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 Abstract 
In the past decades, colloidal cadmium selenide nanocrystals (CdSe NCs) have intrigued extensive 

academic interests due to their unique and easily-adjustable electronic and optical properties, leading 
to a wide range of applications in biological imaging, displays, lasers, and solar energy conversion. 
Control over the shape and size of these nanoscale materials is of great importance for a fundamental 
understanding of crystal growth and of high practical significance for obtaining NCs with on-demand 
properties. Due to the large specific area of the nanostructures, organic surface ligands play a critical 
role in the controlled synthesis of NCs in solution. In this thesis, we focus on investigating the shape 
and size evolution of colloidal CdSe nanomaterials in the presence of carboxylate and alkylamine surface 
ligands. By elaborating the combination of carboxylates and alkylamines with different hydrocarbon 
chains, zero-dimensional (0D) quantum dots (QDs), one-dimensional (1D) nanorods, two-dimensional 
(2D) nanotubes, nanosheets and nanoplatelets were successfully obtained in a controllable way and 
their growth kinetics and formation mechanism were further explored.  

First, we study the evolution of shape, size and optical quality of colloidal CdSe NCs upon adding 
both a carboxylic acid and an amine ligand to the cadmium acetate green chemistry source. Four 
reaction routes are designed to distinguish the role of the carboxylic acid and the primary amine. The 
effect of ligand length is further investigated by using carboxylate complexes of lauric acid (LAc), myristic 
acid (MAc), stearic acid (SAc) and oleic acid (OAc), along with the Lewis bases octyl amine (OAm), 
dodecyl amine (DDAm), hexadecyl amine (HDAm) and octadecyl amine (ODAm). While single use of 
either acid or amine ligands does not lead to an advantageous change in producing high-quality CdSe 
QDs, an evident synergistic effect is observed by forming QDs with smaller size, more isotropic 
morphology, less agglomerated behavior and higher PLQY upon concurrent use of a long-chain 
carboxylic acid and a long-chain amine ligand.  

Second, we establish the dual role played by oleylamine (OLAm) during the synthesis of CdSe 
QDs using cadmium oleate as the Cd source. Earlier reports suggested the role of alkylamine either as 
nucleating or as passivating agent in controlling the growth of CdSe QDs. Remarkably, by exploring 
four different synthesis routes, in which the reactant addition, timing and concentration are varied, we 
find that both these two phenomena coexist and control the synthesis. While examining if there is any 
effect of concentration of OLAm on this synthesis, we find that, at lower contents of OLAm (< 0.5 mmol), 
the latter prominently acts as an agent acting on nucleation, increasing the number of nuclei, reducing 
the nuclei (initial monomer units) size and thereby increasing the NCs concentration resulting in a small 
NCs size, down to 2.7 nm. Whereas at higher contents (> 1.0 mmol), it serves more as a passivating 
agent by deterring both nucleation and growth processes, so generating fewer NCs with larger size up 
to 3.6 nm. Thus, by adjusting the influence between nucleation and passivation, we can better control 
the final NCs size and so tune their size-dependent optical properties. 

Third, we demonstrate the synthesis of 2D CdSe NCs and nanotubes when short-chain acetate 
and alkylamines are used as the ligands. Most interestingly, with a combination of acetate and 
dioctylamine (DOAm), CdSe nanotubes with atomically-flat walls are formed via a template-free 
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protocol. They feature a multi-walled structure, sharp absorption and emission at around 460 nm, and 
Cd-terminated {100} planes as top and bottom surface in the wall thickness direction. Anisotropic 
growth is found to result from the utilization of acetate ligand; meanwhile, the addition of DOAm assists 
in formation of more regular tubular structures. We further elucidate the growth mechanism as 
consisting of a non-planar 2D oriented attachment approach; that is, simultaneous lateral and angular 
attachment of early-stage nanoplatelets into curved nanosheets and finally a tubular architecture.  

