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Abstract

This thesis presents studies in strongly coupled Renormalization Group (RG) �ows. In the

�rst part, we analyze the subject of non-local Conformal Field Theories (CFTs), arising as

continuous phase transitions of statistical models with long-range interactions. Speci�cally,

we study the critical long-range Ising model in a general number of dimension: �rst we show

that it is conformally invariant, and then we study in depth the different regimes of the theory.

We �nd an example of an infrared duality, to our knowledge the �rst non-local example of

such phenomenon.

The second part of the thesis deals with walking theories and weakly �rst order phase transi-

tions, meaning Quantum Field Theories that show approximate scale invariance over a range

of energies, in a general number of dimensions. We discuss several example in the high energy

as well as the statistical mechanics literature, and show that these theories can be understood

as an RG �ow passing between two complex CFTs, i.e. non-unitary theories living at complex

values of the couplings. Combining the conformal data of these complex CFTs and conformal

perturbation theory, we describe observables of the walking theory. Finally, we give the explicit

example of the two dimensional Potts model with more than four states.

Keywords: Quantum Field Theory, Conformal Field Theory, Phase Transitions, Long-range

Interactions, Walking
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Riassunto

In questa tesi ci occuperemo di alcuni �ussi fortemente accoppiati del gruppo di rinormaliz-

zazione (RG). Nella prima parte tratteremo l'argomento delle teorie di campo conformi (CFT)

non locali, che descrivono transizioni di fase continue per modelli statistici con interazioni

a lungo raggio. Nello speci�co, studieremo il modello di Ising a lungo raggio al punto

critico, in un numero di dimensioni generiche: mostreremo che è invariante conforme, e

successivamente studieremo in dettaglio i vari regimi della teoria. Troveremo un esempio di

dualità infrarossa, che, a nostra conoscenza, è il primo esempio non locale di tale fenomeno.

Nella seconda parte della tesi tratteremo l'argomento delle walking theories e le transizioni

di fase debolmente di primo ordine in un numero generico di dimensioni. Queste sono

teorie quantistiche di campo che presentano un'invarianza di scala approssimativa in un

determinato intervallo di energie. Presenteremo diversi esempi sia nel campo della �sica delle

alte energie che della meccanica statistica e mostreremo che queste teorie possono essere

viste come un �usso di RG che passa in mezzo a due CFT complesse, teorie non unitarie con

costanti di accoppiamento complesse. Utilizzando il conformal data delle CFT complesse e la

teoria di pertubazione conforme, calcoleremo alcune osservabili della walking theory . In�ne

considereremo l'esempio esplicito del modello di Potts bidimensionale con più di quattro

stati.

Parole chiave: Teorie Quantistiche di Campo, Teorie di Campo Conformi, Transizioni di Fase,

Interazioni a Lungo Raggio, Walking
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Introduction

The framework of Quantum Field Theory (QFT) is ubiquitous in modern theoretical physics.

It is used in particle physics as a way of combining quantum mechanics and special relativity,

with the Standard Model being its most famous successful example. QFT �nds many applica-

tions in the context of condensed matter and statistical physics as well, as a way to describe

collective excitations of systems with many degrees of freedom, both at zero and at �nite

temperature.

Studying a given QFT is in general a very hard problem. A clear exception are free theories,

where all physical observables are easy to compute. Such theories are trivial, but serve as

a �rst step to study theories where particles interact in a weak manner. These theories are

close to being free, and we can �nd observables as perturbative series in terms of the small

couplings of the theory. While there are weakly coupled QFTs which are relevant for real world

applications, many systems are described by strongly coupled theories, where the couplings

are in general of order one. Here, perturbation theory breaks down and we are back to the

original question: what can we say about the observables of this QFT?

Symmetries can come to our rescue. The presence of a symmetry in a system leads to many

constraints which can incredibly simplify its structure, and, therefore, our work. The example

that is most relevant to this thesis is conformal symmetry.

The renormalization group and its �xed points

Looking at a system from different length (or energy) scales gives us potentially very different

pictures. One of the most notorious examples in particle physics is Quantum Chromodynam-

ics (QCD). At high energies, it is a theory of weakly interacting quarks and gluons, but, as

we lower the energy scale the coupling becomes stronger and stronger. At low energies, it

becomes a theory of hadrons.

The dependence of a QFT on the energy scale is the object of study of the Renormalization

Group (RG). We can parametrize a theory by its couplings, and imagine that, by changing

the energy scale, we set out a �ow, called RG �ow, in this coupling space. A special role is

played by the �xed points of these RG �ows: here the theory is scale invariant. This has many

implications, among which is the absence of a characteristic length scale. This means, for

1
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example, that a scale invariant theory cannot have massive particles in it, since the mass of

this particle would de�ne a characteristic length scale, i.e. its Compton wavelength.

Another surprising feature of these �xed points is that, very often, we get more symmetries

than we asked for. These theories are often invariant under special conformal transformation

as well, see �gure 1. It has been shown that this always happens for unitary theories in two

spacetime dimensions [ 5], and progress was made in four dimensions [ 6, 7], but there is no

argument for theories living in a general number of dimensions. Yet, it is surprisingly common

to have scale invariance implying conformal invariance, and if this is the case, our theory is a

Conformal Field Theory (CFT).

We can imagine many UV-complete QFTs as �ows that start from some CFT UV and can, at

low energy, either �ow to another CFT IR or to a gapped phase (which can be thought of as an

empty CFT), see �gure 2. 1 If CFTUV is a free theory, then we can use perturbation theory to

describe the RG �ow close to it, but perturbation theory will break down once we get too far

along the �ow. There are some examples when the whole RG �ow is short, and perturbation

theory can be used to describe CFT IR as well, such as the Wilson Fisher �xed point in 4 ¡ ²

dimensions [9], but this is not the general case.

The success of the bootstrap

The idea that CFTs, due to their extended symmetry group, tend to be easier to study than

generic QFTs was �rst brought forward by [ 10, 11], and indeed the vast power of conformal

symmetry in two dimension was shown more than thirty years ago [ 12]. It was only ten years

ago that the so-called conformal bootstrap approach was extended to higher dimension [ 13],

with great success (see for example [14–16], and in general [17] for a review).

The bootstrap philosophy consists of imposing self consistency conditions on the theory, and

ruling out regions of theory space which would violate these. To be more precise, one normally

imposes unitarity and crossing symmetry of correlation functions; with very little input, such

1Not all UV-complete QFTs are described by CFTs at high energy, as one can always start a �ow from a scale
invariant, but not conformally invariant, theory. An example of this would be Maxwell theory in d Æ3 [8].

Æ)

Figure 1 – The action of a special conformal transformation.
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Figure 2 – Different RG �ows in the space of couplings. A RG �ow starting from a UV CFT can
either �ow to another CFT in the IR or to a gapped phase.

as the symmetries of the system, the number of relevant parameters and, potentially, some

other data known about the system through other methods (such as Monte Carlo simulations),

he or she can �nd very strong constraints on the theory itself.

The most notorious example of the success of the conformal bootstrap is its application to the

most notorious statistical mechanics model, the Ising model. In two dimensions everything

about the critical Ising model is known exactly since the 1980s [ 12]. In three dimensions,

one can use the numerical bootstrap to gain access to the low-lying operators of the theory.

These are the most important operators from a statistical mechanics point of view, since their

dimension determines the critical exponents. As a result, the numerical bootstrap gives us the

most precise determination of some of the three-dimensional Ising critical exponents to date

[15]. But the numerical bootstrap approach is not the only one. For example, the lightcone

bootstrap gives access to a different sector of a CFT, where it's possible to study the lowest

twist operators, which are very important from a holographic point of view [18, 19].

Conformal perturbation theory

The moral of the bootstrap story is that if we focus on CFTs, there are approaches which allow

us to systematically study even strongly coupled theories. Now, let's go back to considering RG

�ows starting from a CFT UV. As mentioned earlier, if CFT UV is a free theory, we can describe

QFTs along this �ow in the vicinity of CFT UV by using perturbation theory. But now assume

that CFTUV is itself strongly interacting, but we know enough about it thanks to some bootstrap

method. Can we say anything about QFTs in its proximity?

The answer to this question is af�rmative, and the tool that we need is called conformal

perturbation theory [ 20, 21]. This thesis studies two cases where it's possible to make predic-

tions on strongly coupled QFTs by treating them as perturbations of known, strongly coupled,

CFTs. The �rst part considers the case of CFTs with long range interactions, speci�cally the

long range Ising model, while the second part is about walking theories, i.e. QFTs which are

3
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approximately scale invariant over a large range of energies.

Long-range models and non-local theories

The most studied QFTs in the literature are local theories. If the theory we are considering

has a lagrangian formulation, locality means having an action which is the integral of a local

lagrangian density. More in general, a local theory has a spin-2 conserved local operator,

the stress tensor. Let's consider an example from statistical physics: a spin model close to a

continuous phase transition can be described by a QFT. This QFT is local if the model has

short-range interactions, meaning that a given spin only interacts with spins within some

�nite distance from it. As an example, the Ising model has only nearest neighbor interactions

and at its �xed point it is described by a local CFT. We could add next-to-nearest-neighbor

interactions to the model as well, or next-to-next-to-nearest-neighbor interactions, and so on,

and as long as we add only a �nite number of these interactions this model at a �xed point

will be described by a local CFT.

A substantially different situation arises if we have long-range interactions, meaning that a

given spin interacts with spins arbitrarily far away in the system. What we will consider in the

�rst part of the thesis will be the long-range Ising (LRI) model [ 22–24]. It is very similar to the

usual Short Range Ising (SRI) model, with the only exception that all spins interact with each

other, with the interaction decaying as a power of the distance. The model has a continuous

phase transition at a critical value of the temperature, and here it is described by a non-local

CFT.2

Non-local CFTs are interesting for several reasons. One of these reasons is the issue of `scale vs.

conformal' symmetry. As mentioned earlier, end points of local RG �ows are scale invariant,

but very often they are also conformally invariant. When trying to determine conformal

invariance in the case of a local �xed point, the object of interest is the trace of the stress

tensor: if it vanishes the theory is a CFT [ 5]. But in the case of non-local CFTs there is no

stress tensor to begin with, and the question of conformality needs to be studied in a different

way. This is what we will do in chapter 1, where we show that the LRI is indeed conformally

invariant at the �xed point. In order to do so, we construct a higher dimensional defect �eld

theory, which by itself is local and contains a stress tensor. Our LRI CFT can be obtained by

restricting ourselves to the theory living on the defect only.

Another interesting characteristic of non-local CFTs is their abundance. Local CFTs are, in a

sense, isolated. For example, one may wonder how many local CFTs with a given symmetry

group and a given number of relevant operators exist in a certain number of dimensions. We

believe the answer to be that there are few of them. For example, imposing crossing symmetry

and unitarity in a Z2 symmetric local CFT in three dimensions, and requiring that we have

only two relevant operators (one Z2 even and one Z2 odd), the numerical bootstrap �nds an

2What here we call non-local CFTs are sometimes called conformal theories in the literature, with the word
�̀eld' reserved exclusively for local theories.
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Figure 3 – Schematic representation of an IR duality: the same CFT IR can be reached by perturbing
two different UV theoreis. For 0 Ç x ¡ x1 ¿ 1 �ow A is short and under perturbative control, while
for 0 Ç x2 ¡ x ¿ 1 �ow B is.

isolated region, an `island', in the parameter space of the theory [ 15]. This island shrinks as one

improves the numerics, and it's reasonable to believe that in the limit of in�nite computational

resources, it shrinks to a point. This would mean that there is only one self-consistent theory

with these characteristics.

The situation is very different when we discuss non-local theories. The simplest example are

generalized free �eld (GFF) theories, which are a continuous family of non-local gaussian

CFTs. In the context of interacting theories, the LRI model has one parameter that we can

play with, the exponent of the power law decay of the interaction. For every value of this

parameter, the model undergoes a continuous phase transition. The �nal picture is that of a

family of non-local CFTs with the same symmetry group and the same number of relevant

operators. Besides, there is an interesting dependence on the power law exponent that gives

rise to qualitatively different regimes of the theory. This will be discussed at length in chapter

1 and 2. In general, it's much easier to `construct' a CFT without requiring locality. We show

in chapter 2 that by coupling a local CFT and a GFF theory, we very easily get a continuous

family of non-local interacting CFTs.

Finally, it is worth mentioning that studying non-local CFTs is a task which is made easier by

an IR duality. This will be shown in chapter 2 for the LRI CFT, but the mechanism is likely

to hold for other non-local CFTs, such as the long range O(n) model. There is a non-trivial

regime of the LRI CFT which can be reached as the IR �xed point of two very different RG �ows.

The �rst one is a Wilson-Fisher like �ow which consists of perturbing a non-local gaussian

action with a quartic interaction, while the second one is a �ow which in the UV consists of

two decoupled sectors, a GFF and the SRI CFT, which are perturbed by an operator which

couples the two sectors.
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The strength of a IR duality is that, depending on the situation, it is more convenient to think of

our LRI theory as the IR �xed point of one �ow rather than the other. In some cases, one of the

�ow will be a long �ow (which means that the IR �xed point is not within reach of perturbation

theory), but we can use the other �ow, which is short, to make perturbative predictions on

the theory. Examples of IR dualities are not so common: the most famous example is Seiberg

duality in N Æ1 SUSY theories in d Æ4 [25]. Our example is, to our knowledge, the �rst

example of a non-local duality. We will use this duality by considering the �ow which starts

from a decoupled GFF and the SRI CFT: this CFT UV is strongly coupled but a lot is known

about it. By using conformal perturbation theory we will be able to make predictions on the

observables of the LRI CFT such as the critical exponents.

Walking theories and complex CFTs

The second part of the thesis concerns walking theories. In general, the physics of a QFT

depends strongly on the energy scale. The situation is very different in a CFT, where the

couplings are independent on the scale. There are examples of QFTs where, in some energy

range, the couplings depend on the scale only in a weak manner, and look approximately like

a scale invariant theory. This can happen, for example, when we perturb a CFT by a weakly

relevant deformation: at high energy this theory still looks almost scale invariant and the

coupling constant of this deformation evolves slowly. We will refer to this scenario as “tuning”.

There are cases, however, where some coupling constant evolves slowly but there are no CFTs

nearby living at real values of this coupling. This phenomenon is what we refer to as walking.

Walking theories play a role in several physical systems, even though they sometimes appear

with different names. The term walking was born in the high energy physics literature. Here

we have QFTs where the beta function of some coupling is small in a range of energies. This

means that there is a large hierarchy, i.e. a large separation between some scale ¤ UV where

walking kicks in and some ¤ IR where walking stops. If our beta funciton is of order O(² ),

with ² some small positive parameter, then we expect the separation of scales to behave like

¤ UV/ ¤ IR » exp(const/ ² ). We therefore have an exponentially large hierarchy.

Walking played a role in theories of physics beyond the Standard Model. Technicolor theories,

where the role of the Higgs �eld is played by a fermion bilinear condensate, were introduced in

order to account for the hierarchy problem (see for example [ 26]). However, these theories had

the issue of introducing �avor changing neutral currents (FCNC), which are highly constrained

by experimental results. Walking Technicolor theories were introduced as a better alternative

to Technicolor theories [ 27–29]. A sector of the theory is almost scale invariant in some range of

energies, and we can associate to every operator a scaling dimension, and that of the operator

playing the role of the Higgs could be such that the problem of FCNC is made less severe.

These models of beyond the Standard Model physics are currently not favored, but the issue

of walking remains interesting from a QFT point of view.

The same walking phenomenon appears in statistical physics under the name of weakly �rst
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order phase transitions. In this scenario, our lattice spacing a plays the role of the UV length

scale` UV while the correlation length » plays the role of the IR scale ` IR. The long range physics

of a continuous phase transition is scale invariant, therefore it cannot have any characteristic

scale: this means that » Æ` IR Æ 1 . In a discontinuous phase transition, instead, the correlation

length is �nite and in general, »/ a » O(1). A weakly �rst order (WFO) phase transition has a

�nite but large correlation length, and »/ a À 1. We have again a large separation of scales

and the physics in the range between a and » is approximately scale invariant. An example of

a system showing a WFO phase transition is the Q-states Potts model Q slightly larger than

some critical value [30, 31].

WFO phase transitions are particularly hard to study numerically due to their large correlation

length. When running a Monte Carlo simulation, one considers larger and larger lattices, and

tries to extrapolate an answer for an in�nitely large lattice. In general, to see that a phase

transition is not continuous, one has to take a lattice whose linear size is at least of the order

of than the correlation length. This means that in WFO phase tranistions, very large lattices

are needed and numerical simulation of these systems are computationally very intensive. As

an example, a lot has recently been discussed about the Néel/VBS phase transition in 2 Å 1

dimensions, also known as decon�ned quantum criticality [ 32]. Monte Carlo studies �nd

evidence for a symmetric enhanced �xed point [ 33, 34], but this is ruled out by numerical

bootstrap approaches [ 35]. The simplest resolution of the paradox is that we are not in the

presence of a second order phase transition, rather of a WFO phase transition. If this is the

case, then bootstrap bounds don't apply and there is no contradiction.

The fact that a walking QFT is approximately scale invariant suggests that it's close to some CFT.

But in many cases, one can consider a �ow which is described just by a single real coupling,

and this �ow cannot pass close to a real �xed point without actually ending up in it. Everything

changes if we consider the full complex plane of this coupling: there could be �xed points at

complex value of the coupling. We can imagine a walking theory as being close to a pair of

complex conjugate �xed points which live close to the real axis of the coupling, and it's this

proximity which explains the weak energy dependence of the theory in this regime.

At this point, it is convenient to take this �xed points at complex coupling seriously. We

assume that they are complex CFTs, a term which will be made precise in chapter 3; they are

a bit unusual in the sense that they are not unitary, but they are well de�ned (e.g. crossing

symmetric) CFTs. Assume now that we know enough about these theories, for example the

dimension of some low-lying operators and some of the OPE coef�cients: when these �xed

points are close to the real axis, we can use conformal perturbation theory to make predictions

on the strongly coupled walking QFT.

Once one has in mind this picture of a walking QFT as a �ow between two complex CFTs, it is

easy to see another reason why walking is an interesting phenomenon. The hierarchy due to

walking does not require tuning of the coef�cients of the theory, since the �ow is forced to pass

in between the two complex CFTs, as there is nowhere else it could go. It's possible to achieve
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a hierarchy also by starting from a theory with a weakly relevant operator, but this requires

tuning the coef�cient of this weakly relevant operator. From this point of view, walking is a

more natural way to get this hierarchy.

Examples of walking and the interpretation of this phenomenon in terms of complex CFTs are

explained in chapter 3, while the explicit case of the two dimensional Potts model with more

than four states is worked out in detail in chapter 4.
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1 Conformality of the critical Long
Range Ising model

1.1 Introduction

Spin models with long-range interactions exhibit rich critical behavior with continuously

varying exponents. Here we focus on the ferromagnetic long-range Ising model (LRI), with

spin-spin interaction decaying as a power of the distance » 1/ r dÅs.1 The lattice Hamiltonian

is given by

Hs Æ ¡
X

i , j

J

ji ¡ j jdÅs
Si Sj , (1.1.1)

where Si Æ §1 are the Ising spin variables, and J È 0 in the considered ferromagnetic case. We

will assume sÈ 0 for the thermodynamic limit to be well de�ned. The space dimensionality d

will be d Æ2,3. Formally our considerations will apply also to non-integer dimensions in the

range 1 Ç d Ç 4.

Forty years of theoretical considerations [ 22, 23, 36, 37] and Monte Carlo simulations [ 38] have

established what we will refer to as the standard picture. The model (1.1.1) has a second-order

phase transition for each sÈ 0. The critical theory is universal, i.e. independent of the short-

distance details such as the choice of the lattice. It has however an interesting dependence on

s (see Fig. 1.1). One distinguishes three critical regimes: (i) the mean-�eld Gaussian regime for

sÇ d /2, (ii) the intermediate non-trivial regime for sÈ d /2 and up to a certain s¤ (see below)

and (iii) the short-range regime sÈ s¤ . We warn the reader that we believe the standard picture

to be dissatisfactory in the region s> s¤ ; this will be discussed at length in chapter 2.

To study the long-distance behavior, it's standard to replace the lattice model with a continuum

�eld theory in the same universality class. Besides the usual quadratic and quartic local terms,

the action includes a gaussian non-local term (with a negative sign for the ferromagnetic

1The exponent s is usually denoted ¾, but here we reserve letter ¾for the short-range Ising spin �eld.

11



Chapter 1. Conformality of the critical Long Range Ising model

Figure 1.1 – The three phases for the LRI critical point. The boundaries are s Æd/2 (straight
solid) and sÆ2¡ ´ SRI(d ) (curved dashed, interpolated using the known exact ´ SRI(d ) for d Æ1,2,4
and numerical values from the ² -expansion [ 39] and the conformal bootstrap [ 40] for a few
intermediate d ). Here we will be working near the boundary sÆd/2.

interaction) 2

SÆ ¡
Z

d d x d d y
Á(x)Á(y)

jx ¡ yjdÅs
Å

Z
d d x[t Á(x)2 Å g Á(x)4] . (1.1.2)

The non-local term by itself describes mean �eld theory (MFT); it endows Á with dimension 3

[Á]UV Æ(d ¡ s)/2. (1.1.3)

The quadratic term is always relevant and its coef�cient t must be tuned to zero to reach the

transition.

(i) For s Ç d /2 the quartic term is irrelevant and the critical point is simply a gaussian

theory described by the nonlocal action involving the “fractional Laplacian” operator

L s ´ (¡ @2)s/2 :

S0 »
Z

dd x ÁL sÁ. (1.1.4)

The �eld Á represents the spin density, and its scaling dimension is simply (1.1.3).

Composite operators can be built out of Á by differentiations and taking normal-ordered

products. Since the theory is gaussian, there are no anomalous dimensions.

(ii) For d /2 Ç s Ç s¤ , the quartic term becomes relevant and generates a renormalization

group (RG) �ow, reaching a �xed point in the IR. This critical point, believed to be in

the same universality class as the critical point of the LRI lattice model, is a nontrivial,

non-gaussian, theory. Interestingly, as it will be explained below, the dimension of Á at

2We will assume 0 Ç s Ç 2, which includes the long-range to short-range crossover point s¤ , see (2.1.1). This
action is appropriate in this interval. Beyond sÆ2 the local kinetic term ( @Á)2 becomes relevant and would have
to be added.

3Scaling dimensions of various �elds X are denoted interchangeably by [ X ] or ¢ X .
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1.1. Introduction

the �xed point is still given by the same formula (1.1.3). However, composite operators

do get nontrivial anomalous dimensions.

(iii) Finally, for sÈ s¤ , the potential becomes strongly peaked at short distances. According

to the standard picture, the critical point for sÈ s¤ is exactly the same as the short range

Ising (SRI) �xed point. This relied on the observation that some of the critical exponents

are the same as the SRI theory, see for example [38]. We will show in chapter 2 that the

�xed point in the sÈ s¤ regime has a richer structure than the SRI one, and only some of

the critical exponents coincide. The value at which there is a crossover is

s¤ Æd ¡ 2¢ SRI
Á ´ 2¡ ´ SRI, (1.1.5)

using the usual de�nition of the ´ critical exponent. The value of s¤ can be inferred by

requiring continuity of the dimension of the spin �eld at the crossover.

In this chapter we will be focussing on the region near the phase boundary sÆd/2, i.e. away

from sÆs¤ . We will work in an expansion in ² Æ2s¡ d ¿ 1.

