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Abstract— Feedback linearization requires a unique feed- wherev is the input to the Brunovsky normal form. The
back law and a unique diffeomorphism to bring a system domain of attraction of the control law depends on the do-
to Brunovsky normal form. Unfortunately, singularities might main of validity of & and®—! and the zeros of the function
arise both in the feedback law and in the diffeomorphism. ne1 . .
This paper demonstrates the ability of a quotient method to LgLf h(x). Hence the domain of attraction excludes the
avoid or mitigate the singularities that typically arise with  singularity points where the determinant %% = 0 or
feedback linearization. The quotient method does it by relging LQL?_lh(x) = 0 as well as all the points where a singularity

mgrgoir;diaﬂr?n:d?jﬂigi]f:o&céﬁ?sg?‘f\rlgggrgagt b:aiﬁhis?e/gdo?bﬁ\e is reached following the trajectory of the closed loop syste
iterative procedure. This freedom in choosing quotients ad There are algorithms to determine the feedback linearizing

the resulting advantage are demonstrated for a field-contrbed  outputs for single-input systems ([4], [5]) and for multiput
DC motor. Using a Lyapunov function, the domain of attraction  systems ([6], [7]). The algorithm proposed in [4] generates
of the control law obtained with the quotient method is proval  guotients to obtairh(x). Based on this algorithm, a quotient
to be larger than the domain of attraction of a control law  ethod [8] has been developed to directly obtain the control
obtained using feedback linearization. . . .
law without the need of achieving Brunovsky normal form.
I. INTRODUCTION Due to the freedom in choosing the quotient foliation in the

Feedback linearization is a widely studied method fofl€Sign process of the quotient method, it was observed, in
designing control laws for nonlinear system [1]. In feedbacSimulation, that the control law was able to overcome the
linearization, a system is transformed to Brunovsky ndrm&ingularity in feedback linearization [8]. The present @ap
form using a feedback law and a diffeomorphism. All condeémonstrates the application of the quotient method to a

trollable linear systems can be brought to Brunovsky norm#€ld-controlled DC motor and proves, using a Lyapunov
form [2]. In the nonlinear setting, the input-affine Sing|e_funct|on, that the domain of attraction of the control law

input system obtained through the quotient method is indeed larger than
. the domain of attraction of the control law obtained through
x = f(x) + g(x)u (1)  feedback linearization.

is feedback linearizable (FBL) (Theorem 4.2.3 of [3]) if and The paper is organized in the following manner. The next

only if the following conditions are satisfied: section briefly introduces the steps in the quotient method.

Section 1l presents the mathematical model of the field-
controlled DC motor and discusses feedback linearizatfon o
A= Span{g, adsg, ..., ad;}‘Qg} . the DC motor model. Section IV describes the steps involved

in designing the control law. Section V proves the domain of
attraction of the control law and presents simulation tssul
r— {g,adfg, ..,ad;}_lg}, Finally, section VI provides concluding remarks.

1) Involutivity of the distribution

2) Full rank of the accessibility matrix

where adyg represents the Lie bracket ¢fix) and g(x). Il. QUOTIENT METHOD

Achieving feedback linearization requires a feedback lin-

earizing outputh(x) of relative degreen such that the 1-  The quotient method is an iterative design technique to
form w(x) = On(x) belongs to the kernel oA. The output obtain a control law for nonlinear input-affine single-ipu
h(x) is then used to obtain the feedback law systems [8]. The method proceeds in two stages, namely a
forward decomposition stage and a backward control design

— n n—1

vo= Lih(x) + LgLy h(x)u, stage. Both stages require several iterative steps.

v — L7%h(x)
or PRSPy -
LoL™ h(x) A. Forward decomposition
and the diffeomorphism At every step of the forward decomposition stage, an
h(x) equivalence relation~) is defined between two vector fields.
Lyh(x) For example, for the vector fields, (x) and mz(x), the
P = ) equivalence relation is:

Lr;flh(x) my (X) ~ mg(x) iff ml(X) - mQ(X) = m(x)g(x),



where x(x) is any function. This defines the equivalencenput y, by solving —kiy1 = f1(y1,y2) for yo. Here, k; is
class as any positive constant. This target value, which depends on

y1, IS then tracked using proportional feedback. The error
[ (x)] = {m(x)|m(x) — m.(x) = k(x)g(x) VE(x)}, '

wherem,.(x) is the representative of the equivalence class. €2=Y2= Y24
To define the representative ogwt(r;()a equivalence class, WE Jofined to track the desired target.

