CL, CR, CT , CB. The normalised illumination gradient
∇JC at pixel C is approximated by

∇JC ≈ (
1

2
(VT − VB),

1

2
(VL − VR)). (8.1)

It is called normalised because the voltages are taken at time tC . We call the magnitude
of ∇JC the local contrast.

On the chip, the gradient is time encoded in the following way. Consider the time de-
pendent unit vector u(t) rotating around the origin and defined by components (cosωt, sinωt)
for a fixed value of ω. The components are called steering functions, because at each time
t their value determines the direction of u. The scalar product of u with the gradient
∇JC ,

∇JC · u(t) ≈ 1

2
(VT − VB) cosωt+

1

2
(VL − VR) sinωt (8.2)

is a sinusoidal function, whose amplitude is equal to the magnitude of the gradient and
the phase encodes the gradient direction. In the computer vision literature, the linear
operation that maps JC to ∇JC ·u(t) is called a steerable filter [27]. On the chip this time
encoding of ∇JC is performed by applying a sine and a cosine function to the multiplier
shown on the top right. The details can be found in [7]. The output of the multiplier is
the steering current Isteer, which is proportional to ∇JC · u(t).

Up to now, we have explained how the illumination gradient is normalised with respect
to the local contrast and how it is transformed into the steering current. Now, we will
explain how the steering current is transformed into a series of pulses emitted on a
communication bus, which is the output of the sensor. We will only explain the idea and
not the hardware implementation, which can be found in [7, 58].

The idea is show in figure 8.2. The horizontal axis is the time axis, starting at tmax,
the maximally allowed integration time for the photocurrent integration, and stopping

62



8.1. THE CSEM ADAPTIVE VISION SENSOR
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Ith

m(a) o(a) m(b) o(b)

Isteer(a)

Isteer(b)

Inorm(a)

Inorm(b)

ttmax

Figure 8.2: Encoding the steering current in a sequence of pulses: the two sine functions
are the steering currents Isteer of two pixels a and b. Each is encoded in two pulses, coding
the magnitude (m) and the orientation (o) of the gradient at the pixel location, see the
text for more details.

after the total time used to acquire one frame. This time interval is divided into two
parts, the peak detection period, whose length is one period of the steering functions,
and the steering periods. Shown are the steering currents of two pixels a and b. During
the peak detection period, the amplitude of the steering current of each pixel is detected
and stored in Inorm. Then, during the subsequent steering periods, a reference threshold
current Ith, which is monotonically decreasing, is compared to each of the Inorm. When
for example the threshold Ith reaches Inorm of pixel a, a pulse signal encoding the address
of pixel a is emitted on the communications bus. The timing of the pulse encodes the
magnitude of the gradient, that is, the amplitude of the steering current. The gradient
direction at the pixel a is encoded by emitting a pulse at the first zero crossing with
a positive slope of the steering current Isteer of pixel a, following the emission of the
magnitude information. The pulses for magnitude (m) and direction (o) are shown in
the figure for the two pixels a and b. In summary, the sensor output is a sequence of
pulses, encoding magnitude and direction of the image gradient, normalised according to
the local illumination. Furthermore, the sequence of pulses is ordered in time according
to the local contrast. The communication bus is made such that from the pulses the
location of the pixel can be recovered.

The sensors output is accessible through a software interface in form of a stream of
events. The stream corresponds to a sequence of images, called frames in this context.
Each event in the stream is of the form

(frame number, gradient magnitude, gradient direction, x coordinate, y coordinate), (8.3)

where the first number is the number of the frame in the sequence, the second number
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Figure 8.3: Example frame acquired with the vision camera: each image shows all events,
whose magnitude of the gradient falls in the same bin of the histogram, starting from the
largest magnitude to the smallest.

is the value of the local contrast, the third number is the direction of the gradient,
followed by the coordinates of the occurrence of the event. Recall that the events are
ordered according to descending local contrast. We will us this information to construct
histograms of gradient magnitude. Specifically, consider a frame from the vision sensor
camera, that is, a sequence of events e = (e1, ..., el). For an event ei from the sequence
we denote by ei,m the magnitude of the gradient, ei,d the direction of the gradient, ei,x
the x–coordinate and ei,y the y–coordinate of the event. We set the parameters of the
camera such that the sequence is complete, that is, for each point in the pixel array of
the sensor there is exactly one event in the sequence, hence it has length l = 128 ∗ 128.

Below, we define histograms over contrast, but instead of considering absolute contrast
values, we rather use the feature that our sequences of events are ordered, that is, pixels
with the largest values are transmitted first. This allows us to round off and remap the
local contrast value of an event with respect to its position in the list. Let us choose q+1
values m0, ...,mq between zero and the length l of the sequence. The values mi divide
the list into q parts or bins, and within each part pixels are considered to have the same
contrast. In particular, event ei has the local contrast value ei,m = r if the event is in the
rth part of the list,

ei,m = r if and only if i ∈ [mr,mr+1). (8.4)

Later, we will use

q = 8 and mi = il/10. (8.5)

Note that the frequency of each contrast value is equal and therefore the histogram over
the local contrast is flat. Furthermore, note that we neglect the last fifth of the event
sequence.
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Figure 8.3 shows an example frame. Each image shows all events of the same local
contrast r, for r = 0, ..., 7. The brighter the points shown the stronger the contrast.

In the next section we will describe a tool to construct a decomposition, which is local
in space and in orientation and allows us to compute local histograms as features.

8.2 Decomposition into local parts

In this section we describe the partition of unity, which is used to decompose functions
into local parts. This is a common tool in analysis [57] as well as in wavelet theory [48].
We construct a partition of unity composed of B–splines, which was used extensively by
[73].

A partition of unity on R is a family of real–valued functions (ψi) on R, such that∑
i

ψi = 1.

We will construct a partition of unity with the cubic B–spline b : R→ R defined by

b(x) =


2
3
− x2 + 1

2
|x|3 if |x| < 1

1
6
(2− |x|)3 if 1 ≤ |x| < 2

0 if |x| ≥ 2 .

. (8.6)

Note that by definition

||b||1 = 1. (8.7)

One can easily verify that the family (b(· − i))i of translated B–splines is a partition of
unity, see figure 8.4.A. Note that we can easily dilate the partition of unity by a factor
s ∈ R by considering the family (bs(· − si))i defined by

bs(x− si) = b(
x

s
− i). (8.8)

By defining b(x, y) = b(x)b(y), the family (b(· − i, · − j)i,j is a partition of unity on R2.
Figure 8.4.B shows a density plot of b in two dimensions. Similarly, we can lift the family
(b(· − i))i=0,...,7 with the invertible function

ϕ : [0, 8)
·1/8−→ [0, 1)

exp(2πi·)−→ S1 (8.9)

to a partition of unity on the unit circle S1 ⊂ R2, consisting of the eight functions

bϕ(x− ϕ(i)) = b(ϕ−1(x)− i), i = 0, ..., 7. (8.10)

In the next section we will use this partition on S1 to decompose the image gradient in
eight orientation directions.
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Figure 8.4: The solid lines in plot A show four cubic B–spline functions, each shifted by
one. The dashed line is the sum of the four splines, which is equal to one in the interval
[2, 3] and reflects the partition of unity condition. Plot B shows a density plot of the two
dimensional cubic B–spline. One can see that it is nearly isotropic.

