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Abstract—In mutiterminal communication systems, signals
carrying messages meant for different destinations are often
observed together at any given destination receiver. Han and
Kobayashi (1981) proposed a receiving strategy which performs
a joint unique decoding of messages of interest along with a subset
of messages which are not of interest. It is now well-known that
this provides an achievable region which is, in general, larger than
if the receiver treats all messages not of interest as noise. Nair
and El Gamal (2009) and Chong, Motani, Garg, and El Gamal
(2008) independently proposed a generalization called indirect
or non-unique decoding where the receiver uses the codebook
structure of the messages to only uniquely decode its messages
of interest. Indirect (non-unique) decoding has since been used in
various scenarios. The main result in this paper is to provide an
interpretation and a systematic proof technique for why indirect
decoding, in all known cases where it has been employed, can
be replaced by a particularly designed joint unique decoding
strategy, without any penalty from a rate region viewpoint1.

I. INTRODUCTION

Coding schemes for multiterminal systems with many in-
formation sources and many destinations try to exploit the
broadcast and interference nature of the communication media.
A consequence of this is that in many schemes the signals
received at a destination carry information, not only about
messages that are expected to be decoded at the destination
(messages of interest), but also about messages that are not of
interest to that destination.

Standard methods in (random) code design (at the encoder)
are rate splitting, superposition coding and Marton’s coding
[1], [2]. On the other hand, standard decoding techniques are
successive decoding and joint unique decoding schemes [1],
[3]. In [3], Han and Kobayashi proposed a receiving strategy
which performs a joint unique decoding of messages of interest
along with a subset of messages which are not of interest. We
refer to a decoder with such a decoding strategy, as a joint
unique decoder. It is now well-known that employing such a
joint unique decoder in the code design provides an achievable
region which is, in general, larger than if the receiver decodes
the messages of interest while treating all messages not of
interest as noise. Recently, Nair and El Gamal [4] and Chong,
Motani, Garg, and El Gamal [5] independently proposed a
generalization called indirect or non-unique decoding where
the decoder looks for the unique messages of interest while
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a Ramanujan Fellowship from the Department of Science and Technology,
Government of India. The work of Suhas Diggavi was partially supported by
NSF-CPS award 1136174.

using the codebook structure of all the messages (including
the ones not of interest). Such a decoder does not uniquely
decode messages not of interest, though it might narrow it
to a smaller list. We refer to such a decoder, as an indirect
decoder. Coding schemes which employ indirect decoders have
since played a role in achievability schemes in different multi-
terminal problems such as [6], [7], [8], [9], [10]. It is of
interest, therefore, to see if they can achieve higher reliable
transmission rates compared to codes that employ joint unique
decoders. In this paper, we develop our intuition and ideas
within the framework of [4]. While much of the discussion in
this paper is confined to this framework, the technique applies
more generally to problems studied in [8], [9], [10], as we
show in [11].

In [4], the idea of indirect decoding is studied in the context
of broadcast channels with degraded message sets. Nair and
El Gamal consider a 3-receiver general broadcast channel
where a source communicates a common message M0 to three
receivers Y1, Y2, and Y3 and a private message M1 only to one
of the receivers, Y1 (Fig 1). They characterize an inner-bound
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Fig. 1. The 3-receiver broadcast channel with two degraded message sets.

to the capacity region of this problem using indirect decoding
and show its tightness for some special cases. It turns out that
the same inner-bound of [4] can be achieved using a joint
unique decoding strategy at all receivers. The equivalence of
the rate region achievable by indirect decoding and that of joint
unique decoding was observed in [4], but it was arrived at by
comparing single letter expressions for the two rate regions2.
This led the authors to express the hope that in general such
an equivalence may not exist.

