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ABSTRACT
Partial-thickness tears of the supraspinatus tendon frequently occur at its insertion on the greater 
tubercule of the humerus, causing pain and reduced strength and range of motion. The goal of 
this work was to quantify the loss of loading capacity due to tendon tears at the insertion area. A 
finite element model of the supraspinatus tendon was developed using in vivo magnetic resonance 
images data. The tendon was represented by an anisotropic hyperelastic constitutive law identified 
with experimental measurements. A failure criterion was proposed and calibrated with experimental 
data. A partial-thickness tear was gradually increased, starting from the deep articular-sided fibres. 
For different values of tendon tear thickness, the tendon was mechanically loaded up to failure. The 
numerical model predicted a loss in loading capacity of the tendon as the tear thickness progressed. 
Tendon failure was more likely when the tendon tear exceeded 20%. The predictions of the model 
were consistent with experimental studies. Partial-thickness tears below 40% tear are sufficiently 
stable to persist physiotherapeutic exercises. Above 60% tear surgery should be considered to 
restore shoulder strength.
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1. Introduction

Active stabilization of the glenohumeral joint by the rota-
tor cuff muscles is essential. Stability of the joint can be 
affected by neurological disorders, degeneration of the 
muscle-tendon unit or trauma. Partial-thickness tears of 
the rotator cuff tendons are amongst the most common 
causes of shoulder pathologies (Williams et al. 2004), 
affecting young athletes, middle-aged workers and the 
elderly (Herring & Nilson 1987; Fukuda et al. 1996).

Recommendations for the treatment of partial- 
thickness tears are still debated. Several studies have come 
to the conclusion that in general, surgical treatments are 
not always more beneficial to the patient than conserva-
tive treatments (AHRQ 2010; Seida et al. 2010). This has 
led to the recommendation of trying out conservative 
treatments first, before performing a surgery. Exceptions 
are severe tears, especially for young patients, where the 
surgical treatment should not be delayed in order to avoid 
irreparable rotator cuff damage (Tashjian 2012).

Amongst the rotator cuff muscles, the supraspinatus 
tendon is the one most often affected by tears (AAOS 

2014). Tears usually manifest as a fraying of the intact 
tendon at the insertion site on the humeral head. In most 
cases, the initial partial-thickness tear, symptomatic or 
asymptomatic at this stage, will enlarge over time, accom-
panied by arising or worsening symptoms (Tempelhof  
et al. 1999). These symptoms include pain, reduced range 
of motion and decreased shoulder strength. This has  
been observed clinically for both symptomatic and 
 asymptomatic supraspinatus tendon tears (McCabe et al. 
2005; Kim et al. 2009). Experimental measurements of the 
loading capacity of supraspinatus tendons are available 
(Huang et al. 2005; Matsuhashi et al. 2014). Cadaveric 
tendons with intact insertions on the humeral head were 
loaded up to failure, which occurred most often at the 
insertional site. Partially torn tendons were however not 
analysed in these studies. Information on the link between 
partial-thickness tears and the load-bearing capabilities of 
the supraspinatus would contribute to improving conserv-
ative treatments. For example, physiotherapists could use 
this information to design exercises that are compatible 
with a patient’s specific tendon tear.
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The equation contained four material parameters: µ, α, β  
and w0. The lower bounds, µ, α, β  >  0, ensured poly- 
convexity and coercivity of the constitutive law (Ball 1976). 
The stress-free state was associated with the  reference 
configuration, which lead to the link between the weight 
factors of wp = 1 − w0 (Ehret et al. 2011).

2.1.2. Parameter identification
We identified the material parameters µ, α, β and w0 using 
experimental data from human cadaveric supraspinatus 
tendons (Lake et al. 2009, 2010). Stress–strain curves 
from a slack position up to failure were available both in 
the longitudinal and in the transverse direction. We used 
Matlab’s nonlinear least square algorithm lsqcurvefit to fit 
the nonlinear constitutive equation (Equation (3)) to the 
experimental data. The trust region algorithm was used 
because it allowed us to set lower bounds for the material 
parameters according to the prerequisites on strain energy 
functions (Section 2.1.1). The fitting was performed simul-
taneously in both the longitudinal and the transverse 
direction. We launched the least square algorithm with 
different randomly distributed initial values in the range 
of [0,100] to verify the detection of a global minimum. The 
root mean square error was used to assess the quality of 
the fit in both the longitudinal and the transverse direction 
with the following formula:
 

with the number of experimental measurement points N, 
the experimentally measured stress σi at strain εi, and the 
stress prediction of the constitutive law !∗ at the same 
strain.

