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Abstract—In this paper, we propose privacy-enhancing technolo-
gies for personal use of the genomic data and analyze the tradeoff
between genomic privacy and storage cost of the genomes. First, we
highlight the potential privacy threats on the genomic data. Then,
focusing specifically on a disease-susceptibility test, we develop a
new architecture (between the patient and the medical unit) and
propose a privacy-preserving algorithm by utilizing homomorphic
encryption. Assuming the whole genome sequencing is done by a
certified institution, we propose to store patients’ genomic data
encrypted by their public keys at a Storage and Processing Unit
(SPU). The proposed algorithm lets the SPU process the encrypted
genomic data for medical tests while preserving the privacy of
patients’ genomic data. We extensively analyze the relationship
between the storage cost (of the genomic data), the level of genomic
privacy (of the patient), and the characteristics of the genomic data.
Furthermore, we show via a complexity analysis the practicality of
the proposed scheme.

Privacy control can be defined as the ability of individuals
to determine when, how, and to what extent information about
themselves is revealed to others. In this way, the usage of private
data will remain in context and it will be used exclusively for the
purpose the data owner has in mind. Privacy is usually protected
by both legal and technological means. By using legal actions,
such as data protection directives and fair information practices,
privacy regulations can enforce privacy protection on a large
scale. Yet, this approach is mostly reactive, as it defines regu-
lations after technologies are put in place. To avoid this issue,
Privacy-Enhancing Technologies (PETs) [1] can be incorporated
into the design of new systems in order to protect individuals’
data. PETs protect privacy by eliminating or obfuscating personal
data, thereby preventing misuse or involuntary loss of data,
without affecting the functionality of the information system.
Their objective is to make it difficult for a malicious entity to
link information to specific users.

Genomics is becoming the next significant challenge for
privacy [2]. The price of a complete genome profile has dropped
below $100 for genome-wide genotyping (i.e., the characteriza-
tion of about one million common genetic variants), which is
offered by a number of companies. Whole genome sequencing
is also offered through the same direct-to-consumer model (but
at a higher price). This low cost of DNA sequencing will break
the physician/patient connection, because private citizens (from
anywhere in the world) can have their genome sequenced without
involving their family doctor. This can open the door to all
kinds of abuse, not yet fully understood. For example, employers
may (indirectly) test their employees, insurance companies may
obtain the genomes of their clients, or college officials may
access the genomes of their students. Even though the Genetic
Information Non-discrimination Act (GINA), which prohibits the
use of genomic information in health insurance and employment,
attempted to solve some of these problems in the US, these types
of laws are very difficult to enforce.

In this work, our goal is to protect the privacy of patients’
genomic data while (i) enabling medical units to access the
genomic data in order to conduct medical tests, and (ii) providing

efficient storage of the genomic data. In a medical test, a medical
center checks for different health risks (e.g., disease susceptibil-
ities) of a patient by using specific parts of his genome. In order
to preserve his privacy, the patient does not want to reveal his
complete genome to the medical center. To achieve this goal, we
propose to store the genomic data at a Storage and Processing
Unit (SPU) and conduct the computations on the genomic data
utilizing homomorphic encryption.

Medical tests (which use genomic data) are usually conducted
by analyzing the variants (i.e., nucleotides which reside at
particular positions in the genome and vary between individuals)
of the patients. Current discoveries show that there are around
40 million variants in human population, however, this number
keeps increasing with new discoveries. Thus, the variants of
the patients should be stored in an efficient way to minimize
the storage cost at the SPU. At the same time, the variants
of a patient should be securely stored in such a way that the
SPU would not be able to infer their contents (to preserve the
genomic privacy of the patient). Therefore, there is a tradeoff
between the privacy and the storage, hence we extensively
analyze this tradeoff for our proposed system by also considering
the characteristics of the genomic data.

The rest of the paper is organized as follows. In Section I, we
summarize the related work on genomic privacy. In Section II,
we describe our proposed scheme for privacy-preserving medical
tests. Next, in Section III, we analyze the tradeoff between the
privacy and the storage cost of the genomic data for different
design and genomic criterion. In Section IV, we present the com-
plexity evaluation of the proposed scheme. Finally, in Section V,
we conclude the paper.

I. RELATED WORK

We can put the research on genomic privacy in three main cat-
egories: (i) private string searching and comparison, (ii) private
release of aggregate data, and (iii) private clinical genomics. Our
proposed work is closest to the efforts on private string searching
and comparison.

