Measurement of $\mathcal{R}(D)$ and $\mathcal{R}(D^\ast)$ with a Semileptonic Tagging Method

(Belle Collaboration)

1University of the Basque Country UPV/EHU, 48080 Bilbao
2Beihang University, Beijing 100191
3Brookhaven National Laboratory, Upton, New York 11973
4Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
5Faculty of Mathematics and Physics, Charles University, 121 16 Prague
6Chonnam National University, Gwangju 61186
7Chonnam National University, Gwangju 61186
8University of Cincinnati, Cincinnati, Ohio 45221
9Deutsches Elektronen–Synchrotron, 22607 Hamburg
10Duke University, Durham, North Carolina 27708
11Justus-Liebig-Universität Gießen, 35392 Gießen
12II. Physikalisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen
13SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
14Department of Physics and Institute of Natural Sciences, Hanyang University, Seoul 04763
15University of Hawaii, Honolulu, Hawaii 96822
16High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
17J-PARC Branch, KEK Theory Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
18Forschungszentrum Jülich, 52425 Jülich
19IKERBASQUE, Basque Foundation for Science, 48013 Bilbao
20Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306
21Indian Institute of Technology Bhuvanweswar, Satya Nagar 751007
22Indian Institute of Technology Guwahati, Assam 781039
23Indian Institute of Technology Hyderabad, Telangana 502285

0031-9007/20/124(16)/161803(8) 161803-1 Published by the American Physical Society
24 Indian Institute of Technology Madras, Chennai 600036
25 Indiana University, Bloomington, Indiana 47408
26 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
27 Institute of High Energy Physics, Vienna 1050
28 Institute for High Energy Physics, Protvino 142281
29 INFN—Sezione di Napoli, 80126 Napoli
30 INFN—Sezione di Torino, 10125 Torino
31 Advanced Science Research Center, Japan Atomic Energy Agency, Naka 319-1195
32 J. Stefan Institute, 1000 Ljubljana
33 Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
34 Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa 277-8583
35 Kennesaw State University, Kennesaw, Georgia 30144
36 King Abdulaziz City for Science and Technology, Riyadh 11442
37 Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589
38 Kitasato University, Sagamihara 252-0373
39 Korea Institute of Science and Technology Information, Daejeon 34141
40 Korea University, Seoul 02841
41 Kyungpook National University, Daegu 41566
42 LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay 91898
43 École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015
44 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991
45 Ludwig Maximilians University, 80539 Munich
46 Luther College, Decorah, Iowa 52101
47 University of Maribor, 2000 Maribor
48 Max-Planck-Institut für Physik, 80805 München
49 School of Physics, University of Melbourne, Victoria 3010
50 University of Mississippi, University, Mississippi 38677
51 University of Miyazaki, Miyazaki 889-2192
52 Moscow Physical Engineering Institute, Moscow 115409
53 Moscow Institute of Physics and Technology, Moscow Region 141700
54 Graduate School of Science, Nagoya University, Nagoya 464-8602
55 Kobayashi-Maskawa Institute, Nagoya University, Nagoya 464-8602
56 Università di Napoli Federico II, 80055 Napoli
57 Nara Women’s University, Nara 630-8506
58 National Central University, Chung-Li 32054
59 National United University, Miaoli 36003
60 Department of Physics, National Taiwan University, Taipei 10617
61 H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342
62 Nippon Dental University, Niigata 951-8580
63 Niigata University, Niigata 950-2181
64 Novosibirsk State University, Novosibirsk 630090
65 Osaka City University, Osaka 558-8585
66 Pacific Northwest National Laboratory, Richland, Washington 99352
67 Panjab University, Chandigarh 160014
68 Peking University, Beijing 100871
69 University of Pittsburgh, Pittsburgh, Pennsylvania 15260
70 Punjab Agricultural University, Ludhiana 141004
71 Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198
72 University of Science and Technology of China, Hefei 230026
73 Seoul National University, Seoul 08826
74 Showa Pharmaceutical University, Tokyo 194-8543
75 Soongsil University, Seoul 06978
76 University of South Carolina, Columbia, South Carolina 29208
77 Sungkyunkwan University, Suwon 16419
78 School of Physics, University of Sydney, New South Wales 2006
79 Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71451
80 Tata Institute of Fundamental Research, Mumbai 400005
81 Department of Physics, Technische Universität München, 85748 Garching
82 Department of Physics, Tohoku University, Sendai 980-8578
83 Earthquake Research Institute, University of Tokyo, Tokyo 113-0032
Semituonic B meson decays, involving the transition $b \rightarrow c\tau\nu_\tau$, are sensitive probes for physics beyond the standard model (SM). Any difference in the branching fraction of these processes with respect to the SM prediction would violate lepton flavor universality, which enforces equal coupling of the gauge bosons to the three lepton generations. Indeed, in many models beyond the SM, new interactions with enhanced coupling to the third family are postulated. Among such new mediators, charged Higgs bosons, which appear in supersymmetry [1] and other models with two Higgs doublets [2], may contribute measurably to the $b \rightarrow c\tau\nu_\tau$ decay rate due to the large masses of the τ and the b quark. Similarly, leptoquarks [3], which carry both lepton and baryon numbers, may also contribute to this process.