Finally, we further elucidate the formation mechanism of anisotropic CdSe NCs in the presence of 
dioctylamine ligand and carboxylate ligands having different chain length. Both short- and long-chain 
carboxylate ligands are found to induce the anisotropic growth of CdSe NCs by the attachment of early-
formed NC building blocks. A morphological transition from nanotubes and nanosheets to irregular 
nanorods and finally to QDs is observed when the carbon number of carboxylate ligands increases from 
2 to 18. The main reason is that two different NC building blocks, namely kinetically stable primary NCs 
exposing by {110} and {100} facets and thermodynamically stable primary NCs exposing by {100} and 
{111} facets, are formed in the presence of short- and long-chain carboxylates, respectively. A 
conversion between these two building blocks can be triggered by using a medium-chain carboxylate 
ligand at different concentration and temperature. Density functional theory (DFT) simulation is 
performed to reveal the surface structure of zincblende CdSe NCs in the absence and presence of 
carboxylate ligands. We propose that the different local monomer supersaturations caused by different 
chain-length carboxylates are responsible for the production of intrinsically different building blocks.  

 

Keywords 

colloidal nanocrystals, cadmium selenide, carboxylate, alkylamine, quantum dots, nanorods, nanotubes, 
nanosheets, nanoplatelets, 2D materials, growth kinetics, particle assembly, oriented attachment 
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R sum  
Au cours des derni res d#cennies, les nanocristaux de s#l#niure de cadmium collo%dal (CdSe NC) 

ont suscit# de nombreux int#r(ts universitaires car leurs propri#t#s #lectroniques, leur optiques uniques 
et leur r#glaciation facile, attribuant * un large #ventail d'applications en imageries biologiques, 
affichages, lasers et conversions de l'#nergie solaire. Le contr,le de la forme et de la taille de ces 
mat#riaux * l.#chelle nanom#trique est tr s important pour la compr#hension fondamentale de la 
croissance des cristaux, et pour obtenir des CN avec des propri#t#s * la demande. En raison de la grande 
surface sp#cifique des nanostructures, les ligands organiques de surface jouent un r,le essentiel dans 
la synth se contr,l#e des NC pour les r soudre. Dans cette th se, nous nous concentrons sur l'#tude 
de l'#volution de la forme et de la taille de nanomat#riaux collo%daux de CdSe en pr#sence de ligands 
de surface de carboxylate et d'alkylamine. En #laborant la combinaison de carboxylates et d'alkylamines 
avec des diff#rentes cha/nes d'hydrocarbures, des points quantiques (QD), des nanorodes 
unidimensionnels (1D), des nanotubes, des nanosheets et des nanoplatelets * une dimension (1D) ont 
#t# obtenus avec succ s, leur cin#tique de croissance et leur m#canisme de formation ont aussi #t# 
approfondis. 

Tout d'abord, au moyen de l'ajout d'un acide carboxylique et d'un ligand d'amine * la source de 
chimie verte de l'ac#tate de cadmium, nous #tudions l'#volution de la forme, de la taille et de la qualit# 
optique des nanoparticules de CdSe collo%dales. Les r,le de l'acide carboxylique et de l'amin# primaire 
sont disting s par quatre voies de r#action. Ensuite, l.effet de la longueur du ligand est #tudi# par la 
fa0on d.utiliser des complexes carboxylates d.acide laurique (LAc), d.acide myristique (MAc), d.acide 
st#arique (SAc) et d.acide ol#ique (OAc), ainsi que des bases de Lewis octyl amine (OAm), dod#cyl amine 
(DDAm), l'hexad#cylamine (HDAm) et l'octad#cylamine (ODAm). Malgr  l.utilisation unique de ligands 
acides ou d.amin#s ne conduit pas * un changement avantageux dans la production de QD CdSe de 
haute qualit#, on observe un effet synergique #vident en formant des QD avec une taille plus petite, 
une morphologie plus isotrope, un comportement moins agglom#r# et une efficacit# de 
photoluminescence qui sont plus #lev#e utilisation d'un acide carboxylique * longue cha/ne et d'un 
ligand d'amine * longue cha/ne. 