In [3], Troncoso-Pastoriza et al. propose a protocol for string
searching, which is then re-visited by Blanton and Aliasgari [4].
In this approach, one party with his own DNA snippet can verify
the existence of a short template within his snippet by using a
Finite State Machine in an oblivious manner. To compute the
similarity of DNA sequences, in [5], Jha et al. propose techniques
for privately computing the edit distance of two strings by using
garbled circuits. In [6], Bruekers et al. propose privacy-enhanced
comparison of DNA profiles for identity, paternity and ancestry
tests using homomorphic encryption. Similar to our work, in [7],
Kantarcioglu et al. propose using homomorphic encryption to
perform scientific investigations on integrated genomic data. As
opposed to [7], we focus on personal use of the genomic data
(e.g., in medical tests). In one of the recent works [8], Baldi et
al. make use of medical tools and private string comparison
for privacy-preserving paternity tests, personalized medicine,



and genetic compatibility tests. Instead of utilizing public key
encryption protocols, in [9], Canim et al. propose securing the
biomedical data using cryptographic hardware. Furthermore, we
propose privacy-preserving schemes for medical tests and per-
sonalized medicine methods that use patients’ genomic data [10],
[11]. We also propose privacy-preserving techniques for the
management of raw genomic data [12] and techniques to quantify
kin genomic privacy [13].1

As a result of our extensive collaboration with geneticists, clin-
icians, and biologists, we conclude that DNA string comparison
(in which the medical unit can only check if the patient carries
a specific combination of variants or not) is insufficient in many
medical tests (that use genomic data). As it will become clearer
in the next sections, specific variants must be considered individ-
ually for each genetic test. Thus, as opposed to the above private
string search and comparison techniques, we use the individual
variants of the patients to conduct genetic disease susceptibility
tests. Further, in our proposed scheme, we consider the statistical
relationship between the variants to provide efficient storage of
the genomic data while still protecting the genomic privacy of
the patients.

II. PRIVACY-PRESERVING PERSONAL USE OF THE GENOMIC

DATA IN MEDICAL TESTS

Most medical tests (that use genomic data) involve a patient
and a medical unit. In general, the medical unit is the family
doctor, a physician, a pharmacist, a medical council, or an online
service. In this study, we consider a malicious medical unit as
the potential attacker. That is, a medical unit can be a malicious
institution trying to obtain private genomic information about
a patient (for which it is not authorized). Even if the medical
unit is non-malicious, it is extremely difficult for medical units
to protect themselves against the misdeeds of a hacker or a
disgruntled employee, hence the attacker can also be considered
as a hacker or a careless employee in the medical unit. Similarly,
the genomic data is too sensitive to be stored on patients’
personal devices (mostly due to security, availability, and storage
issues), hence it is risky to leave the patients’ genomic data
in their own hands. In addition, extreme precaution is needed
between the patient and the medical unit due to the sensitivity of
the genomic data. Thus, we believe that a Storage and Processing
Unit (SPU) should be used to store and process the genomic
data.2 We assume that the SPU is an honest organization, but it
might be curious (e.g., existence of a curious party at the SPU),
hence the genomic data should be stored at the SPU in encrypted
form (i.e., the SPU should not be able to access the content of
patients’ genomic data). We also assume the SPU does not have
access to the real identities of the patients and data is stored at the
SPU by using pseudonyms; this way, the SPU cannot associate
the conducted genomic tests to the real identities of the patients.
This general architecture is illustrated in Fig. 1.

For the simplicity of presentation, in the rest of this work,
we will focus on a particular medical test (namely, computing
genetic disease susceptibility). We note that similar techniques
would apply for other medical tests and personalized medicine
methods. In a typical disease-susceptibility test, a medical center
(MC) wants to check the susceptibility of a patient (P) to a
particular disease X (i.e., probability that the patient P will de-
velop disease X). It is shown that a genetic disease-susceptibility
test can be realized by analyzing particular Single Nucleotide
Polymorphisms (SNPs) of the patient via some operations, such
as weighted averaging [14] or Likelihood Ratio (LR) test [15].

1More information about our activities in this field can be found at:
http://lca.epfl.ch/projects/genomic-privacy/.

2A private company (e.g., cloud storage service), the government, or a non-
profit organization could play the role of the SPU.
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Fig. 1. General architecture between the patient, SPU, and the medical unit.

A SNP is a position in the genome holding a nucleotide (A, T, C
or G), which varies between individuals. Each SNP contributes
to the susceptibility in a different amount and the contribution
amount of each SNP is determined by previous studies on case
and control groups (these studies are published in several papers).

In general, there are two alleles (nucleotides which reside at a
SNP position) observed at a given SNP position: (i) The major
allele is the most frequently observed nucleotide, and (ii) the
minor allele is the rare nucleotide. Everyone inherits one allele
of every SNP position from each of his parents. If an individual
receives the same allele from both parents, he is said to have
a homozygous variant for that SNP position. If, however, he
inherits a different allele from each parent (one minor and one
major), he has a heterozygous variant. There are approximately
40 million approved SNPs in the human population as of now
(according to the NCBI dbSNP [16]) and each patient carries
on average 4 million SNPs (e.g., variants) out of this 40 million.
Moreover, this set of 4 million SNPs is different for each patient.
From now on, to avoid confusion, for each patient, we refer to
these 4 million variants as the real SNPs and the remaining non-
variants (approved SNPs that do not exist for the considered
patient) as the potential SNPs of the patient; when we only say
“SNPs”, we mean both the real and potential SNPs.