In this paper we will provide an interpretation together
with a proof technique which, we believe, systematically,
shows an equivalence between the rate region achievable
through indirect decoders and joint unique decoders in several

2A similar equivalence was also noticed in [5], again by comparing single-
letter expressions. Similarly, for wireless network information flow of [6], the
fact that non-unique decoding at the receiver can be replaced by joint unique
decoding is implied by the combinatorial algorithms in [12], [13] for linear
deterministic networks and in [14] for memoryless networks.



examples. Our technique is based on designing a special
auxiliary joint unique decoder which replaces the indirect
decoder and sheds some light on why this equivalence holds.
This line of argument is applicable to all known instances
where non-unique (indirect) decoding has been employed
in the literature [11]. However, we would like to note that
analysis using non-unique decoding can often give a more
compact representation of the rate-region – a fact observed in
[4], [5] – which still makes it a valuable tool for analysis.

II. WHY JOINT UNIQUE DECODING SUFFICES IN THE
INNER-BOUNDS OF NAIR AND EL GAMAL IN [4]

We start this section by briefly reviewing the work of [4]
where inner and outer bounds are derived for the capacity
region of a 3-receiver broadcast channel with degraded mes-
sage sets. In particular, we consider the case where a source
communicates a common message (of rate R0) to all receivers,
and a private message (of rate R1) only to one of the receivers.
A coding scheme is a sequence of ((2nR0 , 2nR1), n) codes
consisting of an encoder and a decoder and is said to achieve
a rate-tuple (R0, R1) if the probability of error at the decoders
tend to zero as n→∞.

Joint unique decoder vs. Indirect decoder: We consider
typical set decoding. A decoder at a certain destination may, in
general, examine a subset of messages which includes, but is
not necessarily limited to, the messages of interest to that desti-
nation. By the term examine, we mean that the decoder will try
to make use of the structure (of the codebook) associated with
the messages it examines. We say a coding scheme employs a
joint unique decoder if every decoder tries to uniquely decode
all the messages they consider (and declare an error if there is
ambiguity in any of the messages, irrespective of whether such
messages are of interest to the destination or not). In contrast,
we say that a coding scheme employs an indirect decoder if
the decoder tries to decode uniquely only the messages of
interest to the destination and tolerates ambiguity in messages
which are not of interest. Within this framework, Proposition
5 of [4] establishes an achievable rate region of this problem
through a coding scheme that employs an indirect decoder.

It turns out that employing a joint unique decoder, one
can still achieve the same inner-bound of [4]. In this section,
we develop a new proof technique to show this equivalence
systematically. The same technique allows us to show the
equivalence in all the examples considered in [11].

A. Indirect decoding in the achievable scheme of Nair and El
Gamal

The main problem studied in [4] is that of sending two
messages over a 3-user discrete memoryless broadcast channel
p(y1, y2, y3|x). The source intends to communicate messages
M0 and M1 to receiver 1 and message M0 to receivers 2
and 3. Rates of messages M0 and M1 are denoted by R0

and R1, respectively. In [4] an inner-bound to the capacity
region is proved using a standard encoding scheme based on
superposition coding and Marton’s coding, and indirect (or
non-unique) decoding. We briefly review this scheme.

1) Random codebook generation and encoding: To design
the codebook, split the private message M1 into four indepen-
dent parts, M10, M11, M12, and M13 of non-negative rates
S0, S1, S2, S3, respectively. Let R1 = S0 + S1 + S2 + S3,
T2 ≥ S2 and T3 ≥ S3. Fix a joint probability distribution
p(u, v2, v3, x).