Deuxi mement, nous #tablissons le double r,le jou# par l'ol#ylamine (OLAm) pendant la synth se 
de QD CdSe en utilisant l'ol#ate de cadmium comme source de Cd. Des rapports ant#rieurs sugg#raient 
le r,le de l'alkylamine soit comme agent nucl#ant, soit comme agent passivant dans le contr,le de la 
croissance des QD CdSe. En explorant quatre voies de synth se diff#rentes, dans lesquelles l'addition, 
la synchronisation et la concentration des r#actifs sont vari#es de mani re remarquable. Nous 
constatons que ces deux ph#nom nes coexistent et contr,lent la synth se. En examinant s.il existe un 
quelconque effet de concentration en OLAm sur cette synth se, nous trouvons que, aux teneurs plus 
faibles en OLAm (<0,5 mmol), ce dernier joue un r,le important en tant qu.agent agissant sur la 
nucl#ation, augmentant le nombre de noyaux, r#duisant le nombre de noyaux (unit#s monom res 
initiales), ce qui augmente la concentration en NC, et se traduit par une petite taille, jusqu'* 2,7 nm. 
Tandis qu'* des teneurs plus #lev#es (> 1,0 mmol), il sert davantage d'agent de passivation en 
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dissuadant les processus de nucl#ation et de croissance, g#n#rant ainsi moins de NC de plus grande 
taille jusqu'* 3,6 nm. Donc, nous pouvons mieux contr,ler la taille finale des CN et ajuster leurs 
propri#t#s optiques d#pendantes de la taille en ajustant l.influence entre la nucl#ation et la passivation. 

Troisi mement, nous d#montrons la synth se de NCs et de nanotubes 2D CdSe lorsque l.ac#tate 
et les al-kylamines * cha/ne courte qui sont utilis#s comme ligands. Ce qui plus int ressant, c.est des 
nanotubes de CdSe * parois atomiques sont form#s via un protocole sans matrice avec une 
combinaison d'ac#tate et de dioctylamine (DOAm). Ils se caract#risent par une structure * plusieurs 
parois, une absorption et une #mission pointues aux environs de 460 nm et des plans {100} * extr#mit# 
Cd comme surfaces sup#rieure et inf#rieure dans le sens de l'#paisseur de la paroi. La croissance 
anisotrope r#sulte de l'utilisation d'un ligand ac#tate. L.ajout de DOAm rend la formation de structures 
tubulaires plus r#guli res pendant ce processus, Pendant ce processus. En outre, nous #luciderons le 
m#canisme de croissance comme une approche de fixation orient#e 2D n.est pas planaire; c.est-*-dire 
la fixation simultan#e lat#rale et angulaire de nanoplaquettes au stade pr#coce dans des feuilles 
nanom#triques incurv#es et finalement une architecture tubulaire. 

Enfin, nous #luciderons davantage le m#canisme de formation des NCs CdSe anisotropes en 
pr#sence de ligand de di-octylamine et de ligands carboxylates ayant une longueur de cha/ne diff#rente. 
Il a #t# constat# que les ligands carbox-ylate * cha/ne courte et * cha/ne longue induisent la croissance 
anisotrope des NC de CdSe par la fixation de blocs de construction de NC pr#cocement form#s. Une 
transition morphologique des nanotubes et des nanosheets en nanorodes irr#guli res et finalement en 
QD est observ#e lorsque le nombre de carbones des ligands carboxylates augmente de 2 * 18. La 
principale raison est que deux blocs de construction de CN diff#rents, y compris des CN primaires 
cin#tiquement stables, exposant par {110} et {100} facettes et les CN primaires thermodynamiquement 
stables, exposant par les facettes {100} et {111}, sont form#es en pr#sence de carboxylates * cha/ne 
courte et longue, respectivement. Une conversion entre ces deux blocs de construction peut (tre 
d#clench#e en utilisant un ligand carboxylate * cha/ne moyenne par diff#rentes concentrations et 
temp#ratures. Une simulation de la th#orie de la fonction de densit# (DFT) est r#alis#e pour r#v#ler la 
structure de surface des CN de CdSe * zincblende en l'absence et la pr#sence de ligands carboxylates. 
Nous proposons que les diff#rentes sursaturations de monom res locales caus#es par des carboxylates 
et de diff#rentes longueurs de cha/ne soient responsables de la production de blocs de construction 
intrins quement diff#rents. 