In addition, a variance-based sensitivity analysis on 
the material parameters was carried out. We followed an 
approach based on the Monte-Carlo method (Saltelli et al. 
2008, 2010). First, 2N random material parameter samples 
were generated. The material parameters were normally 
distributed. Mean values were the identified material 
parameters and the standard deviation was 1. The material 
parameter samples were saved in two matrices, A and B, 
of size N × 4. Further matrices Ai

B, 1 ≤ i ≤ 4, were gener-
ated, such that the ith column was exchanges with the ith 
column of matrix B. The remaining columns were equal to 
matrix A. The six matrices A, B and Ai

B provided thus 6N 
material parameter samples. For each material parameter 
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Therefore, the goal of this study was to analyse the 
impact of partial-thickness tears on the loading capacity 
of the supraspinatus tendon. Assuming a nonlinear and 
anisotropic behaviour of the tendon, we propose a failure 
criterion calibrated with experimental measurements for 
our model. The tendon model was used in a finite element 
model based on magnetic resonance images (MRI) of a 
healthy volunteer. The loading capacities of the tendon 
were evaluated for progressing partial-thickness tears.

2. Methods

The used constitutive equation for the tendon model, its 
identification with experimental measurements and the 
damage criterion are introduced in the following Section 
2.1. The tendon model was then applied in a patient- 
specific finite element analysis, built upon in vivo  magnetic 
resonance imaging (Section 2.3). Failure forces were 
related to muscle force during arm elevation using a 
 musculoskeletal model of the shoulder (Section 2.2).

2.1. Tendon model

2.1.1. Constitutive law
The supraspinatus tendon was modelled as an incompress-
ible exponential hyperelastic material with one fibre fam-
ily. The following strain energy potential was used (Ehret 
et al. 2011):
 

where the generalized invariants Ip and K were:
 

with the right Cauchy-Green strain tensor C. The struc-
tural tensor M contained the information about the fibre 
direction M = m⊗m, where m is a unit vector in the 
fibre direction.

The first term of the invariant Ip was an isotropic term. 
The second term of the invariant Ip was the squared fibre 
stretch and thus associated with longitudinal material 
properties. The first term of the invariant K was an iso-
tropic term. The second term of the invariant K was the 
deformation of a surface element perpendicular to the 
fibre direction in the reference state, and was thus associ-
ated with transverse material properties (Ehret et al. 2011).

The derivation of the strain-energy potential gave the 
following stress–strain relationship in terms of the second 
Piola-Kirchhoff stress S: 
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sample, the stress–strain curve of the constitutive equation 
(Equation (3)) was evaluated. The sensitivity index S was 
estimated in both longitudinal and transverse direction 
using the formula (Saltelli et al. 2010):

 

where i specified the analysed material parameter: either 
µ, α, β or w0. σ was the Cauchy stress in the longitudinal 
(xx = 11) or transverse (xx = 22, 33) direction. The term 
σxx(B)j described the stress evaluated with the input param-
eter sample stored in the jth row of matrix B, respectively, 
for matrices A and Ai

B. The number of sample parameters, 
N, was progressively increased until the computed sensi-
tivity indices showed convergence.

2.1.3. Damage and failure criterion
The damage and failure criterion was based on the theory 
of critical distances (Taylor 2007). This theory assumes that 
failure is preceded by the appearance of damage within a 
process zone. In this zone, energy associated with plastic 
deformation or micro damage is dissipated. Some load-
ing levels can induce damage within a concentrated zone, 
which increases in size as loading increases until failure. At 
failure force, the volume of this process zone is by definition 
the critical volume (of the process zone). We determined 
this critical volume by replicating experimental measure-
ments on the supraspinatus tendon (Huang et al. 2005) 
reporting a failure force of 1007 N and a nominal failure 
stress of 11.5 MPa. Tendon damage was assumed to occur 
as soon as the local maximum principal stress reaches the 
experimental failure stress. The volume containing stresses 
above the experimental failure stress was defined as process 
zone. The volume of the process zone under failure load was 
set as the critical process zone volume (Figure 1).