8.3 Local histogram

First, we will illustrate with a simple example how we construct local histograms. Con-
sider a sequence f : {0, ..., p} → {0, ..., q − 1}. Then the histogram h of f is the function

h[f ] : {0, ..., q − 1} → R, h[f ](r) =

p∑
i=0

δf(i)−r, (8.11)

which counts the frequency of occurrence of a value r in the sequence f . Here δx = 1 for
x = 0 and zero otherwise. To simplify the notation, we will often suppress the explicit
dependence on the function f if it is clear from the context which function is meant. The
local histogram of f at position u ∈ R with respect to the cubic B–spline b is the function

hu[f ] : {0, ..., q − 1} → R, hu[f ](r) =

p∑
i=0

b(i− u)δf(i)−r, (8.12)

which counts the frequency of occurrence of the value r in the sequence f weighted by a
factor depending on the position of occurrence. Because the family of shifted B–splines
is a partition of unity, we have

h =
∑
u

hu. (8.13)

From equation (8.13) we can see that a partition of unity allows us to decompose a global
feature, the histogram, into a sum of local features, the local histograms.

More specifically, consider a frame from the vision sensor camera, that is, a sequence
of events e = (e1, ..., el) of length l = 128 ∗ 128. For the decomposition of a frame in local
histograms, we choose a partition of unity consisting of translated B–splines with centres
on a rectangular regular lattice L ⊂ R2. The lattice has a step size s, which is the distance
between two nodes in horizontal or vertical direction. Furthermore, we denote by M the
lattice consisting of the eight points e2πij/8, j = 0, ..., 7, on the unit circle S1, see figure
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ei

(u, v)

L

v

u ei,x

ei,y S1

M

d

ei,d

Figure 8.5: Example lattices for a local decomposition: The plot on the left shows the
size of a frame (rectangle) and the lattice L with the point (u, v) of the lattice, which has
x–coordinate u and y–coordinate v. The black point shows the location of event ei. The
right plot shows the unit circle S1 together with the lattice M and one of its points d.
The point ei,d shows the direction of the gradient of event ei.

8.5 These points are the centre points of the cubic B–splines used in the partition of unity
on S1, see (8.10). For a point (u, v, d) in the total lattice L ×M the local histogram of
the sequence of events e = (e1, ..., el) is the function h(u,v,d)[e] : {0, ..., q− 1} → R defined
by

h(u,v,d)[e](r) =
l∑

i=1

w(ei)δei,m−r. (8.14)

with weight

w(ei) = bs(ei,x − u)bs(ei,y − v)bϕ(ei,d − d), (8.15)

see (8.8) and (8.10). The local histogram hu,v,d[e](r) counts the occurrence of events ei
with gradient magnitude r, and each occurrence is weighted with respect to position and
orientation of the event ei. Because the sequence of events is ordered with respect to the
local contrast we have

h(u,v,d)[e](r) =

mr+1−1∑
i=mr

w(ei), (8.16)

with the values mr defined in (8.5).

Figure 8.6 shows an example frame. The frame is decomposed into eight directions
of the gradient, using the partition of unity on S1 from (8.10), with centres of the cubic
B–splines sitting on the lattice M . Note that the intensity of each event is computed
using the quantised magnitude of the gradient, quantised to q = 8 values using the points
mi from (8.5) and multiplied by a weight factor b(ei,d − d).
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Figure 8.6: Example frame decomposed into eight directions of the gradient, see the text
for further details.

8.3.1 Properties:

Let us note some immediate consequences of the definition of the local histograms. From
(8.7) we know that ||b||1 = 1. Hence, for all (u, v, d) the following inequalities hold,

0 ≤ h(u,v,d)(r) ≤ 1,
∑
r

∑
d

h(u,v,d)(r) ≤ 1 (8.17)

where on the right hand side equality holds if we choose the bin limits at the beginning,
m0 = 0, and at the end of the event list, mq = 128 ∗ 128. In that case, the sum over all
directions of the histograms at a given position (u, v) on the lattice L sit on a hyperplane,∑

d

h(u,v,d) ∈ {(a1, .., aq)|
∑
i

ai = 1}. (8.18)

The situation is illustrated in figure 9.4.A. For ease of presentation only two bins and two
directions are shown.

Local translation and rotation invariance: The main motivation for decomposing
the image into local histograms are their local invariance properties. The cubic B–spline
window used for the weighting of each event in the histogram depends in a differentiable
manner on a translation of the event. Therefore, translating the image by a small amount
gives rise to a small change in the local histograms. Furthermore, the representation has
a local rotational invariance. Note that even if the two dimensional spline window we use
is nearly isotropic, as shown in figure 8.4.B, the lattice is not. But still, a small rotation of
the image yields a spatial translation of the event location and a rotation of the gradient
direction of the events. Because we decompose with a differentiable window, spatially
and in orientation, the representation has a local rotational invariance.
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Local scale invariance: Our representation has one more local invariance, it is the
invariance to small changes in scale. For ease of presentation we look at a simple example.
Let us suppose that there is an object in front of the camera, and this object fills the
whole image. We denote by f the light intensity distribution falling on the sensor. Now,
if we approach the object to the camera, the distribution changes to

fs(x) = f(sx), (8.19)

a dilated version of f , with a scaling factor s ∈ [0, 1]. If we compute the gradient

∇fs(x) = s∇f(sx), (8.20)

we can see that first, the position of the events has changed, and second, that the mag-
nitude of the gradient is different, namely scaled by a factor s. But the ordering of the
event list has not changed, the strongest event is still the strongest event, only its position
has changed by a factor s. If this change in position stays inside the window, the local
histograms change only slightly.

In summary, we can say that by decomposing the event list into equal parts defines an
intensity histogram which is scale invariant. Furthermore, if we decompose the event list
into local histograms, the representation is locally scale invariant, because our B-spline
windows have a local translation invariance.

8.4 Discussion and links to biology

There are interesting functional parallels between biological processing in the visual sys-
tem and the computations of our vision system. The vision sensor transmits information
in an order of decreasing importance. First, the events corresponding to a high local
contrast are transmitted and later the low contrast events. From this ordered sequence
of events, we compute the contrast histograms. Therefore, the information we retain is
contained in the ordering and not in the absolute value of the local contrast. This is
a rank order coding strategy. It has been suggested that the visual system might use
rank order codes [71]. Furthermore, features computed from rank order codes have been
successfully used in computer vision [68]. A second parallel is our decomposition in local
histograms. Locality can be interpreted as a receptive field in position and orientation.
Similarly, cells in the primary visual cortex show selectivity to edges, in a certain interval
of position and orientation [38, 39].

An other very important property of sensory systems in biology is adaptation and
sensitivity regulation. At the sensor level, the computation of the local contrast can be
seen as an adaptation to different illumination conditions. In more detail, as described
in section 8.1 a pixel PC determines the integration time for the four neighbours, which
are then used to calculate the gradient (8.1). Therefore, the magnitude of the gradient,
which is proportional to the integration time, is proportional to the illumination at the
centre pixel.