choose the exact 1-form(x) = =5, wherey(x) is any
chosen function such that(x)g(x) # 0. Then, we define
the representative of any vector field(x) as

my(x) = m(x) — ——=7—~g(x). )

Note thatm,(x) represents the entire equivalence class to

which m(x) belongs. Hence, it can be verified that.(x) wherek, is a positive gain for the proportional feedback

remains unchanged whem(x) is replaced bym(x) + controller . Substituting foré, and e, and solving for

k(x)g(x), for all x(x). Using this equivalence relationship, y; results in y3.4(y1,72), Which is a function ofy; and

one can obtain the representatiyg(x) of f(z) + g(x)u. y,. The whole step can be repeated by defining the error

By definition, f,.(x) remains unchanged for all control lawse; = 35 — ys.a to obtain ys q(y1,y2,y3). The backward

u = k(x). This whole process is facilitated by designing thestage continues this way until a control law is obtained for

diffeomorphism the original system. It is easy to show, using the center
61(x) manifold theory (see appendix B of [3] and corollary 1 of

[8]), that the resulting control law is locally asymptotiga

Next consider the first two equations of (4) and assygme
as the input to this subsystem. The error defined above is then
driven asymptotically to zero by assigning the stabilizing
dynamics

ég = —kaeo,

z=®,(x) = : , stable. Furthermore, a Lyapunov-type analysis will be used
Pn—1(x) to estimate the domain of attraction of the control law.
V(%)
where ¢,(x) to ¢,_i(x) are scalar functions such that [1l. M ODEL OF THE FIELD-CONTROLLED DC MOTOR

Ly¢; = 0fori =1,...,n—1 and ranl(“%fx)) =mn, The example of a field-controlled DC motor is chosen

so that to illustrate how the possibility of choosing(x) during
0 the forward decomposition helps avoid the singularity that

] arises due to the particular choice ofx) required for
. 9(x) 2 6<I>pg(x) = : ) (3) feedback linearization. The field-controlled DC motor is a
Ox x=®, " (z) 0 FBL system. However, the quotient method is not restricted
a(z) to FBL systems, and application to non-FBL system are

_ illustrated in [9] and [10].
wherea(z) := L,v(x) o ®,1(z). In these transformed co- ) . -
ordinates, obtainin@*fr(xp) reduces to simply eliminating The field-controlled DC motor with negligible shaft damp-

the last line of®, f(x). The eliminated coordinate can be'N9 described in [11] is considered:

regarded as the input of the system described by the vector , di
field @, f.(x), and thus results in a single-input system of vp = Ryip+ Lfﬁa
dimension reduced by one. This process can be repeated ) dig, _
n — 1 times to obtain a single-dimensional system. The Va = Cllfw*'Lag + Rala,
diffeomorphisms obtained at each step can be combined to dw o
put the system in feedback form: JE = C2fla
no= fily12) The first equation represents the field circuit, withi s, Ry,
Y2 = fa(y1,y2,93) andL being the voltage, current, resistance and inductance,

(4) respectively. The variables,, i,, R,, and L, in the second
J : FalWts ey ). equation are the corresponding variables for the armature
" gLy I circuit. The termcijw is the back electromotive force
wherey; to y,, represents the coordinates of the new systemduced in the armature circuit. The third equation is the
obtained using the combined diffeomorphism. equation of motion for the shaft, with the rotor inerflaand
the torquecaifi, produced by the interaction of the armature
current with the field circuit flux. The voltage, is held

The control design stage starts by designing a control lagonstant and control is achieved by varying The system
for the system obtained at the end of the forward stage, i.® represented by the third-order model

the first equation of (4). For this subsystemis considered
as the input. Next, assign the target value;(y1) to the x = f(x) + gu,

B. Backward control design



with the statesr; = if,22 = 44,23 = w, and the input the armature circuit,, the point of singularity is shifted to
u= Qg = et

Lf, 2Ra
The two casesw = 0 andi, = 5%, represent only a

—azxy 1 momentary loss of the influence of the input. They become
fx)=| =bra+p—crizs |, g=|0 |, (5) singularities because the feedback linearization attertypt
Oxq129 0 impose a linear affine structure (Brunovsky normal form)

to the system. In the quotient method, by suitably using the
degree of freedom in the algorithm, we can avoid imposing a
strict linear form and thus having singularities. For thédfie

e , : controlled DC motor, this degree of freedom can only be used
The aim IS FO deS|g_rj a control Iayv that dnv_es thg SYSth one equation; however, we can choose which singularity
from any initial condition to the desired operating paifit=" y, ayoid. In this paper, we chose to avoid the singularity at

(0, p/b, wo), wherew, is the desired set pointforthe angular; _ v, gince we are interested in a cascade to control

and the positive constants = R;/Ls,b = R,/Lg,c =
c1/Lq,0 = c2/J,p = vo/Ls. FOru = 0, the motor is at
equilibrium atz; = 0, 2 = p/b and any arbitraryes value.

