First results on the plasma fluctuations of the TORPEX device in the new magnetic field configurations

F. Avino, A. Bovet, A. Fasoli, I. Furno, J. Loizu, A. Mosetto, P. Ricci
Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP)
Association Euratom Confédération Suisse, Station 13, CH-1015 Lausanne, Switzerland

1. Introduction

The Tорoidal Plasma ExРeriment features a Simple Magnetized Torus configuration (SMT) using a small vertical magnetic field superimposed to the main toroidal field, resulting in helical open magnetic field lines. A new experimental set-up based on an in-vessel toroidal copper wire has recently been implemented into TORPEX to produce a poloidal magnetic field, driving a current with a dedicated external power supply. This leads to a rotational transform and to a magnetic configuration similar to the tokamak one:
- Scrape-Off Layer region.
- Core region.
- Closed-to-open magnetic field lines transition.

2. Tорoidal Plasma ExРeriment

Main parameters:
- $R = 1.6\text{ m}$
- $a = 0.2\text{ m}$
- $B_T \approx 76\text{ mT}$
- $B_p \approx 3\text{ T}$ ($B_p \approx 30\text{ A}$)
- $n_e \approx 10^{19}\text{ cm}^{-3}$
- $T_e \approx 5\text{ eV}$
- $f_{\text{EC}} \approx 2.45\text{ GHz}$

Main features:
- Gases: H_2, He, Ne, Ar.
- Density gradients.
- Magnetic field gradients and curvature.
- High plasma reproducibility.
- High flexibility of the control parameters.

3. In-vessel toroidal wire system

Experimental set-up:
- Toroidal copper wire with 1 cm radius.
- 1 vertical feedthrough actively cooled.
- 3 vertical supports.
- 4 horizontal supports.
- Current up to 1 kA.

4. Simulated magnetic field

Magnetic field on the poloidal cross section with 630 A in the toroidal wire.

5. 1-D plasma profiles

Measurements on the LFS, at $z = 0$, using H_2 gas and a constant magnetron power $P_{\text{magn}} \approx 150\text{ W}$. A current of 630 A in the toroidal wire and 30 A in the vertical field coils has been used.

6. 2-D plasma profiles

Picture of HEXTIP inside the vacuum vessel and corresponding mapping of the probes.

Time-averaged electron density with and without the poloidal magnetic field.

7. Conclusions and outlook

First measurements of plasma fluctuations and background parameters have been performed on the TORPEX device with new magnetic field configurations, both in 1-D and 2-D.

Outlook:
- Plasma turbulence characterization;
- Comparison of the experimental results with linear/non-linear fluid simulations;
- Exploration of more complicated magnetic field configurations.

Acknowledgment

This work was supported in part by the Swiss National Science Foundation.

References

http://crpp.epfl.ch fabio.avino@epfl.ch