69



CHAPTER 8. LOCALLY INVARIANT IMAGE REPRESENTATION

In biological sensory systems, adaptation is probably used at every processing step. In
the visual pathway adaptation starts at the level of the photoreceptors [59] and continues
the way along to higher visual areas [17]. In our processing, a second adaptation step is
used by decomposing the long list of events in equally long parts used to fill the bins of
the histogram. Therefore, the total histogram over the whole image is flat, regardless of
the input. This yields an invariance of our representation to the absolute value of the gra-
dient and therefore an independence to the various parameters the gradient depends on.
Furthermore, this decomposition is important for the local scale invariance, as discussed
in section 8.3.
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Chapter 9

Recognition of faces

Our goal is to recognise faces captured by the vision sensor described in the previous
chapter. A lot of research has been done on face recognition, and we will start this
chapter with discussing selected approaches in section 9.1 and relate these strategies to
our recognition system. In section 9.2 we describe how we collected the database of
faces used for learning and recognising. In our online setting it is not sure that at every
moment there is a face in front of the camera, and if there is a face, its position is not
known. Therefore, the first processing step is the detection of a face discussed in sections
9.3-9.6. More precisely, section 9.3 describes the class of features used for detection and
defines a kernel measuring the similarity of face features. In section 9.4 we show how to
learn characteristic features in a data dependent way, and in section 9.5 we describe a
strategy to learn more complex features from simpler ones. Eventually, section 9.6 closes
the part on face detection by showing the achieved detection results. In sections 9.7-9.9
we turn to face recognition. In section 9.7 we define again a kernel. This kernel is more
sensitively tuned, so as to allow to distinguish between the faces of different persons. Face
recognition is now a straightforward application of our algorithm for multi–categorical
data classification from chapter 4. Section 9.8 discusses the results from detection and
recognition combined. Finally, section 9.9 concludes with a review of the chapter from a
more general point of view.

9.1 Introduction

Face recognition has a long tradition and is still a topic of active research and general
interest, as a look in today’s newspapers confirms1. In the next subsection we take a closer
look at a few selected examples of face detection and recognition systems. In subsection
9.1.2 we describe their relation to our approach.

9.1.1 State of the art

Many different strategies are used and they can be classified according to a variety of
criteria. If we look at the type of features used, we can distinguish between local and
global features. We say a feature is local if we can compute the feature or part of it
from a fraction or part of the image only. Note that this is more an intuitive notion than
a mathematical definition. Thus, on one end of the scale, there are approaches using

1Neue Zürcher Zeitung, Dreidimensionale Gesichtserkennung, march 28th, 2003; The New York Times,
Face–Recognition Technology Improves, march 14th, 2003.
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a global structure to match with the face to recognise. Examples are Eigenfaces [72],
deformable templates [80], or an elastic graph matching [79]. We recall that the latter
uses features calculated from Gabor filter responses evaluated at the nodes of the elastic
graph. But to determine the position of the graph relative to the face, the whole image
is needed. On the other end are approaches using local features. Bichsel [11] uses a
system which first detects the face by a saccadic focusing on local invariants, and then
identifies it by calculating a similarity on the basis of facial feature shapes and positions.
Whereas in Bichsel [11] the saccadic focusing strategy is along a multi–resolution chain,
Smeraldi and Bigun [69] studied a more biologically motivated saccadic strategy. A
retinotopic sampling grid is moved in saccades over the image, and the next location is
determined by the activity of Gabor filters evaluated at the grid positions. Once the
eyes and the mouth are detected, an authentication stage follows. For this, a support
vector machine is used with a kernel calculating the similarity of the test face and the
given example faces. The similarity measure uses Gabor filter responses at the retinotopic
sampling grid positions centred at the eyes and the mouth. This approach showed a very
high performance. Other strategies using support vector machines for the detection of
faces are reported in the literature; Osuna et al. [50] use as features preprocessed face
images. Because no edge filters are applied, various preprocessing steps are performed to
compensate for different illuminations. Histogram equalisation proved to be an important
step. Papageorgiou and Poggio [51] used support vector machines to detect faces, using
wavelet coefficients as features. A disadvantage of the support vector machine approach
with nonlinear kernels, as in [50, 51], is that the evaluation of the decision function needs
many kernel evaluations, which is computationally costly. To speed this up, reduced
set methods were developed [55]. In contrast to these approaches, the more descriptive
features of Smeraldi and Bigun [69] allow the use of a linear support vector machine, which
is fast, but the more complex features have to be calculated each time the sampling grid
is moved. Of course, there is a tradeoff between computational complexity of the features
and of the decision function. To combine computationally simple features, but in a data
dependent way, using only the necessary number of features proved to be a very efficient
strategy for face detection [26, 75] and gender classification [66].

9.1.2 Our approach

The main difference of our approach compared to the methods mentioned above stems
from the different input we have. While the algorithms described above rely on images
from a standard camera, our data comes from the vision sensor delivering gradient and
local contrast information with a high dynamic range. On the other hand, the resolution
of the sensor is not as good as in other recognition systems [52], which might limit
the capabilities to distinguish between a large number of different faces. Therefore, our
system is not targeted at tasks like an automatic portier [11], where many people have to
be recognised or identified with high accuracy. We want to focus on a different scenario.
The goal is to recognise a small number of persons with as few as possible false positives.
In addition the system should be simple, that is, it should have few tunable parameters
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Figure 9.1: A subject in front of the CSEM adaptive vision sensor camera. All images
are acquired in a cluttered office environment.

and ideally it should be computationally efficient. Furthermore, our scenario requires that
a person performs small movements in front of the camera, while the algorithm tries to
recognise the face. Therefore, the false negative rate is less important, as multiple images
of a person are available during the recognition process. The heart of our recognition
system is the multi–class support vector machine algorithm developed in chapter 4. As
our algorithm is simpler than other multi–class support vector approaches, not only
learning but recognition is computationally more efficient.

Because the size of the face is only a fraction of the whole image seen by the camera, we
would like to have an efficient method to determine if at a given position in the image there
is possibly a face or not. Scanning over the whole image and using at every position the
recognition model to try to recognise a face is a simple but unfortunately not an efficient
strategy. We propose a computationally more efficient strategy to test for a face at a given
position. The main idea stems on one hand from the elegant face detection algorithm of
Fleuret and Geman [26] and on the other hand from our unsupervised algorithm described
in chapter 7. From [26] we use the idea of constructing complex characteristic features
from simple ones, consisting of products of local features. To select characteristic features
from a large set we optimise a cost function of the same form as the cost function (7.5)
used in our unsupervised algorithm, whereas some adaptations to the specific problem
are made.
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A 64

64

106

B C D E

Figure 9.2: Image A shows the dimensions of the rectangular region we used to cut out
the faces. Images in B-E are face examples of the four persons.

9.2 The database of faces

To learn to recognise faces we need, of course, a database consisting of example faces.
In this section we describe how we collected the data. We created a first database
consisting of images acquired by the vision sensor where in most images there is a face.
The images without a face are for test purposes only. From the images with faces of this
first database, we created a second one by defining a rectangular subimage of each frame
centred on the face. We will call such a reduced image a subimage or subframe. In more
detail we proceeded as follows. We created a first database consisting of face images of
four persons, which should later be recognised, as well as a few images without a face.
Figure 9.1 illustrates the arrangement of a person in front of the camera. The camera
was positioned at different angles with respect to the window, the only light source. The
axes of the camera was either parallel or perpendicular to the window. This was done in
order to have a certain degree of invariance to illumination in the database. The distance
of the face to the camera was adjusted to be about 35cm, thus the height of the face is
nearly the height of the image. The subject was advised to perform small movements
in front of the camera. Then, images were acquired in sequences of 20 frames with a
frame rate of about 5 frames per second. We took a minimal number of 60 frames of each
person to be recognised.