A potential attacker can learn about the susceptibilities of the
patient to privacy-sensitive diseases if he obtains some specific
real SNPs of the patient. Moreover, the knowledge of 75 real
SNPs (out of approximately 4 million), if not fewer, will enable
the attacker to identify a person [17]. Thus, our goal is to build
a mechanism in which the patient can preserve the privacy of
his genomic sequence (his real SNPs) while enabling the MC to
access his genomic data and conduct genetic tests. In the rest of
this work, for simplicity of the presentation, we do not consider
the type of the variant at a real SNP position (i.e., whether the
variation is homozygous or heterozygous for that real SNP); we
only consider whether the patient has a real SNP or not at a
particular position. However, the proposed approaches and the
analysis (in Section III) can easily be extended to cover the types
of the variants.

In each disease susceptibility test, depending on the access
rights of the MC, the SPU can either (i) compute Pr(X),
the probability that the patient will develop the disease X,
by checking the patient’s encrypted SNPs via homomorphic
encryption techniques [18], or (ii) provide the relevant SNPs
to the MC (e.g., for complex diseases that cannot be interpreted



using homomorphic operations). These access rights are defined
either jointly by the MC and the patient or by the medical
authorities. We note that homomorphic encryption lets the SPU
compute Pr(X) using encrypted SNPs of the patient P. In other
words, the SPU does not access P’s SNPs to compute his
predicted disease susceptibility. We use a modification of the
Paillier cryptosystem (described in Section II-A) to support the
homomorphic operations at the SPU.

A. Paillier Cryptosystem

In this section, we briefly review the modified Paillier cryp-
tosystem (described in detail in [18], [19]), which we use in this
work, and its homomorphic properties.

The public key of the patient P is represented as (n, g, h = gx),
where the strong secret key is the factorization of n = pq (p, q
are safe primes), the weak secret key is x ∈ [1, n2/2], and g of
order (p− 1)(q− 1)/2. Such a g can be easily found by selecting
a random a ∈ Z

∗
n2 and computing g = −a2n.

Encryption of a message: To encrypt a message m ∈ Zn, we
first select a random r ∈ [1, n/4] and generate the ciphertext pair
(T1, T2) as below:

T1 = gr mod n2 and T2 = hr(1 +mn) mod n2. (1)

Decryption of a message: The message m can be recovered as
follows:

m = Λ(T2/T
x
1 ), (2)

where Λ(u) =
(u−1) mod n2

n , for all u ∈ {u < n2 | u = 1
mod n}.

Homomorphic properties: Assume two messages m1 and m2

are encrypted using two different random numbers r1 and r2, un-
der the same public key, (n, g, h = gx), such that E(m1, r1, g

x) =
(T 1

1 , T
1
2 ) and E(m2, r2, g

x) = (T 2
1 , T

2
2 ). Assume also that c is

a constant number. Then the below-mentioned homomorphic
properties are supported by Paillier cryptosystem:

• The product of two ciphertexts will decrypt to the sum of their
corresponding plaintexts.

D(E(m1, r1, g
x) · E(m2, r2, g

x)) =

D(T 1
1 · T 2

1 , T
1
2 · T 2

2 mod n2) = m1 +m2 mod n. (3)

• An encrypted plaintext raised to a constant c will decrypt to
the product of the plaintext and the constant.

D(E(m1, r1, g
x)c) = D((T 1

1 )
c, (T 1

2 )
c mod n2)

= cm1 mod n. (4)

Proxy re-encryption: The patient’s weak secret key x is
randomly divided into two shares: x(1) and x(2) (such that
x = x(1) + x(2)). x(1) is given to the SPU and x(2) is given
to the MC. Using the above Paillier cryptosystem, an encrypted
message (T1, T2) (under the patient’s public key) can be partially
decrypted by the SPU (using x(1)) to generate the ciphertext pair
(T̃1, T̃2) as below:

T̃1 = T1 and T̃2 = T2/T
x(1)

1 mod n2. (5)

Now, (T̃1, T̃2) can be decrypted at the MC using x(2) to recover
the original message.

B. Proposed Solution

Even though the contents of the SNPs are stored encrypted (via
the patient’s public key), we assume that the positions (or IDs)
of the corresponding SNPs (on the DNA sequence) are stored in
plaintext at the SPU. This is because, when a particular SNP (or
set of SNPs) are queried by the MC, the SPU should know which
SNPs to process (or send to the MC) without the involvement of
the patient in the protocol.3 More importantly, the SPU needs to
see the positions (or IDs) of the requested SNPs by the MC in
order to check whether the MC holds the required access rights
for the corresponding SNPs of the patient.