Problem of conformal invariance

As it will be brie�y discussed in section 1.5.2.1, the SRI critical point enjoys the property of

conformal invariance. The utility of this symmetry in 2d is long known, as it allows for an exact

solution of the critical theory [ 12] via a method called the conformal bootstrap. 4 In 3d, an

exact solution is not yet known, but the conformal bootstrap has recently been used to get the

world's most precise numerical determinations of the SRI critical exponents [41]. 5

What about the LRI critical point? In region 1 it's described by the nonlocal gaussian theory,

whose conformal invariance is well known and will be reviewed in section 1.4.

Our main goal here will be to show that the LRI critical point is conformal in the non-gaussian

region 2. This is harder to ascertain, and as far as we know, this issue has not been previously

discussed. Here we will present a proof valid to all orders in perturbation theory. Having

conformal symmetry also in this region is very interesting and useful, paving the way for the

conformal bootstrap methods [ 49].6 Until now, the LRI critical point was studied using RG

methods, both perturbative [22, 23, 36, 37] and nonperturbative [51].

Concerning region 3, contrary to the standard picture, we will show substantial evidence in

chapter 2 that the theory is described by the SRI �xed point and a decoupled generalized free

�eld. Conformal invariance of the two decoupled subsectors implies conformal invariance

4In fact, the 2d SRI critical point is invariant under the Virasoro algebra, which is an in�nite-dimensional
extension of the global conformal algebra. In this chapter, we will be working in general d and by conformal
invariance we will mean global, �nite dimensional, conformal invariance, unless speci�ed otherwise. In 2d this is
sometimes referred to as Möbius invariance.

5For prior work see [13, 14, 42–45]. An alternative technique has been developed in [46–48].
6Some work has already been done in [14], section 5.4, and [50].
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Chapter 1. Conformality of the critical Long Range Ising model

of the full theory. See section 1.5.2.1 where we discuss conformal invariance of the SRI �xed

point.

The remainder of this chapter is organized as follows. In the next section we discuss the basic

setup of the epsilon expansion for the long-range Ising model. We then provide nontrivial

evidence for conformal invariance by computing hÁÁ3i and hÁ2Á4i up to order ² 2, as we �nd

that these correlators vanish at the �xed point. This behavior does not follow from scale

invariance alone but it is a necessary condition for conformal invariance, so we are led to

believe that the LRI at criticality could actually be conformally invariant. The remainder of the

chapter is dedicated to an all-orders proof of this claim. In section 1.4 we review the proofs of

conformal invariance of the gaussian theory (see below for a de�nition). This sets the stage

for the proof of conformal invariance of the LRI, which we present in section 1.5. In that

section we also discuss the prospects for proving conformal invariance at the nonperturbative

level. We end the chapter with some concluding remarks, and several technicalities have been

relegated to the appendices.

1.2 Field-theoretical setup

In this work we will study the LRI critical point for 1 6 d Ç 4, inside the non-gaussian region 2,

close to the boundary separating it from the gaussian region 1, i.e. for

sÆ(d Å ² )/2, 0 Ç ² ¿ 1.7 (1.2.1)

The UV dimension of the Á �eld is then

¢ Á Æ(d ¡ ² )/4, (1.2.2)

so that the quartic term Á4 is a weakly relevant perturbation. The IR �xed point is then acces-

sible in perturbation theory. As is standard [ 36, 37], we will setup a perturbative expansion

using the analytic regularization scheme, where Feynman diagrams are considered analytic

functions of ² . This is convenient since it allows one to evaluate integrals without introducing

an explicit UV cutoff.

As mentioned in the introduction, the relevant action is

SÆS0 Å
g0

4!

Z
dd x Á4 , S0 Æ

N s

2

Z
dd x Á L sÁ. (1.2.3)

The coef�cient N s, whose precise value is unimportant, will be �xed so that the free Á two

7If d is close to 4, we should assume a stronger condition ² ¿ 4¡ d , so that we stay closer to the boundary
between the regions 1 and 2 than to that between 2 and 3. In the opposite case ² & 4¡ d the structure of perturbation
theory is modi�ed due to the presence of a weakly irrelevant operator @2Á. See [36, 37] for a discussion.
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1.2. Field-theoretical setup

point function is normalized to one:

hÁ(x)Á(0)i S0 Æ jxj¡ 2¢ Á . (1.2.4)

Notice that the analytic regularization scheme is mass independent. So we can avoid introduc-

ing the mass term m 2Á2 into the action (1.2.3). In other words, in this scheme the �ow which

leads to the �xed point has m 2 Æ0 all along the �ow.

As usual in the �eld theoretical studies of critical phenomena, it will be extremely useful to

view the theory (1.2.3) as regulating the theory with ² Æ0, where the interaction is marginal.

As ² ! 0, computations in theory (1.2.3) give poles in ² . These poles can be removed order by

order in perturbation theory by multiplicatively renormalizing the terms in the action. 8

The gaussian term in (1.2.3) is not renormalized, because it's nonlocal, while the divergences

are local. In other words, the theory under consideration does not have wavefunction

renormalization, and the bare and the renormalized �eld Á coincide. In particular, the

anomalous dimension of Á vanishes. This implies that, to all orders in perturbation theory,

the dimension of Á at the IR �xed point is equal to its UV dimension (1.2.2) [22, 23, 36].

On the other hand, the coupling constant does require renormalization. The bare coupling g0

is expressed in terms of the �nite, renormalized, coupling g as:

g0 ÆZ (g,² )g¹ ² , (1.2.5)

where ¹ is the renormalization scale and Z is the renormalization factor which starts with 1

and contains an ascending series of poles in ² :

Z (g,² ) Æ1Å
X 1

kÆ1 fk (g)² ¡ k . (1.2.6)

The coef�cient fk (g) of the pole ² ¡ k is a power series in g starting from O(gk ); it gets contribu-

tions from all loop orders larger than or equal to k .

The ¯ -function of the theory can be expressed in terms of the single pole coef�cient:

¯ (g) ´ @g/ @log ¹ Æ ¡² g Å g2 f 0
1(g) . (1.2.7)

The story is exceedingly similar to the ² -expansion for the Wilson-Fisher (WF) �xed point (see

e.g. the books [56, 57], or [ 58] for a concise treatment), with an extra simpli�cation that there

is no wavefunction renormalization.

8Multiplicative renormalizability is most familiar in local quantum �eld theory, but it holds also for nonlocal
theories of the kind we are considering here, with the standard proof [ 52]. For the validity of Weinberg's convergence
theorem [ 53] (that if all subdiagrams are super�cially convergent, then the diagram is convergent) in this context
see the discussion in [ 54], p.600. For the structure of divergences in theories with propagators involving arbitrary
powers of x2 (studied in the context of analytic regularization), see [55] and the discussion in [36].
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Chapter 1. Conformality of the critical Long Range Ising model

Let us compute the ¯ -function at the �rst nontrivial, one-loop, order. We need to determine

the one-loop counterterm to the coupling. Consider the four point function of Á, which up to

the second order in g is given by the sum of diagrams:

The O(g2) contribution will contain a 1/ ² pole coming from the region where the two Á4

insertions are near each other. The contribution of this region can be easily extracted using

the operator product expansion (OPE) of the gaussian UV theory:

Á4(x) £ Á4(0) ¾(72/ jxjd¡ ² )Á4(0) . (1.2.8)

This OPE implies that the expansion of the functional integral to the second order will contain

a short-distance contribution corresponding to the insertion of Á4 times

72£
1

2
£

g2¹ 2²

(4!)2

Z

jxj¿ 1

dd x

jxjd¡ ²
Æ36

g2

(4!)2
Sd

²
Å �nite, (1.2.9)

where Sd Æ2¼d /2 / ¡ (d /2) is the volume of the unit sphere in d dimensions. The 1/ ² pole is

canceled by adding a coupling counterterm

±g Æ(36g2/4!)(Sd / ² ) . (1.2.10)

Therefore the expansion of the single pole function f1(g) in (1.2.6) starts with

f1(g) ÆK g Å O(g2), K Æ3Sd /2 . (1.2.11)

The one-loop ¯ -function is given by

¯ (g) Æ ¡² g Å K g2 Å O(g3) . (1.2.12)

It has a zero at

g Æg¤ Æ²/ K Å O(² 2) . (1.2.13)

This zero corresponds to the LRI critical point that we want to study. 9

Below we will be interested in the correlation functions of the composite operators Án . As

usual, we will de�ne the renormalized operators [ Án ] Æ[Án ]g,¹ which remain �nite in the limit

² ! 0. They are related to the bare operators Án by rescaling factors subtracting poles in ² :

Án ÆZn (g,² )[Án ] . (1.2.14)

9 In d Æ1,2,3 and for suf�ciently small ² È 0 the existence of this �xed point has been shown rigorously [ 59–
62]. See also [63] for a series of rigorous results about the LRI phase transition. We are grateful to Abdelmalek
Abdesselam and Pronob Mitter for communications concerning these works.
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1.3. Tests of conformal invariance

As indicated, the operators [ Án ] depend on the scale ¹ and on the value of the coupling g at

this scale. On the other hand correlation functions of the bare operators don't depend on ¹

and g separately, but only on their combination g0. As usual, this gives a CS equation for the

correlators of the renormalized operators. The anomalous dimension of [ Án ] is given by

° n (g) ÆZ ¡ 1
n @Zn / @log ¹ jg0Æconst. . (1.2.15)

Notice that since the dimension of Á is not integer, in the considered theory the Án operators

don't mix with the operators where some Á's are replaced by derivatives. 10

As already mentioned above, this theory has no wavefunction renormalization. Therefore Á is

a �nite operator without any rescaling. So Z1 ´ 1 and ° 1 ´ 0. The UV dimension of Á given in

(1.2.2) will also be its IR dimension. 11

Let's compute the anomalous dimensions of Án , n > 2, at the lowest nontrivial order. The 1/ ²

contribution to the correlation functions of Án will come from the nearby ( g/4!)Á4 insertions.

In this region we can use the OPE generalizing (1.2.8):

Án (0) £ Á4(x) ¾[6n(n ¡ 1)/ jxjd¡ ² ]Án (0) . (1.2.16)

Integration in x gives a 1/² pole which must be canceled by rescaling the operator. We get

Zn Æ1¡ Kn g/ ² Å . . . , Kn Æn(n ¡ 1)Sd /4 Æ) ° n (g) ÆKn g Å O(g2) . (1.2.17)

At the IR �xed point we have

° ¤
n ¼Kn g¤ Æ[n(n ¡ 1)/6] ² Å O(² 2) . (1.2.18)

These are the same anomalous dimensions as in the usual ² -expansion for the WF �xed point

(see e.g. [64]). Indeed, the answer at this order is controlled by the combinatorics of the Wick

contractions in the gaussian UV �xed point, which is the same in the local free scalar theory

and in the nonlocal theory de�ned by our S0. Of course, it's not true that all computations are

the same between the two theories. We will see some examples below.

1.3 Tests of conformal invariance

How can we check if a certain model is conformally invariant or just scale invariant? The

currently available data on the LRI amount to the anomalous dimensions of scaling operators,

which are determined with RG methods and also measured on the lattice from two point

10This is true for generic d , while for integer d there can be some mixing for high n. E.g.¢ Á ¼1/2 in d Æ2, and

one can trade 4 Á's for 2 derivatives. This could become important for operators starting from Á6. In this chapter
we will mostly work with operators up to Á4 and we will ignore this.

11This fact has also been established non-perturbatively for suf�ciently small ² È 0 for which the existence of the
�xed point is rigorously known [61, 62], see note 9.
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Chapter 1. Conformality of the critical Long Range Ising model

functions. These data cannot distinguish between scale and conformal invariance, because

both predict the same functional form for the critical two point function:

hO(x)O(0)i / j xj¡ 2¢ O . (1.3.1)

Here O is a generic scalar operator of dimension ¢ O .

One celebrated prediction of conformal invariance is the form of a three point function [ 65],

but this is harder to compute and to measure on the lattice than the two point function. We

are not aware of any three point function data for the LRI critical point.

An easier discriminating variable is the two point function of two different operators. Scale

invariance predicts that

hO1(x)O2(0)i Æc12jxj¡ ¢ 1¡ ¢ 2 , (1.3.2)

while conformal invariance implies [ 65] the stronger constraint that c12 Æ0 unless ¢ 1 Æ¢ 2. To

be precise, this conclusion is reached if both operators are so-called primary operators, i.e. if

they are not derivatives of other operators. If the Oi are both of the form ( @2)n i O for the same

operator O, they will of course have a nonzero two point function. This trivial case is easy to

monitor since the scaling dimensions are different by an even integer.

To summarize, conformal invariance implies that any two scalar operators whose dimensions

are not different by an even integer must have a zero two point function, while scale invariance

would allow such two point functions to be nonzero.

The goal of this section will be to study the following two point functions of different scalars at

the critical point of the LRI:

hÁ(x)Á3(0)i and hÁ2(x)Á4(0)i . (1.3.3)

Notice that we chose pairs of operators with the same parity under Á ! ¡ Á. If the IR �xed

point is only scale invariant but not conformal, these correlators could be nonzero.

We will consider these correlators in the perturbative setup of the previous section. As we will

see, a nontrivial check requires to go to at least the second order in the coupling constant g, or

in the parameter ² parametrizing the deviation from marginality. At O(² 2), scale invariance

alone then allows for both of the above correlators to be nonzero.

As a matter of fact, it turns out that the �rst correlator is a bit special, as it involves Á whose

anomalous dimension is identically zero, as well as Á3 which is related to Á via a “nonlocal

equation of motion" (nonlocal EOM). 12 Using these facts, we will give an all-order argument

that the correlator hÁÁ3i vanishes at the IR �xed point. We will buttress the argument by an

explicit second-order computation showing that the correlator vanishes at O(² 2).

12We thank Riccardo Rattazzi who emphasized this to us.
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1.3. Tests of conformal invariance

We do not know any analogous general argument for the correlator hÁ2Á4i . This seems to

be a truly generic correlator involving �elds with unrelated anomalous dimensions. We will

perform an explicit second-order computation for this correlator, �nding that it also vanishes

at O(² 2).

These computations lead us to believe that the LRI critical point is in fact conformally invariant,

and to look for a general proof of this fact. A proof that we found will be discussed in the rest

of the chapter.

1.3.1 hÁÁ3i

By dimensional considerations, this correlator should behave in the IR as Cjxj¡ ¢ Á¡ ¢ Á3 . We

recall that at the WF �xed point C 6Æ0 because Á3 is not a primary but is related to Á by

the equations of motion: Á3 / @2Á. In the conformal �eld theory (CFT) language, Á3 is

a descendant of the primary Á. At the LRI �xed point, we know for sure that Á3 is not a

descendant of Á since the dimensions don't match. So C 6Æ0 would disprove conformal

invariance, while C Æ0 would be evidence in its favor.

We will �rst show that C ÆO(² 3) by an explicit computation, and next present an argument

that C Æ0 to all orders in perturbation theory.

1.3.1.1 Explicit computation

We will now present an explicit computation of the correlation function hÁÁ3i to the second

order in the coupling. More precisely, we will consider the correlator

F(x,g,¹ ) Æ hÁ(x)[Á3](0)i , (1.3.4)

where [Á3] Æ[Á3]g,¹ is the Á3 rescaled by subtracting poles in ² as discussed in section 1.2.13

This correlator allows an expansion in powers of the renormalized coupling g without poles in

² . By dimensional reasons, it should have the form

F Æf (¿,g)jxj
¡ ¢ Á¡ ¢ (0)

Á3 , (1.3.5)

where ¢ (0)
Á3 Æ3¢ Á is the UV dimension of Á3 and f is a function of dimensionless variables g

and ¿´ ¹ jxj.

We will have a Callan-Symanzik (CS) equation expressing the invariance of the theory under

13Note that since we don't take the limit ² ! 0, operator renormalization is not strictly necessary. The rescaling
factors Zn (g,² ) are �nite at �nite ² , and the 1/ ² terms in them never even become large, since g ÆO(² ) all along
the RG �ow. The role of renormalization is rather that of convenience, as it allows to cleanly separate the O(1)
effects coming from the powers of g/ ² from the effects suppressed by powers of g which are truly higher order.
This makes the weakly coupled nature of the theory manifest.
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Chapter 1. Conformality of the critical Long Range Ising model

simultaneous changes of g and ¹ leaving g0 �xed:

[¹@¹ Å ¯ (g)@g Å ° 3(g)]F(x,g,¹ ) Æ0. (1.3.6)

The only difference from the usual Á4 theory is that the anomalous dimension of Á does not

appear since it's identically zero. Substituting (1.3.5) into (1.3.6), we get an equation for f :

[¿@¿ Å ¯ (g)@g Å ° 3(g)] f (¿,g) Æ0. (1.3.7)

At large distances ¯ (g) ! 0 and ° 3(g) ! ° 3(g¤ ), and Eq. (1.3.7) predicts

f (¿,g) ¼C¿¡ ° 3(g¤ ) . (1.3.8)

We thus rederived the result that at large distances the considered correlation function should

go asjxj¡ ¢ Á¡ ¢ Á3 where ¢ Á3 Æ¢ (0)
Á3 Å ° 3(g¤ ). This argument does not determine the value of C,

which in particular may still turn out to be zero.

To determine the prefactor C, we have to match the CS equation to �xed-order perturbation

theory. Recall that the full solution of Eq. (1.3.7) can be written in the form:

f (¿,g) Æf̂
¡
ḡ(¿,g)

¢
exp

·
¡

Z ¿

1
d log ¿0° 3

¡
ḡ(¿0,g)

¢
¸

, (1.3.9)

where ḡ is the “running coupling" solving the following differential equation with a boundary

condition at sÆ1:

¿@¿ḡ Æ ¡¯ (ḡ) , ḡj¿Æ1 Æg . (1.3.10)

In particular, at ¿ Æ1 the function f (¿,g) reduces to f̂ (g). Once this latter function is �xed

from perturbation theory, the prefactor C in (1.3.8) is found as

C Æf̂ (g¤ ) . (1.3.11)

We will now show that this vanishes up to order ² 2.

For this we would like to extract f̂ up to the second order in g. Consider �rst the nonrenormal-

ized correlator

F0(x) Æ hÁ(x)Á3(0)i , (1.3.12)

which has no tree-level contribution. Up to the second order in the coupling it is given by the

sum of two position-space diagrams: 14

(1.3.13)

Both these diagrams are easily evaluated using the following basic integral (which in turn can

14The signs and combinatorial factors are left implicit.
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1.3. Tests of conformal invariance

be derived by going to momentum space):

Z
dd y

jx ¡ yjAj yjB
Æ

w A wB

w AÅB¡ d

1

jxjAÅB¡ d
, w A Æ(4¼)d /2 2¡ A ¡

¡ d¡ A
2

¢

¡ (A/2)
. (1.3.14)

Using this result, we obtain

F0(x) ÆR1g0/ jxjd¡ 2² Å R2g2
0 / jxjd¡ 3² Å O(g3

0) , (1.3.15)

where

R1 Æ ¡
w d¡ ²

2
w3 d¡ ²

2

wd¡ 2²
¼ ¡ ²¼d /2 ¡ (¡ d /4) ¡ (d /2)

¡ (3d /4)
,

R2 Æ
3

2

w 2
d¡ ² w d¡ ²

2
w 3

2 d¡ 5
2 ²

wd¡ 2² wd¡ 3²
¼9¼d ¡ (¡ d /4)

¡ (3d /4)
. (1.3.16)

The given approximate expressions are the leading ones in the small ² limit. Notice that

R1 ÆO(² ). This has a simple explanation: in the limit ² ! 0 the interaction becomes exactly

marginal, the integral de�ning R1 becomes conformal, and it should give zero answer for

a correlator of two �elds of different scaling dimensions by the usual arguments based on

conformal symmetry. To get a nontrivial check of conformal invariance, we have to go to the

second order in ² , hence to the second order in g, which is what we are doing.

To get at the function f̂ , we need to replace the coupling g0 by g via (1.2.5), (1.2.11):

g0 ÆZ g¹ ² Æ[g Å K g2² ¡ 1 Å O(g3)]¹ ² , (1.3.17)

and to use the relation between Á3 and [Á3], see (1.2.14), (1.2.17). This gives the following

expression for F to the second order in g:

F(x) Æ
©
gR1¿² Å g2[R1(K Å K3)² ¡ 1¿² Å R2¿2² ]

ª
/ jxjd¡ ² . (1.3.18)

We see the structure is in agreement with (1.3.5). To extract f̂ we set ¿Æ1 and obtain: 15

f̂ (g) ÆgR1 Å g2[R1(K Å K3)² ¡ 1 Å R2] Å O(g3) . (1.3.19)

Since R1 ÆO(² ) this expression is free of poles in ² : as we mentioned above the correlator and

in particular f̂ should have a regular expansion in g without such poles. Using (1.3.19) and

(1.3.9) we can compute the considered correlator at all distances with ² 2 accuracy.

Now using the values of the various constants appearing in (1.3.19), it's easy to see that to the

order that we computed it can be rewritten as

f̂ (g) Æ ¡R1² ¡ 1(¡ ² g Å K g2) Æ ¡R1² ¡ 1¯ (g) , (1.3.20)

15We have analyzed also the leading log ¿ terms in the expansion of G around ¿Æ1 and checked that they are
consistent with what the solution (1.3.9) to the CS equation predicts.
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Chapter 1. Conformality of the critical Long Range Ising model

This form of writing makes it manifest that f̂ (g) vanishes at the IR �xed point.

1.3.1.2 General argument

We will now give a general argument that C Æ0 to all orders in perturbation theory. The idea is

to use the nonlocal EOM of the LRI �eld theory (1.2.3): 16

N sL sÁ Å
g0

3!
Á3 Æ0. (1.3.21)

This can be used to express the correlators of Á3 in terms of those of Á. In particular:

hÁ3(x)Á(0)i / L shÁ(x)Á(0)i . (1.3.22)

This equation is subtle to use, because the fractional Laplacian is a nonlocal operator. We will

therefore proceed cautiously.

First of all we have to understand in some detail the correlator hÁ(x)Á(0)i . Since Á does not

acquire an anomalous dimension, its two point function has the form

hÁ(x)Á(0)i Æ½(x)jxj¡ 2¢ Á , (1.3.23)

where

½(x) Æ½̂
¡
ḡ(¿,g)

¢
. (1.3.24)

is a function of the running coupling ḡ which we introduced in the previous section. The

function ½̂can be determined by matching to perturbation theory. We will only need to know

its rough structural properties.

Through O(g2) we have two diagrams:

(1.3.25)

This implies that

½̂(g) Æ1Å Qg2 Å .. . , Q Æ(¼d /6) ¡
³
¡ d

4

´
/ ¡

³
3d
4

´
. (1.3.26)

We see that the function ½(x) approaches a constant at short and long distances:

½(x) !

8
<

:
1, x ! 0,

½(g¤ ) Æ1Å O(² 2) , x ! 1 .
(1.3.27)

In what follows we will also need the asymptotics of the approach to the long distance limit.