2.2. Musculoskeletal model

We used a musculoskeletal model to relate the failure force 
to the supraspinatus force at 90° of abduction in the scap-
ular plane (Terrier et al. 2010; Ingram et al. 2012, 2013; 
Engelhardt et al. 2015). The arm elevation was simulated 
with a weight in the hand, starting from 0 N in steps of 
10 N up to 120 N. The shoulder model was built with the 
MRI images of the same volunteer (Section 2.3.1). The 
model included thorax, clavicle, scapula and humerus. 
The bones were linked by spherical joints spanned by 16 
muscles: subclavius, serratus anterior (3 parts), trapezius 
(4 parts), levator scapulae, rhomboid minor, rhomboid 
major (2 parts), pectoralis minor, pectoralis major (3 
parts), latissimus dorsi (3 parts), deltoid (3 parts), rotator 
cuff (4 muscles), teres major and coracobrachialis  muscles. 
Each muscle has been modelled with three cables, which 
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were evenly distributed over the muscle’s attachment site. 
A nullspace optimization algorithm coupled with inverse 
dynamics solved the unconstrained problem of mus-
cle force distribution. The cost function was the sum of 
squared muscle stresses.

2.3. Application

2.3.1. Magnetic resonance images
A 27-year-old male volunteer showing no sign of joint 
abnormality was used as anatomic reference for this study. 
We developed a custom MRI protocol consisting of two 
three-dimensional T1-weighted sequences on a three Tesla 
MRI scanner. The first sequence was a gradient-recalled 
echo VIBE (TR/TE, 12.2/4.8 ms) and covered the gleno-
humeral joint with an isotropic resolution of 0.6 mm. The 
second sequence was a turbo spin-echo SPACE (TR/TE, 
600/9.1 ms) and covered the whole right hemithorax with 
an isotropic spatial resolution of 0.9 mm. We co-registered 
the two sequences with Amira (FEI Visualization Sciences 
Group).

The supraspinatus tendon and humerus were recon-
structed out of the MRI data (Figure 2). The image seg-
mentation was performed manually using Amira. The 
resulting point clouds were imported into Geomagic for 
conversion into 3D bodies. The 3D bodies were super-
posed to the MRI images for visual verification. As the 
supraspinatus tendon merges with neighbouring tendons 
and the joint capsule at the lateral end, the tendon tip and 
its insertion are difficult to distinguish on MRI images. 
Therefore, a cadaveric study was additionally consulted 
to verify the reconstruction of this region (Curtis et al. 
2006). The 3D bodies were imported into the finite ele-
ment software Abaqus (Dassault Systèmes Simulia Corp., 
Providence, RI, USA) for stress analysis.

2.3.2. Finite element model
The constitutive equation (Equation (3)) was implemented 
into an user material subroutine (UMAT) in the finite 
element software Abaqus. To achieve an incompressible 
material behaviour, a penalty method was implemented 
(Holzapfel 2000). The UMAT implementation required 
the specification of the consistent elasticity tensor C. 
Abaqus defined C using the Jaumann derivative, which is 
given in incremental form by the formula:
 

where σ denoted the Cauchy stress, D was the rate of 
deformation tensor and W the spin tensor. !D and !W 
were:
 

with the deformation gradient F.

(6)!! = ℂ : !D + !W! − !!W

(7)!D = sym
(
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Taking advantage of symmetry properties, it was sufficient 
to apply the perturbation δF in six directions 11, 22, 33, 
12, 23, 13 to achieve all components of ℂ.

The tendon was attached to the humeral head at the 
insertion site on the greater tubercle (Curtis et al. 2006). 
The proximal humerus was assumed to be isotropic lin-
ear elastic. The Young’s Modulus was set to 10.4 GPa and 
Poisson’s ratio to 0.3 (Rho et al. 1993).