From each frame we cut a subimage containing the face. This subimage was defined
such that the middle point between the eyes was always at the same position. Within
each frame we use subimages of dimension 106 × 64, see figure 9.2.A. Let us recall that
the total frame has 128 × 128 pixels. Note that we did not rescale the images, as our
control of the distance of the face to the camera was precise enough to have only small
scale variations of about 5% in the database. Figure 9.2.B-E shows an example face of
each person we used to train the algorithms.

This set of cut faces is our training database. We denote this dataset of subimages or
subframes by

S = {x1, ..., xl}. (9.1)

All the parameters we learn are estimated using this data. Note that we use only examples
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A B C D

E F G H

Figure 9.3: The images in A to E show examples of frames that contain a face, the faces
in A to D are used for training, E shows an example used only for testing. The images
in C to H are non–face images.

containing faces in the training database. This is desirable as it is difficult to collect a
representative set of negative, that is, non–face examples, which represent all possible
non–face images. Because of the two sizes of images in the database, we will need two
sizes of lattices for the decomposition in local histograms. To distinguish between the
two, we introduce the following notation. We denote by x, xi, ... cut images, and by
x̂, x̂i, ... images of full size. In analogy, we denote by L a lattice over a cut image, and by
L̂ one over a full image. In the subsequent sections we will develop different models to
detect and recognise faces. All these models take as argument a cut image x or a local
histogram decomposition h(·)[x] of a cut image, respectively. We can lift these models on
h(·)[x] to models on the decomposition h(·)[x̂] of the whole image x̂ by scanning over the

whole lattice L̂ and cutting all possible sublattices of the same size as L.

For the local decompositions we set the centres of the B–spline windows on the nodes
of regular lattices. We use regular lattices L and L̂ with a difference of 5 pixels between
two nodes, in vertical and horizontal direction. The value of 5 was chosen as follows. A
strong edge has the width of about 5 pixels, which should be captured in a single window
of the local decomposition. Therefore, 5 is a good first guess. On the other hand, if the
step size is too large, we lose too much information (and 5 could already be too large).
Ideally, the representation should have a translation invariance of at least half the step
size, such that it is independent of the exact position of the lattice relative to the image.
For each subimage x we produced four local decompositions. One by centring the lattice
L with respect to the midpoint between the eyes, and the others by translating the lattice
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by 2 pixels in horizontal, vertical, or in horizontal and vertical directions. This is done in
order to have an invariance in the position of the lattice. The lattice L is of dimension
20× 12, and the lattice L̂ has 24× 24 nodes. The lattice L̂ is always centred with respect
to the image and has 5 ∗ 13 = 65 sublattices of the same dimension as L.

9.3 The detection kernel

We are in the following situation. We are given a set {x1, ..., xl} of example images of
faces acquired by the vision sensor. Since we are working with the cut subframes each
face fills the whole image and all the images are of the same size. Furthermore, the face
is centred in the image, as described in the previous section. The goal is to learn a set
of tests, which test for face features. More precisely, we want to learn tests, which take
as argument local histograms h(·)[x] defined with respect to the lattice L. Once the tests
are learnt, we apply them to an image x̂ of the vision sensor. This is done by first cutting
all possible sublattices of the lattice L̂ of the same size as the lattice L. Second, by
applying the tests on the local histograms defined with respect to these sublattices. The
result of the tests applied to the local histograms at the nodes of the sublattice gives us
information if there is possibly a face or not.

Consider the total lattice L×M consisting of the lattice L in position and the lattice
M in orientation. For a subset A ⊂ {(u, v, d)|(u, v) ∈ L, d ∈M} all the local histograms
h(u,v,d)[x] are elements of Rq, with q denoting the number of bins. For a face image x we
define the component–wise product of histograms, hA[x] ∈ Rq, over the set A to be

hA[x](r) =
∏

(u,v,d)∈A

h(u,v,d)[x](r). (9.2)

The product can be interpreted as an ”and“ operation. For example for r = 0 and a
subset A of four lattice points a large value of hA[x](r) requires that we have a strong
contrast at all 4 lattice points.

For a set of examples {x1, ..., xl} we want to learn affine linear models on these product
histograms. We denote by φ the feature map

φ(x,A) = hA[x], (9.3)

which maps a pair consisting of an image x and a set of positions in the total lattice
L × M to the component–wise product of the local histogram at the given positions.
The feature φ(x,A) is an element of Rq. As above, q is the number of bins in the local
histograms. Then for frames xi, xj and a subset A we define the detection kernel

k((xi, A), (xj, A)) =<φ(xi, A), φ(xj, A)>λ, (9.4)

with <·, ·>λ denoting the weighted scalar product, defined by

<u, v>λ=

q−1∑
r=0

λrurvr, (9.5)
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A

h(u,v,d1) + h(u,v,d2)

h(u,v,d1)h(u,v,d2)

bin 1

bin 0

1

1
B

bin 1

bin 0

√
λ

1

wc

dc = 0

Figure 9.4: Shown in plot A are histograms of a local decomposition with only two bins.
The dots show two histograms at location (u, v) with orientation d1 and d2 respectively
and their sum. Plot B shows a feature detector. Shown are the vector wc and the zero
level of dc. The detector has a positive value on all points in the triangle on the right of
the zero level.

with λ ∈ R. With a value of λ ∈ (0, 1) we can put more weight on the bins consisting
of events with a strong gradient magnitude, that is, small values of r, see (9.2). We used
λ = 4/5 for our experiments. By construction the kernel k is positive definite. It is
important to note that our detection kernel first computes products or ”and“ conditions
at different positions of one example and then compares the result with that of a second
example, in contrast to ANOVA [74] or R–convolution kernels [37].

9.4 Learning multiple features

Let us now show how we can learn characteristic features of our data. The feature vector
of a subimage is composed of local histograms. In each histogram, a bin with low bin
number but high value means that an edge of a certain orientation and intensity is present
in the image. A test for a feature is then a measure of the presence or absence of edges,
where the local histograms allow us to distinguish between orientation, intensity and
position. More precisely, for a tuple (wc, ρc, Ac) we denote by dc the function

dc(x) =<wc, hAc [x]>λ −ρc, (9.6)

which tests if the feature is present, dc(x) ≥ 0, or absent, dc(x) < 0. We call dc a feature
detector for (wc, ρc, Ac). If ρc = 0 we call the feature detector trivial, as the test dc(x) ≥ 0
is true for all x.

Figure 9.4 shows the situation. In plot A the space Rq of the local histograms is
shown. The dots represent some example histograms, their position is shown according
to (8.17) and (8.18). Plot B shows a feature detector. Using the weighted scalar product
of (9.5) is equivalent to using the standard scalar product and rescaling the n-th bin by
a factor (

√
λ)n, as shown in the figure.