16Notice that it would be a non-permissible stretch of terminology to call Á3 a “nonlocal descendant" of Á on the
grounds of this equation. Descendants are de�ned as local derivatives of primaries, and we are not aware of any
useful generalization of the descendant concept to nonlocal relations.
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1.3. Tests of conformal invariance

From now on we will �x ¹ to be a scale ¹ c at which the coupling g » g¤ /2 is roughly halfway

between the UV and the IR �xed points. The long distance asymptotic behavior of the running

coupling ḡ is given by:

ḡ Æg¤ ¡ O(²¿¡ ¯ 0(g¤ )) (¿À 1), (1.3.28)

where ¯ 0(g¤ ) Æ² Å O(² 2). It follows that ½(x) approaches the long distance limit as

½(x) Æ½(g¤ ) Å O(² 2¿¡ ¯ 0(g¤ )) . (1.3.29)

We are now ready to compute the long distance behavior of the correlator hÁ3(x)Á(0)i . Accord-

ing to Eq. (1.3.22) we need to evaluate the integral:

I Æ
Z

dd y T(x ¡ y)hÁ(y)Á(0)i , (1.3.30)

where T (x ¡ y) / j x ¡ yj¡ d ¡ s is the position space kernel of the fractional Laplacian, see

eq. (1.1.4). Notice that this kernel is not absolutely integrable and at short distances it must be

understood in the sense of distributions, as the Fourier transform of jk js.

We split the above integral into two parts I ÆI1 Å I2, one against the long distance asymptotics

of hÁÁi and the rest:

I1 Æ
Z

dd y T(x ¡ y)½(g¤ )jyj¡ 2¢ Á , (1.3.31)

I2 ÆI ¡ I1 Æ
Z

dd y T(x ¡ y)[½(y) ¡ ½(g¤ )]jyj¡ 2¢ Á . (1.3.32)

The �rst part I1 vanishes at non-coincident points, I1 / ±(x), by the de�nition of Green's

function of the gaussian theory. As to I2, in the limit of very large x the leading asymptotics of

the integral will come from large y, where we can use the asymptotics (1.3.29). We get:

I2 »
Z

dd y T(x ¡ y)² 2¿¡ ¯ 0(g¤ )j yj¡ 2¢ Á . (1.3.33)

By dimensional analysis, this integral behaves / j xj¡ ® with

® ÆsÅ 2¢ Á Å ¯ 0(g¤ ) . (1.3.34)

It's important that this exponent is larger than ¢ Á Å ¢ Á3 :

®¡ (¢ Á Å ¢ Á3) Æ¯ 0(g¤ ) Å O(² 2) , (1.3.35)

using the known anomalous dimension of Á3, ° 3(g¤ ) Æ² ÅO(² 2). This means that the constant

C in the natural dimensional asymptotics of the studied correlator, see (1.3.8), has to vanish.

The current argument establishes this fact to all orders in perturbation theory.
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Chapter 1. Conformality of the critical Long Range Ising model

The above reasoning was made possible by two properties: the nonlocal EOM and the

vanishing anomalous dimension of Á. Before leaving this section, we will similarly prove

one more interesting fact: that ° ¤
3 Æ² to all orders in perturbation theory. In other words the

leading order result in (1.2.18) is in fact exact for n Æ3.

We will use the nonlocal EOM to prove the following relation between the IR dimensions of Á

and Á3:

¢ Á3 Æ¢ Á Å s (IR), (1.3.36)

of which ° ¤
3 Æ² is an immediate consequence. Eq. (1.3.36) looks similar to the relation

¢ Á3 Æ¢ Á Å 2 valid at the WF �xed point, also a consequence of the corresponding EOM.

However, due to nonlocality, the proof is a bit more subtle for the LRI.

The idea is to use the nonlocal EOM twice, expressing hÁ3Á3i in terms of hÁÁi . This relation

takes the form:

hÁ3Á3i Æ36g¡ 2
0 N 2

s L sL shÁÁi pert , hÁÁi pert ´ h ÁÁi ¡h ÁÁi S0 . (1.3.37)

with the two L s's acting on each of the arguments of hÁÁi pert . The subtlety here is that we

have to subtract the gaussian two point function. This is easy to understand in perturbation

theory. hÁÁi pert is the sum of all diagrams in which each Á is connected to a vertex, like in the

second diagram in (1.3.25). When we act with L s's, the legs connecting Á's to the vertices get

cancelled, and we reproduce all diagrams for hÁ3Á3i . Were we to keep hÁÁi S0 , we would get

an extra nonlocal contribution which does not correspond to any diagram. This is in contrast

to what happens when using the equation of motion in the local ' 4 theory. In that case the

contribution from the unperturbed propagator is zero at noncoincident points and we don't

have to worry about it. 17

Let us proceed now to the proof of (1.3.36). It will be convenient to work in momentum space.

The asymptotics (1.3.29) of the function ½(x) means that the Fourier transform of hÁÁi pert

behaves at small momenta as:

hÁ(¡ k )Á(k )i pert » j k j¡ s[1 Å O(jk j¯
0(g¤ ))] . (1.3.38)

It's important that the proportionality coef�cient here is nonzero (we computed that it's O(² 2)).

When we act on this correlator once by the fractional Laplacian, multiplying by jk js, the

leading term gives 1, which is a delta-function in the position space, and the subleading term

determines the long-distance asymptotics. We thus reproduce the above result that hÁ3 Ái

vanishes in the IR faster than its natural scaling. However, when we act by the fractional

Laplacian twice, the leading result is nonanalytic jk js and it is this result which determines the

long-distance asymptotics. We conclude that the two point function hÁ3 Á3i behaves at long

distances as 1/jxjdÅs, which can be expressed as Eq. (1.3.36) .

17One can also check that (1.3.37) has a smooth limit when g0 ! 0, reducing to hÁ3Á3i S0 in this limit. This would
not be the case were we to keep hÁÁi S0 .
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1.3. Tests of conformal invariance

1.3.2 hÁ2Á4i

In the previous section we studied the correlator hÁÁ3i and found that it vanishes at the IR

�xed point, consistently with conformal invariance. However, as we saw, the studied correlator

was actually a bit special, since it involved two �elds related by the nonlocal EOM of the LRI.

One could wonder if the vanishing of this correlator is an accident. In this section we will study

the correlator hÁ2 Á4i , which as far as we can see is a truly generic correlator of our theory. We

will �nd, by an explicit computation at O(² 2), that this correlator also vanishes at the IR �xed

point. We consider this a strong piece of evidence for the conformal invariance of the LRI

critical point.

The computation proceeds similarly to hÁÁ3i , so we will be brief. The renormalized correlator

H (x,g,¹ ) Æ h[Á2](x) [Á4](0)i Æh(¿,g,¹ )jxj
¡ ¢ (0)

Á2 ¡ ¢ (0)
Á4 (1.3.39)

satis�es a CS equation which can be solved to give:

h(¿,g,¹ ) Æĥ
¡
ḡ(¿,g)

¢
exp

½
¡

Z ¿

1
d log ¿0£

° 2
¡
ḡ(¿0,g)

¢
Å ° 4

¡
ḡ(¿0,g)

¢¤
¾

. (1.3.40)

The function ĥ is determined by matching to perturbation theory. We have one diagram at

O(g0) and three diagrams at O(g2
0):

(1.3.41)

The �rst two diagrams here are the same as in (1.3.13) times an extra propagator. The third

diagram is new, but it can also be readily evaluated using Eq. (1.3.14) repeatedly. The �nal

diagram is the hardest—it is analyzed in appendix A of [1].

The nonrenormalized correlator is thus given by

H0(x) Æ
P1g0

jxj3d /2 ¡ 5² /2
Å

(P2a Å P2b Å P2c)g2
0

jxj3d /2 ¡ 7² /2
Å O(g3

0) , (1.3.42)

where we split the coef�cients diagram by diagram. Taking into account signs and symmetry

factors, we have (see (1.3.16)):

P1 Æ8R1,

P2a Æ8R2 ,

P2b Æ4
w 3

2 (d ¡ ² )w d¡ ²
2

wd¡ ² w 3
2 d¡ 5

2 ²

wd¡ 2² w 3
2 d¡ 7

2 ²
¼8¼d

¡
³
¡ d

4

´

¡
³

3d
4

´ ,
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Chapter 1. Conformality of the critical Long Range Ising model

P2c ¼24¼d ¡
³
¡ d

4

´
/ ¡

³
3d
4

´
. (1.3.43)

To pass from this result to the function ĥ , we need to perform the coupling and operator

renormalization. We get:

ĥ (g) ÆgP1 Å g2[P1(K Å K2 Å K4)² ¡ 1 Å P2a Å P2b Å P2c] Å O(g3) . (1.3.44)

Putting in the values of all coef�cients, we �nd that this expression is proportional to the

one-loop beta function, similarly to (1.3.20). We conclude that ĥ (g) vanishes at the IR �xed

point at O(² 2).

1.4 Conformal invariance of the gaussian phase

The nonlocal gaussian theory described by the action (1.1.4) is also conformal. This is widely

known in high energy physics, 18 and more recently has also been discussed from statistical

physics perspective. In this section we will review this fact pedagogically, trying to bridge the

gap between the two communities. 19

1.4.1 Direct argument

We will start in the antichronological order. As pointed out in [ 66], the fractional Laplacian,

just like the ordinary Laplacian, is covariant under conformal transformations. Namely if

x ! x0 is a conformal transformation and

Á0(x0) Æ j@x0/ @xj¡ ¢ Á / d Á(x) (1.4.1)

with ¢ Á given in (1.1.3), then

L 0
sÁ

0(x0) Æ j@x0/ @xj¢ Á / d ¡ 1L sÁ(x) . (1.4.2)

As a result the action (1.1.4) is invariant under conformal transformations. The proof of (1.4.2)

is given in [ 66] and we will not repeat it here. As usual, covariance under translations, rotations,

and dilatations is obvious, and a simple calculation establishes covariance under the inversion.

Notice that since we are dealing with a nonlocal theory, there is no reason to expect that in

d Æ2 the global conformal invariance of the action (1.1.4) gets enhanced to the full Virasoro

invariance, and indeed this does not happen. 20

18There, this theory is sometimes referred to as Mean Field Theory or Generalized Free Field.
19Even though we won't discuss it, conformality of the gaussian phase can be shown using the AdS/CFT

correspondance as well, see for example section 5.3 of [1].
20Although it's not essential for this discussion, we would like to point out that there are also examples of local

2d theories which have global conformal but not Virasoro invariance. Once such theory is the “biharmonic scalar"
with the Lagrangian ( @2Á)2. Its stress tensor trace is of the form @¹ @º Y¹º which is enough for global conformal
invariance but not enough for an improvement to make it traceless and recover full Virasoro, since in 2d one needs
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1.4. Conformal invariance of the gaussian phase

1.4.2 Argument from correlation functions

The previous argument shows the invariance of the action. Since the theory is gaussian, confor-

mal covariance of the correlation functions follows. It's also easy to check the transformation

properties of the correlation functions directly. This way of proving conformal invariance

predates the previous one, see [ 68] and an analogous discussion for a nonlocal vector theory

appeared in [69].

Let's start with the two point function of Á. It is given by jx ¡ yj¡ 2¢ Á , which indeed has the

form of a two point function of a primary scalar of dimension ¢ Á. The N -point functions of

Á are given by Wick's theorem, since the theory is gaussian. A moment's thought shows that

since the two point function transforms as it should, the N -point functions will do so as well.

So all correlation functions of Á are consistent with conformal symmetry.

The theory contains more operators, for example the normal ordered products :Án :. Their

correlation functions are de�ned by just leaving out the Wick contractions at coincident points,

hence they will also be conformally covariant.

Although there are still more operators in addition to the ones considered above, all of them

can be obtained by taking repeatedly the OPE of Á with itself. Correlation functions of these

operators will inherit conformal transformation properties from the correlators of Á.21 Hence

the theory is conformal.

1.4.3 Caffarelli-Silvestre trick

The idea of the previous argument is to rewrite the nonlocal gaussian theory as an equivalent

higher dimensional theory whose conformal invariance is manifest. We will now present a

second way to implement this idea, based on an observation of Caffarelli and Silvestre [70].

Consider a scalar �eld © Æ©(x, y) where the extra coordinate y now takes values in the �at

Euclidean space of p Æ2¡ s dimensions. Hopefully the reader is not disturbed by the fact that

p is in general fractional. In this space we consider the massless scalar �eld action:

SCSÆ
Z

dd x dp y [(@x©)2 Å (@y©)2] . (1.4.3)

We will now show that this local action is equivalent to the nonlocal action (1.1.4).

Let Á(x) be the value of the �eld © on the d dimensional hyperplane y Æ0:

Á(x) Æ©(x,0) , (1.4.4)

and consider the effective action for Á obtained by integrating out the rest of the space.

T¹
¹ Æ@2Y for the latter [5]. See [66, 67] for a discussion.

21See the argument in appendix B of [1].
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Chapter 1. Conformality of the critical Long Range Ising model

To �nd it we have to solve the equations of motion of the higher-dimensional theory subject

to the boundary condition (1.4.4). It's clear that we can restrict to the sector of �elds radially

symmetric in the y variable. In this sector the action becomes ( z Æ jyj È 0):

SCSÆSp

Z
dd x dz z1¡ s[(@x©)2 Å (@z©)2] . (1.4.5)

Recall that Sp is the unit sphere volume in p dimensions. The equation of motion is

@2
x© Å (1¡ s)@z©/ z Å @2

z© Æ0. (1.4.6)

The solution decreasing at large z takes in momentum space the form:

©(p,z) Æconst. ( jpjz)s/2Ks/2 (jpjz)Á(p) . (1.4.7)

For small z this has an expansion:

©(p,z) Æ(1Å const. ( jpjz)s Å .. .)Á(p). (1.4.8)

The . . . terms are O(z2) compared to the shown ones and are subdominant in the range of

interest 0 Ç sÇ 2. We integrate by parts in (1.4.3), pick up the boundary term, and �nd

SCSÆ ¡Sp

Z
dd x z1¡ s©@z©jz! 0 /

Z
dd p Á(p)jp jsÁ(¡ p) , (1.4.9)

which is the nonlocal action (1.1.4) in momentum space. 22

It is now easy to complete the argument for conformal invariance. We started with a massless

scalar theory in �at space (1.4.3), which is conformally invariant in an arbitrary number of

dimensions. When we construct an effective theory by integrating out the space away from the

y Æ0 hyperplane, we are guaranteed to obtain a theory invariant under the subgroup of the

d Å p dimensional conformal group which leaves invariant this hyperplane. This is precisely

the d dimensional conformal group.

Concerning the prior history of the given argument, Caffarelli and Silvestre noticed that the

equation of motion (1.4.6) gives rise to the fractional Laplacian and showed the equivalence

of the two actions. They also noticed that (1.4.6) is nothing but the Laplace equations for

functions radially symmetric in p extra coordinates. The Caffarelli-Silvestre description in the

radially reduced sector was used by Rajabpour [ 66] to discuss some aspects of the nonlocal

gaussian theory. Using the full d Å p dimensional description to argue for the conformal

invariance of the theory seems to be done here for the �rst time.

22The form of this effective action could also be predicted from the following argument. The free scalar © two
point function depends on the distance as / 1/ r dÅp¡ 2. The same dependence is inherited by Á when we set y Æ0,
and we recover the expected two point function of the nonlocal scalar �eld of dimension d ¡ s.
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1.5. Conformal invariance of the LRI critical point

1.5 Conformal invariance of the LRI critical point

We will now present a proof that the LRI critical point is conformally invariant also in the

nontrivial region 2.

The key idea is to rewrite our theory (1.2.3) as a defect quantum �eld theory . Namely, according

to the discussion in section 1.4.3, we can rewrite the action as 23

SÆ1
2

Z
dd̄ X (@M ©)2 Å

g0

4!

Z

yÆ0
dd x ©4 . (1.5.1)

In the �rst term © is the free scalar Caffarelli-Silvestre �eld from section 1.4.3, de�ned on the

d̄ Æd Å p dimensional space X Æ(x, y). The second term represents interaction living on the

defect: the d -dimensional plane located at y Æ0. The number of extra dimensions will be

fractional in the case of interest ( s near d /2), but in spite of this fact the theory (1.5.1) makes

perfect sense, at least in perturbation theory. 24

In the theory (1.5.1) we will consider N -point functions of ©(X), G(X1 . . .XN ). The correlators

of the original theory (1.2.3) can be obtained by taking the y ! 0 limit.

The �rst part of the proof will be to derive broken scale and conformal Ward identities satis�ed

by the correlators G(X1 . . .XN ). We will then discuss how these Ward identities imply conformal

invariance of the IR �xed point.

1.5.1 Ward identities

Crucially, the theory (1.5.1) is local and so its Ward identities can be derived by a variation of

the usual method: the idea of the proof [ 58, 71–73] is to construct the Ward identities for scale

and conformal invariance broken by the effects of the running coupling, and to show that the

breaking effects disappear at the �xed point. Our derivation is along the lines of the simpli�ed

one of [58]. We start by considering the canonical stress tensor:

TMN Æ@M ©@N © ¡ 1
2±MN (@K ©)2 ¡ ±Ò

MN ±(p)(y)
g0

4!
©4 . (1.5.2)

The indices M ,N .. . will run over the full d̄ -dimensional space, ¹ ,º . . . over the d -dimensional

“parallel" subspace, and m,n . . . over the p-dimensional “perpendicular" subspace. The ±Ò
MN

is the Kronecker delta in the parallel subspace: ±Ò
MN Æ±¹º if both indices are parellel, and zero

otherwise.

We don't make a distinction between the bare and renormalized �eld ©, because© does not

get renormalized: since the interaction term is located on the defect, it cannot renormalize

23Normalization of the �rst term is different from (1.2.3) where it was �xed via (1.2.4). This difference is
unimportant for the proof of conformal invariance.

24See section 1.5.2.2 for a nonperturbative discussion. An introduction to perturbative quantum �eld theory in
non-integer dimensions can be found in [52].
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Chapter 1. Conformality of the critical Long Range Ising model

the bulk kinetic term. The boundary kinetic term corresponds to an irrelevant operator and

cannot be generated either.

The next step is to �nd the divergence and the trace of TMN . Direct computation gives:

@M TMN Æ ¡EN Å ±(p)(y)D N , (1.5.3)

T M
M Æ ¡¢ ÁE ¡ ² (g0/4!)±(p)(y)©4 Å (1/2 ¡ d̄ /4) @2

K ©2 , (1.5.4)

where the E and EN are operators proportional to the equations of motion of the theory

E Æ©
©
¡ @2

K © Å ±(p)(y)(g0/3!)©3ª
, EN Æ@N ©

©
¡ @2

K © Å ±(p)(y)(g0/3!)©3ª
, (1.5.5)

and the object D N is called the displacement operator. It is given by:

D N Æ(g0/3!)©3@n © if N Æn (1.5.6)

is a perpendicular index, and vanishes otherwise. This operator represents an in�nitesimal

movement of the defect in an orthogonal direction.

Correlation functions of the operators E and EN are trivial: their insertions into n-point

functions of ' produce a bunch of ±-function at coincident points, see Brown's (3.10), (3.28):

G(X1 . . .Xn ;E(X)) Æ
X n

i Æ1 ±(X ¡ Xi )G(X1 . . .Xn ) ,

G(X1 . . .Xn ;EN (X)) Æ
X n

i Æ1 ±(X ¡ Xi )
@

@X N
i

G(X1 . . .Xn ) . (1.5.7)

One may wonder why we bother at all about the operators E and E¹ , since they have vanishing

correlation functions at non-coincident points. Indeed, in the usual CFT language, they

would not even qualify to be called operators. However, here we are working in perturbative

quantum �eld theory, and in this situation it turns out to be both legitimate and useful to have

access toE and E¹ . Legitimate because in the regularized theory the equations (1.5.7) make

perfect technical, and not just formal, sense. Useful because the fastest derivation of the Ward

identities uses these operators, as we will see momentarily.

Unlike ©, the operator ©4jyÆ0 ´ Á4 appearing in (1.5.4) is not a �nite operator; it will be related

to a �nite renormalized operator [ Á4] via a rescaling

Á4 ÆZ4[Á4] . (1.5.8)

Contrary to what would happen in the local Wilson Fisher �xed point, in the LRI there is no

other operator with which Á4 could mix. The coef�cient Z4 is easy to compute. For any �nite
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1.5. Conformal invariance of the LRI critical point

correlation function we have

@

@g

¯
¯
¯
¹ Æconst.

h. . .i Æ h.. .
Z

dd x ¹ ² [Á4](x)i ,

d

dg0
h. . .i Æ h.. .

Z
dd x Á4(x)i .

(1.5.9)

On the other hand, differentiating (1.2.5) with respect to log ¹ we obtain the relation @g0/ @g Æ

¡ ² g0/ ¯ (g). It follows that:

Z4 Æ ¡¯ (g)¹ ² /( ² g0) , (1.5.10)

and therefore
g0

4!
Á4

0 Æ ¡
¹ "

4!
(¯ (g)/ " )[Á4] (1.5.11)

Plugging this into (1.5.4) we obtain:

T M
M Æ ¡¢ ÁE Å (¯ (g)/4!) ¹ ² ±(p)(y)[Á4] Å (1/2 ¡ d̄ /4) @2

K ©2 . (1.5.12)

We next consider the dilatation and special conformal currents:

DM ÆTMN X N , CM
L ÆTMN (2X N XL ¡ ±NL X2) . (1.5.13)

The divergence of the scale current is given by

@M DM Æ ¡ X N (EN ¡ ±(p)(y)D N ) Å T M
M Æ ¡ X M EM Å T M

M . (1.5.14)

The term proportional to D N is seen to vanish, since either N is a parallel index and then

D N Æ0, or else it's a perpendicular index and then X N ±(p)(y) Æ0. Inserting these equation in

an n-point function and integrating over the full space, we get

Z
dd̄ x G(X1 . . .Xn ; ¡ X M EM (X) Å T M

M (X)) Æ0, (1.5.15)

which allows us to obtain the scale Ward identity

nX

i Æ1
[Xi .@Xi Å ¢ Á]G(X1 . . .Xn ) Æ¯ (g)

¹ ²

4!

Z
dd x G(X1 . . .Xn ; [Á4](x)) . (1.5.16)

Analogously let's analyze the divergence of the special conformal current

@M CM
L Æ ¡(2X N XL ¡ ±NL X2)(EN Å ±(p)(y)D N ) Å 2XLT M

M . (1.5.17)

We would like to derive a Ward identity corresponding to special conformal transformations

leaving the defect invariant, i.e. when L Æ¸ is a parallel index. The extra term proportional

to D N then drops out just as for the scale current, since D N is nontrivial only if N Æn is

a perpendicular index. Then ±n¸ Æ0, while Xn X ¸ vanishes when multiplied by ±(p)(y).
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Chapter 1. Conformality of the critical Long Range Ising model

Therefore, inserting this in a n-point function and integrating over space we have

Z
dd̄ x G

¡
X1 . . .Xn ; ¡ (2X N XL ¡ ±NL X2)EN (X) Å 2XLT M

M (X)
¢

Æ0. (1.5.18)

and the Ward identity: 25

NX

i Æ1

"

(2X M
i X ¸

i ¡ ±M ¸ X2
i )

@

@X M
i

Å 2¢ ÁX ¸
i

#

G(X1 . . .XN )

Æ2¯ (g)
¹ ²

4!

Z
dd x x ¸ G(X1 . . .XN ; [Á4](x)) . (1.5.19)

Now, the correlators G(X1 . . .Xn ) behave continuously in the limit y ! 0. This can be seen

diagram by diagram in perturbation theory. 26 Thus, if one is primarily interested in the

correlators at the defect, which are the correlators of the original theory, then one may set

y Æ0 in (1.5.16) and (1.5.19), obtaining restricted Ward identities satis�ed by the correlators of

the original theory (1.2.3):

NX

i Æ1
[xi .@x i Å ¢ Á]G(x1 . . .xN ) Æ¯ (g)

¹ ²

4!