We assume that the type of SNPi (i.e., SNP whose ID is i)
at the patient P is represented as SNPP

i and SNPP
i = 1, if P has

a real SNP (i.e., variant) at this position, and SNPP
i = 0, if P

does not have a variant at this position. We let ΥP be the set
of real SNPs of the patient P (at which SNPP

i = 1). We also let
ΩP represent the set of potential SNPs (at which SNPP

i = 0).
As the positions of the SNPs are stored in plaintext, if the

SPU only stores the real SNPs in ΥP , a curious party at the
SPU can learn all real SNP positions of the patient, hence much
about his genomic sequence.4 To avoid this, a trivial solution
is to let the SPU store the contents of both real and potential
SNP positions (in {ΥP ∪ ΩP }) in order to preserve the privacy
of the patient. However, this trivial solution causes a significant
storage cost (which is projected to increase as the number of
discovered SNPs keeps increasing with new discoveries in the
field of genomics). Thus, we propose another technique that
reduces the storage cost at the SPU at the expense of decrease
in privacy. In a nutshell, instead of storing the contents of all
potential and real SNP positions, we store the real SNPs of the
patient along with a certain level of redundancy (i.e., contents
of some potential SNP positions). In other words, to mislead
a curious party at the SPU, among the 40 million discovered
SNPs, we store the approximately 4 million real SNPs (for which
SNPP

i = 1, i ∈ ΥP ) along with some redundant content from ΩP

(with SNPP
j = 0), for each patient.

An important privacy issue to consider at this point is the
Linkage Disequilibrium (LD) between SNPs [20]. LD occurs
when SNPs at the two loci (SNP positions) are not independent
of each other. Using the LD relationships between the stored
and un-stored SNPs, a curious party at the SPU might infer the
contents of the stored SNPs from the un-stored ones (by using
the fact that an un-stored SNP j is a potential SNP of the patient
with SNPP

j = 0). This causes a tradeoff between the privacy and
the storage cost of the genomic data. We discuss this tradeoff
in detail in Section III. Below, we summarize the proposed
approach for the privacy-preserving disease-susceptibility test.
This approach is illustrated in Fig. 2.
• Step 0: The cryptographic keys (public and secret keys) of
each patient are generated and distributed to the patients during
the initialization period. Then, symmetric keys are established
between the parties, using which the communication between
the parties is protected from an eavesdropper. We note that the
distribution, update and revocation of cryptographic keys are
handled by a trusted entity (similar to e-banking platforms).

• Step 1: The patient (P) provides his sample (e.g., his saliva)
to the Certified Institution (CI) for sequencing.

• Step 2: The CI sequences P with the consent of the patient.
Let Ωs

P and Ωu
P denote the set of P’s potential SNPs that will be

3Generally, the involvement of the patient is not desirable during the interac-
tion between the MC and the SPU.

4The nucleotides corresponding to variants at particular positions of the DNA
sequence are public knowledge. Thus, even though the contents of patient’s
real SNPs are encrypted, a curious party at the SPU can infer the nucleotides
corresponding to these SNPs from their plaintext positions (or IDs).
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Fig. 2. Privacy-preserving protocol for disease-susceptibility test.

stored and not stored at the SPU, respectively (Ωs
P ∪Ωu

P = ΩP ).
Then, the CI encrypts the contents of P’s real and potential SNPs
(in {ΥP ∪ Ωs

P }) by using P’s public key. We are aware that
the number of discovered SNPs increases with time. Thus, the
patient’s complete DNA sequence is also encrypted as a single
vector file (via symmetric encryption using the patient’s key) and
stored at the SPU, thus when new SNPs are discovered, these
can be included in the pool of the previously stored SNPs of the
patient.

• Step 3: The CI sends the encrypted SNPs of P to the SPU
along with their plaintext IDs (so that the SPU cannot access
the contents of P’s SNPs).

• Step 4: The patient provides a part of his secret key (x(1)) to
the SPU.

• Step 5: The MC wants to conduct a susceptibility test on P
to a particular disease X, and P provides the other part of his
secret key (x(2)) to the MC.

• Step 6: The MC provides genetic variant markers, along with
their individual contributions (to the disease susceptibility), to
the SPU.