We recall that in chapter 7 we developed an unsupervised algorithm by starting from
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an optimisation problem of the form

min
(w1,ρ1),...,(wm,ρm)

∑
c

F (wc, ρc) +G(w1, ..., wm). (9.7)

Minimisation was done over m pairs of vector and margin. We will use a similar opti-
misation problem here to learn multiple feature detectors. Note that a feature detector
is defined not only by a pair but a triple consisting of a vector wc, a margin ρc and in
addition, a subset Ac of lattice nodes. As in chapter 7, we learn feature detectors with
vectors wc, wc′ expressible as a linear combination of feature vectors,

wc =
∑
i

αiφ(xi, Ac), wc′ =
∑
i

α′iφ(xi, Ac′), (9.8)

with possibly different subsets Ac, Ac′ . As in (9.7), the cost function consists of two terms,
but each term is adapted to the problem as follows. For fixed A, the function F (·, ·, A)
is the cost function of a one–class support vector machine [62], as before, with kernel k
from (9.4). Explicitly,

F (wc, ρc, Ac) =
1

2
<wc, wc>λ −ρc +

1

νl

∑
i

[dc(xi)]−. (9.9)

We used a parameter ν = 2/3. To get a diversity of feature detectors, we want to put
a penalty on pairs of detectors, which are in a sense too similar. This is the role of
the function G appearing in (9.7). Again, G measures similarity by computing an inner
product, but this time it is not the inner product between two vectors wc, wc′ but an inner
product depending on the subsets Ac, Ac′ . Therefore, two feature detectors are similar if
they detect features at close positions. In detail, we define a mapping ψ, which assigns
each set A of nodes of the position lattice L a linear combination of two dimensional
B-splines centred at these nodes,

ψ(A) =
∑

(u,v,d)∈A

bs(· − u)bs(· − v), (9.10)

with s denoting the step size of the lattice and bs is a dilated B–spline defined in (8.8).
Note that ψ(A) is an element of L2(R2). Then we set

G(A1, ..., Am) =
∑
c,c′ 6=c

<ψ(Ac), ψ(Ac′)>L2 . (9.11)

The function G computes an L2 inner product, but as the arguments are linear combina-
tions of cubic B–splines translated on a regular lattice, equation (9.10), the only values
needed are the inner products

<b, b(· − i)>L2 , i = 0, .., 3, (9.12)
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which can be computed in advance and stored in a table. In summary, our optimisation
problem takes the following form,

min
(w1,ρ1,A1),...,(wm,ρm,Am)

∑
c

F (wc, ρc, Ac) +G(A1, ..., Am). (9.13)

As in our unsupervised algorithm of chapter 7, the function G couples the otherwise
independent optimisation problems for the triples (wc, ρc, Ac) together. Because of the
special form of the optimisation problem, we use the following two–step procedure to find
an approximate solution. We first choose a possibly large collection of subsets {A1, ..., An}
and then we optimise

min
(wc,ρc)

F (wc, ρc, Ac) (9.14)

for each Ac among {A1, ..., An} independently. By this, we find detectors d1, ..., dn for the
tuples (w1, ρ1, A1),...,(wn, ρn, An). Second, we select iteratively maximally m detectors
among the n solutions as follows. The first detector we choose is the one with a maximal
margin ρi1 as an approximation to the one with minimal value of F . Next, suppose that
we have already chosen the detectors di1 , ..., dil for l ≥ 1. It remains to explain how we
choose the l + 1st. We add detector dl+1 to the selected ones if it has the largest margin
among all not yet selected detectors dj with

max
i∈{i1,...,il}

<ψ(Ai), ψ(Aj)>L2< θ (9.15)

for a parameter θ. In words, we concentrate on subsets Aj that are dissimilar to all
previous subsets Ai1 , ..., Ail . Equation (9.15) can be seen as an approximation to (9.11).
In our experiments we chose θ = (l + 1)/2. We continue until the we have chosen m
detectors, or the remaining ones are either trivial or violate condition (9.15).

9.4.1 Adjusting the margins

During learning and selection of the models, the margins are set to a large value in order
to find characteristic features of the data. Once the detection models are learnt and the
non–trivial models are selected, we readjust the margins such that for every face from the
data set there is at least one positive test. If for a face example x all tests fail, that is,
for all c the feature test dc(x) < 0, then we will select a test dc and readjust the margin
ρc as follows. For all c choose µc ∈ [0, 1] with

<wc, hAc [x]>λ= µcρc. (9.16)

Then, we perform an update

ρc ← µcρc for c = arg max
c′

µc′ . (9.17)

In words, we select the test that needs the smallest readjustment factor for the margin
to make the result of the test positive. After scanning over all examples and adjusting of
the margins, it is again possible that some of our feature detectors are trivial, and again
we select only the non–trivial ones.
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9.4.2 Setting the detection threshold

Given the selected detectors d1, ..., dn, we test for each subframe xi in S how many times
dc(xi) is positive. We denote the number of positive detection tests for example xi by
mi. Then we define a detection threshold ϑ. We set ϑ to be the 0.2 ∗ |S|–smallest value
of the set {m1, ...,m|S|}, where |S| denotes the cardinality of S. A face is detected on a
new subframe x if the number of positive tests on x is larger or equal to ϑ. By definition
of ϑ, we do not necessarily detect all faces in the training set S but accept 20% of false
negatives. We do this for robustness, because by setting ϑ to the smallest number minimi,
a wrong example in the training set would lead to a very low threshold and possibly to
a detector which yields too many positive responses.

Until now we did not explain how to select suitable subsets A. This is the subject of
the next section, where we explain an iterative strategy to select the subsets A.

9.5 Learning a hierarchy

In this section we explain how we can learn more and more complex feature detectors
from simple ones. We do this by learning a hierarchy of subsets A. For each level l in the
hierarchy we consider only sets

A(l) ⊂ {(u, v, d)|(u, v) ∈ L, d ∈M} (9.18)

of cardinality l + 1. Subsets at a higher level in the hierarchy are unions of subsets at
lower levels. The subsets are constructed from the lowest up to the highest level. We
start for l = 0, considering all subsets with exactly one element, let us denote them
by A

(0)
i , i = 1, ...,m(0). Then we train and select feature detectors on these subsets, as

described in section 9.4. Next, we consider only the remaining subsets A
(0)
j corresponding

to a selected feature detector. From these subsets we get a set of subsets of level 1 by
joining two non equal subsets. Now suppose we have constructed in this manner subsets
A

(l)
i , i = 1, ...,m(l) of level l and we explain how we construct the subsets of level l + 1.

Again, we learn feature detectors on the products h
A

(l)
i

of the local histograms, select

a number of them, and consider the remaining subsets A
(l)
i corresponding to one of the

selected feature detectors. For such a subset A
(l)
i of level l and a subset A

(0)
j of level 0 we

create a set of level l + 1,

A(l+1) = A
(l)
i ∪ A

(0)
j if A

(l)
i ∩ A

(0)
j = ∅. (9.19)

We do this for all pairs of subsets of level l and level 0. We put the constraint of joining
only disjoint subsets in order to ensure that the features for higher levels depend on
products at many different positions in the lattices L,M .