The ratios of branching fractions,

$$ R(D^{(*)}) = \frac{\mathcal{B}(\bar{B} \rightarrow D^{(*)}\tau\bar{\nu}_\tau)}{\mathcal{B}(\bar{B} \rightarrow D^{(*)}\ell\bar{\nu}_\ell)}, \tag{1} $$

where the denominator represents the average of electron and muon modes, are typically measured instead of the absolute branching fractions of $\bar{B} \rightarrow D^{(*)}\tau\bar{\nu}_\tau$ to reduce common systematic uncertainties, such as those due to the detection efficiency, the magnitude of the quark-mixing matrix element $|V_{cb}|$, and the semileptonic decay form factors. Hereafter, $\bar{B} \rightarrow D^{(*)}\tau\bar{\nu}_\tau$ [4] and $\bar{B} \rightarrow D^{(*)}\ell\bar{\nu}_\ell$ will be referred to as the signal and normalization modes, respectively. The SM calculations for these ratios, performed by several groups [5–8], are averaged by heavy flavor averaging group [9] to obtain $R(D) = 0.299 \pm 0.003$ and $R(D^*) = 0.258 \pm 0.005$.

Semituonic B decays were first observed by Belle in 2007 [10], with subsequent studies reported by Belle [11–14], BABAR [15], and LHCb [16,17]. The average values of the experimental results, excluding the result presented in this Letter, are $R(D) = 0.407 \pm 0.039 \pm 0.024$ and $R(D^*) = 0.306 \pm 0.013 \pm 0.007$ [9], where the first uncertainty is statistical and the second is systematic. These values exceed SM predictions by 2.1σ and 3.0σ, respectively, where σ denotes the standard deviation. A combined analysis of $R(D)$ and $R(D^*)$ taking correlations into account finds that the deviation from the SM prediction is approximately 3.8σ [9]. This large discrepancy must be investigated with complementary and more precise measurements.

Measurements at the $e^+e^−$ “B-factory” experiments Belle and BABAR are commonly performed by first reconstructing one of the B mesons in the $\Upsilon(4S) \rightarrow BB$ decay, denoted as B_{tag}, using a dedicated tagging algorithm. So far, simultaneous measurements of $R(D)$ and $R(D^*)$ at Belle and BABAR have been performed using hadronic tagging methods on both B^0 and B^+ decays [12,15], while...
only $\mathcal{R}(D^{*+})$ was measured with a semileptonic tagging method [13]. In this Letter, we report the first measurement of $\mathcal{R}(D)$ using the semileptonic tagging method, and we update our measurement of $\mathcal{R}(D^{*})$ by combining results of B^0 and B^+ decays with a more efficient tagging algorithm. Our previous measurement of $\mathcal{R}(D^{*+})$ with a semileptonic tagging method is therefore superseded by this work.