. . . 2Ra
velocity 3. The diffeomorphism successivelyi , i, andw, which is justified by the fact that
022 + cx the time constants of the electrical circuits are constolgra
drpr = 2022 (p — bza) smaller than the time constant of.the mechanlcal component.
—20(p — 2bxa)(—bas + p — cx123) The other option to control in turiy, w andi, would avoid

the singularity atv = 0.
brings the system to Brunovsky normal form [12].
Next, consider the determinant 3% given by
0P
Det(—= 2L = 8626222 (2bas — p)?,
0x
which shows that® g, is singular at bothes = 0 and
x9 = p/2b. It can also be seen in the accessibility matrix,

IV. CONTROL DESIGN USING THE QUOTIENT METHOD

Since the quotient method allows avoiding at least one
singularity, the resulting domain of attraction of the aoht
law is increased. The forward decomposition stage includes
two steps, so as to achieve a single-dimensional system.

Step 1 This step brings the vector field(x) into the
canonical form (3) and then shifts the equilibrium pointifro

£ = (g9, 1f, 9l [ f. 9] (0, p/b, wo) to (0,0,0) by designing a suitable diffeomor-
1 a a2 phism. The first two functions of the diffeomorphism are
= ( 0 cx3 (a+ b)exs , [8]:
0 —0xy —60p—abzxy+ bOxs 21 = x9—p/b (7)
whose determinant is given by Z2 = I3 —wo. (8)

The third function can be chosen to maximize the size of
the validity domain of the resulting diffeomorphism. One
Note that the accessibility matrix looses rank for botffuch choice is;3 = 1, which results in the globally valid
23 = 0 and 2, = p/2b. Consequently, the control law diffeomorphism:

Det(L£) = ¢ x3(2bxa — p).

designed through feedback linearization has singulariéied 2 xo — p/b
the diffeomorphism is not valid there. Hence, the domain 29 | = ®1(z1,20,23) = | 3 —wo
of attraction of the control law developed using feedback 23 x1
linearization [11] is: The model inz-coordinates becomes:
Drpr = { (Il,IQ,Ig) | To > s and z3 > O} (6) Z1 —bz — 023((“)0 + 22) 0
2b Z9 = 9(% + 21)2’3 + 0 U.
Physically, the two points of singularity arise due to the \ Z3 —az3 1

presence of two cross terms. The first term is the “backne |ast row is removed ani andz, expressed withs as
flux generated by the field coilszzs = CWLﬂ i

: caLyigi . ¢ Z1 —bz; —c(wo + 22)
second term iz a, = 2XH% which corresponds to )= 0 + o2 +2) )7 9
the torque generated at the shaft due to the current flowing _ ] o ] ]
in the armature coil inside the magnetic flux generated b%‘ Step 2: This step brings the input vector field of (9) into
the field coils. These cross terms represent the mechanisfi§ canonical form (3) by designing a suitable c#ffeomor—
by which the field coils are able to influence the armaturBNism. The first function of this diffeomorphism is:
current and produce torque at the shaft. Now,do 0, the B QZQ n @z " c
magnetic flux and thus, the field current looses its influence =T ysTy
Qver the armatur(_e current. Slm.llarly' if the armature cufrre 1This shift toiq = 2’; is not obvious from the equations; however, the
io = 0, then the field current fails to produce any torque Ogbsence of a singularity fo, = 0 clearly indicates the effect of the bias
the shaft. However, due to the presence of a bias voltage vtitage v, .

2
25 + cwoza.