• Step 7: If the disease susceptibility can be interpreted by
homomorphic operations, the SPU computes P’s total suscep-
tibility to disease X from the individual effects of SNPs by
using the homomorphic properties of the Paillier cryptosystem
as described next. Otherwise, the SPU provides the relevant
SNPs to the MC based on MC’s access rights. We note that if a
particular potential SNPj (requested by the MC or needed in the
susceptibility test) is not stored at the SPU (i.e., SNPj ∈ Ωu

P ), one
of the following two scenarios occurs: (i) If the SPU provides the
relevant SNPs to the MC, MC infers the missing potential SNPs
from the reference genome (since it is known that the missing
potential SNPs are not variants for P), or (ii) if the SPU provides
the end-result of the susceptibility test, the SPU uses the fact that
SNPP

j = 0 for each missing potential SNP j.

In the following, we discuss how to compute the predicted
disease susceptibility at the SPU by using the function proposed
in [15] (i.e., multiplication of LR values) and show how the
predicted susceptibility is computed using encrypted SNPs.5 The
predicted disease susceptibility is computed by multiplying the
initial risk of the patient (e.g., for disease X) by the LR value of
each SNP related to that disease (LR value of a SNP i depends
on the value of SNPP

i at patient P). The initial risk of patient
P for the disease X is represented as IPX . We note that IPX is
determined by considering several factors (other than patient’s
genomic data) such as the patient’s age, gender, height, weight,

5The function in [14] can be also utilized similarly.

and environment. Thus, this initial risk can be computed directly
by the MC.

We assume that the susceptibility for disease X is determined
by the set of SNPs in set ϕX . We denote the LR values due to
SNPP

i = 0 and SNPP
i = 1 for disease X as Li

X(0) and Li
X(1),

respectively. The SPU receives the following from the MC (in
Step 6): (i) Li

X (j) values (i ∈ ϕX and j ∈ {0, 1}) in plaintext,
and (ii) the IDs of the SNPs (in ϕX ) that are related to disease
X. The MC also encrypts the log of initial risk value, ln(IPX),
by P’s public key and sends E(ln(IPX), gx) to the SPU.6 Next,
the SPU encrypts j (j ∈ {0, 1}) using P’s public key to obtain
E(0, gx) and E(1, gx) for the homomorphic computations.

The predicted susceptibility of P for disease X (SXP ) can be
computed (using the likelihood ratio test) in plaintext as below:

S
X
P =IPX×

∏

i∈ϕX

{

[

SNPP
i − 1

]

×−Li
X(0) +

[

SNPP
i − 0

]

× Li
X (1)

}

.

(6)

The Paillier cryptosystem does not support multiplicative ho-
momorphism in ciphertext; it only supports the multiplication
of a ciphertext with a constant, as discussed in Section II-A.
Thus, instead of multiplying the LR values, we use addition
in log-domain at the SPU. Therefore, the SPU computes the
predicted susceptibility of P for disease X, E(ln(SXP ), gx), in
log-domain by using ln(Li

X(j)) values (i ∈ ϕX and j ∈ {0, 1})
and the homomorphic properties of the Paillier cryptosystem
(Section II-A).

In some genetic tests, the types of the real SNPs (e.g., ho-
mozygous or heterozygous) become also important. In this case,
SNPP

i can take three different values from the set {0, 1, 2} to
represent a potential SNP (i.e., non-variant), a real homozygous
SNP, and a real heterozygous SNP, respectively. In such a sce-
nario, to conduct the disease-susceptibility test via homomorphic
operations, the SPU should store the squared values of the SNPs.
That is, for each SNPP

i of the patient P, the SPU should store
E((SNPP

i )2, gx). Depending on the types of genomic tests that
would be supported by the SPU (and the functions required
for these tests), the format of storage of patient’s SNPs can be
determined beforehand, and SNPs can be stored accordingly just
after the sequencing process.

Finally, the SPU partially decrypts the end-result (or the
relevant SNPs) using x(1) (its share of P’s secret key) following
a proxy re-encryption protocol (Section II-A).

• Step 8: The SPU sends the partially decrypted end-result (or
the relevant SNPs) to the MC.

• Step 9: The MC decrypts the message received from the SPU
using x(2) (its share of P’s secret key) and recovers the end-result
(or the relevant SNPs).

The above technique provides a high practicality for the
patient, because the patient is not involved in the protocol after
the sequencing (except for the consent between the patient and
the MC for a particular test). We note that the proposed scheme
preserves the privacy of patients’ genomic data relying on the
security strength of modified Paillier cryptosystem (the extensive
security evaluation of the modified Paillier cryptosystem can be
found in [18]).

6From now on, we drop the r values in the encrypted messages for the clarity
of the presentation (r values are chosen randomly from the set [1, n/4] for every
encrypted message as discussed in Section II-A).