We use the full $\Upsilon(4S)$ data sample containing 772×10^6 BB events recorded with the Belle detector [18] at the KEKB e^+e^- collider [19]. Belle was a general-purpose magnetic spectrometer, which consisted of a silicon vertex detector (SVD), a 50-layer central drift chamber (CDC), an array of aerogel threshold Cherenkov counters (ACC), time-of-flight scintillation counters (TOF), and an electromagnetic calorimeter (ECL) comprising CsI(Tl) crystals. These components were located inside a superconducting solenoid coil that provided a 1.5 T magnetic field. An iron flux-return yoke located outside the coil was instrumented to detect K^0_L mesons and muons (KLM). The detector is described in detail elsewhere [18].

To determine the reconstruction efficiency and probability density functions (PDFs) for signal, normalization, and background modes, we use Monte Carlo (MC) simulated events generated with the EvtGen event generator [20]. The detector response is simulated with the GEANT3 package [21].

Semileptonic $B \to D^{(*)}\ell\nu$ decays are generated with the HQET2 EvtGen package, based on the Caprini-Lellouch-Neubert parametrization [22]. As the measured parameters of the model have been updated since our MC sample was generated, we apply an event-by-event correction factor obtained by taking the ratio of differential decay rates in the updated Caprini-Lellouch-Neubert parameters compared to those used in the MC simulation. For the MC samples of $B \to D^{(*)}\ell\nu$ decays, we used the ISGW2 EvtGen package, based on the quark model described in Ref. [23]. This model has been superseded by the Leibovich-Ligeti-Stewart-Wise model [24]; thus we weight events with a correction factor based on the ratio of the analytic predictions of Leibovich-Ligeti-Stewart-Wise and MC distributions generated with ISGW2. Here, $D^{(*)}$ denotes the orbitally excited states D_1, D_2^*, D_1^*, and D_0^*. We consider D^{*+} decays to a $D^{(*)}$ and a pion, a ρ or an η meson, or a pair of pions, where branching fractions are based on quantum number, phase-space, and isospin arguments. The sizes of the inclusive $\Upsilon(4S) \to BB$ MC sample and the dedicated $B \to D^{(*)}\ell\nu$ MC sample correspond to about 10 times and 5 times the integrated luminosity of the $\Upsilon(4S)$ data sample, respectively.

The B_{tag} is reconstructed using a hierarchical algorithm based on boosted decision trees (BDT) [25] in $D^+\ell\nu$ and $D^0\ell\bar{\nu}_\ell$ channels, where $\ell = e, \mu$. The BDT classifier assigns to each B_{tag} candidate a probability of representing a well-reconstructed B meson. The range of the BDT classifier extends from 0 to 1, with well-reconstructed candidates having the highest values. We select B_{tag} candidates with a BDT classifier output greater than approximately 0.03, a value chosen through MC studies to suppress the dominant backgrounds. This selection accepts 69% of well-reconstructed B_{tag} candidates and rejects 82% of misreconstructed B_{tag} candidates, as averaged across all channels. We suppress $B \to D^+\tau(\to \ell\nu\nu)\nu$ events on the B_{tag} side by applying a selection on $\cos\theta_{B,D^{(*)}\ell}$. This variable corresponds to the cosine of the angle between the momenta of the B meson and the $D^{(*)}\ell$ system in the $\Upsilon(4S)$ rest frame, under the assumption that only one massless particle is not reconstructed:

$$
\cos\theta_{B,D^{(*)}\ell} \equiv \frac{2E_{\text{beam}}E_{D^{(*)}\ell} - m_B^2 - m_{D^{(*)}\ell}^2}{2|p_B||p_{D^{(*)}\ell}|}.
$$

Here E_{beam} is the beam energy and $E_{D^{(*)}\ell}$, $p_{D^{(*)}\ell}$, and $m_{D^{(*)}\ell}$ are the energy, momentum, and mass of the $D^{(*)}\ell$ system, respectively. The quantities m_B and $|p_B|$ are the nominal B meson mass [26] and momentum, respectively. All quantities are evaluated in the $\Upsilon(4S)$ rest frame.