Mots-cl s 

nanocristaux collo%daux, s#l#niure de cadmium, carboxylate, alkylamine, points quantiques, nanorodes, 
nanotubes, nanofeuilles, nanoplaquettes, mat#riaux 2D, croissance cin#tique, assemblage de particules, 
fixation orient#e 
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 Introduction 

1.1 Colloidal Semiconductor NCs  

1.1.1 Size- and shape- dependent properties 

Semiconductor materials are the cornerstones of the information era. They typically possess a 
bandgap of 0.1~3 eV between the conduction band and valence band. When the size of crystalline 
semiconductor materials is extremely tiny, smaller than their exciton Bohr radius (around several 
nanometers), we call them semiconductor NCs. Particularly, when all the three dimensions of the NCs 
are confined, they are known as QDs. In this dimension range, quantum confinement effects occur: their 
continuous energy bands become discrete levels, and the energy bandgap expands with the decrease 
of the size, as shown in Figure 1. Because many physical and chemical properties of the semiconductor 
are closely related to bandgap structure, we can easily and effectively adjust these properties by varying 
the size of NCs. Taking CdSe QDs as an example, Figure 1.1 displays the blue shift of the PL of their size 
decreases from 4 nm to 2 nm. This feature allows us to obtain multiple emission colors under a single 
excitation wavelength, which is highly desirable in the applications of bioimaging and optoelectronic 
display. Moreover, the size-dependent absorption of CdSe QDs also provides a simple and reliable 
route to fundamentally investigate the nucleation and growth of colloidal NCs [1-3].  

 

Figure 1.1 Schematic of quantum confinement effect as the size of the semiconductor is reduced. When the semiconductor becomes 
smaller, a wider energy band gap and more blue-shift PL of the material appear.    
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Apart from the isotropic dot-like morphology, semiconductor NCs may also grow into non-
spherical anisotropic shapes, including 1D nanowires and 2D nanoplatelets. In these two cases, the 
quantum confinement effect is exerted in two dimensions and one dimension, respectively. 
Consequently, the discrete electronic density of states (DOS) in QDs evolve into a saw-like and step-
like relationship for 1D and 2D NCs, respectively (Figure 1.2) [4]. This leads to very interesting shape-
related properties. For example, ultrathin 2D CdSe nanoplatelets exhibit discrete band-edge absorption 
spectra and very sharp emission peaks [5-8]; elongated 1D CdSe nanorods were demonstrated to have 
purely linearly polarized emission and larger Stokes shift than QDs [9]. Obviously, by tuning the shape 
into complex non-spherical shapes, semiconductor NCs could be endowed with very unique and 
anisotropic properties. These size- and shape- dependent properties make semiconductor NCs 
promising candidates for a wide range of applications including bioimaging, electronic display, solar 
cell, photocatalysis and laser. This, in turn, triggers more academic studies to well control the size and 
shape of the semiconductor NCs. 

 

Figure 1.2 Schematic of the electronic density of states for a bulk semiconductor (yellow dashed line), 0D (left), 1D (middle) and 2D 
(right) semiconductor NCs. TEM graphs of typical 0D, 1D and 2D CdSe NCs are shown in the bottom panel.  

Among a variety of semiconductor materials, group II-VI cadmium chalcogenide, including CdSe, 
CdS and CdTe, have attracted extensive investigations in the past 30 years because their size- and 
shape- tunable absorption and PL spectra are primarily located in the visible-light range. The following 
discussion in this thesis will mainly focus on this type of materials.   

1.1.2 Brief history on the synthesis of colloidal semiconductor NCs 

The preparation of semiconductor NCs has been well established by several techniques such as 
colloidal synthesis, CVD and MBE. NCs prepared by the colloidal chemistry approach are known as 
colloidal NCs. Compared with CVD and MBE methods, the colloidal approach is able to produce a large 
quantity of NCs at a low equipment and operational cost and in a less toxic condition. More importantly, 
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it offers great advantages in precise control over the shape, size and structure of the NCs, thus being 
the most promising method for commercial production of NCs. 

Pioneering works on preparing the colloidal semiconductor NCs date back to the 1980s. In 1983, 
Brus et al first coined the concept of colloid QDs during their synthesis of CdS crystallites in an aqueous 
reaction [10]. In 1993, Bawendi et al proposed a hot-injection protocol to obtain high-quality 
monodisperse cadmium chalcogenide QDs in organic solvent [11]. In their procedure, organometallic 
precursors such as dimethyl cadmium (CdMe2) and TOPSe were quickly injected into a hot coordinating 
solvent (at 300 3C), TOPO, followed by the subsequent growth stage occurring at a slightly lower 
temperature (230~260 3C). Rapid injection at high temperature helps to induce a short nucleation 
period for the NCs. For an ensemble of NCs, this approach enables the size adjustment of the CdSe 
NCs from 1.2 to 11.5 nm, with deviation of the size distribution to be less than 5% after a size-selection 
process. This seminal work boomed the academic interests in in this field, which developed into several 
branches as shown below.  