The second function, can be chosen to maximize the sizewith the inverse transformation:

of the validity domain of the resulting diffeomorphism. The x1
choiceys = z; results in the diffeomorphism: To = ‘1>_1(y1,y2, y3)
% [4 €r3
( b > :@2(21322): ( 52%+%Z1+%Z%+W0Z2 >7
Y2 Z1 Ys
. . . = + e
which, however, has a singularity at = —w, correspond- /be(bes 2y 20 pya—b0)
ing to z3 = 0 (see eq. 8). Other choices fgs are possible, S— :
for example: This diffeomorphism leads to the following model i
e Yo = 2o results in a singularity at coordinates:
21 =—p/b, yr = —y20(by2 +p),
corresponding tar, = 0. Y2 = —by2+91(y1,y2)ys, (12)
. . . js = —ays+ u.
e Y2 = 21 + 2o results in a singularity at . vs ) y3_ )
9 The first function of® is always the static feedback
021 — czo + Tp — cwp =0, linearizing output function (Propositions 3 and 4 of [4]).

However, due to the choice af, = =z, this diffeomor-

corresponding tdx; — cxs = 0. phism has a singularity at3; = 0. Hence, any globally

o Yo = —bh2? — Opz results in a singularity at asymptotically stabilizing (GAS) control law designed for
(12) through the quotient method will have the following
cOpwo + 2bctwozy + cOpza + 2bchz122 =0, domain of attraction:

corresponding t(p — 2bz2)zs = 0, Dom ={ (z1,29,23) | 23<0 or x3>0}. (13)

o _ _ P
that is, eitherzs =0 or zz = %’ The backward stage computes a control law for (12),

which is the same singularity as in case of feedbac¥hich is given by

_ linearization. | u= ks~ sa) + e (~uaf(by + p)
With the quotient method, the choice of the last function 5 Y1
pf the d|f_fe_omorph|s_m at _each step play§ a crucial role 4 993 (—bya + g1(y1, y2)73) + azs, (14)
in determining the singularity of the resulting control law Y2
Transforming usingP, results in: where
o)
Y1 = —y20(by2 +p), Ys,d = —ha(y2 — y2.a) + byz + Tt (—y26(by2 + 0))
Yo = —by2+g1(y1,y2)2s, 91(y1,92)
—6‘p + 92p2 + 49b/€1y1
where Y2,d = YT .

( )= - V2w + 2b%cys — b2chy3 — 2bclpyo During the control design stage, the errefse, andes are
gy y2) = b ' defined in order to obtaigs, 4, y3.4 andu. The diffeomor-
The last row is removed ang is expressed withy, as input Phism®. is obtained using these definitions:
to give the following one-dimensional system: e1 Y1

. €2 =®.(y1,92,¥3) = Y2 — Y24 )
= —y0(b . 10 ’
(1 Yy20(by2 + p) (10) es Ys — Ys.d

Remark 1:The ability to avoid singularity is harnessedwhich transforms the closed-loop system composed of (12)
from the fact that (10) is not affine ig,. By choosing andu given by (14) into the following form
yo satisfying the lemma 4 of [8], it is possible to obtain

an equation affine iny; in lieu of equation (10). However, “ —kier — be30 — ear/4blerky + 022
this would result in the same singularities as in feedback . = —koea — ge(e1,e2)es , (15)
linearisation. o —kses
The diffeomorphism® = &, o &; can be obtained by 3
augmenting®, with ys = z3: where
cpy/Abberky + 02p2  clp?
Y1 ge(er,€2) = 2p2 Y
Y2 = ®($1,$2,x3)
Y3 cear/4blerky + 6%2p% cerky
70p27b2cw§+b20m§+b2cm§ + b + b
B 202 1/2
= T2 ;1p/b , (11) n ceZOP — w2 — 2cer + ce%@) .



If ®. is globally valid and (15) is GAS, then the closed-Also note that

loop syst_em is also GAS As a consequence, the _domain —0p? — bPcw? + b2072 + b2ca?
of attraction for the original system Bg,;. The following €1 =Yy = 202 )
section proves the GAS property of (15) and presents the
condition for the global validity of®..

h|ch implies:

—0p2% — b2ew?
V. DOMAIN OF ATTRACTION e1 > o o

2h2
This section proves the global asymptotically stability
(GAS) of (15). The proof is divided in two parts. Firstly, Enemm(l}ft)eﬁ;lsjrgear that, in order to obtain a real solution
the GAS of a subsystem obtained fey = 0 is established
using a Lyapunov function. Based on this Lyapunov function, ¥ £ 4bbeiky + 02p? > 0.

a new Lyapunov function is proposed in order to prove the
GAS of the full system (15). Next, substituting the lower bound an yields an upper

bound onk; to enforcey > 0:
b p?
2b%cw3 + 20p%°

A. Subsystem

Let us first consider the following sub-system resulting by k1 <
settinges = 0 in (15):

(19)

. 9 Note that®. involvesys 4, which in turn has\/i). Hence,
( a ) = ( —kier —beyf — 22 v Aberk + 62 p? ) , (16) global validity of &, depends on ensuring positivefor all

2 —hae2 y1. By choosingk; such that (19) is satisfied, we will ensure
Note that the constants andk, are tunable positive gains. global validity of ®. for all y;.