Correctly reconstructed $B \to D^{(*)}\ell\nu$ decays are expected to have a value of $\cos\theta_{B,D^{(*)}\ell}$ between -1 and $+1$. Correctly reconstructed as well as misreconstructed $B \to D^{(*)}\tau\nu$ decays generally have $\cos\theta_{B,D^{(*)}\ell}$ values below -1 due to the presence of additional missing particles. To account for detector resolution effects we apply the requirement $-2.0 < \cos\theta_{B,D^{(*)}\ell} < 1.0$ for the B_{tag}.

In each event with a selected B_{tag} candidate, we search for the opposite-flavor signature $D^{(*)}\ell$ among the remaining tracks and calorimeter clusters, since we only reconstruct pure leptonic tau decays $\tau \to \ell\nu\nu$. We define four disjoint data samples, denoted $D^{+}\ell^-$, $D^0\ell^-$, $D^{+}\ell^-$, and $D^0\ell^-$. Charged particle tracks are reconstructed with the SVD and CDC by requiring a point of closest approach to the interaction point smaller than 5.0 cm along the direction of the e^+ beam and 2.0 cm in the direction perpendicular to it. These requirements do not apply to the pions from K^0_L decays. Electrons are identified by a combination of the specific ionization (dE/dx) in the CDC, the ratio of the cluster energy in the ECL to the track momentum measured with the CDC, the response of the ACC, the cluster shape in the ECL, and the match between positions of the cluster and the track at the ECL. To recover bremsstrahlung photons from electrons, we add the four-momentum of each photon detected within a cone of 0.05 rad of the original track direction to the electron momentum. Muons are identified by the track penetration depth and hit distribution in the KLM. Charged kaons are identified by combining information from the dE/dx measured in the CDC, the flight time measured with the TOF, and the response of the ACC. We do not apply any particle identification criteria for charged pion candidates.
Candidate K^0 mesons are formed by combining two oppositely charged tracks with pion mass hypotheses. We require their invariant mass to lie within ± 15 MeV/c^2 of the nominal K^0 mass [26], which corresponds to approximately 7 times the reconstructed mass resolution. Further selection is performed with an algorithm based on a neural network [27].

Photons are measured as an electromagnetic cluster in the ECL with no associated charged track. Neutral pions are reconstructed in the $\pi^0 \rightarrow \gamma \gamma$ channel, and their energy resolution is improved by performing a mass-constrained fit of the two photon candidates to the nominal π^0 mass [26]. For neutral pions from D decays, we require the daughter photon energies to be greater than 50 MeV and their asymmetry to be less than 0.6 in the laboratory frame, the cosine of the angle between two photons to be greater than zero, and the $\gamma \gamma$ invariant mass to be within $[-15, +10]$ MeV/c^2 of the nominal π^0 mass, which corresponds to approximately ± 1.8 times the resolution. Low-energy π^0 candidates from D^* are reconstructed using less restrictive energy requirements: one photon must have an energy of at least 50 MeV, while the other must have a minimum energy of 20 MeV. We also require a narrower window around the diphoton invariant mass to compensate for the lower photon-energy requirement: within 10 MeV/c^2 of the nominal π^0 mass, which corresponds to approximately ± 1.6 times the resolution.