To simulate partial-thickness tears of the supraspina-
tus tendon, the insertion area between the supraspinatus 
tendon and the humerus was decreased. We started to 
decrease the insertion area from the articular-sided fibres 
(Figure 3), where the process zone appeared during the 
calibration simulation of the failure criterion (Section 
2.1.3). A 0% tear described an intact insertion, a 50% tear 
indicated the insertion area was reduced by half and a 
100% tear meant the complete detachment of the tendon, 
respectively.

The deformable parts were meshed with quadratic tet-
rahedral elements. The mesh size has been evaluated using 
the strain energy as convergence criterion.

To analyse damage and failure force, we considered a 
static position at 90° of arm elevation in the scapular plane. 
Assuming a scapulo-humeral rhythm of 2:1, the scapula 
was rotated by 30° and the humerus by 60° relative to the 
scapula. The supraspinatus muscle force applied to the 
tendon was increased from 0 N up to the failure force. 
Tendon strains were recorded and the size of the process 
zone determined.

3. Results

The identified material parameters for the constitutive law 
(Table 1) were independent of the initial values of the least 
square algorithm. The longitudinal and transverse root 
mean square errors were 11.24 and 1.46, respectively. The 
sensitivity analysis showed no interactions between the 
parameters (∑i Si = 1). The parameter w0 had the highest 
sensitivity index.

During progressive loading, the process zone was 
present at the deep articular-sided fibres at 60% of the 
failure force or more. As force increased, the process zone 
extended more in the longitudinal than in the transverse 
direction. The calibration of the tendon failure criterion  
lead to a critical process zone volume of 62 mm3, which 
was set as the failure criterion for subsequent tests  
(Figure 4).

The failure force decreased for increasing partial- 
thickness tears (Figure 5). For tears between 10 and 20%, 
the failure force decreased less than 1%. Above 20% tear, 
the failure force decreased by as much as 92.5% at 90% 
tear. A gap appeared between the tendon tear and the 
bone. As force increased, the process zone initiated at the 

To calculate ℂ, we used a numerical approximation. We 
applied small perturbations on F as proposed by Miehe 
(1996):

 

where ϵ was a perturbation parameter, which was set 
according to Miehe (1996). Inserting Equation (8) into 
Equation (7) lead to:
 

The incremental change in stress was approximated by the 
forward difference:
 

The elasticity tensor could then be approximated with the 
formula:
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Figure 1.  The critical process zone (grey) is defined as the volume 
where the stress exceeded the experimental failure stress !̃ 
associated with the failure force F̃. A was the cross sectional area 
of the tendon and ! the Cauchy stress.

Figure 2.   Reconstruction of the clavicle, scapula, humerus and 
supraspinatus tendon from MRI. The bones are shown in yellow 
and the supraspinatus muscle-tendon unit in red. Three MRI slices 
are shown as reference.
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estimated active force of the supraspinatus muscle during 
weight lifting.

Several constitutive laws for the tendon have already 
been proposed assuming hyperelastic, viscoelastic or 
microstructural properties (Pioletti et al. 1998; Holzap-
fel & Gasser 2001; Weiss et al. 2005). The constitutive 
law chosen for this study fulfilled the prerequisites on 
polyconvexity and coercivity of strain energy functions 
(Ball 1976; Holzapfel 2000), which are well documented 
(Ehret & Itskov 2007). The strain energy potential has 
further the advantage not to be based on additive split 
of isotropic and anisotropic components (Ehret et al. 
2011), as other laws proposed in literature (Holzapfel et 
al. 2000; Balzani et al. 2006). The additive split has the 
disadvantage, that under compression in fibre direction, 
the anisotropic part has to be switched off to guarantee 
convexity of the strain energy potential (Ehret & Itskov 
2007). This leads to an isotropic behaviour when fibres are 
under compression. On the other hand, a bi-linear equa-
tion might better replicate the toe region at the beginning 
of tendon stress–strain curves. However, our work did 
not focus on the transition from a tendon slack state to a 
loaded configuration.