Lemma 1:System (16) is globally asymptotically stable.

Proof: Consider the Lyapunov function B. Full system

Next, consider the full system (15) and the following
1 o2 4 &2,
Vi= et~ theorem
) Theorem 1:System (15) is globally asymptotically stable.
whereC1 is a positive constant witly, > 2. Proof: Consider the Lyapunov function

Consider the time derivate df;,

Cs 4
Vi = erer + Creaés Vo =log(1+ V1) + -
_ 2 2
= —kie] —beie30 — erean/4bferky + 6% p? whereV; = 61 + Cle? , C1 and C, are positive constants
—C ke such that
< —kye? — beef + |ey||ea|/4bBe1 ky + 62p2 o s 62 p? n 1
—Olk2€§ ! 4]{31]{32 2]{32
8
= —kie? —bejed + |el|\/4b961k162 + 62p2e3 Cy > 1 ZL“
—Clk2€2.

and L; to Lg are defined as

cp\/4bber ki + 02p2

Using Young's inequality4a||b| 5‘52 + g—i with a = ey,
b= \/4bleikie3 + 62p2e3 ande = 2k, gives:

L1 = max 5 N
Vl S —kle% — b€1€29 (1 —;eé + 62)4b
Ure?  Abferkied + 02p2e2 Ly = inf——P
+ ( ; 1 ! 14‘21 2) — Crkoe3 2 4b2(1 +ef+e3)
= —kle% — bele§9 L3 _ maX 2V 4b9€1k1 + 92 2
2 62 p? 2(1+e1 +e2)b
+ (k161 + bele 0+ ——— 4I€1 ) Clk2€2 . B cerky cky
62,2 S T e Y BTy
_ P 2 1 3)
= (Clkg — —) €y (17)
Ak Ly = max|l—————— cezep _ p
b 2(1 + el Te2)b| b
SinceC1 ko > 4k , Vi is negative semi-definite. Moreover,
for e; = 0, one has: Lg = inf¢ =0
. 2(1+ 81 + e%)
Vi = —kiel. (18) cey c
: . : Ly = max\m————5| =3
Next,V; = 0 impliese; = 0 from relation (17) and; =0 (14 €7 +e3) 2

from (18), which implies that; is negative definite. Hence, ce30
Ly = sup———— = cb,

system (16) is globally asymptotically stable. ™ (1+e2+e3)



L e [ b [ c ] 6 [ p [wo]
| 103.995| 35.4034| 1.45| 230.769| 52.7588| 10 |
TABLE |
PARAMETER VALUES FOR THE SIMULATEDDC MOTOR.

Comparing (15) and (16) and substituting from (17) gives:

922

Vi< |Ciks — p eg —ea ge(er, ea)es.
4k

Next, consider the time derivative &5,

Vo = VV 02/43@3, Hence,L; and L3 must exist somewhere on tHeq, e2)-
L+W plane. Since”; andC; satisfies
and substituting’; in V5 gives: b o 922 +1
O 02 2 e Ak 2
v, < _( " W) 2 eageler,ez)es O ka2
2= 1+e?+e3 1+e3+e3 et Caks > ZLia
2 2 3
(Cle — O_p) 6% .
< -3 5 il 3 + |62|1|ge(6;’62)|2|63| negative definitiveness df; is established. Hence, the sys-
TerTe TerTe tem (15) is globally asymptotically stable. -
—02]{336%.

Also, k; can be chosen according to (19) to ensure that,
Using Young'’s inequality witha = ea, b = |g.(e1,€2)|les|  despite having a square root in the equatip,is globally
ande = 1 allows writing: valid and the resulting control input is always real. GAS

property for (15) implies that the closed-loop system is GAS

2 2
, (C'lkz ) €3 % I 9(%62)263 with the equilibrium point:
Vo < —
2= 1+61+€2 1+e?+e3 n 0
—02/{363. Y2 = 0 ,
Y3 0

Finally, substituting forg.(e1, e2) gives: o
which implies:

C k - 02 ? —_— l 62 2 2 2 2 2 2 2
- 1h2 4k 2 2 —0p°—b”cwi+b"0x5+b"crs 0
e e ) _ 0
e? 4 €3 Ty —p —
(cp\/4bberky + 02p2 — cOp?) €3 x1 0
+ (14 €2 + e2)2p2 2 [ 2
1 2 and z1 =0, x2=p/b x3=1/wj.