Z
dd x G(x1 . . .xN ; [Á4](x)) , (1.5.20)

NX

i Æ1

"

(2x ¹
i x ¸

i ¡ ±¹¸ x2
i )

@

@x ¹
i

Å 2¢ Áx ¸
i

#

G(x1 . . .xN ) Æ2¯ (g)
¹ ²

4!

Z
dd x x ¸ G(x1 . . .xN ; [Á4](x)) .

(1.5.21)

At this point, if one wishes, one may altogether forget about the construct of the extra

dimensions. Notice however that without this construct, it would remain pretty mysterious

why the nonlocal LRI theory should satisfy Ward identities which are almost identical in form

to the ones satis�ed by the local SRI. 27

These are the Ward identities expressing the breaking of scale and special conformal invariance

by the running coupling. They are valid at all distances and for all ¸ . For the purposes of

studying the IR �xed point, we have to go to large distances and to take the limit ¹ ! 0, so

that ¸ (¹ ) ! ¸ ¤ . In this limit the beta-function multiplying the RHS of (1.5.20) and (1.5.21)

vanishes. One is thus tempted to conclude that the IR �xed point is both scale and conformally

invariance.

25It's not hard to convince oneself that various boundary terms appearing when integrating by parts in the
derivation of the Ward identities vanish by a good margin. We need an estimate of the decay of a correlation
function of a group of Á's and a widely separated TMN for a theory which has not yet reached the �xed point,
and for an unimproved TMN . For a quick and dirty estimate, notice that there will be at least two propagators

connecting TMN to the Á's, with two derivatives acting on them. This gives decay » 1/ jX j2d̄ ¡ 2, which is suf�cient
for d È 1 and sÇ 2. The Á4 part of TMN gives an even smaller contribution.

26This is also closely related to the fact that © does not acquire anomalous dimension, and thus its bulk-to-defect
OPE is non-singular (see a related discussion in section 6.3 in [1]).

27It is possible that the Ward identities (1.5.20), (1.5.21) can be proved by endowing the LRI theory with some sort
of nonlocal stress tensor operator. See [ 66] for steps in this direction for the gaussian case. Still, the most natural
path to the nonlocal stress tensor lies through the Caffarelli-Silvestre construction.
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1.5. Conformal invariance of the LRI critical point

While this conclusion will turn out to be correct, we believe that this last step of the argument

merits somewhat more attention. There is a subtlety here. It's true that ¯ (¸ ) ! 0 as ¹ ! 0,

but what about the integrals multiplying it? The integrals are ¹ -dependent because the

operator [ Á4] is normalized at the scale ¹ . Could it be that the integrals grow in the ¹ ! 0 limit,

overcoming the ¯ (¸ )¹ " suppression? This issue seems to have been neglected in the literature.

The proof that r.h.s. of (1.5.20) and (1.5.21) vanishes in the IR can be found in [1].

The main subtlety is that naive dimensional analysis fails when studying the integrals on the

r.h.s. of (1.5.20)and (1.5.21), and it might look like they diverge when approaching the IR so

that the complete r.h.s. of these equations is O(1). However, one can express the integral in

(1.5.20)as a derivative of a correlation function w.r.t. g and use the Callan-Symanzik equation

to prove that the full r.h.s. vanishes in the IR. Once this is done, it's possible to show that the

same happens for (1.5.21).

Therefore, we conclude that, in the IR correlation functions of the �eld Á are conformally

invariant. In order to have a complete proof of conformal invariance, we should now turn our

attention to composite operators. Correlation functions of composites can be related to those

of the fundamental �eld by using the OPE. This is especially obvious for the bulk correlators,

since one then needs only the bulk-to-bulk OPE, identical to that of the free theory. Composite

operator correlators on the defect can be obtained from those away from the defect via the

bulk-to defect OPE. Alternatively, one can access such correlators via the OPE of fundamental

�elds on the defect. For more details, see section 6.3 and appendix B of [1].

1.5.2 Beyond perturbation theory

1.5.2.1 Virial currents

The question of scale invariance implying conformal invariance in a local theory, 28 as lucidly

explained long ago by Polchinski [ 5], boils down to whether the trace of the stress tensor

contains a total derivative term in addition to terms vanishing at the critical point or at

non-coincident points:

T ¹
¹ ¾@¹ V ¹ (?) (1.5.22)

The operator V ¹ is called a virial current . It must be a vector operator of scaling dimension

exactly D ¡ 1, to match the scaling dimension of T¹º . The appearance of @¹ V ¹ in T ¹
¹ does

not contradict scale invariance, because the extra term vanishes when integrated over the

full space, and does not disturb the scale Ward identity. However, the derivation of special

conformal Ward identity requires integrating T ¹
¹ multiplied by x ¸ , in the same way as (1.5.18).

The extra term then does not go away unless V¹ is itself a total derivative, V¹ Æ@º Y¹º .

From a modern perspective, then, to check if a theory is conformally invariant it's enough

to see if it contains a vector operator of dimension exactly d ¡ 1 which is (a) a singlet under

28See [74] for a review and in particular [6, 7, 75] for recent nontrivial progress in 4d.
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Chapter 1. Conformality of the critical Long Range Ising model

all global symmetries, (b) not conserved, and (c) not a total derivative. In weakly coupled

examples it can be seen by inspection whether such an operator exists. As Polchinski [ 5]

pointed out, the ' 4 theory in d Æ4¡ " dimensions does not have any nontrivial V¹ candidate,

and hence its IR �xed point must be conformally invariant to all orders in perturbation theory.

In the strongly coupled situation one can argue (see e.g. [ 8, 76, 77]) that the (a,b,c) requirements

cannot generically be satis�ed, and thus scale invariance generically implies conformal

invariance. Indeed, what's the likelihood that there will be a dimension d ¡ 1 vector which is not

conserved, given that all non-conserved vectors generically acquire anomalous dimensions?

This being pretty obvious, the real question is to what extent one can get rid of the genericity

assumption.

To be concrete, let's take the critical SRI in d Æ3 as an example. Very dramatic evidence for its

conformal invariance comes from years of exploration using conformal bootstrap methods

[13, 14, 16, 41–48]. These methods take conformal invariance as an assumption, which leads

to a system of equations on the operator dimensions and OPE coef�cients of the theory. The

system is tightly constraining, and the fact that it has a solution which is in agreement with

everything computed about the 3d Ising model using more pedestrian techniques is strong

evidence for the validity of the assumption.

But is there any more direct evidence of conformality for the critical SRI? The question was

recently approached using Monte Carlo methods in [ 78]. The dimension of the lowest spin 1

operator of the theory was measured, and it was found that ¢ V È 5, well above the d ¡ 1 Æ2

required by a virial current. This is a very strong non-perturbative test of the conformality of

the SRI �xed point.

1.5.2.2 Conformality of LRI beyond perturbation theory

Finally, we would like to discuss the prospects of a nonperturbative proof of conformal

invariance of the LRI critical point.

First of all one would have to be convinced that the extra-dimensional defect QFT formulation

(1.5.1) makes sense beyond perturbation theory. 29

Alternatively, one can try to get rid of the fractional dimensions altogether by restricting the

y È 0 theory to the radially symmetric sector described by the reduced action (1.4.5), which is

d Å 1 dimensional. This action should still contain the conformal symmetry of the original

action. The disadvantage of this formulation is the explicit dependence of the action on y. On

the other hand it's manifestly nonperturbatively well de�ned.

Whatever the formulation one uses, one will be reduced to studying the Ward identities for the

corresponding stress tensor operator. Analogously to section 1.5.2.1, one can ask: what if the

29For a collection of recent work trying to make nonperturbative sense of various aspects of quantum �eld theory
in fractional number of dimensions see [40, 79, 80].
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stress tensor trace contains the following term:

T M
M ¾±(p)(y)@¹ v ¹ (?) , (1.5.23)

where v¹ is a dimension d ¡ 1 vector operator on the defect—a defect virial current. By

assumption, v ¹ is not identically conserved. Like in the discussion following the analogous

Eq. (1.5.22), we see that unless v¹ is a total derivative its presence precludes conformal

invariance of the correlation functions, while preserving their scale invariance.

So, can our theory contain a defect vector which has dimension exactly d ¡ 1 and is not a total

derivative? Generically, this appears unlikely (with or without the total derivative clause). In

perturbation theory, there was no candidate for such an operator (and so it's not surprising

that no such term is visible in (1.5.12)). To establish this rigorously and nonperturbatively

appears as hard as the corresponding problem for the SRI.

We �nally note that in the context of boundary rather than defect quantum �eld theory the

question whether scale invariance implies conformality was recently discussed in [81].

1.6 Discussion

The general problem of scale versus conformal invariance is continuing to provide food for

thought. In this chapter we have discussed this issue for the speci�c theory corresponding to

the LRI at criticality. Since this model most notably does not have a local stress tensor, even

the standard (genericity) arguments are invalid, leaving the question of scale versus conformal

invariance hanging in midair.

In the �rst part of the chapter we have provided nontrivial evidence for conformal invariance

of the LRI by showing that the hÁÁ3i and hÁ2Á4i two point functions vanish at criticality, at

least up to terms of O(² 3). In the second part we were able to prove conformal invariance at

the critical point to all orders in perturbation theory. The salient point of the proof was the

construction of the LRI model as a defect theory in an auxiliary higher-dimensional space; this

allowed us to work with a higher-dimensional stress tensor and construct a proof analogous

to the one used for the Wilson-Fisher �xed point. Much like the SRI, it is plausible that the LRI

is also nonperturbatively conformally invariant.

What does our proof teach us about general long-range lattice models? First of all, the models

that have an epsilon expansion starting from a generalized free theory, like the long-range

O(N ) or Potts models, will be conformally invariant at their critical points to all orders by

simple extensions of our proof. 30

In hindsight it is now also easy to cook up long-range models which will not be conformally

invariant. The simplest one is based on a vector rather than a scalar. The gaussian long-range

30Recall once again that in 1 Å1 dimensions conformal invariance without a stress tensor implies a global SO(3,1)
invariance, not the full Virasoro symmetry.
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Chapter 1. Conformality of the critical Long Range Ising model

action then has two terms consistent with rotation invariance. Equivalently, the vector two

point function also has two terms:

hB¹ (x)Bº (0)i Æ(a±¹º Å bx ¹ x º / x2)/ jxj2¢ B . (1.6.1)

This agrees with the two point function of a conformal primary vector for b/ a Æ ¡2, and with

that of a derivative of a scalar primary for b/ a Æ ¡2¢ B . For all the other ratios this gaussian

model will not be conformal [ 69].31 Let us now perturb the gaussian theory by a quartic local

term ( B¹ B¹ )2 and �ow to the IR �xed point. We conjecture that this �xed point will be an

interacting scale invariant theory without conformal invariance. It would be interesting to

check this by explicit epsilon expansion computations of two point functions, like we did in

section 1.3.

In recent years the use of the conformal bootstrap has emerged as an excellent tool to analyze

CFTs in various dimensions [ 13]. The main ingredients in this approach are the conformal

block decomposition of four point functions and the associated crossing symmetry equations,

which all follow directly from conformal invariance (see e.g. [ 76]). The present work therefore

opens the door towards an analysis of the LRI using these methods. Such a completely non-

perturbative analysis has since been carried out in [49].

With an eye towards the conformal bootstrap let us �nally discuss the critical point of the LRI

from the perspective of an ordinary CFT. Firstly, the LRI distinguishes itself from the more

familiar, local, CFTs by the absence of a local stress tensor operator. Secondly, we expect a

one-dimensional family of solutions to the crossing symmetry, parametrized by the exactly

known scaling dimension of Á. Thirdly, our analysis uncovered an interesting fact that the

second Z2 odd primary operator Á3 is related to Á through the nonlocal EOM: Á3 / L sÁ. This

�xes the scaling dimension of Á3 to be ¢ Á Å s. Curiously, this can be equivalently rewritten as

¢ Á3 Æd ¡ ¢ Á . (1.6.2)

This identi�es Á3 as the so-called `shadow' operator of Á, which by de�nition transforms in

a conformal representation with the same value of the quadratic Casimir as Á. The shadow

operators often appear in discussions of conformal blocks (see e.g. [ 83]), but usually as a

formal tool, since they do not belong to the local operators of the theory. On the contrary,

Eq. (1.6.2) means that both Á and its shadow are good local operators of the LRI critical point. 32

One may wonder if the nonlocal EOM also implies an exact proportionality relation between

31One can also reproduce this theory à la Caffarelli-Silvestre from an auxiliary vector theory in a higher-
dimensional space. The auxiliary theory action has two terms ( @M BN )2 and (@M BM )2. As is well known, such a
vector theory without gauge invariance (“theory of elasticity") is not conformally invariant [8, 82].

32Other examples of theories with pairs of operators satisfying the “shadow relation” ¢ 1 Å ¢ 2 Æd can be found
among SUSY CFTs. Namely, such a relation can emerge if O1 is a chiral primary of dimension d / n where n is an
integer, and O2 Æ(O1)n¡ 1. We thank Leonardo Rastelli for sending us a list of such theories. One simple example
is the N Æ2 3d Ising model where n Æ3. What sets LRI apart is that the shadow relation appears as a consequence
of the nonlocal EOM.
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the coef�cients with which Á and Á3 appear in any OPE. Unfortunately, this appears not to be

the case. Using the nonlocal EOM once, we can easily relate the three point functions of Á3

to those of Á. However, we then have to relate the normalizations of the Á and Á3 two point

functions. This requires using the nonlocal EOM twice, subtracting the unperturbed Á two

point function as in (1.3.37). The �nal answer then depends on the relative normalization of

hÁÁi and hÁÁi S0 , which is unknown in general. See appendix A.1.

Subsequently, a conformal bootstrap analysis of the three dimensional LRI CFT in the inter-

mediate regime was carried out in [ 49]. Up to six correlators of the relevant primaries Á, Á2

and Á3 were considered, and, imposing conditions about the OPE coef�cients such as those

of appendix A.1, 33 the constraints on the space of theories were studied. A way of isolating the

theory with a speci�c value of s is to �x the dimension of the �rst spin-2 operator, which is

larger than 3 for sÇ s¤ due to non-locality of the theory. For generic values of s, no islands are

found, contrary to what happens in the SRI CFT [ 15], but the allowed region has a kink in the

(¢ Á,¢ Á2) plane. Assuming, like it's customary, that the theory lives at the kink, we can read off

the value of ¢ Á and ¢ Á2 , and, using the non-renormalization of Á, �nd which is the value of s

we are studying. The results agree well with the perturbative expansions close to s» d /2 and

s» s¤ , which we will discuss in the next chapter.

We conclude this chapter with a brief comment about the limit s ! s¤ . What happens with the

nonlocal CFT describing the LRI critical point when we approach this limit from below? As we

discussed in the introductions, for sÈ s¤ the standard picture predicts the LRI critical point to

be in the SRI universality class. It would be simplest if all correlation functions continuously

transitioned to the SRI ones in the limit. However, this seems problematic in the standard

picture in view of the presence of Á3 as a primary in the LRI CFT.

Consider for example the correlation function hÁÁ2 ÁÁ2i . In the LRI, its conformal block

decomposition is expected to contain the contributions of two relevant Z2 odd scalars: Á

and Á3. On the other hand, in the SRI �xed point ' 3 is a descendant in the CFT describing

the WF �xed point, while the second Z2 odd primary operator ( ' 5) is irrelevant. It could be

that Á3 decouples in the s ! s¤ limit, but based on the discussion in appendix A.1 this also

seems unlikely. This would lead to conclude that, according to the standard picture, there is a

discontinuity in the transition from the LRI to the SRI correlation functions. However, in the

next chapter, we will see a more natural picture predicting a continuous transition.

33The author of [49] generalized the discussion of appendix A.1 to spinning �elds.
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2 The long-range to short-range
crossover

2.1 Introduction

The primary goal of this chapter will be to elucidate the long-range to short-range crossover

at s Æs¤ . As explained in the previous chapter, the crossover from the long-range to the

short-range regime happens when the dimension of the long-range �xed point (LRFP) spin

�eld, [ Á]LRFP, decreasing with s, reaches the short-range Ising �xed point (SRFP) dimension

[Á]SRFP[23].1 In other words, the dimension of [ Á] varies continuously through the crossover.

This �xes

s¤ Æd ¡ 2[Á]SRFPÆ2¡ ´ (2.1.1)

in terms of the SRFP critical exponent ´ . Although we use the word “crossover”, it's important

to emphasize that the transition happens sharply, at sÆs¤ .

However, while the crossover from the mean-�eld to the intermediate regime is well un-

derstood, some features of the long-range to short-range crossover remain puzzling in the

standard picture. For s slightly above d /2, the quartic interaction is slightly relevant and one

can study the �ow perturbatively, as we did in the previous chapter. By contrast, a perturbative

description of the long-range to short-range crossover is presently lacking. Sak [ 24] (see also

Cardy's book [ 21], section 4.3), proposed to analyze the SRFP stability in terms of the non-local

perturbation

OSak Æ
Z

d d x d d y
¾(x)¾(y)

jx ¡ yjdÅs
, (2.1.2)

where ¾´ ÁSRFPis the SRFP spin �eld. This perturbation crosses from relevant to irrelevant

precisely at sÆs¤ [21, 24]. For sÇ s¤ the SRFP perturbed by OSak should �ow to the LRFP. The

RG �ow diagram summarizing the standard picture is shown in Fig. 2.1. If s is just slightly

below s¤ , Sak's perturbation is weakly relevant, and in principle it should be possible to study

the �ow perturbatively. However, it is unclear how to adapt the rules of conformal perturbation

theory to this non-local case. To the best of our knowledge this has not been done.

1In this chapter, to avoid confusion, we will always specify whether we are talking about operators in the
d /2 Ç sÇ s¤ critical LRI regime or in critical SRI by [ O]LRFP and [O]SRFPrespectively.
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Chapter 2. The long-range to short-range crossover

Figure 2.1 – RG �ow diagram of the standard picture.

This lack of computability may be dismissed as a technical problem, but there are related

conceptual puzzles. If the crossover is continuous, the spectrum of all operators, not just

Á, should vary continuously. In particular, the number of operators should be the same on

both sides of the crossover. However, for some LRFP operators no counterpart SRFP operators

appear to exist.

One such operator is Á3. We have shown in chapter 1 that the dimension of this operator at

the LRFP satis�es the “shadow relation":

[Á3]LRFPÅ [Á]LRFPÆd . (2.1.3)

This suggests that at the crossover point there should be a Z2 odd operator of dimension

d ¡ [Á]SRFP. This is puzzling, because the SRFP Ising contains, both in d Æ2 and d Æ3, a single

relevant Z2 odd scalar.

Another puzzle involves the stress tensor operator. The SRFP has a local conserved stress tensor

T¹º . Moving to the long-range regime, this operator is expected to acquire an anomalous

dimension so that it's no longer conserved. The divergence Vº Æ@¹ T¹º is thus a nontrivial

operator at the LRFP. At the crossover point the dimension of this vector operator is exactly

d Å 1. Is there such an operator in SRFP? For d Æ2 the SRFP is a solvable minimal model

conformal �eld theory (CFT), and it's easy to see by inspection that there is no such operator.

For d close to 4 one can use the weakly coupled Wilson-Fisher description, and again there

is no such operator. While in d Æ3 its existence cannot be rigorously excluded by bootstrap

studies, since Z2-even operators of odd spin have not yet been probed in this approach, Monte

Carlo simulations have put a lower bound on the dimension on the lightest spin 1, Z2 even,

operator which seems to exclude its presence [78].

The puzzle of the missing V¹ can be stated more formally in terms of “recombination rules”

of unitary representations of the so(d Å 1,1) conformal algebra. 2 Now, the standard stress

tensor of the SRFP is the lowest weight state (conformal primary) of the shortened spin-two

representation Cd
` Æ2, while the non-conserved spin-two operator of the LRFP is the conformal

primary of the long spin-two representation A ¢
` Æ2, with ¢ > d for unitarity. When the unitarity

2It is common lore that SRFP is conformally invariant, in any d . See the discussion in section 1.5.2.1.
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bound is saturated, the long spin-two representation decomposes into the semi-direct sum

A d
` Æ2 ' Cd

` Æ2 ©A dÅ1
` Æ1 . In other terms, the shortened spin-two representation can become long

only by recombining with (“eating") an additional spin-one representation, A dÅ1
` Æ1 , whose

conformal primary V¹ is however missing in the SRFP.

In this chapter we will propose a modi�ed theory of the long-range to short-range crossover,

which will both resolve the puzzle of missing states and lead to concrete predictions of how

the long-range exponents vary near the crossover point.

2.1.1 Our picture

The need to resolve the above-mentioned dif�culties leads us to the following modi�ed picture

of the LRFP to SRFP crossover (referred to as “our picture" below). Like in the standard picture,

the crossover in our picture does happen continuously and at s Æs¤ . However, and this is

where we differ, we posit that LRFP crosses over not to SRFP, but to a larger theory, which

consists from SRFP and a decoupled sector: the mean-�eld theory of a gaussian �eld Â. This

larger theory will be referred to as “SRFP+ Â". The two point (2pt) function of Â will be taken

unit-normalized: 1/ jxj2¢ Â.

Assuming our picture, we can construct the �ow from the “SRFP+ Â” theory to the LRFP by

turning on the perturbation

g0

Z
d d x O(x), O Æ¾¢Â. (2.1.4)

The sign of g0 is arbitrary since it can be �ipped by the ZÂ
2 symmetry Â ! ¡ Â. In fact the

decoupled SRFP+Â theory has an enlarged Z¾
2 £ ZÂ

2 symmetry which is broken to the diagonal

when the perturbation O is turned on. This is as it should be, since the LRFP has only a single

Z2 symmetry Á ! ¡ Á. The enlarged symmetry of SRFP+Â leads to selection rules, which will

appear many times in the RG calculations below.

Connection to the standard picture is established by integrating out Â, which should generate

precisely Sak's non-local perturbation (2.1.2). 3 This �xes the dimension [ Â] Æ(d Å s)/2, so that

[O] Æ[Â] Å [¾] Æd ¡ ±, ± Æ(s¤ ¡ s)/2. (2.1.5)

This crosses from relevant to irrelevant at the same location as before. We emphasize however

that Â is not simply a theoretical construct introduced to represent OSak, but is a physical �eld.

It should be possible to verify the existence of Â via lattice measurements. This is true even in

the short-range regime sÈ s¤ , where it is decoupled. The point is that it is decoupled from the

SRFP scaling �elds, but not from the lattice operators. It should thus be possible to detect Â by

measuring the spin-spin correlation function hSi Sj i on the lattice. At the critical point and at

3Notice that for real g0, the generated OSak has ferromagnetic, negative, sign, as it should.
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Chapter 2. The long-range to short-range crossover

Figure 2.2 – RG �ow diagram of our picture.

large distances, this function has a power law expansion of the form

hSi Sj i »
X

ck / r 2¢ k , r Æ ji ¡ j j , (2.1.6)

where ¢ k are the dimensions of Z2-odd scalar operators. We predict that at the LRFP the

dimension of Â should appear among ¢ k .

The existence of Â allows to resolve the dif�culties concerning the crossover description. First

of all, since Â and Á satisfy the shadow relation [ Â] Å [Á] Æd, Â can be identi�ed with Á3 at the

crossover point. This identi�cation and its consequences will be discussed in detail below. We

will also see that using Â one can construct a vector operator playing the role of V¹ . Finally,

since O is a local operator, we will be able to use the well-developed framework of conformal

perturbation theory to compute the long-range critical exponents near the crossover point.