Neutral D mesons are reconstructed in the following decay modes: $D^0 \rightarrow K^-\pi^+\pi^0$, $K^-\pi^+\pi^-\pi^-$, $K^-\pi^+$, $K^0_S\pi^-\pi^0$, $K^0_SK^-K^+$, $K^-K^-\pi^-$, and $\pi^+\pi^-$. Similarly, charged D mesons are reconstructed in the following modes: $D^+ \rightarrow K^-\pi^+\pi^+$, $K^0_S\pi^+\pi^0$, $K^0_S\pi^+\pi^-\pi^-$, $K^0_S\pi^+\pi^+$, $K^-K^+\pi^+$, and $K^0_SK^+$. The combined branching fractions for reconstructed channels are 30% and 22% for D^0 and D^+, respectively. For D decays without a π^0 in the final state, we require the invariant mass of the reconstructed candidates to be within 15 MeV/c^2 of the nominal D^0 or D^+ mass, which corresponds to a window of approximately ± 2.8 times the resolution. In the case of channels with a π^0 in the final state, which have worse mass resolution, we require a wider window: from -45 to $+30$ MeV/c^2 around the nominal D^0 mass, and from -36 to $+24$ MeV/c^2 around the nominal D^+ mass. These windows correspond to approximately $[-1.1, +1.6]$ and $[-1.0, +1.4]$ times the resolution, respectively. Candidate D^*+ mesons are reconstructed in the channels $D^0\pi^+$ and $D^+\pi^0$, and $D^0\pi^0$. We do not consider the $D^0 \rightarrow D^0\gamma$ decay channel due to its higher background level.

We require the mass difference $m^* - m$ be within 2.5 MeV/c^2 for the $D^{*+} \rightarrow D^0\pi^+$ decay mode, and within 2.0 MeV/c^2 for the $D^{*+} \rightarrow D^0\pi^0$ and $D^{*0} \rightarrow D^0\pi^0$ decay modes. These windows correspond to ± 3.0 and ± 1.9 times the resolution, respectively. We require a tighter mass window in the D^* modes that contain a low-momentum ("slow") π^0 to suppress the large background arising from misreconstructed neutral pions.

On the signal side, we require $\cos \theta_{B,D^{(*)}\ell}$ to be less than 1.0 and the $D^{(*)}$ momentum in the $\Upsilon(4S)$ rest frame to be less than 2.0 GeV/c. Finally, we require that events contain no extra prompt charged tracks, K^0_S candidates, or π^0 candidates, which are reconstructed with the same criteria as those used for the D candidates. All selection criteria used for event reconstruction have been the subject of optimization studies. When multiple B_{tag} or B_{sig} candidates are found in an event, we first select the B_{tag} candidate with the highest tagging classifier output, and then the B_{sig} candidate with the highest p value from the vertex fit of the B candidate’s charm daughter.

To distinguish signal and normalization events from background processes, we use the sum of the energies of neutral clusters detected in the ECL that are not associated with any reconstructed particles, denoted as E_{ECL}. To mitigate the varying effects of photons related to beam background in the calculation of E_{ECL}, we only include clusters with energies greater than 50, 100, and 150 MeV, respectively, from the barrel, forward, and backward ECL regions [18]. Signal and normalization events peak near zero in E_{ECL}, while background events populate a wider range. We require that E_{ECL} be less than 1.2 GeV.

To separate reconstructed signal and normalization events, we employ a BDT based on the XGBoost package [28], which has been trained with the MC samples used throughout the analysis, using events that have passed the selection criteria mentioned previously. The input variables to the BDT are $\cos \theta_{B,D^{(*)}\ell}$; the approximate missing mass squared $m^2_{\text{miss}} = (E_{\text{beam}} - E_{D^{(*)}} - E_{\ell})^2 - (p_{D^{(*)}} + p_{\ell})^2$; the visible energy $E_{\text{vis}} = \sum_i E_i$, where (E_i, p_i) is the four-momentum of particle i. We do not apply any selection on the BDT classifier output, denoted as O_{cls}, instead we use it as one of the fitting variables for the extraction of $R(D^{(*)})$. Signal events have O_{cls} values near 1, while normalization events have values near 0.