9.5.1 Estimating a normalisation factor

In this subsection we want to discuss a more technical, but important issue. By learning
more and more complex features, we compute products of higher and higher order. But
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A B C D

Figure 9.5: The detection tests: Each triangle indicates the position and the direction
used for one of the detection tests. In figure A we plotted the total for all tests at level
0, in B the total at level 3. We plotted in the background the mean of the faces from
figure 9.2. We can see how the tests are concentrated around the eyes, nose, mouth, and
the contours of the face. Figure C and D show the first two selected tests of level 3.

by optimising (9.14) we have to specify a convergence tolerance of our algorithm. In order
to speed up runtime, we would like to have a large tolerance. But on the other hand, if
the values of the features are not close to one, by computing products it can happen that
we end up with very small or very large numbers, and that an overall tolerance value
is either to small or too large. We circumvent this problem by renormalising the kernel
evaluation at each level, concretely we replace

k((xi, A
(l)), (xj, A

(l)))→ κ(l)k((xi, A
(l)), (xj, A

(l))), (9.20)

where κ(l) is the normalisation factor at level l. We use the previously learnt detection
models at level l − 1 to estimate κ(l). At level l − 1 we estimate the order of magnitude
of kernel evaluations k((xi, A

(l−1)), (xj, A
(l−1))) by the mean margin ρ̄(l−1), where ρ̄(l−1)

denotes the mean of all margins at level l−1. Therefore, if the data is suitably normalised
we start with a renormalisation factor κ(0) = 1 for level 0. Then, inductively we define

κ(l) =
1

ρ̄(l−1)
κ(l−1) (9.21)

at level l.

9.6 Detection results

Our training set S consists of 1374 examples of the four persons. To learn the feature
detectors we removed 80 examples of each person that are used for testing. We choose
the 80 examples such that they are the translated versions of a single frame sequence
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level 0 1 2 3 4 5 6 7 8
detectors 80 80 18 13 11 8 7 5 5
threshold 22 33 6 4 3 3 1 1 1
correct accept 79 59 80 80 80 80 80 80 80
above threshold 286 265 395 270 436 434 590 602 687

Table 9.1: The learnt feature detectors at the levels 0 to 8 (first row) and the result on
the test data: the second row shows the number of detection tests at each level with
the detection threshold (third row). The last two rows show the result on the test data,
consisting of 80 face examples.

of 20 examples, and in a way that the training set still consists of examples of both
illumination conditions. We started at level 0 and learnt 9 levels. Therefore, the last
level computes products of order 9. Note that at level 0 we learn 12 ∗ 20 ∗ 8 = 1920
feature detectors. We recall that the lattice L has 12 ∗ 20 nodes and the lattice M has 8
nodes for the directions. Because at every location only 1 or 2 of the 8 local histograms
will allow a feature detector with large margin, and not at all locations we expect to have
strong edges, only a fraction of them are really needed. Furthermore, we would like to
keep the number of detectors at level 0 small, because we use their one point subsets A

(0)
i

to construct the subsets at higher levels, see (9.19), in order to learn only few models at
higher levels. Therefore, we set the maximal number of detectors at each level to be 80.
The first line in table 9.1 shows the number of non trivial detectors at each level. One can
see that it is rapidly decreasing, which is a consequence of our constraint (9.15). This is
desirable, because it allows us to use few tests of higher order for detection. The second
line shows the detection threshold, that is, the number of tests that have to be positive
in order to detect a face. As the tests of higher order extract more complex features, the
threshold is decreasing.

Figure 9.5 illustrates the estimated detection tests. Shown in A are the tests at level
zero. Each triangle indicates a point in the lattice, the position stands for the position
in lattice L and the orientation of the triangle represents the node in the lattice M . We
can see the influence of the illumination conditions during the collection of our dataset.
Because subjects were either looking in direction of the window — the only light source
— or the window was on their right, there is an asymmetry in the dataset. Therefore,
more tests are positioned to the right of the face than to the left. In B the total of all tests
at level 3 are shown. Each feature test consists of products of order four. Note that from
the figure it is not clear which one is multiplied with which other, but the distribution
of all test over the lattices can be seen. As the tests of level three are constructed from
tests at level 0, the triangles in B are a subset of the triangles in A. In C, D the first two
selected tests at level 3 are shown.

After learning, we tested the detectors on the before unseen face examples. The test
was done on the entire images x̂. We recall that we have one sequence consisting of 20
images of each of the four persons. Hence, in total we have 80 test images containing a
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face. The fourth line in table 9.1 gives the number of detected faces. Except for the first
two levels, all faces were detected. The last line shows the number of times a face in a
subframe was detected. For example at level 3, on average, in an image with a face, three
subframes pass the detection test, whereas at level 7 between seven and eight locations
in an image pass the test. This is first a consequence of the local translation invariance
of our representation and second, because a large fraction of detected features are edges,
which are longer than our local window that cuts the image into local parts. We note that
even if multiple subframes of an image pass the detection test, they are never displaced
more than two nodes from the optimal position. Furthermore, we tested the detectors
on non–face images. We used a few images of different objects with a cluttered office
background, figure 9.3 shows some examples. We found that there were very few false
detections, but we did not systematically collect non–face images to quantify the fraction
of false detections. In a further test session we saw that the detector is tolerant enough
that even persons unseen during training are detected.

9.7 The recognition kernel

We are in the following situation. We are given a set {x1, ..., xl} of example images of
faces. Each image belongs to one of the persons, thus defining a label for each example.
The idea is to run our support vector algorithm for multicategorical data to learn a
representation of the data. Once the representation is learnt, we can try to recognise
one of the persons from the training set in the following way. For a new image x̂ from
the vision sensor we apply the face detection step discussed above. This then selects a
sublattice of the lattice L̂ defined on x̂ corresponding possibly to a face region. Then the
vector v composed of the local histograms h(·)[x̂] with respect to this sublattice is of the
same dimension as the vectors composed of the local histograms h(·)[xi] over the lattice
L. We apply our decision functions dc of the multiclass representation to v to test if in
the given region a face of one of the persons is present, that is, the decision function will
attribute the vector to its class, or not.

In order to run our algorithm from chapter 4 we need a measure of similarity, a kernel.
In section 9.3 we defined a kernel for detecting faces. The kernel was constructed in order
to find similarities among faces, in particular, among faces of different persons. On the
other hand, the kernel for recognition has a different task, it should detect dissimilarities
between persons. Therefore we define a new kernel for the recognition task. For two
images xi, xj we measure the dissimilarity between the two features φ(xi, {(u, v, d)}) and
φ(xj, {(u, v, d)}) by

∆(u,v,d) = φ(xi, {(u, v, d)})− φ(xj, {(u, v, d)}), (9.22)

with φ defined in (9.3). Note that ∆ ∈ Rq where q is the number of bins. The recognition
kernel is then

krec(xi, xj) =
∏

(u,v,d)∈L×M

e−||∆(u,v,d)||2λ/2σ
2

, (9.23)
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ν\σ2 1 2 5 10 20 50 100
0.05 107 99 91 87 85 83 84
0.1 111 108 100 98 97 96 95
0.2 123 120 116 113 111 112 112

Table 9.2: Cross validation results: The number of false rejections out of the 240 shown
test examples of the 3 persons for each value of the parameters ν (first column) and σ2

(first row). There was no false acceptance of examples of the three seen and the fourth
unseen person.

where || · ||λ is the norm induced by the scalar product < ·, ·>λ. The kernel krec is a
positive definite kernel by (6). We used the function e−· to turn the dissimilarity measure
||∆(u,v,d)||2λ in a similarity measure. Note that there is a general relation between the two
[61].