III. PRIVACY ANALYSIS

As expected, the amount of storage redundancy (due to the
storage of the SNPs in Ωs

P ), along with the LD between the
SNPs and their characteristics, determine the level of a patient’s
genomic privacy. Therefore, in the rest of this section, we analyze
the relationship between the amount of redundancy (i.e., storage
cost), LD values, characteristics of the SNPs, and the level
of privacy. To do so, first, we observe the average probability
of correctly inferring the positions of P’s real SNPs (in ΥP )
considering varying amounts of redundancy and the LD values
between the SNPs. That is, how much information would a
patient’s un-stored potential SNPs reveal about the positions of
his real SNPs to the curious party at the SPU? This problem
can also be formulated similarly if the goal of the attacker is to
determine the type of the variant at a real SNP position (e.g.,
homozygous or heterozygous). It is worth noting that for this
study, we create realistic models for the LD values and the
characteristics of the SNPs. Further, for the created models, we
try a wide range of parameters and observe a wide range of
results to address most potential scenarios. However, as the field
of genomics becomes more mature, our models can be replaced
by the values obtained from the medical research.

The LD relationship between two SNPs i and j can be
represented as Pr(SNPi|SNPj), where SNPi (or SNPj) takes
values from the set {0, 1}.7 We note that LD relationships are
defined among all 40 million discovered SNPs, regardless of
their type (i.e., real or potential) at a particular patient.

As before, we let Ωs
P and Ωu

P denote the set of P’s potential
SNPs that are stored (for redundancy) and not stored at the
SPU, respectively. Further, Ki is the set of SNPs with which
a particular SNP i has LD, and |Ki| = k (for each SNP, these
k SNPs are chosen among approximately 40 million SNPs). We
assume that k ≥ 0 and it is a truncated Gaussian random variable
with only discrete values and obtained from a distribution with
mean µ(k) and standard deviation σ(k).

Initially, we compute Pr(SNPP
i ) for all (real and potential)

SNPs in {ΥP ∪ Ωs
P } by using the LD relationships between

these SNPs and those in Ωu
P . As all SNPs in {ΥP ∪ Ωs

P } are
encrypted and stored at the SPU, only the LD relationships
between these SNPs and the un-stored SNPs in Ωu

P are helpful
for the curious party. Therefore, for each real SNP i ∈ ΥP ,
we observe Pr(SNPP

i = 1|SNPP
m = 0) for all m ∈ {Ki ∩ Ωu

P },
get the average of these values, and compute Pr(SNPP

i =
1). Similarly, for each potential SNP j ∈ Ωs

P , we observe
Pr(SNPP

j = 0|SNPP
m = 0) for all m ∈ {Kj ∩Ωu

P }, average these

values, and compute Pr(SNPP
j = 0). We let l be the indicator

of the LD strength between two SNPs. Thus, we represent
Pr(SNPP

i = 1|SNPP
m = 0) = l (i ∈ ΥP , m ∈ {Ki ∩ Ωu

P }) and
Pr(SNPP

j = 0|SNPP
m = 0) = l (j ∈ Ωs

P , m ∈ {Kj ∩ Ωu
P }) as

truncated Gaussian random variables with range [0.5, 1], obtained
from a distribution with mean µ(l) and standard deviation σ(l).
Finally, if |Ki| = k = 0 or |Ki ∩ Ωu

P | = 0 for a SNP i in
{ΥP ∪ Ωs

P }, we update Pr(SNPP
i = 1) considering the fact that

the expected value of all stored SNPs is known by the curious
party as below:

1

|ΥP ∪ Ωs
P
|

∑

j∈ΥP∪Ωs

P

(SNPP
j )× Pr(SNPP

j ) =
|ΥP |

|ΥP ∪ Ωs
P
|
. (7)

In the following, we illustrate our numerical results that
represent the relationship between the storage cost, the inference
power of the curious party at the SPU, and the LD values. We
assume |ΥP | = 4 million and |ΥP ∪ΩP | = 40 million. We define

7In compliance with genetic observations, we assume that the LD between
two SNPs are not symmetric, i.e., Pr(SNPi|SNPj) 6= Pr(SNPj |SNPi).

the percentage of storage redundancy at the SPU as
|Ωs

P
|

|ΥP |
× 100

and compute the average value of Pr(SNPP
i = 1) for a SNP in

ΥP for varying values of µ(k), σ(k), µ(l), and σ(l).8 We repeat
each simulation 100 times to obtain an average.

In Fig. 3, we illustrate the variance in the average value of
Pr(SNPP

i = 1) for different values of µ(k), when µ(l) = 0.8,
σ(l) = 0.15, and σ(k) = 0.75. We note that “no LD” curve in
the figure represents the case in which the LD values between
the SNPs are ignored. We observe that as the available side
information (i.e., number of un-stored potential SNPs in Ωu

P

having LD with the stored ones) increases, the inference power of
the curious party increases, especially for low values of storage
redundancy. For example, to have the same inference power for
the curious party, 200% storage redundancy is required when
µ(k) = 0, whereas it is 700% when µ(k) = 4. Furthermore,
even at the maximum (i.e, 900%) storage redundancy, the curious
party still has a slight probability of inferring the variants of the
patient, because it knows that 4 out of 40 million of the stored
content are variants.