We extract the yields of signal and normalization modes from a two-dimensional extended maximum-likelihood fit to the variables O_{cls} and E_{ECL}. The fit is performed simultaneously to the four $D^{(*)}\ell$ samples and exploits the isospin constraint $R(D^{(*)0}) = R(D^{(*)+})$. The distribution of each sample is described as the sum of several components: $D^{(*)}\tau\nu$, $D^{(*)}\ell\nu$, feed down from $D^{(*)}\ell(\tau)\nu$ to $D\ell(\tau)\nu$, and other backgrounds. The PDFs of these components are determined from MC simulations as 2D histogram templates. A large fraction of $B \rightarrow D^{(*)}\ell\nu$ decays from both B^0 and B^+ are reconstructed in the $D\ell$ samples (denoted feed down). We leave these two contributions free in the fit and use their fitted yields to correct the MC estimated feed-down rate of $B \rightarrow D^\ast\ell\nu$. The events of the $D^\ast\ell$ samples that appear as feed down are treated as a component of the signal or normalization yields. As the
Events / (0.12 GeV)

FIG. 1. E_{ECL} fit projections and data points with statistical uncertainties in the $D^+\ell^-$ (top left), $D^0\ell^-$ (top right), $D^{\ast+}\ell^-$ (bottom left), and $D^{\ast0}\ell^-$ (bottom right) samples, for the full classifier region. The signal region, defined by the selection $O_{\text{cls}} > 0.9$, is shown in the inset with the same axis labels.

The free parameters in the final fit are the yields of signal, normalization, $B \rightarrow D^{\ast}\ell\nu\ell$, and feed down from $D^\ast\ell$ to $D\ell$ components. The yields of other backgrounds are fixed to their MC expected values. The ratios $R(D^{(s)})$ are given by the formula

$$R(D^{(s)}) = \frac{1}{2B(\tau^- \rightarrow \ell^-\nu_\ell\nu_\tau)} \frac{\epsilon_{\text{norm}}^\ell N_{\text{sig}}^\ell}{\epsilon_{\text{sig}}^\ell N_{\text{norm}}^\ell},$$

where $\epsilon_{\text{sig(norm)}}$ and $N_{\text{sig(norm)}}$ are the detection efficiency including tagging efficiency and yields of signal (normalization) modes and $B(\tau^- \rightarrow \ell^-\nu_\ell\nu_\tau)$ is the average of the world-average branching fractions for $\ell = e$ and $\ell = \mu$.

To improve the accuracy of the MC simulation, we apply a series of correction factors determined from control sample measurements, such as those associated to lepton and hadron identification efficiencies as well as slow pion tracking efficiencies. Correction factors for the lepton efficiencies are evaluated as a function of the lepton momentum and direction using $e^+e^-\rightarrow e^+e^-\ell^+\ell^-$ and $J/\psi \rightarrow \ell^+\ell^-$ decays. Furthermore, to determine the expected yield of fake and misreconstructed $D^{(s)}$ mesons, treated as background, we use data sidebands of the difference between their nominal and reconstructed mass, and we correct for differences in the reconstruction efficiency of the tagging algorithm between data and MC simulation.

The E_{ECL} projections of the fit are shown in Fig. 1. The result of the fit is $R(D) = 0.307 \pm 0.037$ and $R(D^{\ast}) = 0.283 \pm 0.018$, where the error is statistical.

To estimate various systematic uncertainties contributing to $R(D^{(s)})$, we vary each fixed parameter 500 times, sampling from a Gaussian distribution built using the value and uncertainty of the parameter. For each variation, we repeat the fit. The associated systematic uncertainty is taken as the standard deviation of the resulting distribution of fitted results. The systematic uncertainties are listed in Table I.

In Table I the label “$D^{\ast\ast}$ composition” refers to the uncertainty introduced by the branching fractions of the $B \rightarrow D^{\ast\ast}\ell\nu\ell$ channels and the decays of the $D^{\ast\ast}$ mesons, which are not well known and hence contribute significantly to the total PDF uncertainty. The uncertainties on the branching fraction of $B \rightarrow D^{\ast\ast}\ell\nu\ell$ are assumed to be $\pm 6\%$ for D_1^+, $\pm 10\%$ for D_2^+, $\pm 83\%$ for D_1^0, and $\pm 100\%$ for D_0^0, while the uncertainties on each of the $D^{\ast\ast}$ decay branching fractions are conservatively assumed to be $\pm 100\%$.

