
The AMIDA Automatic Content Linking Device:

Just-in-Time Document Retrieval in Meetings

Andrei Popescu-Belis1, Erik Boertjes2, Jonathan Kilgour3, Peter Poller4,
Sandro Castronovo4, Theresa Wilson3, Alejandro Jaimes5,�, and Jean Carletta3

1 Idiap Research Institute, P.O. Box 592
CH-1920 Martigny, Switzerland
andrei.popescu-belis@idiap.ch

2 TNO ICT, Brassersplein 2
NL-2612 CT Delft, The Netherlands

erik.boertjes@tno.nl
3 HCRC and CSTR, University of Edinburgh
2 Buccleuch Place, Edinburgh, EH8 9LW, UK
{jonathan,jeanc,twilson}@inf.ed.ac.uk

4 DFKI GmbH, Stuhlsatzenhausweg 3
D-66123 Saarbruecken, Germany

{peter.poller,sandro.castronovo}@dfki.de
5 Telefonica Research, C/Emilio Vargas 6

ES-28403 Madrid, Spain
ajaimes@tid.es

Abstract. The AMIDA Automatic Content Linking Device (ACLD) is
a just-in-time document retrieval system for meeting environments. The
ACLD listens to a meeting and displays information about the docu-
ments from the group’s history that are most relevant to what is being
said. Participants can view an outline or the entire content of the docu-
ments, if they feel that these documents are potentially useful at that
moment of the meeting. The ACLD proof-of-concept prototype places
meeting-related documents and segments of previously recorded meet-
ings in a repository and indexes them. During a meeting, the ACLD
continually retrieves the documents that are most relevant to keywords
found automatically using the current meeting speech. The current pro-
totype simulates the real-time speech recognition that will be available
in the near future. The software components required to achieve these
functions communicate using the Hub, a client/server architecture for
annotation exchange and storage in real-time. Results and feedback for
the first ACLD prototype are outlined, together with plans for its future
development within the AMIDA EU integrated project. Potential users
of the ACLD supported the overall concept, and provided feedback to
improve the user interface and to access documents beyond the group’s
own history.

Keywords: just-in-time retrieval, meeting assistants, meeting process-
ing, real-time document retrieval.

� Work performed while at Idiap Research Institute.

A. Popescu-Belis and R. Stiefelhagen (Eds.): MLMI 2008, LNCS 5237, pp. 272–283, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The AMIDA Automatic Content Linking Device 273

1 Introduction

Participants in a meeting often mention documents containing facts that are
currently discussed, but only few documents are at hand. Searches could be per-
formed within a document management system for the right piece of information,
but the participants in a meeting usually do not have the time to perform such
operations frequently during the meeting. Moreover, even where they do have
their documents available, few groups have access to recordings of their past
meetings, much less an efficient device for searching them. And when browsing
through the recordings of previous meetings, users do not have the time to search
for additional information among the meeting documents.

Therefore, a system that would provide tailored access to potentially relevant
documents or recorded meetings, based on ongoing discussions, could be very
valuable in improving group decision-making. Such an Automatic Content Link-
ing Device (ACLD) could be applied to at least two scenarios [1]: the device
could be used online during a meeting to display potentially relevant documents
in real time (meeting assistant), or it could be used offline to browse a past
meeting that was recorded, enriching it with potentially relevant documents
(meeting browser). These scenarios are broadly related to the following options
observed in the literature. Conceptually, the content linking mechanism is the
same in both cases, only the resources that are available and the constraints of
producing results in real-time are different.

1. Just-in-time retrieval [2,3,4]: participants to a meeting are constantly given
suggestions about documents (including excerpts of previous meetings) that
are potentially relevant to the ongoing discussion. Participants are free to
ignore them, or to start using them to enhance the discussion, e.g. with
figures, precise facts, or decisions made in previous meetings.

2. Document/speech alignment for meeting browsers [5,6,7]: users of a meeting
archive can view the recordings of previous meetings augmented with related
documents, regardless of whether the participants to the meeting referred
to them explicitly or not. This can be essential for meetings whose main
purpose is to discuss a long document, e.g. a report, and might provide a
quicker understanding of the meeting context.