First of all, greener and less air-sensitive reagents were explored to reduce the toxicity in cadmium 
source and the solvent, making the synthesis of semiconductor NCs more accessible in a normal 
laboratory. Peng et al made an important contribution by introducing air-stable cadmium oxide (CdO) 
[12] and cadmium acetate (Cd(Ac)2) [13] as the cadmium source, enabling the large-scale synthesis of 
high-quality cadmium chalcogenide NCs without a glovebox. They also proposed the use of a 
noncoordinating solvent, 1-octadecene (ODE), for the high-temperature reaction, thus paving the way 
for studying the influence of a given surface ligand [14].  

Secondly, various surface passivation approaches, including inorganic shells and organic ligands, 
were investigated to eliminate the surface defects and thus improve the luminescence quality of the 
NCs. Hines et al first demonstrated the increase of luminescence by growing the QDs with a shell of 
semiconductor with a wider bandgap. In their CdSe/ZnS core-shell nanostructures, a PLQY of 50 % was 
achieved at room temperature [15]. To enhance the controllability over the shell thickness, Peng et al 
provided a technique termed as 4successive ion layer adsorption and reaction5 (SILAR). In case of 
CdSe/CdS core-shell nanostructure, the preparation was performed by alternating injection of the 
cationic Cd and anionic S precursors into the solution of CdSe NCs [16]. Surface passivation by organic 
ligand was first demonstrated by Talapin and coworkers. They obtained CdSe QDs with a PLQY of 40-
50% at room temperature by capping their surface of with a long-chain primary amine, HDAm, in a 
TOPO-TOP system [17] . 

Thirdly, controlled synthesis of NCs with various non-spherical anisotropic morphologies, such as 
1D and 2D CdSe NCs, became also one of the popular research directions. Peng et al. observed the 1D 
growth of wurtzite CdSe QDs into rod-like nanostructures in the presence of phosphonic acid [18]. 
Buhro et al. synthesized the CdSe nanowires with characteristic 2D confinement effect through a 
solution-liquid-solid (SLS) method using Bi nanoparticles as the catalysts [19]. Manna et al. reported 
the formation of tetrapod-like CdSe and CdTe NCs, the structure of which was proposed to be consist 
of a zincblende core and four wurtzite arms [20, 21]. For 2D CdSe NCs, Hyeon et al. provided a protocol 
to synthesize wurtzite CdSe nanoribbons with the help of amine ligand, which possessed a uniform 
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thickness of 1.4 nm and exhibited a sharp first excitonic peak at 449 nm [22].Zincblende CdSe 
nanoplatelets were first published by Dubertret et al. in the presence of both short-chain and long-
chain carboxylate ligand, and four discrete uniform thicknesses including 2, 3, 4 and 5 monolayers were 
further determined [23, 24]. 

In addition, other synthetic protocols suitable for practical production were explored. Hot-
injection has shown advantages on synthesizing high-quality QDs in a batch, yet when the recipe is 
accommodated for scale-up production, it might cause bad reproducibility due to the uncontrolled 
mixing effect during injection. In comparison, a heat-up method is much more suitable for industrial-
scaled synthesis. Cao et al. demonstrated the successful production of CdSe QDs with quality 
comparable to the best samples prepared by hot injection and argue the key point in this method is to 
use precursors with suitable reactivity [25]. Additionally, microreactors based on microfluidic technology 
also provide another possibility. Bawendi et al realized the synthesis of monodisperse CdSe QDs in a 
gas6liquid segmented flow embedded in a silicon-glass chip [26]. Kilogram-per-day production level 
was achieved in deMello group by employing multichannel droplet reactors embedded in a 
polytetrafuoroethylene (PTFE) capillary microfluidic system [27] (J. Mater. Chem. A, 2013, 1, 406764076).  

Overall, great efforts have pushed the development of colloidal NCs into greener and cost-
effective synthesis as well as broader and more practical applications. Unfortunately, although a great 
number of synthesis protocols have been proposed to acquire NCs with well controlled size, shape and 
structure, they are still 4more empirical art rather than science5 [28]. More in-depth research on the 
formation mechanism of NCs is therefore necessary to advance the art of colloidal synthesis.  