9.7.1 Estimating the parameters

To estimate the kernel parameter σ2 and the parameter ν we use a cross validation
procedure. We split the data multiple times in a training and a test set. Each training
set consists of the examples of three persons, but we left out 80 examples of each person,
which we put in the test set together with the examples of the fourth person. As for
detection, we choose the 80 examples such that they are the translated versions of a
frame sequence of 20 frames, and in a way that the training set still consists of examples
of both illumination conditions. In summary, we used eight different splits of our data in
training and test set. Now, for each pair of values for the parameters σ2 and ν we train
and test our algorithm on these eight splits and store the result. To make this procedure
not too time consuming, we need some prior guesses of the possible values of the two
parameters. By the ν–property 4.2.6, we have a clear interpretation leading to a prior
for ν. First, ν smaller than minc 1/lc, where lc denotes the number of training examples
of class c, gives the same solution as ν equal to this minimum. In our case minc lc = 160.
Because the persons were advised to perform small movements in front of the camera, we
expect to have some outliers due to too large movements. Therefore, the minimum value
for ν is expected to be too small, and we use a minimum of 0.05. On the other hand, we
tried to be careful by acquiring the face images. Therefore, we do not expect to have too
many outliers, and we fix the maximal value for ν to be 0.2. Furthermore, we choose an
intermediate value, in total we choose ν ∈ {0.05, 0.1, 0.2}. Choosing a set of reasonable
values for σ2 is more difficult. The inequalities (8.17) give us some indications. By using
the weighted scalar product (9.5), the kernel (9.23) is most sensitive to differences in the
bin of low numbers, that is, strong edges. Let us consider images in which we have at
each location either a very strong edge in one direction only or none at all. Therefore, at
each position in the lattice we have a maximal squared distance to another image of this
type of about 1. Thus, we expect σ2 not to be larger than the number of nodes in the
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level ν σ2 # ex. of
seen

# ex. of
unseen

# false
reject

# false
accept

3 0.1 50 240 > 240 113 0

Table 9.3: Result of detection and recognition combined. The first column denotes the
level of the detection model used. Then, ν is the parameter of the multi–class algorithm
controlling the number of outliers, and σ2 is the kernel parameter. Then, next are the
number of test examples of persons seen during training and not seen, respectively. At the
end are the number of false rejections (images containing a face of a person seen during
training, but the person is not recognised), and false acceptances (images containing a
face of a person not seen during training, but the person is falsely identified).

lattice, which is 20× 12 = 240. In summary, we choose σ2 ∈ {0.5, 1, 2, 5, 10, 20, 50, 100}.
Table 9.2 shows the number of false rejections, averaged over the eight runs. Note

that there was no false acceptance. As expected from section 4.2.6, by increasing ν the
number of false rejections increases. The results show that the solution is not too sensitive
to the choice of the parameter σ2. From these results we chose a value of σ2 = 50 and
the more conservative value ν = 0.1 to train a final model. The final model is trained
using all the training data and is tested during another session.

9.8 Recognition results

The goal is to recognise the persons whose face is in our dataset. But recognition should
be possible in a new session, days or weeks after storing the face images even when the
environment has changed. Especially changes in the illumination conditions are difficult
to deal with [52]. But before doing so, we first put the detection and recognition model
together, to test recognition not only on subframes, but on the whole image. This is the
subject of the next subsection.

9.8.1 Detection and recognition on training session

Let us test the model learnt on subimages on the whole images. We test this by scanning
over the whole local histogram decomposition and applying our detection and recognition
model on all possible subdecompositions. Note that this is far more difficult, because we
fix the lattice L̂ on the whole image and then consider subdecompositions. Thus, in
general the lattice L at the position used during training is not a sublattice of L̂. Table
9.3 shows the models we chose and the result, which is the mean over two runs of the
four different splits of the data. We chose the examples as described in subsection 9.7.1.
As desired, there was no false acceptance. On the other hand, nearly every second frame
containing a known face was rejected. This might seem a lot, but we remind the reader
that persons perform small movements in front of the camera, therefore, not every face
in a frame can and needs to be recognised.
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# persons in training set 4
# unseen persons in test 5
# persons detected all
# persons recognised all, using multiple

frames
# false acceptance 0

Table 9.4: Summary of the results on the test session.

9.8.2 Results on the test session

Now having trained the face detectors and the recognition model, we tested their perfor-
mance. This was about two weeks after acquiring the dataset of faces. We recall that
all the data used for training was acquired in a single session. Without changing any
parameter, three of the four persons were immediately recognised, whereas the fourth
person was not. It was already seen by inspection of the training data that this person
performed larger movements than the other persons, and a couple of examples had to
be eliminated from the training database. Note that the illumination conditions were
different for the test session than for the training session, as it was snowing, while during
collection of the data it was a sunny day. During the test session, we stored some more
examples of the fourth not recognised person. Then, we proceeded as follows. We added
this new data to our dataset and retrained the parameters of the representative vector w4

corresponding to the fourth person, while keeping all the other parameters fixed, which
is efficient compared to retraining the whole model. We recall that for performing the
elementary steps 5.1.1 of optimisation we need to show two examples of the same class
only. Therefore, for retraining the representative vector of one class keeping the others
fixed, we perform elementary steps for examples of this class, as long as there are vio-
lators of the KKT–conditions. Then, when there are no more violators, we readjust the
margins of all classes.

Three weeks later another test was carried out, with the retrained recognition model.
Now, all four persons were correctly recognised. Furthermore, five persons not seen
before were sitting in front of the camera. Interestingly, the faces of all five persons were
detected. There was no false acceptance, all the five subjects were correctly rejected.
Table 9.4 summarises the results.

Let us note the runtime of detection and recognition. To speed up recognition, we
tested for each frame maximally at one location to recognise a face. In other words, even
if a face was detected at multiple locations, we selected only the location which passed
a maximal number of detection tests. This did not affect performance, but did speed
up processing, as the recognition part is time consuming. We used a notebook with a
PPC processor running at 400MHz. Running the interface for the camera, detection of a
face and then trying to recognise it took about 1 second. If no face is detected, multiple
frames can be processed in 1 second. By construction, our representation is invariant
to translation and it has a local invariance to rotation and scale. Therefore, a person
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seen during training is very quickly recognised. By performing small movements in front
of the camera, 5 frames are normally enough for recognition. We note that this is an
estimation and not a precise measurement. We did not do precise measurements, as this
depends largely on how precise the person is positioned in front of the camera before one
starts counting. We note that the processing routines could be further optimised. The
interface of the camera was developed independently from the detection and recognition
part, and therefore some frame processing is done twice.

9.9 Discussion

For the detection and recognition of faces, we did not use ”hand designed“ features,
such as putting more weight on certain regions of the face. All we did was cutting a
rectangular region containing the face. We did this for two reasons. First, for practical
reasons, because our images are gradient images of low resolution, and it is sometimes
hardly possible to exactly locate the eyes by hand. Second, from an abstract point of
view, we need little prior knowledge about a face, which makes our approach more general
in that it could be used to recognise other objects as well. Other face recognition systems
use hand designed features like the eye and mouth region [69], or in addition the nose
[11]. Experiments in psychology show that the most important features are the head
contour, the eye region, the mouth region and the nose [35]. But feature saliency varies
considerably among different individuals [36] and different persons use different strategies
[34]. Other studies show that there is evidence that the facial features appropriate for
discriminating among dark faces are different from those appropriate for white faces [67].
Therefore, ideally we should learn the features from the data.