Randomly and independently generate 2n(R0+S0) sequences
Un(m0, s0), m0 ∈ [1 : 2nR0 ] and s0 ∈ [1 : 2nS0 ], each
distributed uniformly over the set of typical sequences Un.
For each sequence Un(m0, s0), generate randomly and con-
ditionally independently (i) 2nT2 sequences V n2 (m0, s0, t2),
t2 ∈ [1 : 2nT2 ], each distributed uniformly over the set
of conditionally typical sequences V n2 , and (ii) 2nT3 se-
quences V n3 (m0, s0, t3), t3 ∈ [1 : 2nT3 ], each distributed
uniformly over the set of conditionally typical sequences
V n3 . Randomly partition sequences V n2 (m0, s0, t2) into 2nS2

bins B2(m0, s0, s2) and sequences V n3 (m0, s0, t3) into 2nS3

bins B3(m0, s0, s3). In each product bin B2(m0, s0, s2) ×
B3(m0, s0, s3), choose one (random) jointly typical sequence
pair (V n2 (m0, s0, t2), V n3 (m0, s0, t3)). If there is no such pair,
declare an error whenever the message (m0, s0, s2, s3) is to
be transmitted. Finally for each chosen jointly typical pair
(V n2 (m0, s0, t2), V n3 (m0, s0, t3)) in each product bin (s2, s3),
randomly and conditionally independently generate 2nS1 se-
quences Xn(m0, s0, s2, s3, s1), s1 ∈ [1 : 2nS1 ], each dis-
tributed uniformly over the set of conditionally typical Xn

sequences. To send the message pair (m0,m1), where m1 is
expressed as (s0, s1, s2, s3), the encoder sends the codeword
Xn(m0, s0, s2, s3, s1).

2) Indirect decoding: Receiver Y1 jointly uniquely decodes
all messages M0, M10, M11, M12, and M13. Receivers Y2 and
Y3, however, decode M0 indirectly. More precisely,
• Receiver Y1 declares that the message tuple

(m0, s0, s2, s3, s1) was sent if it is the unique quintuple
such that the received signal Y n1 is jointly typical
with (Un(m0, s0), V n2 (m0, s0, t2), V n3 (m0, s0, t3),
Xn(m0, s0, s2, s3, s1)), where index s2 is the product
bin number of V n2 (m0, s0, t2) and index s3 is the
product bin number of V n3 (m0, s0, t3).

• Receiver Y2 declares that the message pair (M0,M10) =
(m0, s0) was sent if it finds a unique pair of indices
(m0, s0) for which the received signal Y n2 is jointly typ-
ical with (Un(m0, s0), V n2 (m0, s0, t2)) for some index
t2 ∈ [1 : 2nT2 ].

• Receiver Y3 is similar to receiver Y2 with V3 and t3,
respectively, instead of V2 and t2.

The above encoding/decoding scheme achieves rate pairs
(R0, R1) for which inequalities (1) to (10) below are satisfied
for a joint distribution p(u, v2, v3, x). The reader is referred to
[4] for the analysis of the error probabilities.

R1 = S0 + S1 + S2 + S3 (1)
S0, S1, S2, S3 ≥ 0, T2 ≥ S2, T3 ≥ S3 (2)
T2 + T3 ≥ S2 + S3 + I(V2;V3|U) (3)
S1 ≤ I(X;Y1|U, V2, V3) (4)



S1 + S2 ≤ I(X;Y1|U, V3) (5)
S1 + S3 ≤ I(X;Y1|U, V2) (6)
S1 + S2 + S3 ≤ I(X;Y1|U) (7)
R0 + S0 + S1 + S2 + S3 ≤ I(X;Y1) (8)
R0 + S0 + T2 ≤ I(U, V2;Y2) (9)
R0 + S0 + T3 ≤ I(U, V3;Y3). (10)

B. Joint unique decoding suffices in the achievable scheme of
Nair and El Gamal

Fix the codebook generation and encoding scheme to be
that of Section II-A. We will demonstrate how a joint unique
decoding scheme suffices by following these steps:
(1) We first analyze the indirect decoder to characterize

regimes where it uniquely decodes all the messages it
considers and regimes where it decodes some of the
messages non-uniquely.

(2) For each of the regimes, we deduce that the indirect
decoder may be replaced by a joint unique decoder.

For the rest of this section, we only consider decoding schemes
at receiver Y2. Similar arguments are valid for receiver Y3

due to the symmetry of the problem. We refer to inequality
(9), which is shown in [4] to ensure reliability of the indirect
decoder at receiver Y2, as the indirect decoding constraint (9).