The RG �ow diagram of our picture is shown in Fig. 2.2. We predict that in the intermediate

regime d /2 Ç sÇ s¤ the LRFP is the common IR endpoint of two distinct RG �ows:

1. Flow (1.1.2) from the mean �eld theory, which is weakly coupled near the lower end of

the intermediate regime ( ² ! 0). We will call this “ Á4-�ow".

2. Our newly proposed �ow emanating from the SRFP+ Â theory, which is weakly coupled

near the crossover (± ! 0). We will call this “ ¾Â-�ow".

In quantum-�eld theoretic parlance, this situation – when the same IR theory can be reached

from two different UV descriptions – is referred to as “infrared duality". A famous example is

the Seiberg duality which establishes the IR equivalence of UV-distinct N Æ1 supersymmetric

gauge theories [25]. Another example is the particle/vortex duality between the X Y model

and the U (1) Abelian Higgs model in 3d, both �owing to the same O(2) Wilson-Fisher critical

point [ 84, 85]. The novelty of our example is that the IR �xed point does not have a local stress

tensor.
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2.2. Beta-function

2.1.2 Outline

We will start by investigating the structure of the LRFP close to the crossover ( ± ¿ 1). In this

region our ¾Â-�ow provides a weakly coupled description of the LRFP, allowing a number of

explicit computations. In section 2.2 we compute the beta-function, at the leading nontrivial

order, and establish the �xed point existence. In section 2.3 we compute the leading anomalous

dimensions for the most interesting operators. In particular, we demonstrate that the stress

tensor acquires anomalous dimension, and exhibit the eaten operator V¹ , thus resolving the

paradox of missing states. These two sections include also a self-consistent presentation of

necessary conformal perturbation theory techniques.

We start section 2.4 with some all-order results for the ¾Â-�ow, established by analogy with

the Á4-�ow. We then show that the results about the LRFP obtained from the Á4-�ow and the

¾Â-�ow match together beautifully, providing compelling evidence for the infrared duality. At

this high point, we conclude.

Appendix A.2 is an (admittedly incomplete) review of our favorite works on the long-range

Ising model, both in the physics and the mathematics literature. Appendix D.1 evaluates some

integrals arising in the conformal perturbation theory calculations.

2.2 Beta-function

According to our proposal, the LRFP can be described as the IR �xed point of the ¾Â-�ow. This

description is weakly coupled for ± ¿ 1, when the ¾Âperturbation is weakly relevant. This

allows to compute the LRFP critical exponents in terms of the SRFP conformal data, known

exactly in d Æ2 [12], and with an impressive precision in d Æ3 thanks to the recent progress in

the numerical conformal bootstrap.

The standard framework to describe CFTs with turned on weakly relevant local perturbations

is conformal perturbation theory (see e.g. [ 20, 86] for d Æ2 and [21, 87] for general d ). As usual

in quantum �eld theory, we consider the perturbative expansion of observables in the bare

coupling constant in a regulated theory, and then add counterterms to cancel the dependence

on the short-distance regulator. The order n perturbative correction to an observable ¥ is

given by
gn

0

n!

Z
d d x1 . . .d d xn hO(x1) . . .O(xn )¥ i . (2.2.1)

In general, this integral is divergent when points xi collide. A convenient way to regulate is

by point splitting, restricting integration to the region where all jxi ¡ x j j È a (short-distance

cutoff). If ¥ is a local operator, there will also be divergences where xi approach ¥ , but those

are associated not with the running of the coupling but with the renormalization of ¥ . They

will be discussed and interpreted separately below.

The �rst quantity we need is the beta-function. Let g Æa±g0 be the dimensionless coupling at
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Chapter 2. The long-range to short-range crossover

the cutoff scale. The beta-function has the form

¯ (g) ´
dg

d log(1/ a)
Æ ¡±g Å .. . , (2.2.2)

where ¡ ±g is the classical term and . . . are the quantum corrections.

The order g2 correction to the beta-function is proportional to the 3pt function coef�cient

COOO . This is well known and suf�cient for most applications [ 20, 21, 86]. However, in our

case COOO vanishes, because O is odd under the ZÂ
2 symmetry Â ! ¡ Â. Analogously all

even-order contributions to ¯ (g) will vanish as well.

The lowest nonvanishing contribution will appear at order g3, at that's the only one we will

use in this work. So we will have:

¯ (g) Æ ¡±g Å ¯ 3g3 , (2.2.3)

neglecting the higher order terms. We will now review how one computes the coef�cient ¯ 3.

We aim to discuss the �xed point properties at the leading nontrivial order in ±. For this we

may neglect the dependence of ¯ 3 on ±, so we will compute it in the limit ± Æ0.4 We will also

specialize to the case COOO Æ0 of interest to us, as this simpli�es some details. See [ 88, 89] for

prior work involving third-order corrections. Our discussion owes a lot to [ 90], which covers

also the general caseCOOO 6Æ0.

For ± Æ0 the coupling g is marginal and its running is related to the logarithmic short-distance

divergence of (2.2.1). At order g3, we are interested in the divergence where three points come

close together. In this region we can use the `triple operator product expansion (OPE)':

O(0)O(x2)O(x3) » f (x2,x3)O(0) . (2.2.4)

It's easy to see that f (x2,x3) is nothing but the 4pt correlation function: 5

f (x2,x3) Æ hO(0)O(x2)O(x3)O(1 )i . (2.2.5)

This is similar to the well-known relation between the usual OPE of two operators and the 3pt

function. To check (2.2.5), use (2.2.4) in the r.h.s. and the fact that hO(0)O(1 )i Æ1.

Using (2.2.4), we see that the divergence of the integral with three O insertions is equal to the

integral with one O insertion times a divergent coef�cient, computed by integrating the 4pt

function: Z

V
d d x1 d d x2 d d x3 hO(x1)O(x2)O(x3)O(1 )i Æ AV log(1/ a) Å . . . (2.2.6)

Integration is over the region jxi ¡ x j j È a with all three points belonging to a �nite region of

4To compute higher order corrections, we would have to keep ± nonzero and set up a minimal subtraction
scheme. This will not be carried out in this work, although see the all-order discussion in section 2.4.1.

5As usual O(1 ) Ælim x!1 jxj2¢ O O(x).
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2.2. Beta-function

volume V , which serves as an IR cutoff. The IR cutoff is needed since we are interested only in

the short-distance part of the divergence.

The divergence at O(g3) can thus be canceled, and the cutoff dependence removed, by a

variation of the O(g) term, adjusting the bare coupling by ¡ Alog(1/ a) £ (g3/3!). Therefore, the

beta-function is given, to this order, by ¯ (g) Æ¯ 3g3 with

¯ 3 Æ ¡ A/3! . (2.2.7)

To isolate the coef�cient A, we use translational invariance to �x one of the points, say x3, to

0. The volume factor V cancels, and we are left with an integral of the function f (x1,x2). We

then separate the integration over the overall `size' of the pair of points ( x1,x2) and over their

relative position. Rescaling the pair by, say, jx1j, and using the fact that f has dimension 2 d we

have
Z

d d x1 d d x2 f (x1,x2) Æ
Z

d d x1 d d x2
1

jx1j2d
f

µ
x1

jx1j
,

x2

jx1j

¶
ÆSd

Z
d jx1j

jx1j

Z
d d y f (ê, y) , (2.2.8)

where ê is an arbitrary unit length vector and S d Æ2¼d /2 / ¡ (d /2) is the volume of the unit

sphere in d dimensions. The log divergence » log(L/ a) now arises from integrating over

a Ç jx1j Ç L, which is basically the pair size. So we conclude

A ÆSd

Z
d d y f (ê, y) (naive). (2.2.9)

As written this expression is naive, since the y integral must be de�ned with care. In principle,

the y integral in (2.2.8) was meant to be computed with a UV cutoff a/ jx1j. If the y integral

were convergent, we could simply extend the integration to the whole space, as this does not

affect the logarithmic divergence that we are after. However, the integral is not in general

convergent, and this complicates matters.

The complication can be traced to the fact that, in the above discussion, we neglected that

the integral (2.2.6) contains power divergences on top of the log divergence. These power

divergences have nothing to do with the running of g. Instead, they renormalize coef�cient of

the relevant operators appearing in the OPE O £ O. In our case there are two such operators,

the unit operator and the SRFP energy density operator " .6 The unit operator coef�cient is

unimportant, while that of " has to be anyway tuned to zero to reach the �xed point, as this

corresponds to tuning the temperature to the critical temperature. The bottom line is that the

power divergences need to be subtracted away.

There are two methods to do this, which give equivalent, although not manifestly identical,

�nal results. Method 1 subtracts the divergent terms, given by the relevant operators, from

the integrand f . Method 2 computes the integral (2.2.9) with a cutoff and drop the terms that

diverge when the cutoff is sent to zero. In both case we are just dropping power divergences of

6Another low-dimension scalar operator in the O £ O OPE isÂ2, but this one is irrelevant since sÈ 0.
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Chapter 2. The long-range to short-range crossover

the integral (2.2.8), and we are not changing the coef�cient of the logarithm divergence. Once

one of these methods has been employed, the integral is convergent.

Method 1. We subtract from the integrand f in (2.2.8) the singularities associated with the

two relevant operators in the limits x1 ! 0, x2 ! 0, x1 ! x2. The subtraction terms have to be

chosen so that they fully subtract the power divergence but do not modify the logarithmic

divergence. The following simple choice satis�es these constraints:

f ! f̃ Æf ¡ r 1 ¡ r " , (2.2.10)

r 1 Æ
1

jx1j2d
Å

1

jx2j2d
Å

1

jx1 ¡ x2j2d
,

r " Æ(C¾¾")
2

µ
1

jx1j2d¡ ¢ " jx2j¢ "
Å

1

jx2j2d¡ ¢ " jx1j¢ "
Å

1

jx1 ¡ x2j¢ " jx1j2d¡ ¢ "

¶
.

Here C¾¾" is the SRFP OPE coef�cient: ¾£ ¾Æ1 Å C¾¾"" Å . . . . The crucial point is that these

subtraction terms themselves only have power divergences. This is obvious for r 1. For r " ,

notice that the d d x1d d x2 integral of each term factorizes into a product of two integrals each

of which has only power divergences. So the logarithmic divergence is not modi�ed by the

subtraction procedure.

The regulated expression for A is then obtained by f ! f̃ in (2.2.9):

A ÆSd

Z
d d y f̃ (ê, y) . (2.2.11)

This integral is now convergent, although not absolutely convergent. The lack of absolute

convergence is due to the presence of relevant or marginal operators with nonzero spin in the

O £ O OPE. These are@¹ " and the stress tensor T¹º . Since these operators have nonzero spin,

their contributions vanish when integrated over the angular directions. So the integral has to

be understood in the sense of principal value, introducing and then removing spherical cutoffs

around 0, ê and 1 . These cutoffs are remnants of the original cutoffs on jx2j and jx1 ¡ x2j,

since y is the rescaled x2.

Method 2. In this method we start by splitting the integration region of (2.2.6) into three parts.

We consider one region in which x12 is the shortest distance:

R 12 Æ{x1,x2,x3 : jx12j Ç j x13j, jx12j Ç j x23j} , (2.2.12)

and the two other regions R 23 and R 13, given by permutations of the three points. It is clear

that these three regions contribute equally to the integral (2.2.6), so we can focus on R 12. As

before, we set one of the points to zero and we rescale x1 and x2 by jx1j. The logarithmic

divergence arises when integrating over jx1j. We obtain

A Æ3Sd

Z

R
d d y f (ê, y) , (2.2.13)
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where

R Æ{y : jyj Ç 1,jyj Ç j y ¡ êj} (2.2.14)

is the rescaled R 12. Integral (2.2.13) is not convergent when integrating y around 0 due to

the presence of relevant operators being exchanged. These divergences, associated with the

renormalization of the operator, need to be subtracted away. This can be again done by

computing the integral with a UV cutoff and by dropping terms that diverge when the cutoff

goes to zero.

Although Eqs. (2.2.11) and (2.2.13) are not manifestly identical, the logic of their derivation

shows that they should give identical answers (and they do, in all cases we checked). In

practical computations, both ways of proceeding have advantages and disadvantages. Method

2 fully takes advantage of the symmetry among 0 ,1,1 , while the integrands in Method 1

do not respect this symmetry (it is broken by the subtraction terms). Still, if one were

to aim for analytic expressions, Method 1 seems preferable. The shape of the integration

region in Method 2 makes it hard to compute the integral analytically. However, Method

2 will prove useful and yield more precise results when the integral needs to be evaluated

numerically. Besides, in d Æ3, where the correlation function is not known exactly but will

be constructed approximately from the bootstrap data, Method 2 allows to consider the

conformal block expansion in the s-channel only, without any need to deal with the t- and

u-channel decomposition.

We adopted Method 2 as the principal method for the beta-function computation both in

d Æ2 and d Æ3, since as we will see the integrals have to be computed numerically. While

Method 1 is less precise for the numerical evaluation, we still checked that it gives the same

results within its reduced precision.

2.2.1 Beta-function: d Æ2

The 2d SRFP is the minimal model CFT M (3,4) [12] and everything about it is known exactly.

In particular, we have ¢ ¾ Æ1/8, ¢ " Æ1, C¾¾" Æ1/2. The 4pt function of ¾is given by

h¾(0)¾(1)¾(z)¾(1 )i Æ
j1Å

p
1¡ zjÅ j 1¡

p
1¡ zj

2jzj1/4 j1¡ zj1/4
. (2.2.15)

Comparing the notation to (2.2.11), here we have �xed ê at 1 on the real axis, while y Æz runs

over the full complex plane. In spite of the appearance the 4pt function is smooth across

z 2 (1,Å1 ).

The 4pt function of Â is gaussian, given by the sum of three Wick contractions. In the same

kinematics,

hÂ(0)Â(1)Â(z)Â(1 )i Æ1Å
1

jzj2¢ Â
Å

1

j1¡ zj2¢ Â
, ¢ Â Æ2¡ ¢ ¾ Æ15/8. (2.2.16)
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Figure 2.3 – The integration region R .

The 4pt function of O is given by the product of (2.2.15) and (2.2.16):

F(z, z̄) Æ

"

1Å
1

jzj
15
4

Å
1

jz ¡ 1j
15
4

#
j1Å

p
1¡ zjÅ j 1¡

p
1¡ zj

2jzj
1
4 jz ¡ 1j

1
4

. (2.2.17)

We were not able to evaluate the integral of F(z) analytically, so we will report the results of the

numerical evaluation. We employ Method 2, so that we have to integrate over the region R .

As discussed after Eq. (2.2.9), the integral is not convergent around 0. If we expand F(z, z̄)

around z Æ0, we encounter several terms responsible for the non-convergence. The terms

jzj¡ 4 and jzj¡ 2 correspond to contributions of the identity operator and energy density "

respectively. Other terms, such as z/ jzj3 and z2/ jzj4 (Åh.c.), are the contributions of @¹ " and

T¹º in the O £ O OPE; however, they will vanish upon angular integration.

To deal with the divergences, we remove from the region R a small disk jzj Ç a around the

origin, and divide the rest into two regions: the annulus A (a Ç jzj Ç r 0) centered around

zero and its complement Ā , see Fig. 2.3. Herer 0 is arbitrary subject to a Ç r 0 Ç 1/2. In A we

expand F(z) functions as a series in z and z̄ up to some high order. We can then drop the

terms that vanish upon angular integration, and we integrate exactly the remaining terms. The

power-divergent, as a ! 0, part of the answer is dropped. In the complement of the annulus

we integrate F(z) numerically. The so regulated integral over R is then:

IdÆ2 Æ
Z

R
d 2z F(z, z̄) Æ ¡0.403746. . . (2.2.18)

All the shown digits are exact, and we checked that the result is stable against changes of r 0.

This implies

¯ 3 Æ ¡3(2¼)IdÆ2/3! Æ1.268404 (d Æ2). (2.2.19)
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2.2.2 Beta-function: d Æ3

The d Æ3 SRFP is not yet exactly solved; however, high precision results are available thanks to

the progress of the numerical conformal bootstrap [ 14–16, 41, 44]. Recently, the approximate

critical 3d Ising 4pt function extracted from the bootstrap data was used in [ 90] to study the

random bond Ising critical point. It was also used in [ 91] to qualify the non-gaussianity of the

3d Ising model.

Here we proceed analogously and will use the OPE coef�cients C¾¾O and dimensions ¢ O of

the lowest lying operators (such that ¢ O is smaller than some cutoff in the spectrum ¢ ¤ ) to

construct an approximate 4pt function for the ¾�eld:

h¾(0)¾(ê)¾(y)¾(1 )i '
1

jxj2¢ ¾

X

O :¢ O Ç¢ ¤

C2
¾¾O g¢ O ,` O (z, z̄) , (2.2.20)

where g¢ ,` are the conformal blocks. Let us �x ê Æ(1,0, . . . ,0). Then z is the complex coordinate

related to y by

z Æy1 Å i jy? j, y? Æ(y2, . . . ,yd ) . (2.2.21)

The 4pt function only depends on jy? j because of rotation invariance around the x1 axis. The

usual conformal cross ratios u, v are u Æ jzj2, v Æ j1¡ zj2. Instead of z, it will be convenient to

work with the radial coordinate ½[92]

½(z) Æ
z

¡
1Å

p
1¡ z

¢2 . (2.2.22)

In three dimensions, the conformal blocks are not known exactly; however, they can be

computed ef�ciently as a series in r and ´ Æcosµ, where ½Ærei µ, using a recursion relation

[93, 94]. The conformal block expansion converges for r Ç 1 [95], while in the integration

region R the maximum value of r is 2¡
p

3 ' 0.27Ç 1, so our series expansion will converge

exponentially fast.

When approximating the 4pt function, we have to take into account three different sources of

error:

1. We do not know the OPE coef�cients and the operator dimensions exactly, as they are

obtained through the numerical conformal bootstrap. The uncertainty due to this will

turn out to be subleading;

2. We compute the conformal blocks as a series expansion in r . Here we did it up to order

O(r 12), which provided suf�cient accuracy, but it would be straightforward to compute

them to a higher order;

3. We know the dimensions and the OPE coef�cients of primary operators only up to a

dimension ¢ ¤ . The error introduced is of order r ¢ ¤ [95]. We use data from the numerical

conformal bootstrap on operators up to dimension ¢ ¤ Æ8.
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Chapter 2. The long-range to short-range crossover

We will focus on the last source of error, since it will be the dominant one. The error one

introduces when truncating the conformal block expansions of a 4pt function of identical

scalars ¾to some dimension ¢ ¤ was estimated in [95](see also [96]) to be

¯
¯
¯
¯
¯

X

O :¢ O > ¢ ¤

C2
¾¾O g¢ O ,` O (z, z̄)

¯
¯
¯
¯
¯
.

24¢ ¾

¡ (4¢ ¾Å 1)
¢ 4¢ ¾

¤ j½(z)j¢ ¤ . (2.2.23)

This error estimate is essentially optimal for real 0 Ç z Ç 1, when the 4pt function is in a

re�ection positive con�guration, and all conformal blocks are positive. This corresponds to

the con�guration with ´ Æ1 in the ½plane. For con�gurations with ´ Ç 1, conformal blocks

decrease in absolute value by unitarity, and hence the same estimate (2.2.23) applies, although

it's no longer optimal. When we integrate the 4pt function over the ´ coordinate, we will

not be in a re�ection positive con�guration, but we will nonetheless bound the truncated

operators contribution by its largest possible value, obtained for ´ Æ1. Clearly, the obtained

error estimate will be overly conservative, since it does not take into account cancelations due

to the varying sign of contributions of operators with spin.

Once we have constructed the approximated 4pt function, we integrate it in the region R .7

We follow the procedure outlined in appendix C of [ 90]: this consists in expanding the 4pt

function as a power series in r and ´ , then integrating over r and dropping the diverging

contributions of the identity and the energy operator. Finally we series-expand again with

respect to ´ and we integrate the result exactly.

The data concerning the operator dimensions up to ¢ ¤ Æ8 and their OPE coef�cients can

be found in Table 2 of [ 16] (our C¾¾O Æ f¾¾O given in that table). The OPE coef�cients

given there are in the normalization for which the small r limit of the conformal block is

g¢ ,` ' ` !
(º )`

(¡ 1)` Cº
` (´ )(4r )¢ Å .. ., where Cº

` is a Gegenbauer polynomial, º Æd
2 ¡ 1 Æ1/2 and

(º )` is the Pochhammer symbol. Using these values, we obtain IdÆ3 Æ ¡1.950§ 0.005. The

error is dominated by the truncation error, which we estimate by integrating (2.2.23). 8 The g3

term of the beta-function is then

¯ 3 Æ12.26§ 0.03 (d Æ3). (2.2.24)

2.2.3 Fixed point existence

If 0 Ç ± ¿ 1, the �ow that we are studying will reach a �xed point at

g2 Æg2
¤ Æ±/ ¯ 3 . (2.2.25)

This �xed point is naturally identi�ed with LRFP. Notice that for our picture to be correct, we

must have ¯ 3 È 0 (otherwise the �xed point at real g does not exist). The sign of ¯ 3 was not

7In r and ´ coordinates, the region R is given by 0 Ç r Ç r¤ (j´ j) and ¡ 1 Ç ´ Ç 1, with r¤ (´ ) Æ2Å ´ ¡
q

´ 2 Å 4´ Å 3.
8For comparison, if we only use operators up to ¢ ¤ Æ6, we obtain the same central value but with a much larger

error estimate: IdÆ3 Æ ¡1.95§ 0.08. This con�rms that the error estimate is overly conservative.
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2.3. Anomalous dimensions

manifest in the above calculations, since the regulated integrals are not sign-de�nite. 9 Still,

we have seen that ¯ 3 is positive in both d Æ2 and d Æ3. This provides a nontrivial check on

our picture.

That ¯ 3 È 0 means that the operator ¾Âis marginally irrelevant at the crossover. The �ow at

the crossover will be affected by logarithmic corrections to scaling due to ¾Â. One must be

aware of this fact when interpreting Monte Carlo simulation data in the crossover region. See

the discussion in appendix A.2.1.

2.3 Anomalous dimensions

When deforming a CFT with a local perturbation, operators renormalize and acquire anoma-

lous dimensions. Let us recall how these are computed in conformal perturbation theory. As

usual, we require observables to be cutoff independent. To �nd the anomalous dimension of a

local operator ©(x), assumed unit-normalized, we look at an observable with one insertion of

©, h©(0)¥ i . Perturbative corrections will be given by

gn

n!

Z
d d x1 . . .d d xn h©(0)O(x1) . . .O(xn )¥ i . (2.3.1)

We regulate the integral by point splitting, with a short distance cutoff a, like in section 2.2.

There we dealt with the divergences and cutoff dependence which appear when operators O
approach each other. Those were taken care of by renormalization of the coupling, leading to

the nontrivial beta-function. Now we are interested in the additional divergences, in particular

the logarithmic ones, which appear when operators O collide with ©.

We de�ne a renormalized operator ©R, whose correlation functions remain �nite in the a ! 0

limit. This is related to the bare operator by

© ÆZ©(g,a)©R . (2.3.2)

The anomalous dimension of © will then be given by 10

° © Æ ¡
1

Z©

@Z©

@log(1/ a)
. (2.3.3)

The above discussion was general, but now let us specialize to the �ow which interests us,

namely SRFP+Â perturbed by (2.1.4). We are ultimately interested in ± È 0 small, but at

the leading order we can compute the anomalous dimension for ± Æ0, when it's related

to the log divergence as above. Moreover, order g corrections will vanish thanks to the ZÂ
2

9As a curiosity we notice that if it were not for the subtraction terms which had to be introduced in the process
of disentangling short-distance divergences, then A would be positive, and ¯ 3 negative.