The AMIDA Content Linking Device (ACLD) demonstrates the basic concept
of tailored access to a group’s history using a set of four meetings from one of the
groups recorded in the AMI Meeting Corpus [8]. Although the primary use of
such a device would be during live meetings, we need to be able to demonstrate
the concept even when there is no meeting happening. Our demonstration replays
the group’s last meeting (ES2008d) to simulate a live meeting, treating segments
from the three previous meetings (ES2008a-c) and associated documents as the
group history to be linked. In the recordings, the group carries out a role-playing
exercise in which they pretend to be a design team specifying a new kind of
remote control. Each group member is given a unique role to play in the team
and carries out individual work as well as taking part in the four meetings. Final
design decisions are made in the last meeting, which is ES2008d, therefore a

274 A. Popescu-Belis et al.

number of project documents and fragments of previous meetings are relevant
to the discussions in this meeting. The past documents available for linking
include reports, emails, and presentations given during the first three meetings,
plus segments derived from the first three meetings by dividing them into 200
second chunks.

The remainder of the paper is organized as follows. Section 2 outlines the
concept, architecture, and components of the ACLD, which are described in
detail in the various subsections of Section 3. Brief implementation notes for
the proof-of-concept prototype appear in Section 4, while evaluation results and
perspectives for future work are given in Sections 5 and 6 respectively.

2 Concept and Architecture

The Automatic Content Linking Device performs searches at regular intervals
over a database of meeting-related documents and pseudo-documents. The search
criterion is constructed based on the words that were recognized automatically
from the meeting discussion, thanks to online or offline automatic speech recog-
nition (ASR)1. The audio signal is captured in an instrumented meeting room [9]
or elsewhere, but recording conditions have a strong influence on the recognition
accuracy. If some pre-specified terms or keywords are recognized, then they re-
ceive greater weight in the subsequent query.

The results are presented as a list of document names ordered by relevance,
which can be empty if no document matches enough the words that were recog-
nized. A persistence (smoothing) mechanism ensures that documents which are
often retrieved remain some time at the top of the list. A user interface offers
the participants quick access to the content of the documents that are retrieved,
if they need to search them for valuable information.

These functionalities are supported by a number of modules that communi-
cate through a subscription-based client/server architecture called ‘the Hub’ [10].
The Hub allows the connection of heterogeneous software modules, which may
operate remotely, and ensures that data exchange is extremely fast – a require-
ment for real-time processing of human interaction. Data circulating through
the Hub is formatted as timed triples (time, object, attribute, value), and is also
stored in a special-purpose database, which was designed to deal with large-scale,
real-time annotation of audio and video recordings. ‘Producers’ of annotations
send triples to the Hub, which are received by the ‘consumers’ that subscribed
to the respective types; consumers can also query the Hub for past annotations
and metadata about meetings.

The architecture of the ACLD is shown in Figure 1, while the main compo-
nents are first outlined below and then described in the following subsections.

Document Bank Creator (DBC): Gathers documents that are of potential
interest for an upcoming meeting. In the current implementation, this is

1 An online ASR module was recently developed in the AMIDA project, and its con-
nection to the ACLD is under work at the time of writing.

The AMIDA Automatic Content Linking Device 275

Fig. 1. Architecture of the AMIDA Automatic Content Linking Device

done semi-automatically from IDIAP’s multimodal media file server (MMM,
see http://mmm.idiap.ch), which gives access to the entire AMI Meeting
Corpus, including media files, documents, metadata and annotations.

Document Indexer (DI): Creates an index over the document bank prepared
by the DBC for the upcoming meeting.

Query Aggregator (QA): Performs document searches at regular time in-
tervals, using words and terms that are recognized automatically from the
meeting discussion, and produces a list of document names, ordered by rel-
evance, based on the search results and on the persistence model explained
below.

User Interface (UI): Displays results from the QA and offers quick access to
text, HTML and source versions of documents, as well as to metadata and
summaries for past meetings.

3 Components of the Automatic Content Linking Device

3.1 User Interface

We start the description of the ACLD with the User Interface, as this encom-
passes most of the functionalities of the system. In the online scenario of use,
a connection must initially be established between the ASR device and a live
meeting that is captured in a smart meeting room. In the offline scenario (or to
demonstrate the online one from past recordings), the only information initially
given to the UI is the identifier of a completed meeting to display. This allows the
UI to retrieve via the Hub all the pointers to the related media, and to subscribe

http://mmm.idiap.ch

276 A. Popescu-Belis et al.

Fig. 2. Snapshot of AMIDA ACLD’s user interface

to all the annotations that will be displayed, including the Content Linking
annotations produced by the Query Aggregator. For demonstrations and for
meeting browsing, it is more convenient for repeatability reasons to use a com-
pleted meeting (ES2008d in the present version), hence, a number of metadata
variables are hard-coded into the UI.