Let the rate pair (R0, R1) be such that the indirect decoder
of receiver Y2 decodes message M0 with high probability; i.e.,
the indirect decoding constraint (9) is satisfied. Consider the
following two regimes:
(a) R0 + S0 < I(U ;Y2).
(b) R0 + S0 > I(U ;Y2),

In regime (a), it is clear from the defining condition
that a joint unique decoder which decodes (M0,M10) =
(m0, s0) by finding the unique sequence Un(m0, s0) such
that (Un(m0, s0), Y n2 ) is jointly typical will succeed with
high probability. This is the joint unique decoder we may use
in place of the indirect decoder for this regime. Notice that
in this regime, while the indirect decoder obtains (m0, s0)
uniquely with high probability, it may not necessarily succeed
in uniquely decoding t2. Indeed, in this regime insisting on
joint unique decoding of Un(m0, s0), V n2 (m0, s0, t2) could,
in some cases, result in a strictly smaller achievable region.

Regime (b) is the more interesting regime. Here it is
clear that simply decoding for (M0,M10) and treating all
other messages as noise will not work. Indirect decoding
must indeed be taking advantage of the codeword V n2 as
well. The indirect decoder looks for a unique pair of mes-
sages (m0, s0) such that there exists some t2 for which
(Un(m0, S0), V n(m0, s0, t2), Y n2 ) is jointly typical. One may,
in general, expect that there could be several choices of t2
even in this regime. An important observation is that, in this
regime, there is (with high probability) only one choice for t2.
In other words, in this regime, receiver 2 decodes t2 uniquely
along with m0 and s0. To see this, notice that using inequality
(9), we have

T2 ≤ I(V2;Y2|U). (11)

Inequalities (9) and (11) together guarantee that a joint unique
decoder can decode messages M0,M10, and M12 with high
probability; In other words, in regime (b) the indirect decoder
ends up with a unique decoding of the satellite codeword
V n2 (m0, s0, t2) with high probability. i.e., we may replace the
indirect decoder with a joint unique decoder for messages
M0, M10, M12. To summarize loosely, whenever the indirect
decoder is forced to derive information from the codeword
V n2 (i.e., when treating V n2 as noise will not result in correct
decoding), the indirect decoder will recover this codeword
also uniquely. We make this loose intuition more concrete in
Section II-C.

The same argument goes through for receiver Y3 and
this shows that insisting on jointly uniquely decoding at all
receivers is not restrictive in this problem. Thus, we arrive at
the following:

Theorem 1: For every rate pair (R0, R1) satisfying the
inner-bound of (1)-(10), there exists a coding scheme employ-
ing a joint unique decoder which achieves the same rate pair.

The idea behind the proof of Theorem 1 was simple and
general. Consider an indirect decoder which is decoding some
messages of interest. The message of interest in our problem
is M0. Along with this message of interest, the decoder might
also decode certain other messages, M10 and M12 for example.
The two main steps of the proof is then as follows.
(1) Analyze the indirect decoder to determine what messages

it decodes uniquely. Depending on the regime of opera-
tion, the indirect decoder ends up uniquely decoding a
subset of its intended messages, and non-uniquely the
rest of its intended messages. For example in regime (a)
above, the indirect decoder uniquely decodes only M0

and M10 and it might not be able to settle on M12. While
in regime (b), the indirect decoder ends up decoding all
of its three messages M0, M10, and M12 uniquely.

(2) In each regime of operation characterized in step (1),
use a joint unique decoder to only decode the messages
that the indirect decoder uniquely decodes. In the above
proof, this would be a joint unique decoder that decodes
M0 and M10 in regime (a) and a joint unique decoder
that decodes messages M0, M10, and M12 in regime (b).
Verify that the resulting joint unique decoder does support
the corresponding part of the rate region achieved by the
indirect decoding scheme.