10Compared to equation (1.2.15), there is an extra minus sign here. The reason behind this is that we are
regulating the theory in a different way, i.e. point splitting, compared to what we did in the previous chapter.
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Chapter 2. The long-range to short-range crossover

symmetry of the unperturbed theory, since ©O© will be odd no matter if © is even or odd,

and hence C©O© Æ0. We will therefore be interested in the anomalous dimension to order g2.

The computation of this anomalous dimension parallels the beta-function computation. To

extract the short-distance divergence giving rise to the cutoff dependence of ©, we consider

the `triple OPE'

©(0)O(x1)O(x2) » h(x1,x2)©(0) , (2.3.4)

where h is the 4pt function

h(x1,x2) Æ h©(0)O(x1)O(x2)©(1 )i . (2.3.5)

If the short-distance logarithmic divergence is

Z

V
d d x1d d x2h©(0)O(x1)O(x2)©(1 )i ÆB log

1

a
Å .. . (2.3.6)

the renormalized operator will be made cutoff-independent by the choice

Z© Æ1Å
g2

2
B log

1

a
Å O(g3) . (2.3.7)

It follows that at the �xed point, where g Æg¤ , the operator © will acquire an anomalous

dimension of

° © Æ ¡
g2

¤

2
B Å O(g3

¤ ) . (2.3.8)

As before, we rescale the two integration points x1 and x2 by jx1j. The logarithmic divergence

of the integral (2.3.6) is then

B ÆSd

Z
d d yh©(0)O(y)O(ê)©(1 )i (naive). (2.3.9)

Just like for the beta-function, this “naive" answer needs to be regulated because of short-

distance power divergences which we neglected.

Excluding the case © ÆO, the OPE © £ O does not contain the unit operator and the stress

tensor. Nor does it contain © since C©©O Æ0. Assuming all other operators in the OPE have

dimension larger than ©, the above integral is convergent near 0 and 1 . Let us proceed under

the above assumptions, otherwise minor obvious modi�cations will be required.

The integral does present power divergences for y close to ê. These divergences are due to the

unit operator and " in the O £ O OPE. As already mentioned in the beta-function discussion,

they do not have anything to do with the critical point physics. We have to subtract and drop

these divergences, but we have to do this in a way which does not modify the log divergence

in�uencing the anomalous dimension of the operator ©. We have again two different ways to

proceed, with minor modi�cations compared to the beta-function computation.

Method 1. We subtract the contributions of the relevant operators at the level of Eq. (2.3.6),
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2.3. Anomalous dimensions

so that the logarithmic divergences are unchanged. Just as (2.3.9), (2.3.6) diverges only when

x1 ! x2, while it is �nite for xi close to 0 and to 1 . Given that the relevant operators appearing

in the O £ O OPE are the identity and the " operator, we can use the subtraction

h©(0)O(x1)O(x2)©(1 )i ! h ©(0)O(x1)O(x2)©(1 )i ¡
1

jx1 ¡ x2j2d
¡

C©©" COO "

jx1 ¡ x2j2d¡ ¢ " jx1j¢ "
.

(2.3.10)

Then we rescale the points by jx1j, we obtain the following regulated expression for the

logarithmic divergence coef�cient:

B ÆSd

Z
d d y

·
h©(0)O(y)O(ê)©(1 )i ¡

1

jy ¡ êj2d
¡

C©©" COO "

j y ¡ êj2d¡ ¢ "

¸
. (2.3.11)

Method 2. We split again the integration region of (2.3.6) into three smaller subregion. This

will make the numerical evaluation of the integral simpler. Clearly, the contribution of the

integration region with x1 close to zero, jx1j Ç j x2j and jx1j Ç j x1 ¡ x2j, is the same as that of the

region with x2 close to zero. However, the contribution of the region where x1 and x2 are close

together will be different. By the same logic as for (2.2.13), we obtain a regulated expression

for (2.3.9):

B ÆSd

Z

R
d d y

©
2h©(0)O(y)O(ê)©(1 )iÅhO(0)O(y)©(ê)©(1 )i

ª
. (2.3.12)

The integration region R is the same as in the previous section. The �rst term is �nite since y

is separated from ê. The second term has powerlike divergences, but no log divergences, for y

close to 0; we make it �nite by dropping the divergent terms.

2.3.1 Results: d Æ2

We will now apply the developed formalism to determine the anomalous dimension of a few

selected operators, �rst in d Æ2 and then in d Æ3.

2.3.1.1 Â, ¾and O

The arguments and the results of this section work for any dimension, so we keep d general.

We will see in section 2.4.1 that the anomalous dimensions of the three operators we consider

here can be discussed to all orders. As a check, we will reproduce here the lowest-order

versions of those results using the general formalism.

We consider �rst the �eld Â. It clearly plays a very special role the ¾Â-�ow, being described

by a non-local action in the UV. As a consequence, we expect that Â does not get anomalous

dimension to all orders in ±. This is similar to what happens for the Á �eld in the Á4-�ow. Here

we will check, by an explicit computation, that the anomalous dimension of Â vanishes at

order g2.
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Chapter 2. The long-range to short-range crossover

To see this, observe that the integral (2.3.6), with © ÆÂand O Æ¾Â, only has power divergences,

and no logarithmic divergences. Indeed its integrand is

1

jx1 ¡ x2j2¢ ¾

µ
1

jx1j2¢ Â
Å

1

jx1j2¢ Â
Å

1

jx1 ¡ x2j2¢ Â

¶
. (2.3.13)

The integral only has power divergences by the same argument as that given for the beta-

function subtraction terms (2.2.10). If we were to apply Method 1 to this integral, we would

end up with an identically vanishing integrand. Notice that in this case the OPE ©£ O contains

an operator ¾with dimension ¢ ¾ Ç ¢ ©, So more subtraction terms are needed than the ones

given in Eq. (2.3.11). After these subtractions, the integrand is identically zero.

Next we consider the �eld ¾. It is also special, because it acts as a source for Â, and so the

classical equation of motion (EOM) of Â sets a linear non-local relation between the two. In

quantum theory, this non-local EOM implies that the IR dimensions of ¾and Â satisfy the

shadow relation:

¢ Â Å ¢ ¾ Æd . (2.3.14)

This should be compared with the shadow relation (2.1.3) for the Á4-�ow. The two relations

suggest that in the IR limit of the two �ows, Á has to be identi�ed with ¾, and Á3 with Â. This

�ts nicely our proposed IR duality and will be discussed further in section 2.4.2.

Here we will check the shadow relation at the leading order in g. The anomalous dimension

of the spin �eld ¾can be reduced by a trick to the g3 term of the beta-function, which we

already computed. Let us consider the original integral (2.3.6) for © Æ¾. It's easy to see that

this integral (multiplied by the overall volume) is exactly one third of the integral (2.2.6) in

the beta-function calculation. Indeed, the integrand in both cases involves the 4pt function

of ¾multiplied by a correlation function of Â, which has one term in the �rst case and three

terms in the second one. These three terms all contribute equally, and so we obtain B ÆA/3.

This fact is not manifest the expressions provided by Methods 1 and 2, but we checked it

numerically. Given B ÆA/3, the anomalous dimension of ¾is found to be:

° ¾ Æ± Å O(±2) . (2.3.15)

This checks the shadow relation at the lowest order. 11

Finally, we discuss the operator O Æ¾Âwhich drives the �ow. By the general RG arguments,

the anomalous dimension of this operator should be given by:

° O (g) Æ¯ 0(g) . (2.3.16)

11We notice that, as a consequence of the discussed RG equations, the 2pt function h¾¾i at the crossover(± Æ0)
exhibits a 1/ log r suppression in presence of the marginally irrelevant ¾Âperturbation. See appendix B of [2].

54



2.3. Anomalous dimensions

Using the leading beta-function expression, at the �xed point this becomes

° O (g¤ ) Æ3±, (2.3.17)

up to order g2 corrections. As expected, O becomes irrelevant at the IR �xed point:

[O]LRFPÆd Å 2± Å O(±2), (2.3.18)

Eq. (2.3.17) can also be obtained in the formalism of the previous section. It follows by noticing

that B ÆA for the renormalization of O.

2.3.1.2 "

To compute the anomalous dimension of " , we need to use the result from the Ising minimal

model (see e.g. [97])

h" (0)¾(z)¾(1)" (1 )i Æ
j1Å zj2

4jzjj1¡ zj1/4
. (2.3.19)

To obtain the correlation function h" OO" i we multiply (2.3.19) by hÂ(z)Â(1)i . This time we will

use Method 1, and we will be able to carry out the integration analytically. We need to subtract

the divergent terms due to the relevant operators, as shown in (2.3.11). The " subtraction term

is absent since, thanks to the Kramers-Wannier duality, C""" Æ0 in two dimensions. We obtain

the integral
Z

d 2z
1

j1¡ zj4

µ
j1Å zj2

4jzj
¡ 1

¶
, (2.3.20)

to be computed with circular cutoffs around 0, 1 and in�nity. Careful evaluation shows that

this integral is zero, see appendix D.1 for the proof. Unfortunately, the only proof we found was

by brute force, and it would be nice to �nd an underlying reason. We also checked this result

by numerical evaluation. Numerically, this was also previously observed in [ 90], Eqs. (6.14)

and (5.28), in an unrelated computation which led to the same integral.

Therefore the anomalous dimension of " vanishes at order g2
¤ , while order g3

¤ will be zero by

the Z2 selection rules. Therefore

° " ÆO(g4
¤ ) ÆO(±2) (d Æ2). (2.3.21)

2.3.1.3 T¹º

We now come to the discussion of the stress tensor operator, the source of some paradoxes

discussed in the introduction. The LRFP is a non-local theory, and we do not expect it to

contain a conserved local stress tensor operator. Let us examine this issue from the RG point

of view. The UV theory SRFP+Â consists of two decoupled sectors. The SRFP is a local theory,

with a conserved local stress tensor which we call T¹º . The Â sector is non-local, without a
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Chapter 2. The long-range to short-range crossover

local stress tensor.12 When we perturb the UV theory with the operator ¾Â, the two sectors

are no longer decoupled and locality of the SRFP is lost. This implies that, at the IR �xed

point, the operator T¹º will acquire an anomalous dimension. We will still call it T¹º and will

sometimes refer to it as the `stress tensor', but it has to be kept in mind that this operator will

not be conserved at the IR �xed point.

We will compute the T¹º anomalous dimension in two ways, �rst directly and then using the

multiplet recombination which will clarify the puzzle of missing states.

For the direct computation, it is suf�cient to consider only one tensor component, say T ´ Tzz,

as all the components will acquire the same anomalous dimension. The stress tensor in the

UV is conventionally normalized as

hT (z, z̄)T (0)i Æ
c

2

1

z4 . (2.3.22)

In the case of the two dimensional Ising model, the central charge is c Æ1
2 . The 4pt function

hT (0)¾(z)¾(1)T (1 )i is then recovered in the standard way using the Ward identity twice on

the 2pt function of ¾. For the 4pt function involving two O insertions we obtain:

hT (0)¾Â(z)¾Â(1)T (1 )i Æ
1

j1¡ zj4

µ
1

4
Å

(1¡ z)2(z2 Å 30z Å 1)

256z2

¶
. (2.3.23)

Although the stress tensor is not a scalar operator, the discussion of section 2.3 on how to

compute the anomalous dimensions still applies. We aim for an analytic result and use Method

1. SinceCT T " Æ0 in d Æ2, we only need to subtract the contribution of the identity in (2.3.11).

Note that since the stress tensor is not unit-normalized, subtracting the contribution of the

identity means subtracting (4 jz ¡ 1j4)¡ 1. The resulting integral can be evaluated exactly:

Z
d 2z

1

(1 ¡ z̄)2

(z2 Å 30z Å 1)

256z2 Æ ¡
15

128
¼. (2.3.24)

There is a subtlety in this computation related to the contribution of the region near z Æ1.

This is explained in appendix D.1.

Eq. (2.3.8) as written is valid for the unit-normalized operators. To make up for the fact that T

is not, we need to multiply its r.h.s. by an extra factor 2/ c. Finally, we obtain:

° T Æ
15

32
¼2g2

¤ Å O(g4
¤ ) ¼3.65± Å O(±2) (d Æ2), (2.3.25)

where we used (2.2.25) and (2.2.19).

We will now recompute the same anomalous dimension using the recombination of multi-

12This is easy to check explicitly. The Â sector being gaussian, all local operators are normal-ordered products of
Â and its derivatives, and by inspection there is no spin 2, dimension d operator which could play the role of a
local stress tensor.
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plets.13 As we will see, this method requires only the integration of a 3pt function �xed by a

Ward identity, and gives ° T as a function of ¢ ¾ and of the central charge c for arbitrary d . So

we switch to general d until the end of this section.

The stress tensor at the SRFP satis�es conservation equation @¹ T¹º Æ0, meaning that some

of his descendants are zero. As we say, it belongs to a short multiplet. The same operator

taken to the IR, to the LRFP, which is a non-local theory, is not expected to be conserved:

@¹ T¹º / Vº 6Æ0. In other words, the stress tensor multiplet becomes long by eating the

Vº multiplet. The vector Vº must exist in the UV theory as well; this was puzzling in the

standard picture. The puzzle is neatly resolved in our picture, since this multiplet can be easily

constructed with the help of the Â �eld. Namely, we have:

Vº Æ¾(@º Â) ¡
¢ Â

¢ ¾
(@º ¾)Â. (2.3.26)

This is clearly a vector �eld and of dimension d Å 1 at the crossover point. The relative

coef�cient between the two terms is �xed by requiring that Vº be a (non-unit normalized)

vector primary at the crossover. For this it is suf�cient to check that the 2pt function of Vº and

of the descendant @º (¾Â) vanishes.

Since V¹ given above is the only candidate to be eaten, at the IR �xed point we expect

@¹ T¹º Æb(g)Vº , (2.3.27)

where b(g) ! 0 asg ! 0.

We will be interested in the �rst nontrivial order: b(g) Æb1g Å O(g2). The value of b1 can be

determined by studying the 2pt function of V¹ with T¹º , computed at �rst order in perturbation

theory. It will be more convenient to utilise the descendant @¹ T¹º , as this will allow us to use

the Ward identity. On the one hand from multiplet recombination (2.3.27) we expect at the

lowest order in g¤ :

h@¹ T¹º (x)V½(y)i g ¼b1g¤hVº (x)V½(y)i 0 . (2.3.28)

Here and below we mark with subscript g the IR �xed point correlators, while with subscript 0

the correlators in the UV theory SRFP+ Â. The 2pt function of V¹ entering this equation can be

computed explicitly given its de�nition:

hV¹ (x)Vº (0)i 0 Æ2d
¢ Â

¢ ¾

I ¹º (x)

jxj2dÅ2
, I ¹º (x) Æ±¹º ¡ 2

x¹ xº

x2 . (2.3.29)

Notice that this functional form is consistent with the conformal primary nature of V¹ .

On the other hand perturbation theory predicts for the correlator in the l.h.s. of (2.3.28)

h@¹ T¹º (x)V½(y)i g Æg¤

Z
d d zh@¹ T¹º (x)V½(y)O(z)i 0 . (2.3.30)

13For recent discussions of multiplet recombination in various CFT contexts see e.g. [64, 98–100].
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The 3pt function that we need to integrate is the sum of two factorized terms:

h@¹ T¹º (x)V½(y)O(z)i 0 Æ h@¹ T¹º (x)¾(y)¾(z)ih@½Â(y)Â(z)i 0

¡
¢ Â

¢ ¾
h@¹ T¹º (x)@½¾(y)¾(z)ihÂ(y)Â(z)i 0 . (2.3.31)

When the 3pt functions in the r.h.s. are expressed using the Ward identity 14 of the unperturbed

theory, we get terms proportional to ±(x ¡ y) and to ±(x ¡ z). We assume that x 6Æy, so only

/ ±(x ¡ z) terms are important. They yield a non-zero contribution when we integrate over z.

We obtain

Z
d d zh@¹ T¹º (x)V½(0)O(z)i 0

Æ ¡h¾(x)@º ¾(0)ih@½Â(x)Â(0)iÅ
¢ Â

¢ ¾
h@º ¾(x)@½¾(0)ihÂ(x)Â(0)i Æ2¢ Â

I º½(x)

jxj2dÅ2
. (2.3.32)

Using (2.3.28), (2.3.29), (2.3.30), the value of b1 is �xed:

b1 Æ¢ ¾/ d . (2.3.33)

Now let us compute the anomalous dimension of T¹º . The 2pt function normalization

customary for d dimensional CFT is [101] (see also [102])

hT¹º (x)T½¾(0)i Æ
cT

2S2
d

1

jxj2¢ T

·
I ¹½ (x)I º¾ (x) Å

¡
¹ $ º

¢
¡

2

d
±¹º ±¸¾

¸
, (2.3.34)

In this normalization, and assuming the Ward identities are normalized as in note 14, the free

massless scalar hascT Æd/( d ¡ 1).

Eq. (2.3.34) follows just from conformal invariance and the fact that T¹º transforms as a rank 2

symmetric traceless primary. So it's valid both at the SRFP in the UV, and at the LRFP in the

IR.15 In the UV we have cT ÆcSRFP
T and ¢ T Æd, corresponding to the conserved local stress

tensor. In the IR both cT and ¢ T receive O(g2
¤ ) corrections. At the intermediate distances there

is some interpolating behavior which will not be important.

Let ¢ T Æd Å ° T in the IR, where ° T is the anomalous dimension. The quantity of interest is

the 2pt function of the divergence of T¹º at the LRFP which can be found by an explicit

differentiation of (2.3.34). This vanishes for ° T Æ0, consistent with the fact that T¹º is

14In this general d argument we normalize the stress tensor so that the Ward identity takes the form
h@¹ T¹º (x)O1(x1) . . .On (xn )i Æ ¡

P
i ±

¡
x ¡ xi

¢
@xi

º hO1(x1) . . .On (xn )i . Notice that it's not the same as the nor-
malization usually used in 2d.

15This argument relies on conformal invariance of the LRFP, discussed in the previous chapter. It's also possible
to see without invoking conformal invariance that the tensor structure of the 2pt function is preserved along the
RG �ow. This follows from the fact that the rescaling needed to make the operator �nite depends only on the
indices of the operator and not on any other insertions in the correlation function. It's part of the same argument
which shows that all tensor components get the same anomalous dimension.
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conserved in the UV, and for nonzero ° T is given by:

h@¹ T¹º (x)@½T½¾(0)i g ¼
cT

S2
d

° T

µ
d Å 1¡

2

d

¶
I º¾

jxj2dÅ2
, (2.3.35)

In (2.3.35) we dropped terms higher order in g2
¤ . One such higher order term is the correction

to cT which will not play any role, so in all subsequent equations cT ÆcSRFP
T .

At the same order, using the recombination of multiplets equation (2.3.27), we expect:

h@¹ T¹º (x)@½T½¾(0)i g ¼b2
1g2

¤hVº (x)V¾(0)i 0 . (2.3.36)

From the last two equations, the 2pt function of V¹ , and the value of b1 we �nd the lowest-order

anomalous dimension of the stress tensor:

° T Æ
2S2

d

cT

¢ ¾(d ¡ ¢ ¾)

d 2 Å d ¡ 2
g2

¤ Å O(g4
¤ ) . (2.3.37)

Let us now specialize to d Æ2. In the usual 2d normalization, the 2d critical Ising has central

charge 1/2, half that of the free massless scalar. As mentioned, cT Æ d
d¡ 1 Æ2 for the free

massless scalar in the normalization of (2.3.34) and of note 14, and so cT Æ1 for the 2d Ising

in the same normalization. It is then easy to see that (2.3.37) agrees with the result (2.3.25)

obtained via the integration of the 4pt function.

2.3.2 Results: d Æ3

The anomalous dimensions of Â, ¾and O were already discussed in section 2.3.1.1 for any d .

2.3.2.1 "

Recall that order g2
¤ anomalous dimension of the energy operator was zero in d Æ2, for

mysterious reasons unexplained by any obvious symmetry. As we will see this does not happen

in three dimensions. We set up a numerical computation for this anomalous dimension using

the CFT data from the numerical conformal bootstrap. In order to compute the 4pt function

h"¾¾"i , we will need the operator dimensions and the OPE coef�cients of the operators

appearing in the ¾£ ¾, ¾£ " and " £ " OPEs. For operators up to ¢ ¤ Æ8, these can be found in

Table 2 of [16]. We will use Method 2. We construct the 4pt function in the region where one "

is close to one O and the region where the O's are close together:

h" (0)¾(z)¾(1)" (1 )i Æ
1

jzj¢ ¾Å¢ "

X

O :¢ O Ç¢ ¤

C2
¾"O g¢ "¾,¢ ¾"

¢ O ,` O
(z, z̄) , (2.3.38)

h¾(0)¾(z)" (1)" (1 )i Æ
1

jzj2¢ ¾

X

O :¢ O Ç¢ ¤

C¾¾OC"" O g0,0
¢ O ,` O

(z, z̄) . (2.3.39)
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Chapter 2. The long-range to short-range crossover

Here g¢ O ,` O with upper indices are the conformal blocks for the external scalars with unequal

dimensions, which we compute via recursion relations from [ 45]. The operators entering the

sum in the �rst (resp. second) equation are Z2 odd (resp. even). In both cases, we will be

integrating over the region R de�ned in section 2.2.

Once again, the largest error contribution when approximating the 4pt function will come

from the truncation of the spectrum at dimension ¢ ¤ . The same line of reasoning used to

obtain the truncation error for four identical scalar in [ 95] will go through in the case of

equation (2.3.38). Analyzing the proof in [ 95], it's possible to see that the truncation error will

be given by (2.2.23) with the change ¢ ¾ ! (¢ ¾Å ¢ " )/2 in all occurrences in the r.h.s.

For equation (2.3.39), however, we cannot map the 4pt function onto a re�ection positive

con�guration, and therefore we cannot �nd a bound on the contribution of the truncated

operators in the same way. We need to �rst use Cauchy's inequality so that the tail of h¾¾""i

can be bounded by the tails of h¾¾¾¾i and h"""" i . At this point we can use again the result of

[95], and we obtain
¯
¯
¯
¯
¯

X

O :¢ O È¢ ¤

C¾¾OC"" O g0,0
¢ O ,` O

(z, z̄)

¯
¯
¯
¯
¯
.

22¢ ¾Å2¢ "

p
¡ (4¢ ¾Å 1)¡ (4¢ " Å 1)

¢ 2¢ ¾Å2¢ "
¤ j½(z)j¢ ¤ . (2.3.40)

Truncating the CFT data up to ¢ ¤ Æ8,16 and carrying out the integration in the region R , we

obtain a nonzero value, unlike in d Æ2. The order g2
¤ anomalous dimension is

° " ¼3.3g2
¤ Å O(g4

¤ ) ¼0.27± Å O(±2) (d Æ3), (2.3.41)

where in the second equality we used (2.2.25) and (2.2.24). The total truncation error on

the coef�cient 3.3, estimated as above, is § 0.5. So we are con�dent that " gets a nonzero

anomalous dimension in d Æ3 already at the lowest order allowed by the Z2 selection rules.

2.3.2.2 T¹º

In d Æ3 the data needed to compute the 4pt function hT ¾¾T i are not yet available. So we

cannot compute the anomalous dimension of T¹º using the formalism of section 2.3. However,

we can still use the general d expression (2.3.37) obtained by using the recombination method.