Concerning the material parameter identification, we 
assumed that the nonlinear least square algorithm found 
a global minimum, since changing the initial values did 
not influence the result. The parameter β was the only 
parameter to remain on the lower bound of 0. β appears in 
the second term of the strain energy potential (Equation 
(1)) and the term vanishes as β approaches zero. Thus, the 
strain potential is reduced to its first term and becomes 
an exponential function with the invariant Ip (Equation 
(2)). We can thus conclude that it is sufficient to model the 
supraspinatus tendon using constitutive laws that consider 
the tissue as an isotropic matrix traversed by one fibre fam-
ily. Additional terms for the transverse plane were indeed 
not required to match the experimental data.

deep articular-side of the reduced insertion. The process  
zone then extended more in the longitudinal than in 
the transverse direction, until the critical volume was 
reached.

4. Discussion

To better understand the consequences of tears in the 
supraspinatus tendon, we analysed the effect of par-
tial-thickness tears on the tendon’s load bearing capability. 
The analysis focused on the supraspinatus’s tendon inser-
tion on the greater tubercle of the humerus. A numeri-
cal model based on MRI images of a young person was 
developed. We considered an anisotropic hyperelastic 
constitutive law, and a damage and failure criterion for 
the tendon. The material parameters were identified using 
experimental data. Partial-thickness tears of increasing 
size were progressively loaded until the failure criterion 
was reached. The predicted failure force was related to the 

Figure 3.   Illustration of how tendon tears were modelled. The 
red part of the insertion is attached to the humerus. On the left, 
an intact insertion is shown, in the middle a 30% tear and on the 
right a 60% tear, respectively.

Table 1. Results for material parameters and corresponding 
sensitivity indices.

μ α β w0

Material parameter 29.085 MPa 13.244 0.0 0.812
Sensitivity index 0.02 0.13 0.0 0.85

Figure 4.  Stress distribution in the tendon close to its insertion on the greater tubercle of the humerus. On the left, the results for an 
intact insertion are shown; on the right are the results for a 50% torn tendon. Both cases are loaded with 450 N, corresponding to an 
abduction with 100 N in the hand. The process zone (! > 11.5 MPa) is shown in grey.
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process zone volume exceeded 10% of the critical volume 
at ultimate failure.

The critical distance approach used here to predict fail-
ure has the advantage of simplicity. It indeed only requires 
the elastic stress field around the stress concentration and 
one experimental tensile test for calibration (Taylor 2007). 
Although this method was initially developed for brittle 
materials, we justified its use in our work by the fact that 
stress–strain curves for tendon tissue show sudden fail-
ure without preceding plastic straining. This hypothesis 
has already been successfully used in micro structural 
(Liao & Belkoff 1999; Weiss et al. 2005) and probabilistic 
(De Vita & Slaughter 2007; Guo & De Vita 2009) models 
where brittle failure at fibre level is assumed as soon as 
a limit strain is exceeded. There are two alternatives of 
modelling failure: using cohesive element techniques, or 
adding damage terms in the constitutive equations. For 
cohesive elements, the path of crack evolution needs to 
be known in advance. Constitutive equations with dam-
age terms require further experimental measurements of 
tissue softening at failure.

The finite element implementation of the constitutive 
law used a numerical approximation for the calculation 
of the elasticity tensor. This tensor serves as an itera-
tion operator for the finite element solver. It thus only 
influences the convergence speed and not the final result 
(Miehe 1996). However, this approximation might lead to 
convergence issues when used in more complex loading 
cases. It might then be necessary to implement an analyt-
ical formulation of the elasticity tensor to provide stable 
and fast  convergence.

The predicted load-bearing capacity was consist-
ent with experimental studies on decreased abduction 
strength of asymptomatic and symptomatic patients with 
supraspinatus tendon tears (McCabe et al. 2005; Kim  
et al. 2009). In both studies, small and medium size 
tears did not significantly decrease abduction strength. 
However, significant deficits in abduction strength 
were observed for large and massive tears. In addition, 
the model predicts a tendency of initial tears to fur-
ther expand, because the highest tissue loadings were 
always located at the torn side of the reduced inser-
tion. The model further predicted arising gaps even 
in slight tears which would prevent self- reattachment 
and healing. However, the predicted forces are 
unlikely to be reached by patients, as increasing pain 
is the main limiting factor for abduction strength in  
patients with shoulder disorders (Kirschenbaum et al. 
1993; Ben-Yishay et al. 1994; Oh et al. 2010).