Though the idea is generalizable, analyzing the indirect
decoder in step (1) is a tedious task. Even for this very
specific problem, it may not be entirely clear how the condition
dividing cases (a) and (b) can be derived. Next, we try to
resolve this using an approach which generalizes more easily.

C. An alternative proof to Theorem 1: an auxiliary decoder

We take an alternative approach in this section to prove
Theorem 1. The proof technique we present here has the
same spirit as the proof in Section II-B, but the task of
determining which subset of messages should be decoded in
what regimes will be implicit rather than explicit as before.
To this end, we introduce an auxiliary decoder which serves



as a tool to help us develop the proof ideas. We do not
propose this more complicated auxiliary decoder as a new
decoding technique, but only as a proof technique to show
sufficiency of joint unique decoding in the problem of [4].
We analyze the auxiliary decoder at receiver Y2 and show that
under the random coding experiment, it decodes correctly with
high probability if the indirect decoding constraint (9) holds.
From this auxiliary decoder and its performance, we will then
be able to conclude that there exists a joint unique decoding
scheme that succeeds with high probability.

We now define the auxiliary decoder. The auxiliary decoder
at receiver Y2 is a more involved decoder which has access to
two component (joint unique) decoders:
• Decoder 1 is a joint unique decoder which decodes

messages M0 and M10. It finds M0, and M10 by looking
for the unique sequence Un(m0, s0) for which the pair
(Un(m0, s0), Y n2 ) is jointly typical, and declares an error
if there exists no such unique sequence.

• Decoder 2 is a joint unique decoder which de-
codes messages M0, M10 and M12. It finds M0,
M10, and M12 by looking for the unique sequences
Un(m0, s0) and V n2 (m0, s0, t2) such that the triple
(Un(m0, s0), V n2 (m0, s0, t2), Y n2 ) is jointly typical, and
declares an error when such sequences do not exist.

The auxiliary decoder declares an error if either (a) both
component decoders declare errors, or (b) if both of them
decode and their decoded (M0,M10) messages do not match.
In all other cases it declares the (M0,M10) output of a
component decoder which did not declare an error as the
decoded message.

We analyze the error probability under the random coding
experiment of such an auxiliary decoder at receiver Y2 and
prove that for any ε > 0, there is a large enough n such that

Pr(error at the auxiliary decoder)
≤ ε+ 21+n(R0+S0+T2−I(U,V2;Y2)+6ε). (12)

Inequality (12) shows that for large enough n and under the
indirect decoding constraint (9), the auxiliary decoder has an
arbitrary small probability of failure.

We start by stating the following lemma and the reader is
referred to [11] for the proof.

Lemma 1: Fix the probability distribution pU,V,Y (u, v, y)
and the typical set T nε (U, V, Y ) corresponding to it. Consider
a quadruple of sequences (Un, Ũn, V̂ n, Y n), such that
• Ũn is independent of (Un, V̂ n, Y n) and has the distribu-

tion
∏
i pU (ũi),

• Un has the distribution
∏
i pU (ui),

• Y n and V̂ n are independent conditioned on Un,
• (Un, Y n) has the joint distribution

∏
i pU,Y (ui, yi),

• (Un, V̂ n) has the joint distribution
∏
i pU,V (ui, v̂i).

Then, probability Pr((Ũn, Y n) ∈ T nε (U, Y ), (Un, V̂ n, Y n) ∈
T nε (U, V, Y )) is upper-bounded by 2−n(I(U,V ;Y )−6ε).

Assume now that (m0, s0, s1, s2, s3) = (1, 1, 1, 1, 1) is sent
and indices t1 and t2 in the encoding procedure are (t2, t3) =
(1, 1). We analyze in the rest of this section the probability that

receiver Y2 declares M0 6= 1. By the symmetry of the random
code construction, the conditional probability of error does not
depend on which tuple of indices is sent. Thus, the conditional
probability of error is the same as the unconditional probability
of error and there is no loss of generality in our assumption.