Next, in Fig. 4, we illustrate the variance in the same prob-
ability, this time for different values of µ(l), when µ(k) = 2,
σ(k) = 0.75, and σ(l) = 0.25.9 As expected, the inference
power of the curious party increases when the strength of LD
between the SNPs increases (i.e., when µ(l) increases). We
observe that the strength of LD, however, does not affect the
inference power as strong as k. Then, in Figs. 5 and 6, we show
the Average{Pr(SNPP

i = 1)} for varying standard deviations of
k and l, and with 500% storage redundancy as follows: (i) in
Fig. 5, we vary σ(k) and µ(k), when µ(l) = 0.8 and σ(l) = 0.15,
and (ii) in Fig. 6, we vary σ(l) and µ(l), when µ(k) = 2 and
σ(k) = 0.75. We observe that the inference power of the curious
party varies (either increases or decreases) with an increasing
value of σ(k) (σ(l)) depending on µ(k) (µ(l)), and, as expected,
all curves converge to a single value for higher values of σ(k)
(σ(l)).

Next, considering the individual characteristics of the real
SNPs (i.e., their severity levels), we study the level of genomic
privacy of a patient against a curious party at the SPU. The
severity of a SNP i can be defined as the privacy-sensitivity of
the SNP when SNPP

i = 1 (i.e., when it exists as a variant at the
patient P). For example, a real SNP revealing the predisposition
of a patient for Alzheimer’s disease can be considered more
severe than another real SNP revealing his predisposition to a
more benign disease. Severity values of the SNPs are determined
as a result of medical studies (depending on their contributions
to various diseases) and tables of disease severities provided by
insurance companies (e.g., percentage of invalidity). We denote
the severity of a real SNP i as Vi, and 0 ≤ Vi ≤ 1 (1 denotes
the highest severity). Thus, we define the genomic privacy of the
patient P as below:

ΦP = −
∑

i∈ΥP

log2

(

Pr(SNPP
i = 1)

)

× Vi. (8)

We do not use the traditional entropy metric [21], [22] to quantify
privacy, as only one state of SNPP

i poses privacy risks (i.e.,
SNPP

i = 1), as discussed before.
First, we study the relationship between the storage redun-

dancy and the severity of the real SNPs by focusing on three
types of patients: (i) patient A, carrying mostly low severity real
SNPs (in ΥA), (ii) patient B, carrying mostly high severity real

8Higher values of Pr(SNPP
i = 1) indicate a higher inference power for the

curious party at the SPU.
9For higher values of σ(l), the gap between the different µ(l) curves

becomes negligible, because the distribution becomes almost uniform, rather
than truncated Gaussian.
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Fig. 3. Average probability to correctly infer the
positions of patient’s real SNPs (for the curious
party at the SPU) with varying mean values of
the number of LD pairs per SNP (i.e., µ(k)) and
storage redundancy.
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SNPs (in ΥB), and (iii) patient C, carrying mixed severity real
SNPs (in ΥC ). For each patient, the highest level of privacy is
achieved when the storage redundancy is maximum (i.e., when
all potential SNPs of the patient are stored at the SPU). Thus, we
recognize this level as 100% genomic privacy for the patient. For
the evaluation, we take the highest privacy level of patient C as
the base and normalize everything with respect to this value. We
use the following parameters for the simulation. The severities of
patient A’s and patient B’s real SNPs are represented as truncated
Gaussian random variables with (µA, σA) = (0.25, 0.15) and
(µB , σB) = (0.75, 0.15), respectively. Furthermore, the severity
of patient C’s real SNPs are represented as a uniform distribution
between 0 and 1. We also set µ(l) = 0.8, σ(l) = 0.25, µ(k) = 2,
and σ(k) = 0.75. In Fig. 7, we illustrate the increase in privacy
with increments in the storage redundancy for these three types
of patients (A, B, and C). We observe that by increasing the
storage redundancy, a patient with high severity real SNPs gains
more privacy than a patient with lower severity real SNPs,
hence the storage redundancy can be customized for each patient
differently based on the types of his real SNPs. It can be argued
that the amount of storage redundancy for a patient can leak
information (to the curious party the SPU) about the severities
of his real SNPs. However, the severity of the SNPs is not the
only criteria to determine the storage redundancy for a desired
level of genomic privacy as we discuss next.