Using the spin �eld dimension ¢ ¾ Æ0.5181489(10) [15] and the central charge cT / cfree
T Æ

0.946539(1) [44, 90] with the free scalar central charge cfree
T Æd/( d ¡ 1) Æ3/2, we get

° T Æ28.60555(6)g2
¤ Å O(g4

¤ ) ¼2.33± Å O(±2) (d Æ3). (2.3.42)

16Beware of the changes in normalization of OPE coef�cients between [ 16] and [ 45, 90], explained in appendix
A.3 in [16].
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2.4 Infrared duality

2.4.1 All-order conjectures about the ¾Â-�ow

We have seen in the previous chapter how many nontrivial facts about the Á4-�ow can be

proved to all orders in the ² -expansion. Here we will give a parallel discussion for the ¾Â-�ow.

Arguing by analogy, we will motivate a number of all order results in the ±-expansion. In the

next section we will see how it all �ts together with the infrared duality.

Compared to the standard perturbation theory of a Lagrangian �eld theory, whose structural

properties are well-understood to all orders, conformal perturbation theory is an underde-

veloped subject. The usual discussion starts from perturbing a CFT by a weakly relevant

operator O of scaling dimension d ¡ ±, where ± ¿ 1. To de�ne perturbation theory, one needs

a regulator, and point splitting is a natural choice. However point splitting is awkward to

implement at higher orders. Dimensional regularization or analytic regularization in ± are

not viable in general, because the CFT may exist or be tractable only for a �xed spacetime

dimension, and because the relevant perturbation usually exists only for a �xed, physical

value of ±. This is unlike Lagrangian perturbation theory, where correlation functions can be

analytically continued to arbitrary d .

Fortunately, the case of the ¾Â-�ow is better than this generic situation, since the dimension

of Â is a continuously varying parameter – the gaussian action which governs the dynamics of

Â is de�ned for any ¢ Â. So in our case we can consider analytic continuation in ± as a way to

regulate integrals. This provids a potential pathway to an all-order discussion.

We will now discuss how things might plausibly work out in this all-order perturbation theory.

The results will be in agreement with the �nite order computations that we performed in

sections 2.2, 2.3 using the point-splitting regulator, and with further subsequent checks. Still,

our all-order discussion of the ¾Â-�ow will not reach the level of rigor which was possible for

the Á4-�ow.

The basic object to study are the correlators of Â, de�ned in perturbation theory by series-

expanding the interaction, evaluating the correlation functions in the factorized theory, and

integrating using the above-mentioned analytic regulator. Some integrals will produce poles

in ±. We conjecture that, to all orders, such poles can be removed by de�ning the renormalized

coupling g related to the bare coupling by the usual relation:

g0 ÆZg (g,±)¹ ±g (2.4.1)

(the function Zg is of course different from that of the Á4-�ow). This conjecture seems

reasonable because SRFP does not contain any marginal operator. Our computations in

sections 2.2, 2.3 can be seen as a low-order test. It would be nice to �nd a full proof. 17

17We are grateful to David Simmons-Duf�n for discussions and for sharing his unpublished notes on all-order
conformal perturbation theory.
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Chapter 2. The long-range to short-range crossover

Assuming the conjecture, we can derive analogues of the all-order Á4-�ow statements by an

almost verbatim repetition of the arguments.

A part of the conjecture is that the gamma-function of Â is zero. This is motivated in the same

way as for Á in the Á4 �ow. Namely, that poles in ± correspond to short-distances divergences

of the integral for ± Æ0, the divergences are local, and the action of Â is non-local, so it can't

be renormalized. We then obtain that the anomalous dimension of Â at the �xed point is

identically zero. This is an all-order generalization of the lowest-order result in section 2.3.1.1.

For future use, notice that if Â is unit-normalized in the UV, then in the IR we will have

hÂ(x)Â(0)i Æ
1Å · (±)

jxj2¢ Â
, (2.4.2)

It's clear that · has an expansion in even powers of g so · (±) ÆO(±) for small ±. In fact from

the lowest order diagram we can easily obtain (using (1.3.14)):

· Æg2
¤¼d

¡
³

d
2 ¡ ¢ ¾

´
¡

³
¢ ¾¡ d

2

´

¡ (¢ ¾) ¡ (d ¡ ¢ ¾)
Å O(g4

¤ ) . (2.4.3)

This is negative, similarly to how ½(² ) starts out negative for small ² .

We can argue that the IR �xed point of the ¾Â-�ow should be conformally invariant. Indeed,

we can derive the broken conformal Ward identities for the ¾Â-�ow by the same Caffarelli-

Silvestre trick. We can then show that these Ward identities imply the conformal invariance in

the IR.

We also have a non-local EOM:
Z

d d y
1

jx ¡ yj2(d ¡ ¢ Â)
Â(y) ÆC0¾(x). (2.4.4)

From this we can see that the shadow relation ¢ ¾ Å ¢ Â Æd holds at the IR �xed point,

generalizing the lowest-order result in section 2.3.1.1.

Finally, we can repeat verbatim the calculation of appendix A.1. Given (2.4.2), we obtain

¸ 12¾̃

¸ 12Ẫ
ÆM̂3

s
1Å · (±)

· (±)M̂2
, (2.4.5)

where M̂2 and M̂3 are the “shadow” quantities obtained from (A.1.8) and (A.1.4) replacing ¢ Á

with ¢ Â Æd ¡ ¢ Á.
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2.4.2 Duality interpretation

We have seen that the both Á4-�ow and ¾Â-�ow have a conformally invariant IR �xed

point. The dimensions of two operators at the �xed point are exactly known (one by non-

renormalization, another by the shadow relation):

[Á] Æ(d ¡ s)/2, [ Á3] Æ(d Å s)/2, (2.4.6)

and

[Â] Æ(d Å s)/2, [ ¾] Æ(d ¡ s)/2. (2.4.7)

The Á4-�ow relations have been proved to all orders in ² Æ2s¡ d ¿ 1, near the crossover to

mean �eld. 18

Under the reasonable assumption of renormalizability, the ¾Â-�ow relations hold to all orders

in ± Æ(s¤ ¡ s)/2 ¿ 1, near the crossover to short range.

The most natural interpretation of these results is that there is only one CFTs for each s, which

describes the �xed points of both �ows (infrared duality). The �elds Á,Á3 for the �rst �ow

have to be identi�ed in the IR with ¾,Â for the second �ow (up to proportionality coef�cients).

Finally, the above equations for the IR �eld dimensions are valid exactly and not just in

perturbation theory. Indeed, if there were nonperturbative corrections, say, to the �rst set of

equations, they would presumably become largest near the short-range crossover, but this is

where the second set of equations becomes accurate and shows that there are no corrections.

Figure 2.4 – The dependence of dimensions of several important operators on s.

18The fact that the anomalous dimension of Á is zero can also be seen from the realization of LRFP as a defect
CFT via the Caffarelli-Silvestre trick, reviewed in section 1.4.3. It follows from the bulk equations of motion together
with the assumptions of conformal invariance and bulk-to-defect OPE. See the discussion around Eq. (4.34) in [ 48].
We are grateful to Pedro Liendo and Marco Meineri for emphasizing this connection to us.
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Chapter 2. The long-range to short-range crossover

See Fig. 2.4 for the predicted dependence of the most important LRFP operator dimensions

on s between the mean-�eld and the short-range crossovers. The solid lines joining Á to ¾

and Â to Á3 are straight lines. The other lines are known only approximately in the ² and ±

expansion around the crossovers. The shown shape of the lines is the simplest consistent with

these asymptotics. The line joining Á2 to " deserves a comment. We have [Á2] Æ(d ¡ ² )/2 Å ° Æ

d ¡ ² /6 Å O(² 2) near the mean-�eld crossover, so that the line starts going linearly down. In

d Æ3 it joins to ¢ " ¼1.41Ç d /2 with the negative �rst derivative, see (2.3.41). However, in d Æ2

it rises back up to ¢ " Æ1 Æd/2 and has a zero �rst derivative at the crossover, see (2.3.21).

As a further check of the duality, we will show that the relations (A.1.10) and (2.4.5) for the OPE

coef�cients can be made compatible with each other. We must have

¸ 12Á̃3

¸ 12Á̃
´

¸ 12Ẫ

¸ 12¾̃
. (2.4.8)

It's not trivial that the two sides can agree, because the dependence on ¢ 1,2 must match.

Fortunately it does, thanks to the following identity,

M3M̂3 ÆM2 ÆM̂2 . (2.4.9)

Equation (2.4.8) holds provided that ½and · obey, at the same value of s, the relation:

· (±)

1Å · (±)
Æ

1Å ½(² )

½(² )
. (2.4.10)

This leads to nontrivial predictions for the behavior of the two functions near the mean-�eld

and short-range crossovers. Since as we have seen · (±) ÆO(±) for small ±, we conclude that

the normalization of the 2pt function of Á must vanish linearly in s close to the short-range

crossover:

1Å ½(² ) ÆO(s¤ ¡ s). (2.4.11)

The same vanishing of the 2pt function normalization has been previously argued in [ 103], via

a completely different argument. 19

Analogously, we must have

1Å · (±) ÆO((2s¡ d )2) (2.4.12)

when approaching the crossover to the mean-�eld regime. In this case the vanishing is

expected to be quadratic since ½(² ) ÆO(² 2).

In summary, we have accumulated strong evidence for a novel IR duality: the Á4-�ow and

the ¾Â-�ow end in the same IR �xed point. Unlike all previously studied examples of IR

dualities, our theories lack a local stress tensor. Non-locality, which is an essential feature of

19See also appendix B of [2] for a discussion of the hÁÁi correlator precisely at the crossover, where it exhibits a
logarithmic suppression with respect to the naive scaling. This suppression is derived via RG, but it can also be
thought of as a remnant of the vanishing of the normalization (2.4.11) [103].
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our construction, comes with a surprising bonus: remarkable computation power! One of

its immediate consequences is the non-renormalization theorem for ¢ Á and ¢ Â. The non-

local equations of motions were then used to show that ¢ Á3 and of ¢ ¾ obey shadow relations

at the IR �xed point, and that OPE coef�cients involving the shadow pairs must come in

precise ratios. In the paradigmatic examples of IR dualities (such as 4d Seiberg duality and 3d

mirror symmetry), it is supersymmetry that gives analytic control. Curiously, we were able to

achieve signi�cant analytic control in our non-supersymmetric setting, thanks precisely to

the non-local nature of the problem.

2.5 Discussion

In this chapter we have proposed and studied a new compelling picture for the long-range to

short-range crossover. Prior to our work, the understanding of this crossover was incomplete

at best. Some of its qualitative features – in particular its continuous nature – had been

anticipated, but doubts remained, as evidenced by some recent controversies in the literature

(see appendix A.2). Other important features of the crossover were completely missed, in

particular the fact that the crossover happens not to the SRFP, but to the SRFP plus a decoupled

gaussian �eld.

Crucially, our new qualitative picture allowed us to advance greatly the quantitative side of the

story, hitherto non-existent. We obtained a number of predictions for the critical exponents

near the crossover, which in principle can be con�rmed by Monte Carlo simulations and,

perhaps, experiments. Hopefully this would convince the remaining skeptics that the crossover

is continuous.

The infrared duality between the Á4 and ¾Â-�ows is essential to our picture. All our �ndings

support this idea. Notably, we have seen that both �ows contain in the IR a pair of operators

(O1,O2) satisfying the shadow relation ¢ 1 Å ¢ 2 Æd. We argued that these relations are true to

all orders in perturbation theory, and in view of the duality the simplest assumption is that

they are also valid non-perturbatively. The shadow relation and the related results about the

normalization of OPE coef�cients (see section 2.4.2) prove useful in the analysis of the LRFP

using the conformal bootstrap [49]. 20

While in this chapter we have focused on the long-range Ising model, it's clear that most

of the learned lessons are quite general. For example, the extension to the O(N ) case is

straightforward. Still more generally, our ¾Â-�ow construction can be used with any CFT in

place of the SRFP. Just pick a scalar CFT operator, call it ¾again, of dimension ¢ , and couple it

to a non-local gaussian �eld Â of dimension d ¡ ¢ ¡ ±, ± ¿ 1. One then needs to compute the

quantum correction to the beta-function. Naively, there is a 50% chance that the quantum

20The 3d LRFP is also expected to have aZ2 line defect operator, analogous to the SRFP line defect [ 104, 105]
and continuously connected to it. This may explain why some ongoing bootstrap studies [ 106] do not succeed in
isolating the 3d SRFP line defect. We thank Dalimil Mazá�c for this remark.
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Chapter 2. The long-range to short-range crossover

correction has the right sign to yield a stable IR �xed point. 21 We will then obtain a continuous

family (parametrized by ±) of non-local conformally invariant theories which are deformations

of the original local CFT. It will be unitary if the original CFT was unitary and if Â is above the

unitarity bound. The generic prediction of this construction is the non-renormalization of Â

and the IR shadow relation ¢ ¾,IR Å ¢ Â Æd.

This demonstrates that, while we expect local CFTs to be generically isolated, non-local

conformal theories can easily form continuous families. While this observation by itself is

not new, the above general construction seems new. Another known way to construct such

continuous families is to put a UV-complete massive theory in a �xed AdS background. Varying

masses and couplings of the bulk theory, we obtain a continuous family of boundary theories

which have conformal invariance but no local stress tensor (since the metric is non-dynamical).

See e.g. [107].

We would like to �nish with a brief discussion of the d Æ1 case, which has so far been excluded

from our considerations. The d Æ1 short-range Ising model does not have a phase transition,

and so the physics of long-range to short-range crossover is bound to be very different from

d Æ2,3. The only scale-invariant phase of the d Æ1 short-range Ising model occurs at zero

temperature, where all correlation functions are constant. This corresponds to the commonly

assigned exact critical exponent ´ Æ1, see e.g. [108] (recall that ¢ Á Æ ¡1/2 is the scalar �eld

engineering dimension in d Æ1). Applying naively the general d -dimensional formula (2.1.1)

for the crossover location, we expect it to happen at s Æ2¡ ´ Æ1. This matches nicely with

what is known about the long-range Ising model in d Æ1. First of all, since the work of Dyson

[109] it is rigorously known that the model has a phase transition for 0 Ç sÇ 1. This transition

is continuous in this range, as is also rigorously known ([ 110], Corollary 1.5). The transition

disappears for sÈ 1, which is where we expect the short-range phase.

The borderline case sÆ1 is special: the phase transition exists, but it's discontinuous, in the

sense that the magnetization has a nonzero limit for ¯ ! ¯ Å
c , as was argued by Thouless [111]

and later proved rigorously [ 112]. This phase transition is topological, driven by dissociation

of kink-antikink pairs [ 111, 113, 114].22 For sÆ1 (1/ jxj2 spin-spin interaction), kinks interact

logarithmically. As temperature is raised, defect operators representing kinks become relevant,

kinks proliferate, and the model disorders. So, the theory at sÆ1 and ¯ Æ¯ c has marginally

relevant operators (kinks).

RG equations for the one dimensional LRI at leading order in s¡ 1 were written down in [ 115],

and a comparison of results from this approach with critical exponents obtained through

Monte Carlo simulations can be found in [ 116], �gure 20, and shows good agreement in the

21One might wonder what goes wrong if we get an IR �xed point for negative value of g2
¤ , i.e. imaginary values of

g¤ . After all, due to the Z2 symmetry, all observables depend on g2
¤ only, and therefore will be real. However, we

can see from (2.3.37) that the lowest spin 2 operator would be below the unitarity bound, and we would end up
with a non-unitary theory.

22The work of Thouless [ 111] foreshadowed later work by Berezinski and by Kosterlitz and Thouless on the BKT
phase transition in two-dimensional O(2) models, driven by dissociation of vortex-antivortex pairs.
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region close to sÆ1. However, a description in terms of QFT is missing, and it's not clear how

to improve the results of [115] beyond leading order.
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3 Walking, weak �rst order phase
transitions and complex CFTs

“But the beauty is in the walking – we are
betrayed by destinations.”

Gwyn Thomas

3.1 Introduction

Walking is a somewhat mysterious behavior which can conjecturally be exhibited by some four-

dimensional (4d) gauge theories. In a walking gauge theory, the gauge coupling is supposed

to run slowly at intermediate energies, where the theory is approximately scale invariant,

while at low energies the coupling starts running fast again, leading to con�nement and

chiral symmetry breaking. Originally this has been dreamed of in the context of technicolor

scenarios of electroweak symmetry breaking [27–29].

A number of curious opinions about walking can be found in the literature. Walking is

supposed to happen just below the end of the conformal window [ 117]. It is believed by

some that walking theories contain a naturally light pseudo-dilation in the spectrum [ 28].

There are doubts if walking may naturally occur in theories with a small number of colors

[118]. We warn the reader that only the �rst of these three opinions will �nd a con�rmation in

our analysis. The above de�nition of walking itself also needs revision, since as we will see it's

not the gauge coupling which walks. We collected here this mix of opinions to stress that, at

least to us, walking appears a rather controversial subject where much confusion lingers. This

is also due to the fact that probing this scenario directly by lattice Monte Carlo simulations

remains a hard task.

In this chapter, we will �rst improve understanding of walking by drawing intuition from

a much simpler example of this behavior, belonging to the realm of statistical physics: the

Q-state Potts model in 2d. This model is known to have a conformal phase for Q Ç 4, and

a �rst-order phase transition at Q È 4. For Q & 4, the transition is weakly �rst-order: the
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correlation length is much larger than the lattice spacing. This was understood by statistical

physicists in the 1980s [ 30, 31] in terms almost identical to walking (one difference being that

the Potts model has a strongly relevant singlet scalar whose coef�cient is tuned to zero to reach

the transition). As far as we know, the connection between walking and weakly �rst-order

phase transitions is being made here for the �rst time in the high energy physics literature. 1

Our second goal is to demystify the �xed points at complex coupling , often invoked in dis-

cussions of walking. We will formalize these �xed points as complex conformal �eld theories

(CFTs), a concept that we introduce. Complex CFTs are non-unitary, but they are suf�ciently

different from other commonly occurring non-unitary CFTs that they deserve a separate name.

For example, 2d complex CFTs have a complex central charge c. In spite of this and other

unusual features, we will argue that complex CFTs are nonperturbatively well de�ned. We

will discuss, in general terms, how this new language can be used to describe some aspects of

walking.

The chapter is structured as follows. In section 3.2 we present walking from renormalization

group (RG) point of view: as a general mechanism for generating hierarchies in quantum �eld

theory (QFT). We also brie�y review a more common mechanism known as tuning. In the

same section we give a �rst introduction to the concept of complex CFTs.

Sections 3.3, 3.4 and 3.5 focus on concrete systems exhibiting walking. In section 3.3 we discuss

how walking is realized in the 2d Q-state Potts model, including a detailed introduction to

this lattice model for the bene�t of high energy physicists. Section 3.4 discusses various

aspects of walking in 4d gauge theories. In particular, we explain why we don't believe in the

parametrically light pseudo-dilaton. We also discuss walking in holographic models of QCD in

the Veneziano limit. Finally in section 3.5 we discuss a recent example of walking that emerged

in condensed matter physics, in the context of “decon�ned criticality".

Section 3.6 is devoted to complex CFTs. We build upon intuitive understanding of the

difference between RG �ows in the space of real vs complexi�ed couplings, towards a more

formal de�nition of the concept of a complex QFT and a complex CFT. We explain how the real

vs complex classi�cation differs from the more familiar unitary vs non-unitary classi�cation.

In particular we give examples of non-unitary but real theories. Finally we come back to the

connection between complex CFTs and walking. We present a computational paradigm, a kind

of conformal perturbation theory, which allows to compute certain properties of walking RG

�ows in terms of CFT data of complex CFTs. In this chapter we only discuss general features of

this paradigm. In chapter 4 we will show its usefulness by studying the walking behavior of the

2d Potts model at Q È 4. We will see that it allows for many concrete applications, tests, and

predictions.

In section 3.7 we conclude. Appendix B.1 reminds that not all weakly �rst-order phase

1In condensed matter/statistical physics this connection is not forgotten, as we will see in section 3.5. Walking
is one of two known mechanisms which can explain weakness of a �rst-order phase transition, the other one being
tuning, see section 3.2.1 and appendix B.1.
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transitions are explainable by walking, some being due to tuning. Appendix B.2 explains

the difference between the physics of walking and the BKT transition. Appendix B.3 discusses

features of conformal window and walking in 4d gauge theories arising in the large N limit.

Appendix C contains further details about the Potts model, in particular in d È 2.

3.2 Walking as a mechanism for hierarchy

This section will de�ne walking using the language of RG, without specializing to any particular

microscopic description. Walking is one of two known robust mechanisms for generating

hierarchy in QFT, the other one being the much more familiar `tuning'. The question of

hierarchies being of extreme importance, this explains why one should a priori be interested

in walking.

Hierarchy is a separation of scales. A hierarchy in quantum �eld theory means that the theory

contains two distance scales ` UV ¿ ` IR (or equivalently two energy scales ¤ UV À ¤ IR), the

physics being approximately scale invariant in the intermediate range between them. The

scale ` UV can be thought of as a short-distance cutoff. The scale ` IR in high energy physics

is usually related to the inverse mass of some particle, while in statistical physics it is the

correlation length.

Hierarchies are a familiar feature of theories with a logarithmically running coupling, such as

the usual QCD. Although the coupling runs slowly, and one may be tempted to say poetically

that it `walks', 2 in our technical classi�cation this is actually an example of a (mild) tuning and

not of walking, see below.

3.2.1 Tuning

Tuning mechanism for hierarchies is completely standard and utterly familiar to QFT practi-

tioners, but let's review it anyway to set the stage. From many available prior discussions, ours

will stay closest to [13, 119].

In this mechanism a hierarchy results from the fact that an RG trajectory describing the QFT

starts close to a CFT and remains close to it for a long time. We can thus think of the RG �ow

in terms of the perturbing operators added to the CFT. For the �ow to stay close to the CFT, we

should worry in particular about the coef�cients of all relevant perturbations, which must be

assumed small.

Assuming for simplicity that there is just one relevant operator, the arising hierarchy is

controlled by the size of its coef�cient. At some UV scale where the microscopic theory

2Frank Wilczek used to say “You must walk before you run!" in his colloquia, referring to the QCD gauge
coupling.
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is matched onto the CFT plus a perturbation, the theory is described by

CFTÅ c¤ d¡ ¢
UV

Z
d d x O¢ (x) , (3.2.1)

where O¢ is a scalar operator of scaling dimension ¢ Ç d , and c ¿ 1.3 The necessity to take

c ¿ 1 is why this scenario is called “tuning". Then assuming the coupling c does not �ow to a

�xed point, the relation between the UV scale and the IR scale, at which the departure from

the CFT becomes signi�cant, is 4

¤ IR » c
1

d¡ ¢ ¤ UV . (3.2.2)

In applications of this scenario in high energy physics, there is, justi�ably, much preoccupation

with how “natural" the implied tuning is. If the operator O¢ transforms non-trivially under

some global symmetry present in the CFT, the assumption of a small coef�cient c is considered

“technically natural" in QFT jargon, because c Æ0 would be preserved by RG evolution. Put

another way, the smallness of this coef�cient can be explained by requiring that the symmetry

be approximately preserved in the microscopic description of our theory. This is just 't Hooft's

naturalness criterion [120] restated in the CFT language.

A more problematic case is when O¢ is a full singlet of the CFT global symmetry group. In this

case a fully natural hierarchy is never possible. However there is a way to turn a mild tuning

into a large hierarchy, provided that O¢ is weakly relevant , that is if d ¡ ¢ ¿ 1 [119]. To see

this, notice that if both c and d ¡ ¢ are somewhat small, say 0.1, then Eq. (3.2.2) predicts the

hierarchy ¤ UV/ ¤ IR » 1010.