Conditioned on (m0, s0, s1, s2, s3, t2, t3) =
(1, 1, 1, 1, 1, 1, 1), receiver Y2 makes an error in decoding M0

only if at least one of the following events occur:

E1: The channel is atypical: the triple (Un(1, 1), V n2 (1, 1, 1),
Y n2 ) is not jointly typical.

E2: The first or the second decoder (uniquely) decodes, but
incorrectly: there is a unique pair (m̃0, s̃0) 6= (1, 1)
such that the triple (Un(m̃0, s̃0), Y n2 ) is jointly typical,
or there is a unique triple (m̂0, ŝ0, t̂2) 6= (1, 1, 1) such
that (Un(m̂0, ŝ0), V n2 (m̂0, ŝ0, t̂2), Y n2 ) is jointly typical.

E3: Both decoders fail to decode uniquely and
declare errors: there are at least two distinct
pairs (m̃0, s̃0) and (m̆0, s̆0) such that both pairs
(Un(m̃0, s̃0), Y n2 ) and (Un(m̆0, s̆0), Y n2 ) are jointly
typical; and similarly there are at least two distinct
triples (m̂0, ŝ0, t̂2) and (m̌0, š0, ť2) such that
both triples (Un(m̂0, ŝ0), V n2 (m̂0, ŝ0, t̂2), Y n2 ) and
(Un(m̌0, š0), V n2 (m̌0, š0, ť2), Y n2 ) are jointly typical.

Therefore, the probability that receiver Y2 makes an error is
upper-bounded in terms of the above events:

Pr(error at the auxiliary decoder)
≤ Pr(E1) + Pr(E2|E1) + Pr(E3)
≤ ε+ 0 + Pr(E3). (13)

where (13) follows because Pr(E1) =
Pr((Un(1, 1), V n2 (1, 1, 1), Y n2 ) /∈ T nε ) ≤ ε (ensured by
the encoding and the Asymptotic Equipartition Property), and
Pr(E2|E1) = 0. To upper-bound Pr(E3), we write

Pr(E3)
(a)

≤ Pr


(Un(m̃0, s̃0), Y n2 ) ∈ Anε
for some (m̃0, s̃0) 6= (1, 1)
(Un(m̂0, ŝ0), V n2 (m̂0, ŝ0, t̂2), Y n2 ) ∈ Anε
for some (m̂0, ŝ0, t̂2) 6= (1, 1, 1)



≤ Pr


(Un(m̃0, s̃0), Y n2 ) ∈ Anε
for some (m̃0, s̃0) 6= (1, 1)
(Un(m̂0, ŝ0), V n2 (m̂0, ŝ0, t̂2), Y n2 ) ∈ Anε
for some (m̂0, ŝ0) 6= (1, 1) and t̂2

 (14)

+ Pr


(Un(m̃0, s̃0), Y n2 ) ∈ Anε
for some (m̃0, s̃0) 6= (1, 1), and all the
(Un(m̂0, ŝ0), V n2 (m̂0, ŝ0, t̂2), Y n2 ) ∈ Anε are s.t.
(m̂0, ŝ0) = (1, 1) with at least one s.t. t̂2 6= 1


In the above chain of inequalities, (a) holds because event E3
is a subset of the event in the right hand side.

It is worthwhile to interpret inequality (14). The error event
of interest, roughly speaking, is partitioned into the following
two events:

(1) The auxiliary decoder makes an error and the indirect
decoder of Section II-A also makes an error.



(2) The auxiliary decoder makes an error but the indirect
decoder of Section II-A decodes correctly. We will show
that the probability of this event is small. Note that under
this error event, (a) component decoder 1 fails (i.e., it
is not possible to decode (M0,M10) by treating V n2 as
noise), but still (b) indirect decoder succeeds (i.e., the
indirect decoder must be deriving useful information by
considering V n2 ). By showing that this error event has a
small probability, we in effect show that whenever (a) and
(b) hold, it is possible to jointly uniquely decode the V n2
codeword as well. This makes the rough intuition from
Section II-B more concrete.