Finally, we study the relationship between the severity of the
real SNPs, the number of LD pairs per SNP (number of SNPs
with which a particular SNP has LD, i.e., k), and the storage
redundancy. We assign the Vi values of the real SNPs (in ΥP )
following a uniform distribution between 0 and 1. We set the LD
parameters as µ(l) = 0.8, σ(l) = 0.25, µ(k) = 2, and σ(k) = 1.5.
Then, we observe and compare the following potential scenarios
in different types of patients: (i) The real low severity SNPs of
the patient (i.e., his real SNPs with low Vi values) have a higher
number of LD pairs (i.e., higher k values) with respect to his
high severity real SNPs10; (ii) k values are assigned randomly to
the SNPs; and (iii) the real high severity SNPs of the patient (i.e.,
his real SNPs with high Vi values) have a higher number of LD
pairs (i.e., higher k values) with respect to his low severity real
SNPs. Again, we set a patient’s genomic privacy to 100% when
the storage redundancy is maximum at the SPU. We illustrate
our results in Fig. 8, and show different storage redundancy
requirements for different types of patients (to provide the same
level of privacy). For example, to achieve 40% genomic privacy,
the SPU requires 400% storage redundancy for a patient whose
less severe real SNPs have more LD pairs, whereas it requires

10We note that, in all cases, k values are obtained from the same truncated
Gaussian distribution with µ(k) = 2, and σ(k) = 1.5.

600% storage redundancy for another patient whose more severe
real SNPs have more LD pairs (which means more storage cost
per patient, as discussed in Section IV). This result also supports
our belief to customize the storage redundancy for each patient.

We obtained similar patterns for further variations of the
variables but we do not present these results due to the space
limitation. In summary, depending on the actual µ(k), σ(k), µ(l),
σ(l), and Vi values (which will be determined as a result of the
medical research), the storage redundancy can be determined
(and customized for each patient based on the types of his
variations) to keep the genomic privacy of the patient at a
desired level. Note that the curious party at the SPU cannot infer
the real SNPs of the patient (or the severities of the patient’s
real SNPs) from the amount of customized storage redundancy,
because the storage redundancy (for a desired level of genomic
privacy) depends on various factors. For example, a patient with
low storage redundancy (for a desired level of genomic privacy)
could mean that (i) he carries mostly low severity real SNP (as
in Fig. 7), (ii) he carries mixed severity real SNPs, but his less
severe real SNPs have more LD pairs (as in Fig. 8), (iii) his
real SNPs (regardless of their severities) have low number of
LD pairs (as in Fig. 3), or (iv) his real SNPs (regardless of their
severities) have low LD strengths (as in Fig. 4).

IV. COMPLEXITY EVALUATION

We implemented the proposed scheme and assessed its storage
requirement and computational complexity on Intel Core i7-
2620M CPU with 2.70 GHz processor under Windows 7 64-
bit Operating System. We set the size of the security parameter
(n in Paillier cryptosystem in Section II-A) to 2048 bits. We
computed the disease susceptibility using a real SNP profile
from [23]. Our implementation relies on a MySQL 5.5 database
and to provide a platform-independent implementation, we used
the Java programming language.

Let ϑ represent the percentage of storage redundancy at the

SPU. Then,
(

1 + ϑ
100

)

GB storage is required at the SPU per

patient. We observed that encryption of the patient’s variants (via
the Paillier encryption) takes 90 ms per variant at the Certified
Institution (CI). We emphasize that the encryption of the variants
at the CI is a one-time operation and is significantly faster than
the sequencing and analysis of the sequence (which takes days).
Further, this encryption can be conducted much more efficiently
by computing some parameters, such as (gr, hr) pairs, offline
for various r values, for each patient. Indeed, by computing
(gr, hr) pairs offline, we observe that the encryption takes only
0.04 ms per variant at the CI. We also observed that disease-
susceptibility test at the SPU via homomorphic operations (using
ten variants) takes around 20 sec. and proxy re-encryption takes
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Fig. 8. Level of genomic privacy, as defined by
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30 ms. Finally, decryption of the end-result (or relevant SNPs)
takes 200 ms at the MC. In summary, all these numbers show
the practicality of our privacy-preserving algorithm.

V. CONCLUSION

In this paper, we have introduced a privacy-preserving scheme
for the utilization of the genomic data in medical tests. We have
shown that encrypted genomic data of the patients can be stored
at the Storage and Processing Unit (SPU) and processed (for
medical tests) using homomorphic encryption. Moreover, we
analyzed the relationship between the storage cost, privacy of
the patient, strength of relationship between the genetic markers,
and the characteristics of the markers. This analysis could play a
key role for customizing the storage redundancy of the genomic
data for each patient, while keeping the privacy of the patient at
a desired level. We also implemented the proposed scheme and
showed its efficiency and practicality through a complexity eval-
uation. We are confident that our proposed privacy-preserving
scheme will encourage the use of the genomic data, by the
individual and by the medical unit, and accelerate the move of
genomics into clinical practice.
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