Figure 2 shows a snapshot of the UI over meeting ES2008d, three minutes
from the beginning of the meeting. On the left, a list of keywords, referring to
important concepts for the group’s activity, reassures the user about the search
terms being used, as they were recognized from the audio. Every 30 seconds, a
newly recognized keyword set is added at the top, with the timestamp shown
as a horizontal line. The central column, which scrolls in the same way as the
keywords, shows the six most relevant documents for that time in the meeting,
with font size chosen to reflect the hypothesized degree of relevance. At the
bottom right there is a static display showing the three meetings in the history
– giving access to their contents, metadata and summaries – and above that,
the room-view video of the ongoing meeting (with the audio in the case of past
meetings).

The UI displays at any given moment in a meeting at most N documents
ordered by relevance, based on the data it receives from the QA, which contains
information about the documents’ URL, their type and relevance, meeting time
and detected keywords. This list is constantly updated as the meeting proceeds.
The interface offers the users several possibilities for interacting with documents,

The AMIDA Automatic Content Linking Device 277

depending on each document type. For a meeting fragment, hovering over its
label displays its extractive summary (obtained on-the-fly by the UI from the
Hub), while clicking on the label displays the ASR transcript. For documents,
clicking on their label displays their content in a text window, from where a
version formatted in HTML can also be obtained. This file format was selected
as it preserves a significant part of the original document’s formatting, and is
much quicker to visualize than opening the source document with its dedicated
program, which is quite slow for MS Office documents.

3.2 Document Bank Creator

The Document Bank Creator is run offline before a meeting to create the bank
of documents and pseudo-documents that will be searched during the meeting.
This is a preparation task, which copies documents in a separate folder, in prepa-
ration for the Document Indexer (alternatively, a metadata layer with pointers
to documents could be generated to avoid copying). In less supervised scenario
for the future, the DBC could determine automatically the documents that are
potentially relevant, based on the project or series the meeting belongs to.

The DBC includes documents, fragments of previous meetings, slides, and
emails. The fragments of past meetings are currently 200-second chunks of the
ASR transcript, but a more logical segmentation based for instance on topics [11]
is under study. The DBC accepts heterogeneous file formats, and extracts text
from them using calls to the proprietary software that created the files. In the
process, the module also generates HTML versions of each document, which are
easier and quicker to visualize than the original MS Office versions.

3.3 Document Indexer

The Document Indexer uses the text version of the files associated to the current
meeting by the DBC to construct an index, i.e. a data structure that optimizes
word-based search over the document set, which can become quite large over
time. The index can also be conceived of as a new annotation layer, represented
logically as a list of tuples (meeting, keyword, doc type, URL), where the URLs
are used as unique identifiers of the documents. The DI uses a state-of-the-
art system, Apache Lucene in its Perl implementation called Plucene, using all
words as keywords and building an optimized index using word stemmers and
the TF*IDF weighing scheme.

In the present implementation, the index is accessed directly by the Query
Aggregator as a set of files in native Plucene format. However, as the index is a
permanent layer of information concerning the documents related to a meeting, it
could be stored in a declarative format in the Hub’s main database, from where
it could be retrieved at the beginning of the demo by the Query Aggregator,
which is constantly using it.

3.4 Query Aggregator

The Query Aggregator periodically extracts from the speech of a given meeting a
list of keywords that are mentioned, using the ASR, or even a manual transcript

278 A. Popescu-Belis et al.

for the offline scenario or for development purposes. The QA gets the words via
the Hub and processes them in batches corresponding to time frames of fixed size,
currently every 30 seconds. This size is a compromise between the need to gather
enough words for search, and the need to refresh the search results reasonably
often. Instead of the fixed time frame, information about audio segmentation
into spurts or utterances could be used for a more natural segmentation of the
ASR input.

The QA uses the words to build a query string for the Apache Plucene engine,
which searches the index to retrieve relevant documents. These documents are
sent as new Linked Content annotations to the Hub, from where they can be
used by the UI to display the document labels and give access to them via their
URLs. This task has thus a similar goal as speech/document alignment [7,12],
except that alignment is viewed here as the construction of sets of relevant
documents for each meeting segment, and not only as finding the document
that the segment “is about”. The retrieval techniques that are employed are
therefore quite different too, as speech/document alignment relies on precise
matching between a referring expression and one of the elements of a document.