062\/4b961k1 + 60202 + cerky + ceabflp) e _%

(1+e2+e2)b

Hence, the closed-loop system will converge to

9 9 (x1, 2, z3) = (0, p/b, £wp). Since z3 = 0 is a
(—c?wi — 22061 ‘2062 ) Cokse?. singularity, the convergence tbw, depends on the initial
(1+ef+e3) condition. If z3|,_, > 0, thenx3 converges totwy, else if

x3],_, < 0, x3 converges to-wy. The domain of attraction
of the control law designed using the quotient method is
(Clkg 022 l) e Dgnm defined in (13). Furthermore,.based on (6), it is clear
v, < - T 2 4 Ly + Ly that Drpr, C Do, and thusDgyy is larger thanDrgy,.
(1+ef+e3) Hence, using the quotient algorithm, we can initialise the
+L3e3 + Lye; + Lse3 + Lees + Lre3 system also from the points,|,_, < £ in addition to the
+Lge3 — C'2/€3€§ point§ inDF.BL' ) . )
Ok 2 1) o . . Tr_ns fact is clearly seen in the S|mulat|on resglts presdapte
( 1h2 = 4k1 - 5) €2 o in Figure 1. The target in these simulations is to achieve
(1+e2+e3) B <02k3 - Z Li) €3 o = 10. The simulations are carried out using the DC-motor
parameters taken from [13] and given in Table I. Three ihitia
Since the explicit expressions df; and Ls are involved, conditions are chosen to simulate the control law obtained
there are not presented here. Nevertheléssand Ls exist using the quotient method. The firfl, p/(2b), 0.01; FBL
since both expressions are continuous functions that asigularity) and the secondo, 0, 0.1; FBL impossiblg ini-
different from zero somewhere and tial conditions are outside the domain of attraction of any

e 10252 control law designed using feedback linearization [11] due
e +0°p7 _ to the presence of singularity at,|,_, = p/2b. Only the

Using the definition ofL; to Lsg, Vs becomes:

)

lim
ller.ea)ll+o0 (14 €3 + €3)4b

eo/4bbe1 k1 + 6‘2p2 o

lim
ll(er.ea)l| o0 2(1+ €3 4 €3)b

last initial condition(0, 2, 20; genera) lies in Drpy. The
control law designed using feedback linearization worlyg on
for 25 > p/2b, whereas the control law designed using the



xr1 = i¢ (@Mps
0.15°" 7 ( ;\IO)

—0.15

-0.3

0.8

stems from the fact that there is an additional degree of
freedom (in particular the choice of the last function in
the definition of the diffeomorphism) at every step of the
forward decomposition stage. This choice plays a cruciel ro
in determining the singularity of the resulting control law
Different choices result in different domains of attraatior

the resulting control law. For a particular choice, a Lyapun
based proof of the domain of attraction has been provided.
By removing singularities, the domain of attraction of the
control law designed through the quotient method is shown
to be larger than the domain of attraction of the control

Lo = i, (@mps)

1

-- FBL singularity

— FBL impossible
— general [
0.4 0.8 2]
Time (sec) 3]

(b) z2

x3 = w (rad/sec) 4l
20 -- FBL singularity [5]

— FBL impossible
— general 6]

(7]
(8]

10

El

0.4 0.8 [10]
Time (sec)
(€) 3 [11]

Fig. 1. DC motor controlled with the quotient method. Theestaehavior  [12]
using the quotient method is depicted for three differeittainconditions.

The thin line represents a general case. The thick line sporeds to an

initial condition that is outsideDrpr,. The dashed line corresponds to a[13]
case that is exactly the point of singularity for feedbacledirization.

guotient method does not have this restriction. Hence, upon
using the quotient method, a larger domain of attraction is
achieved.

VI. CONCLUSION

This paper has illustrated the application of the quotient
method to control a field-controlled DC motor. For this
system, singularity arises in feedback linearization duiné
nature of the diffeomorphism used to obtain the Brunovsky
normal form. The quotient method relaxes this condition by
not requiring the Brunovsky normal form. The advantage

A. lIsidori.

law designed through feedback linearization. To subsitati
91 the results, simulations are provided with initial corafiis
that are outside the domain of attraction of any controller
designed using feedback linearization.
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