The obtained supraspinatus forces lie in the range of 
other numerical muscle force computation algorithms 
(Yanagawa et al. 2008; Engelhardt et al. 2015), although 
some numerical studies reported supraspinatus forces to 

The quality of the parameter identification (RMSE) was 
better in the transverse than in the longitudinal direction. 
This was related to a greater variance in the longitudinal 
experimental data compared to the transverse data. The 
sensitivity analysis proved that the parameter with the 
most influence was w0. This parameter is a weight factor 
characterizing the relative importance of the fibre aniso-
tropy over the isotropic matrix.

We calibrated the failure model with experimental data 
providing the failure stress. We chose this study because 
it was the only one reporting ultimate failure on complete 
tendons attached to the greater tubercle, while other stud-
ies used morphologically split tendons (Matsuhashi et al. 
2014) or dissected tendon samples detached from bone 
(Lake et al. 2009, 2010). We observed however a great dif-
ference in failure stresses reported by these studies, which 
could be ascribed to different methods of sample prepa-
ration, testing procedure and natural property variation 
in biological soft tissues.

In the calibration simulation, the process zone initi-
ated at the deep articular-sided aspect of tendon inser-
tion. This is consistent with clinical observations, as well 
as with experimental studies reporting that tears occur 
most often at this site (Matsuhashi et al. 2014). The load 
initiating the process zone was dependent on the finite 
element mesh. This was related to the fact that loaded 
edges represent stress concentration points and lead to 
singularities in the finite element mesh where the elastic 
strains and stresses are theoretically infinite. However, 
the evolution and the final volume of the process zone was 
independent from the finite element mesh as soon as the 

Figure 5.   Failure forces for increasing tears (process zone 
volume  =  critical volume) and damage initiation (process 
zone volume  =  10% critical volume). The forces are compared 
to supraspinatus forces during loaded abduction and to the 
theoretical maximum supraspinatus force.
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tear, the curve flattens again. We thus assume that tear 
sizes between 40 and 60% represent a turning point in the 
evolution of tears: below 40% tear, the loading capacity 
stays above the theoretical maximum supraspinatus force 
of 688 N (Garner & Pandy 2000). Above 60%, the loading 
capacity dropped below the average abduction strength 
of 92 Nm, which corresponded to holding 10.5 kg in the 
hand (Kim et al. 2009).

The strength of this work is that it models the supraspi-
natus tendon with an anisotropic hyperelastic law iden-
tified with experimental data. The singularity associated 
with the tear was treated with the critical distance method, 
which was also calibrated with experimental data. How-
ever, stress near the insertion might be overestimated, as 
the model does not include the cartilaginous tissue found 
at the transition between bone and tendon. Although this 
layer is very small (Clark & Stechschulte 1998; Benjamin 
et al. 2006), this tissue might have a damping effect. Also, 
the inhomogeneity of the tendon in the transverse plane 
could not be included in the model due to lack of experi-
mental data for identification of material parameters. The 
model could be further extended by modelling the whole 
supraspinatus muscle-tendon unit during movements of 
daily living and taking into account dynamic and fatigue 
failure effects.

In conclusion, we studied in a numerical analysis the 
reduced loading capacity of supraspinatus tendon tears. 
According to the numerical results, with smaller than a 
40% tear, conservative treatment strategies and physio-
therapy with additional weights in the hand can be con-
sidered. However, above a 60% tear, surgery should be 
considered to restore the loading capacities of the tendon. 
These results should be further investigated and confirmed 
by additional numerical and clinical studies. The numeri-
cal model could then be applied to patients to test further 
hypotheses related to rotator cuff tears. The insight into 
tendon mechanics will then contribute to the improve-
ment of treatment strategies for patients.
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