In contrast to recognition, for face detection we learn the features from the data. We
recall that our detection kernel takes as input an example face x together with the set A
of lattice locations, at which products are computed. We chose this in a way that it fits
into the framework of our unsupervised algorithm. But we could define different kernels,
namely for each subset A a kernel

kA(xi, xj) = k((xi, A), (xj, A)),

which calculates products over that subset. Even though this reformulation is trivial, the
interpretation is not because we can interpret the iterative strategy to determine the sets
A, as a strategy to learn the kernel.

By estimating the parameters of the detector we use a dataset of a few persons only,
and therefore the resulting detector is not necessarily general enough to detect any face.
It is a detector of the faces of the persons in our database. Still, it detected the other
test persons, but as there were few of them, it is not enough to compare the performance
with other detection systems. In addition, we can detect faces only in a limited range of
scales and poses.

The application of our multiclass support vector algorithm showed us the following.
The algorithm is general and can be used for other applications. On the other hand,
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the specially designed processing of the images is specific but important for the face
recognition application. The algorithm has few tunable parameters. The most important
ones are the fraction ν of outliers and the width σ of the Gaussian kernel. Hence, already
in the first test session our system recognised three of the four persons, without fine
tuning of parameters.

Let us note the following limitation. During a test session we made the following
experiment. One of the persons, whose face images are in the training set, wears glasses
with a characteristic frame. During a test session, another person, not seen during train-
ing, wore these glasses. Sitting in front of the camera and performing small movements,
this person was nearly recognised as the owner of the glasses. This shows us the following
limitations: Learning from a small group of individuals only is on one hand an easier
task, as there are less possibilities for confusion. On the other hand, it is more difficult
to estimate characteristic features from only a few sample faces. In term of the above
example, as there were not different persons with these special glasses in the training set,
the glasses served as an important feature to identify that person. This is not a weakness
of the algorithm, but shows the fact that our training sample was small.

Of course, there are many things that could be further improved. We want to point
out the following points. First, there is the fact discussed above that we did not learn the
recognition kernel. Even though our simple kernel performed good enough to recognise
faces, it would be good to optimise the kernel to be more efficient. For example, by
using only a subset of all the histograms. Second, we treat each frame as being an
independent image. We could us the detection result of the preceding image as a prior
for the next frame, in order to speed up detection, as used in [66]. Third, our local image
representation has an important feature which we did not use. The B–splines fulfil a
two–scale relation, that is, the B–spline b dilated by a factor 2 is a linear combination of
translated B–splines,

b
(x

2

)
=
∑
i

λib(x− i), (9.24)

for suitable chosen coefficients λi. Therefore, the local histograms computed with a lattice
of step size 2n can be efficiently computed by a weighted sum of local histograms at step
size n. A whole hierarchy of local histograms can be computed in this way. This could be
used for more efficient processing, as one uses a multi–resolution chain in wavelet theory.
In summary, there is still room for improvements.

88



Chapter 10

Conclusion

Finding appropriate learning strategies is not an easy task as there are multiple con-
straints. The class of functions that are possible solutions of the algorithm has to be
sufficiently rich. But if the class is too large, the complexity of learning from examples
can become prohibitive. In addition, for face recognition, the representation of the data
should be robust as there are several sources of noise. Illumination, the environment, and
the pose of a person in front of the camera are continually changing.

Motivated by the close resemblance of the one– and two–class support vector machine,
we developed a suitable class of functions and an optimisation algorithm to learn the
categorisation of data into multiple classes. This algorithm proved to be well suited for
the recognition of faces. For a fast processing, a detection step is used. Detection consists
of testing for occurrences of characteristic features. These features are estimated from
the face data available for training.

For face recognition, various strategies exist in the literature. Obviously, our approach
is different as we use image sequences acquired with the CSEM adaptive vision sensor
and not with a standard camera. In addition, our objective was different. Learning
from a small group of individuals only is on one hand an easier task, as there are less
possibilities for confusion. On the other hand, it is more difficult to estimate characteristic
features from only a few sample faces. Representing an image as a collection of local
histograms weighed by a spline kernel is a compact robust feature containing all the
necessary information. Furthermore, the processing is well adapted to the sensor output.

10.1 Main results

In chapter 2 we reviewed how the kernel induces geometrical structures. We proposed a
method to use this geometrical structure to optimise the decision hyperplane of a support
vector machine in a normalised feature space to increase performance.

Chapters 4 to 6 are devoted to a new support vector type optimisation problem for
the categorisation of data belonging to multiple classes. Our approach can be seen as a
generalisation of the support vector machine algorithms for one and two classes to the
case of more than two classes. It is conceptually different from other multi–class support
vector approaches. In our case, we allow to reject examples, that is, they are classified as
belonging to none of the classes from the training set. Of course, there is a tradeoff for
an algorithm between performance and complexity. We demonstrated that our algorithm
is simpler in training and the solution is more compact. As expected, we pay for this by
a small decrease in performance.
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We developed in chapter 5 an efficient implementation to find a minimum of our
multi–categorical optimisation problem. The algorithm is an adaptation of the Sequential
Minimal Optimisation algorithm to our case. In addition, we showed that optimisation
efficiency can be improved using finite accuracy calculations to avoid a large number of
small but time consuming updates. We proved the termination of our algorithm after a
finite number of steps. Finally, we explored learning in an online setting.

In chapter 7 we showed possibilities to use similar versions of our multi–class optimi-
sation problem for unsupervised learning.

We then turned to an application of our algorithms to real–time object recognition.
We constructed a new representation of images in chapter 8. As the sensor output is
ordered with respect to decreasing local contrast, it was natural to use a histogram
representation over the contrast. Our histograms are local in position and direction of
the gradient. Therefore, they allow to distinguish between position and direction of the
gradient, and between different local contrasts. Furthermore, our representation has local
translation, scale, and rotation invariance.

Eventually, in chapter 9 we designed an optimisation procedure to estimate charac-
teristic features of a face. These features were used to detect potential locations of a
face in an image. They were estimated from a training set of face images from a small
number of persons. We applied our categorisation algorithm to this same training set.
With the estimated parameters we could recognise these persons later, even under dif-
ferent illumination conditions. Faces of persons, unseen during training, were correctly
rejected.

10.2 Perspectives

Much of the research effort has been spent to develop a classification algorithm with a
suitable tradeoff between efficiency and performance, and to have a robust image rep-
resentation. While these objective have been achieved, there are other aspects which
could further be improved. The sensor output consists of information from a sequence of
images. Of course, this sequence has a temporal coherence. In our recognition strategy,
we only use the possibility to choose an image from multiple images, in which a person
can be recognised. But we could use the temporal coherence to predict information of
a future image from past images to reduce the amount of data processing. This could
increase efficiency.

We did not explore the possibility of learning online. Having enough data to detect
faces accurately enough, we could learn new persons while they are sitting in front of the
camera.

Furthermore, we did not use all the features of the camera and our representation.
Our representation allows easily to construct a hierarchy of local histograms. First, a
hierarchy with respect to the location of the histogram. From histograms over small
regions, histograms over lager regions can be obtained by summing the former ones. Sec-
ond, one could construct a hierarchy with respect to the number of bins in the histogram.
By taking only the high local contrast information, we can construct histograms with
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fewer bins. Such hierarchies would allow a faster processing, as multiresolution chains do
in wavelet theory.
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