A large systematic uncertainty arises from the limited size of the MC samples. Firstly, this is reflected in the uncertainty of the PDF shapes. To estimate this contribution, we recalculate PDFs for signal, normalization, fake

probability of $B \rightarrow D\ell(\tau)\nu$ decays contributing to the $D^\ast\ell$ samples is very small, the relative rates of these contributions are fixed to the MC expected values.

The free parameters in the final fit are the yields of signal, normalization, $B \rightarrow D^{\ast}\ell\nu\ell$, and feed down from $D^\ast\ell$ to $D\ell$ components. The yields of other backgrounds are fixed to their MC expected values. The ratios $R(D^{(s)})$ are given by the formula

$$R(D^{(s)}) = \frac{1}{2B(\tau^- \rightarrow \ell^-\nu_\ell\nu_\tau)} \frac{\epsilon_{\text{norm}}^\ell N_{\text{sig}}^\ell}{\epsilon_{\text{sig}}^\ell N_{\text{norm}}^\ell},$$

where $\epsilon_{\text{sig(norm)}}$ and $N_{\text{sig(norm)}}$ are the detection efficiency including tagging efficiency and yields of signal (normalization) modes and $B(\tau^- \rightarrow \ell^-\nu_\ell\nu_\tau)$ is the average of the world-average branching fractions for $\ell = e$ and $\ell = \mu$.

To improve the accuracy of the MC simulation, we apply a series of correction factors determined from control sample measurements, such as those associated to lepton and hadron identification efficiencies as well as slow pion tracking efficiencies. Correction factors for the lepton efficiencies are evaluated as a function of the lepton momentum and direction using $e^+e^-\rightarrow e^+e^-\ell^+\ell^-$ and $J/\psi \rightarrow \ell^+\ell^-$ decays. Furthermore, to determine the expected yield of fake and misreconstructed $D^{(s)}$ mesons, treated as background, we use data sidebands of the difference between their nominal and reconstructed mass, and we correct for differences in the reconstruction efficiency of the tagging algorithm between data and MC simulation.

The E_{ECL} projections of the fit are shown in Fig. 1. The result of the fit is $R(D) = 0.307 \pm 0.037$ and $R(D^{\ast}) = 0.283 \pm 0.018$, where the error is statistical.

To estimate various systematic uncertainties contributing to $R(D^{(s)})$, we vary each fixed parameter 500 times, sampling from a Gaussian distribution built using the value and uncertainty of the parameter. For each variation, we repeat the fit. The associated systematic uncertainty is taken as the standard deviation of the resulting distribution of fitted results. The systematic uncertainties are listed in Table I.

In Table I the label “$D^{\ast\ast}$ composition” refers to the uncertainty introduced by the branching fractions of the $B \rightarrow D^{\ast\ast}\ell\nu\ell$ channels and the decays of the $D^{\ast\ast}$ mesons, which are not well known and hence contribute significantly to the total PDF uncertainty. The uncertainties on the branching fraction of $B \rightarrow D^{\ast\ast}\ell\nu\ell$ are assumed to be $\pm 6\%$ for D_1^+, $\pm 10\%$ for D_2^+, $\pm 83\%$ for D_1^0, and $\pm 100\%$ for D_0^0, while the uncertainties on each of the $D^{\ast\ast}$ decay branching fractions are conservatively assumed to be $\pm 100\%$.

A large systematic uncertainty arises from the limited size of the MC samples. Firstly, this is reflected in the uncertainty of the PDF shapes. To estimate this contribution, we recalculate PDFs for signal, normalization, fake
D(*) events, \(B \to D^{(*)}\ell\nu_{\ell} \), feed down, and other backgrounds by generating toy MC samples from the nominal PDFs according to Poisson statistics, and then repeating the fit with the new PDFs. Secondly, the reconstruction efficiency of feed-down events together with the efficiency ratio of signal to normalization events are varied within their uncertainties, which are limited by the size of the MC samples as well.

The efficiency factors for the fake \(D^{(*)} \) and \(B_{\text{tag}} \) reconstruction are calibrated using collision data. The uncertainties on these factors are affected by the size of the samples used in the calibration. We vary the factors within their errors and extract associated systematic uncertainties.