An offline version of the QA generates static XML and HTML views for com-
pleted meetings, which are used for debugging and for evaluation. The HTML
view shown in Figure 3 displays on the left the ASR for the current meeting
segment tn, and on the right up to six most relevant documents (using their
HTML version) with their relevance scores. The keywords are highlighted in
red, both within the meeting transcript and in the documents. The words from
the transcript are highlighted in blue, but only in the documents when they are

Fig. 3. HTML view of the offline output of the Query Aggregator – only the best
document is shown (bottom right). Keywords are highlighted both in the transcript
(left) and in the documents (right): e.g., ‘energy’, ‘chip’ or ‘latex’. Words from the
transcript that appear in the retrieved documents are highlighted only in the documents
(right): e.g., ‘kinetic’ or ‘battery’.

The AMIDA Automatic Content Linking Device 279

found – otherwise the entire meeting segment would be highlighted in blue, which
is not very informative. The upper frame of the interface in Figure 3 allows the
user to select a segment of the current meeting based on its timing in seconds.

Role of Pre-specified Keywords. Existing knowledge about the important
terminology of a project can be used to increase the impact of specific words on
search. A list of pre-specified keywords can be defined, and in case any of them
is detected in the audio input from the meeting, their importance is increased
when doing the search, using Plucene’s boosting mechanism. The weight of the
keyword boosting is currently set at five times the weight of non-boosted words.
A specific list was defined by the user-study group for the meetings under study,
and at present it contains words or expressions such as ‘cost’, ‘energy’, ‘com-
ponent’, ‘case’, ‘chip’, ‘interface’, ‘button’, ‘L C D’, ‘material’, ‘latex’, ‘wood’,
‘titanium’, and so on, for a total of about 30 words. However, the QA works also
without a list of boosted terms.

In addition, the words from the ASR or transcript are filtered for stopwords,
so that mostly content words are used for search. Our list has about 80 words,
including the most common function words, interjections and discourse markers.

The QA performs document search by matching the query words from the
ASR with those from the index constructed by the DI and returns the most
relevant set of documents for the respective time frame, more specifically a list of
tuples such as (meeting, time, keyword, relevance, doc type, pointer). It is useful
to include in this annotation the keywords that were matched (i.e. the ones that
helped to retrieve the specific document) as well as a relevance score produced
by the search engine, to allow the interface to sort the relevant documents as
needed. This annotation, of the Linked Content type, is sent to the Hub (and
also stored in the Hub’s database), from where it is retrieved by consumers that
have subscribed to Linked Content, such as the user interface.

Persistence and Filtering Mechanisms. To avoid inconsistent results from
one time frame to another, due to the fact that word choice varies considerably
in such small samples, and therefore search results vary as well, a persistence
(smoothing) mechanism was defined. This mechanism was partly inspired by
the notion of perceptual salience of entities, used for reference resolution, and
more specifically from techniques that were implemented to compute salience in
texts or in multimodal settings [7,13,14]. In the present case, the relevance of
the documents amounts to a form of conceptual salience that evolves in time.

The persistence mechanism adjusts the current relevance scores for each doc-
ument returned by the search engine, considering also the documents from the
previous time frame and their own adjusted relevance scores. If tn denotes the
current time frame and tn−1 the previous one, and if r(tn, dk) is the raw rele-
vance of document dk computed by the search engine after a query at time tn,
then the adjusted relevance r′(tn, dk) computed using the persistence (smooth-
ing) mechanism, is r′(tn, dk) = r(tn, dk)+α∗r′(tn−1, dk), where α is a smoothing
factor. Roughly, a larger value of α denotes a larger persistence – but α should be
set below 1, because if α > 1 then r(tn)) keeps increasing even if the document is

280 A. Popescu-Belis et al.

no longer retrieved. In our experiments, a typical value of α = 0.8 was used. The
intuition behind the choice of this formula (as opposed to a more traditional
r′n = α ∗ rn + (1 − α) ∗ r′n−1) is a correction of the relevance score returned by
the search engine, possibly increasing it if the document was already present,
but without multiplying it from the start by an α factor.