1.2 Size control in QDs 

Since the quantum confinement effect offers a great advantage to tune the properties of CdSe 
QDs by size, the central task in the synthesis of CdSe QDs is to control their size on demand and make 
their size uniformity as monodisperse as possible. The significance of the monodispersity is comparable 
to the purity of products in organic chemistry. The controlled synthesis is closely related with the 
fundamental knowledge on the crystallization of NCs in solution. Several classical models and theories 
are shown below. 

1.2.1 The La Mer Model  

Crystallization is a process of forming well-organized and long-term ordered crystals from gas, 
supercooled liquid or supersaturated solutions. Characteristic examples include the emergence of 
snowflakes in cool weather, the molding of steel from molten iron, the extraction of salt from sea water 
and the synthesis of NCs in materials research. To describe the formation of NCs in a colloidal condition, 
a classical model was proposed by La Mer et al during the preparation of sulfur hydrosol in 1950s [29]. 
In this model, a general scenario based on the concept of supersaturation of the monomer is provided 
by dividing the whole process into three critical stages: monomer accumulation, nucleation and growth 
(Figure 1.3). The first stage concerns the chemical reaction between the precursors, while the latter two 
stages as a whole are known as the crystallization process. They proposed there exist a short period of 
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nucleation stage, or burst nucleation, which is responsible for the formation of monodisperse hydrosols 
in an aqueous solution. Although the synthetic systems and conditions varied a lot the in the colloidal 
synthesis of semiconductor NCs, to some extent, this model is still reasonable and available to account 
for most of the observed behaviors during the formation of colloidal NCs.  

 

Figure 1.3 Schematic of the La Mer model which describes different stages for the formation of colloidal NCs from precursor solution. 

1.2.2 Monomer Accumulation  

Monomer accumulation is the first stage, in which precursors, such as the cadmium source and 
selenium source, undergo a chemical reaction and turn into a large quantity of basic molecular units, 
4monomers5. The monomer has a limited equilibrium concentration (or solubility) in the solution. 
Accordingly, the rapid increase of the monomer concentration can surpass the saturation limit, leading 
to a non-equilibrium supersaturation state. Excess monomers precipitate and aggregate into dimers, 
trimers and finally larger particles. However, these particles are still thermodynamically unstable and 
inclined to dissolving back into monomers rather than continuing to grow into crystallites. From the 
perspective of solubility, there already exists a dynamic equilibrium between the precipitation and 
dissolution for the particle, which is related to size of the particle. According to the Gibbs6Thomson 
equation, the equilibrium concentration of a spherical particle, [M]r, can be expressed as function of its 
radius r as follows [30],  
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Equation 1.1 Gibbs*Thomson relationship describing the equilibrium concentration of NCs as a function of size and surface energy. 

where [M]  is the equilibrium concentration of material with infinite dimension (or zero curvature), Vm 
is the molar volume of the bulk crystal, !  is surface energy of the particle per unit area, R is the gas 
constant and T is the temperature. This relationship manifests a larger solubility for smaller particles. 
The activity of the precursors and the participation of capping ligands play a critical role in this process, 
which will influence of the morphology and particle quality of the final products.  

1.2.3 Nucleation 

The second stage is the nucleation process, which happens when the degree of supersaturation 
is high enough to exceed a critical threshold for the generation of stable particles, or 4nuclei5. 
Considering a homogenous nucleation condition where the nucleation is basically dependent on the 
energy fluctuation in the solution, we have the following expression for the change of the volume Gibbs 
free energy ( Gv) caused by the supersaturation [31], 

./0 = 1
+,234
()

 

Equation 1.2 The change of the volume Gibbs free energy due to the supersaturation. 

Where S=[M]/[M]  is the degree of supersaturation, and [M] is the practical monomer concentration 
provided by the monomer accumulation, respectively. It is clear that during the supersaturation 
condition (S >1), " Gv is always negative and will make a positive contribution to the crystal formation. 
At the same time, a competing factor coming from the newly formed surface would impede the crystal 
growth. Accordingly, the total change of Gibbs energy for a particle with radius r is expressed as, 

./ = 45*6' +
4
3
5*7./0 

Equation 1.3 The total change of the Gibbs free energy as a function of the particle radius.         

Where !  is surface energy of the particle per unit area. As the surface term scales with r2 while the 
volume term is proportional with r3, there exists a minimum radius r*, after which the particle can 
continue growing into larger crystals (Figure 1.4).  


































































































































































































