The effect of the lepton efficiency and fake rate, as well as that due to the slow pion efficiency, do not cancel out in the \(\mathcal{R}(D^{(*)}) \) ratios. This is due to the different momentum spectra of leptons and charm mesons in the normalization and signal modes. The uncertainties introduced by these factors are included in the total systematic uncertainty.

We include minor systematic contributions from other sources: one related to the parameters that are used for reweighting the semileptonic \(B \to D^{(*)}\ell\nu_{\ell} \) and \(B \to D^{(*)}\ell\nu_{\ell} \) decays; and others from the integrated luminosity, the \(B \) production fractions at the \(\Upsilon(4S) \), \(f^{+-} \) and \(f^{00} \), and the branching fractions of \(B \to D^{(*)}\ell\nu_{\ell} \), \(D, D^{*} \) and \(\tau \to \ell^-\ell^+\nu_{\ell} \) decays [26]. The total systematic uncertainty is estimated by summing the aforementioned contributions in quadrature.

In conclusion, we have measured the ratios \(\mathcal{R}(D^{(*)}) = B(B \to D^{(*)}\tau^-\nu_{\tau})/B(B \to D^{(*)}\ell^-\nu_{\ell}) \), where \(\ell \) denotes an electron or a muon, using a semileptonic tagging method and a data sample containing \(772 \times 10^6 B\bar{B} \) events collected with the Belle detector. The results are

\[
\mathcal{R}(D) = 0.307 \pm 0.037 \pm 0.016, \tag{4}
\]

\[
\mathcal{R}(D^*) = 0.283 \pm 0.018 \pm 0.014, \tag{5}
\]

where the first uncertainties are statistical and the second are systematic. These results are in agreement with the SM predictions within 0.2\(\sigma \) and 1.1\(\sigma \), respectively. The combined result agrees with the SM predictions within 0.8\(\sigma \). This work constitutes the most precise measurements of \(\mathcal{R}(D) \) and \(\mathcal{R}(D^*) \) performed to date and the first result for \(\mathcal{R}(D) \) based on a semileptonic tagging method. The results of this analysis, together with the most recent Belle results on \(\mathcal{R}(D) \) and \(\mathcal{R}(D^*) \) [12,14] obtained using a hadronic tag, are combined to provide the Belle combination, which yields \(\mathcal{R}(D) = 0.326 \pm 0.034, \mathcal{R}(D^*) = 0.283 \pm 0.018 \) with a correlation equal to \(-0.47 \) between the \(\mathcal{R}(D) \) and \(\mathcal{R}(D^*) \) values. This combined result is in agreement with the SM predictions within 1.6 standard deviations.

We thank the KEKB group for excellent operation of the accelerator; the KEK cryogenics group for efficient solenoid operations; and the KEK computer group, the NII, and PNNL/EMSL for valuable computing and SINETS network support. We acknowledge support from JSPS and Nagoya’s Tau-Lepton Physics Research Center of Nagoya University (TLPRC); ARC (Australia); FWF (Austria); NSFC and CAS Center for Excellence in Particle Physics(CCEPP) (China); MSMT (Czechia); Carl Zeiss Foundation (CZF), DFG, Excellence Cluster Universe (EXC153), and VolkswagenStiftung (VS) (Germany); DST (India); INFN (Italy); MOE, MSIP, NRF, Radiation Science Research Institute (RSRI), Foreign Large-size Research Facility Application Supporting project (FLRFSAS) project, GSDC of KISTI and KREONET/GLORIAD (Korea); MNI SW and N CN (Poland), Agreement No. 14.W03.31.0026 (Russia); ARRS (Slovenia); IKERBASQUE (Spain); SNSF (Switzerland); MOE and MOST (Taiwan); and DOE and NSF (U.S.A.). We acknowledge the support provided by the Albert Shimmins Fund for the writing of this Letter.

[4] Throughout this Letter, the inclusion of the charge-conjugate decay mode is implied.