Additionally, a filtering mechanism deletes the least relevant of the documents
sent to the UI, returning at most N documents (currently N = 6), or fewer,
depending on the following constraints. Given the list of all documents that were
retrieved, sorted by decreasing relevance, the QA sends to the UI the documents
that have an adjusted relevance above a certain threshold (currently 0.2), and
the list of results is truncated where relevance decreases sharply, typically when
r′(tn, dk+1) ≤ 0.5 ∗ r′(tn, dk).

4 Implementation

The first version of the AMIDA Automatic Content Linking Device is now opera-
tional, and a second version is in preparation at the time of writing. Both the UI
and the QA are implemented using two components: a Java front-end ensuring
communication with the Hub – as a consumer for the UI or as a producer and
consumer for the QA – and a separate piece of code in a different programming
language – Flash for the UI and Perl for the QA.

The ACLD runs on a single Windows PC or over a network, and other opera-
ting systems will be considered in the future. The main software prerequisite is
the Hub itself, which requires a MySQL database with one table for timed triples.
To run the QA, Perl and the Plucene search and indexing modules are required.
Compilation of all source files is centrally managed by a build.xml file in the
top level directory of the repository, which requires the Apache Ant build tool.
A number of variables can be set by modifying the initial lines of build.xml.
The same build.xml file also executes the following groups of actions required
to start the ACLD on meeting ES2008d, once all source code is compiled:

1. Start the Hub and roll back its database to the state that holds after meetings
ES2008a-c and before ES2008d.

2. Start the QA and the UI, which subscribe to the Hub.
3. Stream the words obtained by the ASR for ES2008d to the Hub.

As both the QA and UI “listen” to the Hub, the words are sent to the QA,
which sends back Content Linking data, which is used by the UI to display the
results.

5 Evaluation

The execution tests of the first prototype have been satisfactory: the communi-
cation between the modules using the Hub works smoothly, and the logs show
that modules connect properly, and that annotation triples are correctly sent

The AMIDA Automatic Content Linking Device 281

and received. The documents that are retrieved contain the expected words
and keywords, as we carefully checked using the static HTML representation
of Linked Content produced by the QA (Figure 3). The functionalities offered
by the UI over these documents are available as described in Section 3.1. The
nature of Perl scripting makes it easy to change many of the parameters of the
QA, even while the system is running, which allows experimenting with various
values of the persistence and filtering model, and with various lists of keywords
and stopwords.

The performance evaluation of the ACLD is the topic of future work. One
can test the performance of the retrieval system in terms of precision and re-
call, but this requires the definition of a ground truth document set for each
time interval of a meeting, which is the main difficulty for such an evaluation.
Three approaches to the ACLD evaluation problem are planned: (1) construct
ground truth data using human annotators who associate documents to meeting
segments; (2) evaluate the ACLD by judging the relevance of each document it
returns; and (3) test the ACLD in use on the participants to an ongoing meeting,
by measuring how often they consult the proposed documents.

The ACLD was demonstrated to potential industrial partners, namely about
thirty representatives of companies that are active in the field of meeting tech-
nology. A series of sessions, lasting 30 minutes each, started with a presentation
of the ACLD and continued with a discussion, during which notes were taken
by the first author. The participants found that both online and offline appli-
cation scenarios are promising, as well as both individual and group uses. The
ACLD received very positive verbal evaluation, as well as useful feedback and
suggestions for future work.

6 Future Work

The first implementation of the ACLD served as a demonstration or proof-of-
concept, and enabled the authors to collect feedback indicating the most impor-
tant developments that are required to turn it into a real-world application.

The graphical layout of the interface will be improved by allowing a
larger part of the screen to be used for displaying the documents, using larger
overviews of each document, and discarding past documents more quickly. This
would also help to reduce the number of mouse clicks required to access the
content of documents. Color-coding the document types and displaying their
relations to the words from the ASR would also improve user experience.

Another line of suggestions concerns the document repository, which can
be extended in various ways. The repository could include documents from larger
sets, which are not entirely known to users, so that the interface brings new knowl-
edge into a meeting. These sets could be private, personalized and better struc-
tured. A significant extension would be the connection to a Web search engine,
which could be limited to a sub-domain to avoid potential noise in the results.

A number of additional functionalities were suggested. For instance, keep-
ing a record of the documents that were consulted during a meeting might help

282 A. Popescu-Belis et al.

users who want to go back to them after the meeting. Detecting similarities
with previous discussions would help alerting users that they already had this
discussion before. Retrieval could be improved by including a relevance feedback
mechanism for the returned documents, by representing keywords in a struc-
tured manner, e.g. using tag clouds, and by using word sense disambiguation to
improve the precision of the retrieval.

