New experimental programmes in the CROCUS reactor

V. Lamirand1, M. Hursin1,2, G. Perret2, P. Frajtag1, O. Pakari2, A. Pautz1,2

Laboratory for Reactor physics and Systems behaviour (LRS)
1 Swiss Federal Institute of Technology in Lausanne (EPFL)
2 Paul Scherrer Institute (PSI)

RRFM/IGORR 2016 – Berlin, 15/03/2016
Contents

• The CROCUS reactor

• New experimental programmes
 • COLIBRI
 • VOID
 • PETALE

• Instrumentation development
 • Diamond detector
 • Current mode neutron noise station
The CROCUS teaching and research reactor

- Reactor type
 LWR with partially submerged core
 Atmospheric P and room T
 Forced convection (160 l.min$^{-1}$)
The CROCUS teaching and research reactor

- Reactor type
 - LWR with partially submerged core
 - Atmospheric P and room T
 - Forced convection (160 l.min\(^{-1}\))

- Power
 - 100 W (zero-power reactor)
 - i.e. maximum \(2.5 \times 10^9\) cm\(^{-2}\).s\(^{-1}\)
 - Controlled by water level or B\(_4\)C rods

1 rod S-curve

<table>
<thead>
<tr>
<th>Réactivité [pcm]</th>
<th>Position Barre [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>200</td>
</tr>
<tr>
<td>40</td>
<td>400</td>
</tr>
<tr>
<td>60</td>
<td>600</td>
</tr>
<tr>
<td>80</td>
<td>800</td>
</tr>
<tr>
<td>100</td>
<td>1000</td>
</tr>
<tr>
<td>120</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td></td>
</tr>
</tbody>
</table>

réactivité
Polynomial
Réactivité [pcm]
Position Barre [mm]
The CROCUS teaching and research reactor

• Reactor type
 LWR with partially submerged core
 Atmospheric P and room T
 Forced convection (160 l.min⁻¹)

• Power
 100 W (zero-power reactor)
 i.e. maximum 2.5×10⁹ cm⁻².s⁻¹
 Controlled by water level or B₄C rods

• Core dimensions
 ∅60 cm/100 cm

• Fuel lattices
 2-zone: 336/176 rods actually
 Inner: UO₂ 1.806 wt% 1.837 cm
 Outer: Uₘₑᵗ 0.947 wt% 2.917 cm
The CROCUS teaching and research reactor

- 1.5 m-thick concrete shielding cavity
- Safety systems
 - 4 valves & expansion tanks (water dumping)
 - 2 cruciform Cd blades (inner zone)
Investigation of power fluctuations induced by fuel oscillations

- Motivation
 - Parallel code development and experimental prospects of coupling between mechanical noise and neutronics effect

- New experimental program in CROCUS for measuring noise induced by fuel vibration
 - Design of a device for oscillating fuel rods group at various representative amplitudes and frequencies
 - Measurement of the induced perturbation using neutron noise techniques
 - Experiments will serve to validate the simulation tool developed in parallel
Setup and status

- Specifications of COLIBRI
 - Number of rods selected: up to 18
 - Frequency: from 0.1 to 5 Hz
 - Amplitude: up to ±3 mm radial

- Measurements
 - Induced perturbation (MCNP) for 18 U_{met} rods ±3 mm radial: ±8 pcm
 - Neutron noise measurement station in pulse mode already developed

- Schedule
 - Device tested out of core on reactor interfaces and with dummy fuel rods in January 2016
 - Licensing in progress
 - Start of the experiments in 2016
Development of an experimental setup to reconstruct axial void profile in BWR through neutron noise measurements of in-core detectors

- A theoretical method\(^1\) to reconstruct the void profile within a BWR channel using in-core neutron noise has been developed at Chalmers University
 - Transit time of the bubbles is measured by correlations in detector signals at discrete locations
 - Relationship between void and transit time is known
 - Third order polynomial fit of void profile

- The method will be tested in clean conditions in CROCUS with a channel containing a two-phase flow with known void distribution

- Separate characterisation of the bubble distribution using existing visualization techniques.

Flow characterisation setup
- Out of pile
- Based on standard techniques for 2-phase flow visualization: attenuation measurements
- \(\gamma\)-ray source + NaI detector

Neutron noise analysis setup
- In-core bubble channel: square Plexiglas tube (5 cm)
- 5 neutron detectors axially spaced
- To be set in the reflector
- Target void: 80% at top to be representative of BWR profile

Safety assessment
- Positive reactivity insertion \(\sim 20\) pcm (MCNP) in case of leakage
Goals

Contribute to the validation effort on the cross sections for materials of heavy steel reflector in GEN-III PWR

- **PERLE programme** in the French EOLE reactor for nuclear data validation
 - Reactivity effects
 - Reaction rates in pins at interface
 - Attenuation in the reflector: foils, FC

Cross section of the EOLE core for PERLE

56Fe inelastic scattering cross section
Goals

Contribute to the validation effort on the cross sections for materials of heavy steel reflector in GEN-III PWR

- **PERLE programme** in the French EOLE reactor for nuclear data validation
 - Reactivity effects
 - Reaction rates in pins at interface
 - Attenuation in the reflector: foils, FC

- **Proposal for new experiments in CROCUS** for separated elements
 - s.s., Fe, Cr and Ni separately
 - In-core experiment for extracting nuclear data in the MeV range from criticality effects and attenuation measurements
 - Analysis using data assimilation
Setup and status

Instrumented reflector of material of interest set close to the reactor core

• Instrumented reflector
 • Sheets of s.s., pure Fe, Ni and Cr
 • 30 x 30 cm² for reducing impact of scattered thermal neutrons
 • 8 sheets 2 cm-thick (20 cm in NPPs)
 • Instrumentation within the sheets: dosimetry (foils, TLDs), FCs
 • Box-like & in-air positioning device

• Status
 • New Project within SCK-CEA-PSI VEP collaboration
 • Metal sheets purchased in 2015
 • Manufacture of the device and experiments starting in 2017
Co-development and testing of sCVD1 diamond detectors for gammas and thermal/fast neutrons with CIVIDEC: from accelerator toward reactor physics

- Installation and testing campaign in CROCUS in November 2015
 - sCVD1 detector was installed in the SW guide tube of the CROCUS control rod
 - E. Griesmayer (CIVIDEC) and C. Weiss (CERN) came to install/test the detector in CROCUS and teach how to use it

- Journal paper in preparation
 - Summarizing the installation and testing in CROCUS
 - To be submitted early 2016
 - In collaboration with CIVIDEC/CERN

1 single crystal Chemical Vapor Deposition
Neutron noise experimental systems were recently developed in CROCUS to measure the reactor’s delayed neutron fraction (β) and generation time (Λ).

Initially based on pulse mode acquisition (individual events), development of a similar measurement station in current mode to discard detector dead-time and gain speed/accuracy.

Status
- Current selection of hardware and assembling of the measurement station
- Adaptation of acquisition & processing algorithms
- Measurements in 2016 in CROCUS and comparison with calculations

Considered detectors location:
- Ionisation chambers
- Fission chambers
- Periphery positions
- Control rods positions

PSD data from previous measurements in CROCUS
Conclusion and prospects

Research in several directions of nuclear field
- 3 new reactor physics experimental programmes related to:
 - Coupling of thermo-hydraulic and neutronics physics
 - Development of nuclear measurement method
 - Validation of nuclear data
- Development of cutting-edge instrumentation

The CROCUS reactor: a safe multipurpose reactor
- Teaching
- Research

Thanks for your attention