To bound the error probability we bound the two terms of
inequality (14) separately. First term of (14) is bounded by the
probability of the indirect decoder making an error:

Pr
(

(Un(m̂0, ŝ0), V n2 (m̂0, ŝ0, t̂2), Y n2 ) ∈ Anε
for some (m̂0, ŝ0) 6= (1, 1) and t̂2

)
≤ 2nT22n(R0+S0)2−n(I(U,V2;Y2)−3ε). (15)

The second term of (14) is upper-bounded as follows.

Pr


(Un(m̃0, s̃0), Y n2 ) ∈ Anε
for some (m̃0, s̃0) 6= (1, 1), and all the
(Un(m̂0, ŝ0), V n2 (m̂0, ŝ0, t̂2), Y n2 ) ∈ Anε are s.t.
(m̂0, ŝ0) = (1, 1) with at least one s.t. t̂2 6= 1


≤

∑
t̂2 6=1, (m̃0,s̃0)6=(1,1)

Pr
(

(Un(m̃0, s̃0), Y n2 ) ∈ Anε and
(Un(1, 1), V n2 (1, 1, t̂2), Y n2 ) ∈ Anε

)

≤ 2n(R0+S0+T2) Pr
(

(Un(m̃0, s̃0), Y n2 ) ∈ Anε and
(Un(1,1), V n2 (1,1,t̂2), Y n2 )∈Anε

)
(16)

(a)

≤ 2n(R0+S0+T2)2−n(I(U,V2;Y2)−6ε), (17)

where we have (m̃0, s̃0) 6= 1 and t̂2 6= 1 in the event in
inequality (16) and (a) follows from Lemma 1.

We conclude the error probability analysis by putting to-
gether inequalities (13), (14), (15), and (17) to obtain that
the error probability at the auxiliary decoder is bounded
as in inequality (12). So for large enough n, the auxiliary
decoder succeeds with high probability if the indirect decoding
constraint (9) is satisfied; i.e., when the indirect decoder
succeeds with high probability.

One can now argue that if the auxiliary decoder succeeds
with high probability for an operating point, then there also
exists a joint unique decoding scheme that succeeds with high
probability. The idea is that for all operating points (except
in a subset of the rate region of measure zero), each of the
two component joint unique decoders 1 and 2 have either
a high or a low probability of success. So, if the operating
point is such that the auxiliary decoder decodes correctly with
high probability, then at least one of the component decoders
should also decode correctly with high probability, giving us
the joint unique decoding scheme we were looking for. This
is summarized in Lemma 2, and the reader is referred to [11]
for the proof.

Lemma 2: Given any operating point (except in a subset
of the rate region of measure zero), if the auxiliary decoder

succeeds with high probability under the random coding
experiment, then there exists a joint unique decoding scheme
that also succeeds with high probability.

A similar argument goes through for receiver Y3. The
random coding argument for the joint unique decoding scheme
can now be completed as usual.

D. Discussion
Remark 1: In Sections II-B and II-C, we did not consider

cases where R0 +S0 = I(U ;Y2) or R0 +S0 = I(U ;Y3) (i.e.,
a subset of measure zero). This is enough since we may get
arbitrarily close to such points.

Remark 2: In Sections II-B and II-C, we fixed the encoding
scheme to be that of [4]. The message splitting and the
structure of the codebook is therefore a priori assumed to be
that of [4], even when R0 + S0 < I(U ;Y2) and message
M12 is not jointly decoded at Y2. However, in such cases this
extra message structure is not required and one can consider
message M12 as a part of message M11.

We refer the readers to [11] for details on how we may
adapt this technique to several instances [8], [9], [10] of non-
unique decoding in the literature. We believe this technique
may be applicable more generally to show the equivalence
of rate regions achievable using random coding employing an
indirect decoder and a joint unique decoder.
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