Finally, the ACLD could be part of a broader-scope meeting assistant,
which would not only help local participants with their documents, but would
also improve the engagement of remote participants that attend a meeting using
a mobile device [15]. In this case, document sharing would be one of the factors
that improve the participants’ engagement in a meeting.

Acknowledgments

This work was supported by the European Union’s IST Programme, through
the AMIDA Integrated Project FP6-0033812, Augmented Multiparty Interaction
with Distance Access.

References

1. Nijholt, A., Rienks, R., Zwiers, J., Reidsma, D.: Online and off-line visualization of
meeting information and meeting support. The Visual Computer 22(12), 965–976
(2006)

2. Hart, P.E., Graham, J.: Query-free information retrieval. IEEE Expert: Intelligent
Systems and Their Applications 12(5), 32–37 (1997)

3. Budzik, J., Hammond, K.J.: User interactions with everyday applications as con-
text for just-in-time information access. In: IUI 2000 (5th International Conference
on Intelligent User Interfaces), New Orleans, LA (2000)

4. Henziker, M., Chang, B.W., Milch, B., Brin, S.: Query-free news search. World
Wide Web: Internet and Web Information Systems 8, 101–126 (2005)

5. Rhodes, B.J., Maes, P.: Just-in-time information retrieval agents. IBM Systems
Journal 39(3-4), 685–704 (2000)

6. Franz, A., Milch, B.: Searching the Web by voice. In: Coling 2002 (19th Interna-
tional Conference on Computational Linguistics), Taipei, pp. 11–15 (2002)

7. Popescu-Belis, A., Lalanne, D.: Reference resolution over a restricted domain: Ref-
erences to documents. In: ACL 2004 Workshop on Reference Resolution and its
Applications, Barcelona, pp. 71–78 (2004)

8. Carletta, J., Ashby, S., Bourban, S., Flynn, M., Guillemot, M., Hain, T., Kadlec,
J., Karaiskos, V., Kraaij, W., Kronenthal, M., Lathoud, G., Lincoln, M., Lisowska,
A., McCowan, I., Post, W., Reidsma, D., Wellner, P.: The AMI Meeting Corpus: A
pre-announcement. In: Renals, S., Bengio, S. (eds.) MLMI 2005. LNCS, vol. 3869,
pp. 28–39. Springer, Heidelberg (2006)

9. Moore, D.J.: The IDIAP Smart Meeting Room. Communication 02-07, IDIAP
Research Institute (july 2002)

10. AMIDA: Commercial component definition. Deliverable 7.2, AMIDA Integrated
Project (Augmented Multi-party Interaction with Distance Access) (November
2007)

The AMIDA Automatic Content Linking Device 283

11. Hsueh, P.Y., Moore, J.D.: Combining multiple knowledge sources for dialogue seg-
mentation in multimedia archives. In: ACL 2007 (45th Annual Meeting of the
Association of Computational Linguistics), Prague, pp. 1016–1023 (2007)

12. Mekhaldi, D., Lalanne, D., Ingold, R.: From searching to browsing through multi-
modal documents linking. In: ICDAR 2005 (8th International Conference on Doc-
ument Analysis and Recognition), Seoul, pp. 924–928 (2005)

13. Huls, C., Claassen, W., Bos, E.: Automatic referent resolution of deictic and
anaphoric expressions. Computational Linguistics 21(1), 59–79 (1995)

14. Kehler, A., Martin, J., Cheyer, A., Julia, L., Hobbs, J., Bear, J.: On represent-
ing salience and reference in multimodal human-computer interaction. In: AAAI
1998 workshop on Representations for Multi-modal Human-Computer Interaction,
Madison, WI, pp. 33–39 (1998)

15. Matena, L., Jaimes, A., Popescu-Belis, A.: Graphical representation of meetings on
mobile devices. In: MobileHCI 2008 Demonstrations (10th International Conference
on Human-Computer Interaction with Mobile Devices and Services), Amsterdam
(2008)

	Introduction
	Concept and Architecture
	Components of the Automatic Content Linking Device
	User Interface
	Document Bank Creator
	Document Indexer
	Query Aggregator
	Role of Pre-specified Keywords.
	Persistence and Filtering Mechanisms.

	Implementation
	Evaluation
	Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