The above-mentioned QCD example can be seen as a limiting case of the latter situation when

¢ ! d and the operator is marginally relevant. In this case the relation between the IR scale

(¤ QCD) and the UV cutoff is exponential in the inverse of the bare gauge coupling. But to enjoy

this exponential hierarchy, we must still assume that the gauge coupling is somewhat small at

the cutoff, hence mild tuning.

In condensed matter/statistical physics context, the tuning mechanism explains the weakness

of some �rst-order phase transitions, see appendix B.1.

3.2.2 Walking

We will now discuss walking which is our main interest. In this case the CFT picture is a bit

more complicated, and it is convenient to present �rst a more intuitive picture based on the

RG. We consider an RG �ow of a coupling ¸ , of unspeci�ed origin, and a singlet under the

3By d we denote the full number of dimensions, which includes time if we work in Minkowski signature.
4We don't keep track of factors of 4 ¼, which would be useful in practical applications of this sort of naive

dimensional analysis.
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global symmetry. We assume that the beta-function near ¸ Æ0 takes the form ( t Ælog E)

¯ (¸ ) Æ
d¸

d t
Æ ¡ y ¡ ¸ 2 Å O(¸ 3) , (3.2.3)

where y is a small parameter, and the higher order terms are assumed to have O(1) coef�cients

so that Eq. (3.2.3) is trustworthy at j¸ j . 1. While the choice of ¸ Æ0 may seem special, there is

no loss of generality here, as we can �rst assume that the beta-function takes this form with

¸ ¡ ¸ 0 instead of ¸ in the r.h.s., and eliminate ¸ 0 by a shift. 5

Of course describing the �ow in terms of just one coupling is an idealization. What we imagine

is that all other couplings characterizing the �ow are irrelevant, and so their effect on the �ow

of ¸ can be neglected.6

Assuming that the coupling ¸ is real, physics described by the beta-function (3.2.3) is very

different depending on the sign of y. Suppose �rst that y Ç 0. Then we have two real �xed

points ¸ § Æ §
p

j yj (see Fig. 3.1). The¸ Å �xed point is a UV �xed point in the sense that it

cannot be reached by �owing from short distances. The ¸ ¡ �xed point is an IR �xed point as it

can be reached �owing both from the UV �xed point and also from large negative ¸ , provided

that in this range the microscopic description happens to match approximately the RG �ow

described by the above beta-function.

Concerning the CFTs describing these �xed points, the operator O¸ to which ¸ couples will

have dimension

¢ § Æd Å ¯ 0(¸ § ) ¼d ¨ 2
p

j yj . (3.2.4)

For jyj ¿ 1 this dimension is weakly relevant at the ¸ Å �xed point. This CFT can be used to

realize the mildly tuned hierarchy scenario of the previous section, �owing out in the positive

¸ direction.

Figure 3.1 – Structure of RG �ow for real coupling for y Ç 0 (left) and y È 0 (right).

Suppose instead that y È 0. Then there is no �xed point at real ¸ , at least not within the region

of validity of the assumed approximate beta-function. A �ow starting at ¸ » ¡ 1 will eventually

5Even more generally the ¸ 2 term could be A(¸ ¡ ¸ 0 ¡ B y)2, and we can set A ! 1, ¸ 0 ! 0, B ! 0 shifting and
rescaling ¸ .

6It is also possible that a few of them are relevant and then have to be �netuned small. This is what happens in
the Potts model where one has to �netune the temperature, see section 3.3.4.
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go through to ¸ » 1, but for small y it will slow down and linger around ¸ » 0. How much the

�ow lingers can be estimated by computing the RG time of passage:

¢ t » ¡
Z 1

¡ 1

d¸

¯ (¸ )
»

¼
p

y
. (3.2.5)

One can also use the exact solution of the beta-function equation neglecting O(¸ 3) terms:

¸ (t ) Æ ¡
p

y tan[
p

y(t ¡ t0)] . (3.2.6)

If we call ¤ UV the scale where the �ow emerges from a microscopic description at ¸ » ¡ 1, and

¤ IR the scale where the �ow plunges into the unknown at ¸ » 1, we obtain:

¤ UV/ ¤ IR » e¢ t » exp(¼/
p

y) , (3.2.7)

a huge ratio of scales if y is small. We will refer to (3.2.7) as `walking scaling'. 7

Given the hierarchy, we expect that the �ow in the intermediate range of energies should be

approximately scale invariant, so it should be close to a CFT. But to which CFT? For y Ç 0 we

had two CFTs, but for y È 0 there are no CFTs in sight.

One way out is to argue that the �ow remains close to the CFT which describes the y Æ0,

¸ Æ0 point, where the �xed points join and disappear. 8 This proposal is certainly viable and

physically reasonable, and it allows to compute some quantities characterizing the �ow at

y È 0, expanding around the y Æ0 point. However, there are some puzzling features with this

way of thinking and computing.

One puzzle is what to do when the global symmetry of the problem depends on y. In the

concrete examples of the Potts model and of the 4d gauge theories, the global symmetry will

be SQ and SU(N f ) £ SU(N f ) £ U (1) respectively, with Q and N f continuous functions of y.

Certainly there are limitations for expanding a theory with, say, S5 symmetry around a theory

with S4 symmetry, and yet in the above proposal that's what we would have to do.

Another puzzle is that the above discussion does not have a built-in criterion for determining

the range of validity of the obtained expansions. One might think that it is jyj ¿ 1, but this is

too naive and can't be true because y is just an arbitrary parameter, not a physically signi�cant

quantity. And indeed the naive criterion with y ÆQ ¡ 4 is violated by the 2d Potts model (see

section 3.3.5). We need a better criterion.

7Ref. [117] refers to the functional form of this equation as `BKT scaling', since this is also the form of the
correlation length in Berezinskii-Kosterlitz-Thouless (BKT) transition. We review the physics of BKT transition in
appendix B.2. In our opinion, there are more differences than similarities between BKT transition and walking,
and so we propose to avoid terminology `BKT scaling' when discussing walking in this chapter and in the future.

8This point of view would be close to [ 30, 31] where the walking scenario was �rst elucidated, see section 3.3.4.
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3.2. Walking as a mechanism for hierarchy

3.2.2.1 Introducing complex CFTs

To achieve some peace with the above puzzles, let us reconsider the fate of the �xed points at

y È 0. Of course the �xed points don't just disappear completely, but they go to the complex

plane, see Fig. 3.2. While this is often said, as far as we know until now there has not been

any concrete attempt to assign physical meaning to these complex �xed points. This is

precisely what we would like to do. We posit that these �xed points should be viewed as

nonperturbatively de�ned non-unitary CFTs of a novel type, which we call complex CFTs. To

the pair of complex conjugate �xed points there will correspond a pair of complex conjugate

CFTs, called Cand C.

Figure 3.2 – Structure of RG �ow in the complex coupling plane, in the approximation of dropping
the higher order terms in (3.2.3). Notice that including those terms will generically change the
nature of RG �ow trajectories around Cand C, since the RG eigenvalue will then acquire a small
real part O(y2), making the �ow spirally in- or unwinding. See 4 for an example.

We will argue that these complex CFTs control the walking �ow in the same way as the CFT

appearing in (3.2.1) controls the tuned �ow. It is around them that one should more properly

expand the �ow, and not around the CFT at y Æ0. Doing so we readily resolve the �rst puzzle,

since Cand C, living at the same value of the y parameter, have the same global symmetry as

the physical RG �ow along the real axis.

Having recourse to Cand Calso allows to determine the criteria for the walking behavior more

sharply. For small y È 0 let us compute the �xed point dimension ¢ of the CFT operator O¸ to

which ¸ couples. The �xed points being at ¸ ¤ Æ §i
p

y, we get similarly to (3.2.4)

¢ Æd Å ¯ 0(¸ ¤ ) Æd ¨ 2i
p

y Å O(y2) . (3.2.8)

Notice that the dimension is complex (and complex conjugate for Cand C), which will be

a hallmark of complex CFTs. Notice as well that ¢ is close to marginality, with the leading

deviation imaginary and small. As we will see, it is this smallness of the imaginary part of

the near-marginal operator dimension which is necessary for walking, and not the smallness

of y by itself. Suppose then that we have some nonperturbative access to Im ¢ , for example
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because we solved Cand C. Then there is no need to expand around y Æ0. Instead, using the

nonperturbative solution, we can simply determine the range of y for which jIm ¢ j ¿ 1 holds.

This statement will be justi�ed by means of conformal perturbation theory in section 3.6.3

and in 4.

3.2.2.2 Naturalness of walking

As for the tuning scenario, we would like to make an assessment of how natural the walking

mechanism is.

We have seen that walking needs a complex CFT C (and its complex conjugate C) with an

operator whose dimension has the real part close to marginality ( d ) and the imaginary

part small. An assumption of having such a CFT at our disposal certainly represents some

“�netuning in theory space", just like the assumption of having a CFT with a weakly relevant

deformation in the mild tuning scenario. In fact we have seen that both these assumptions

can be realized within a one-parameter family of RG �ows, close to a special parameter value

where a UV and an IR �xed points collide, and on two opposite sides of this value.

However, apart from this theory space �netuning, there is no further coupling �netuning

required in the walking scenario (provided that all other couplings but ¸ are irrelevant). Indeed,

we can start the �ow anywhere on the negative real axis of ¸ , which represents 50% of the a

priori possible initial coupling values. It will then inexorably be drawn to ¸ near 0. Basically,

the �ow is forced to pass between the `pillars of Hercules' Cand C, because it has nowhere else

to go.

This situation can be contrasted with the mild tuning scenario, where we had to buy both

�netuning in theory space, and a mild coupling �netuning c ¿ 1. From this point of view,

walking seems less �netuned than mild tuning.

The just-given discussion only considered the naturalness of the basic walking scenario

associated with the running of ¸ . There is an additional �netuning price if relevant singlet

operators are present, whose coupling has to be tuned to zero, as for the Potts model.

3.3 Walking in statistical physics: 2d Potts model

Although we borrowed the term `walking' from the physics of 4d gauge theories, historically

the �rst example of walking has been observed in the 2d Q-state Potts model. This model

is one of best known models of statistical physics, see [ 121, 122] for reviews, but it's not as

widely known to high energy physicists as it deserves. We therefore start with a mini-review.

Generalizations to d È 2 will be discussed in appendix C.3.
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3.3. Walking in statistical physics: 2d Potts model

3.3.1 Spin and cluster de�nitions

Consider a square lattice in 2d (other lattices are also possible). It will be important that the

Potts model has two lattice de�nitions: either as a model of random spins living on lattice sites,

or as a model random clusters, that is connected sets of lattice bonds. The two de�nitions

agree for integer Q > 2, with the second de�nition providing an analytic continuation to

non-integer Q's.

In the spin de�nition, we put on every lattice site i a discrete variable si 2 {1,2, . . . ,Q}. The

partition function is the sum over spin con�gurations:

Zspin Æ
X

{si }
e¡ H [{si }] , (3.3.1)

with the lattice Hamiltonian (we include ¯ Æ1/ T into the Hamiltonian) being the sum of

nearest-neighbor interaction terms which energetically prefer for the spins to be identical

(called the ferromagnetic case):

H [{si }] Æ ¡¯
X

hi j i
±si ,sj . (3.3.2)

For Q Æ2 this reduces, up to a constant shift, to the Ising model Hamiltonian. This model has

a discrete global symmetry SQ (the permutation group).

Let us now discuss the cluster de�nition of the Potts model, due to Fortuin and Kasteleyn

[123]. On the same lattice we consider random subsets of lattice bonds X. The probabilistic

weight for a given subset X to occur is de�ned as

w (X) Ævb(X)Qc(X) , v Æe¯ ¡ 1, (3.3.3)

where b(X) is the total number of bonds in X, and c(X) is the total number of clusters—

connected components in the graph which has all lattice sites as vertices and bonds from X as

edges. Isolated sites also count as clusters (see Fig. 3.3). The partition function is then given

by:

Zcluster Æ
X

X
w (X). (3.3.4)

The factor vb(X) in (3.3.3) simply means that each lattice bond is included or not into X with

independent probabilities p and 1 ¡ p where p Æv/(1 Å v). This basic factorized probability

distribution is then modi�ed by the factor Qc(X). The number of clusters c(X) is a nonlocal

characteristic of X , so de�nition (3.3.3) is nonlocal. In particular, unlike for spins, it is not

given in terms of a local Hamiltonian. 9

For integer Q > 2 the two partition functions Zspin and Zcluster agree [123]. To see this one

9However some semblance of locality can be introduced by introducing the height representation, as we will
review in 4.
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Figure 3.3 – An example of a random subset X of bonds on a 4 £ 4 square lattice. Here b(X) Æ11
and c(X) Æ6. Notice that isolated points count as clusters.

perform a power-series expansion of Zspin in v, which is the high-temperature expansion.

Using the identity

e¯± si ,sj Æv±si ,sj Å 1, (3.3.5)

this expansion maps term by term onto Zcluster , with the factor Qc(X) arising from contracting

delta-functions. In other words, for integer Q > 2 each high-temperature expansion cluster

may have one of Q “colors".

On the other hand, the cluster de�nition is more general as it is applicable for continuously

varying Q. It is worth mentioning that the model is re�ection positive for integer Q while for

non-integer Q it is not (see e.g. [124]). In this chapter we will focus on real Q È 0.

We note in passing that the cluster de�nition can also be used to extract nontrivial physics

from integer values of Q Æ0,1 where the spin de�nition would seem to be trivial. Namely,

Q Æ1 de�nes bond percolation, and the limit Q ! 0Å corresponds to spanning trees and

forests [123].

3.3.2 Phase transition

Consider �rst the integer- Q Potts model de�ned in terms of spins. At low temperatures it has

an ordered phase with Q degenerate ground states where SQ is spontaneously broken and one

spin value is preferred. At high temperatures we have a disordered phase where there is just

one state and the spin distribution is SQ-symmetric. These two phases are separated, for each

Q, by an order-disorder phase transition at some critical temperature ¯ Æ¯ c.10 The phase

transition can be detected by �xing one spin ( s0) and measuring the probability that a distant

spin is in the same state:

p(r ) ÆP[sr Æs0] ¡ 1/Q , (3.3.6)

where we subtract the trivial probability 1/ Q which would arise for uncorrelated spins. An

order parameter distinguishing the two phases is the value p1 of this probability in the limit

r ! 1 , zero in the disordered phase and positive in the ordered one.

Consider then the same phase transition within the cluster de�nition. At high temperatures

10The exact vaue of ¯ c Ælog(1Å
p

Q) is known in 2d from self-duality. See [ 121], including the discussion of how
the duality acts in terms of the random cluster model.
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3.3. Walking in statistical physics: 2d Potts model

we have v ¿ 1 and the clusters tend to be very small. At low temperatures huge clusters occupy

most of the lattice: a nonzero magnetization in the spin de�nition corresponds to clusters

extending all across the in�nite lattice in the cluster formulation. One basic cluster observable

is the probability p̃ (r ) that two lattice sites separated by distance r lie in the same cluster, as

well as an order parameter p̃1 Ælim r !1 p̃ (r ). Using the high-temperature expansion, it's not

hard to show that p(r ) Æ(1¡ 1/Q)p̃ (r ) for integer Q, and so the two order parameters p1 and

p̃1 are equivalent (see e.g. [125]).

Finally let us discuss the order of the transition. We can de�ne the correlation length » from

the rate of approach p̃ (r ) ¡ p̃1 » e¡ r / ». The transition is �rst-order or continuous depending if

» remains �nite or becomes in�nite at ¯ Æ¯ c. An equivalent de�nition of the transition order

is in terms of phase coexistence. At a �rst-order transition we expect that the ordered and

disordered states will coexist, while at a continuous transition there is just one state.

It can be argued using 1/ Q expansion that the transition is �rst-order at Q À 1 (see appendix

C.2). In general we expect a critical value of Q so that the transition is continuous for Q 6 Qc

and �rst-order for Q È Qc. In the 2d case considered here, it is known that Qc Æ4 [126]. The

phase transition for Q 6 Qc is described by a CFT. Much is known about this CFT as a function

of Q, as we will see below and in 4.

Although the Potts model is usually studied on the square lattice, it is believed that the CFT

describing the phase transition does not depend on the lattice type. E.g. 2d Potts models on

the square and triangular lattice, as long as they have the same Q, should give rise to the same

CFT (see e.g. [127, 128]).11 This property can be stated by saying that parameter Q does not

get renormalized. For integer Q this can be argued by symmetry, but for non-integer Q the

question of symmetry appears more subtle (see the next section).

3.3.3 Symmetry

As mentioned, for integer Q > 2 the Potts model has discrete global SQ symmetry. Knowing

the symmetry is very useful for many reasons, for example because it allows us to identify

the microscopic model with the CFT describing its �xed point. Potts models with the same

symmetry will belong to the same universality class and their critical point will be described

by the same CFT. We can change the lattice (e.g. from square to triangular), or we can add

other interactions (e.g. next-to-nearest-neighbor). As long as symmetry is preserved, the CFT

should remain the same.

Moving to non-integer Q, the precise mathematical meaning of symmetry is unclear. As

mentioned above there is evidence that the critical point does not depend on the lattice,

11We thank Jesper Jacobsen for the following exact solvability argument which provides additional evidence. At
the critical temperature, the triangular lattice Potts model can be solved mapping it onto a six-vertex Kagomé lattice
model ([ 129], chapter 12). Using the start-triangle relation, the latter model can be transformed to a square-lattice
model ([ 129], chapter 11). This transformation shows that correlation functions along a certain line are the same
in the triangular and square Potts model, so that in particular the critical exponents are the same.
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and this asks for a symmetry explanation. However, the group SQ certainly does not make

mathematical sense for non-integer Q. Let us specify our requests for the symmetry in non-

integer Q: it should allow a unique identi�cation of Q, it should explain which perturbations

of the cluster model preserve the universality class, and it should hopefully work for any d .12

We will proceed assuming that the concept of symmetry makes sense for any Q, even if it's not

yet been properly de�ned for non-integer Q.

3.3.4 Weakly �rst-order phase transition at Q & 4 and walking

Baxter [126] has computed the free energy of the 2d Potts model for any Q at the critical

temperature, reducing to a 6-vertex model. From his exact solution it follows that latent

heat L at the transition is zero for Q 6 Qc Æ4 (continuous transition) and positive at Q È Qc

(�rst-order transition). Baxter's solution implies that the latent heat vanishes exponentially

quickly for Q ! QÅ
c , as

L » exp
µ
¡

¼2

2
p

±

¶
, ± ÆQ ¡ Qc . (3.3.7)

First-order phase transitions with small latent heat (in natural units) are called weak, and the

2d Potts for Q & Qc is an example of this.

Another robust characteristic of a weak �rst-order (WFO) transition is that the correlation

length », while remaining �nite, becomes very large in the units of lattice spacing. The critical

2d Potts correlation length was computed exactly in [ 131]. For Q ! QÅ
c the correlation length

becomes exponentially large:

» ¼»0 exp
µ

¼2

p
±

¶
, (3.3.8)

with »0 approximately constant in this limit.

For a lattice model, to have the correlation length much larger that the lattice spacing is an

example of a hierarchy, in the sense of section 3.2. This property of the 2d Potts model at Q & 4

was explained 40 years ago by Nauenberg, Scalapino, and Cardy [ 30, 31] as a consequence of

walking, in what was perhaps the �rst evocation of this mechanism in physics. 13

Let us review this explanation and the evidence in its favor. The key assumption is that the

RG evolution is described by Eq. (3.2.3), with parameter y a monotonic function of Q. Q ÆQc

corresponds then to y Æ0, and one assumes that near this point y has approximately linear

dependence on ±:

y ÆC ± Å O(±2) . (3.3.9)

12We note in this respect that in 2d, quantum algebra Uq sl(2) with q Å q ¡ 1 ÆQ1/2 plays an important role in the
Temperley-Lieb approach to the partition function of Q-state Potts model [ 130]. This seems to be an inherently 2d
phenomenon and in addition intimately related to the integrability properties of the model.

13They did not actually use the term `walking'. It seems that the mechanism does not have a standard name in
statistical physics. Sometimes it is referred to as `pseudo-critical behavior' [33, 132, 133].
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The constant C must be positive, so that y È 0 (no �xed point at real ¸ ) corresponds to Q È Qc.

The value of C can be readily �xed by demanding that the hierarchy (3.2.7) reproduce the

exactly known correlation length asymptotics (3.3.8). One gets 14

C Æ1/ ¼2 . (3.3.10)

Consider then what happens for Q Ç Qc. It is convenient to enlarge the coupling space of the

Potts model by considering the dilute Potts model . In this model the Potts spins or clusters live

only on a part of the lattice, while the rest is occupied by vacancies. 15 One can also think that

vacancies are generated by RG transformations and represent disordered spin con�gurations

[127].

Now, it is known that the dilute Potts model has for Q Ç Qc two �xed points. One of them is the

same as the critical point of the usual non-dilute Potts model. The other �xed point is tricritical,

obtained by tuning both the temperature and the chemical potential for the vacancies.

Ref. [127] �rst found these �xed points by means of an approximate RG transformation, and

showed that they annihilate at Q ÆQc. This picture of two �xed points at y Ç 0 annihilating at

y Æ0 agrees with section 3.2.2 (see Fig. 3.4(b) below). We therefore identify the more stable

¸ Æ¸ ¡ �xed point as the critical and ¸ Æ¸ Å as the tricritical Potts model.

In fact, much is known about the CFTs describing these �xed points, and this can be used

to further check and complete the walking RG picture. 16 Here we will use the two lowest

singlet operators " and " 0, referred to as the leading and subleading temperature perturbations.

Their dimensions are known exactly for Q Ç Qc [138–140], with the following asymptotics at

Q ! Q¡
c :

¢ " Æ
1

2
¨

3

4¼

p
j±jÅ O(±), (3.3.11)

¢ " 0 Æ2¨
2

¼

p
j±jÅ O(±). (3.3.12)

(The upper sign corresponds to the tricritical �xed point.) Operator " 0 is close to marginality

and should be identi�ed with the operator O¸ , whose dimension is predicted by RG in (3.2.4).

Using (3.3.9) and (3.3.10), we see that the RG prediction (3.2.4) agrees with the exact result

(3.3.12).

Operator " is strongly relevant, and its coupling (denoted Á in [ 30, 31]) must be �netuned to

zero to reach the phase transition. This is a particularity of the Potts model compared to the

14This step was not done in [ 30, 31] because the correlation length asymptotics was not known at the time. They
arrived at the same value of C via the exactly known energy operator dimensions and the latent heat asymptotics,
see below.

15This is also called the Blume-Emery-Gif�ths model [ 134, 135]. For a cluster de�nition applicable at non-integer
Q see [136].

16The operator spectrum of both CFTs is fully known, some of it via exact lattice solution à la Baxter, and the
rest via Coulomb gas [ 137]. The OPE coef�cients are known fully for Q Æ2,3,4 and partially for other Q's. We will
review and use this information in 4.
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Q 5 6 7 8 9 10
»/ a 2512.2 158.9 48.1 23.9 14.9 10.6

Table 3.1 – The 2d Potts model correlation length in units of lattice spacing on the square lattice at
the �rst-order phase transition for Q Æ5 - 10, computed from [131], Eq. (4.46).

basic scenario in section 3.2.2 and to walking in gauge theories. Small deviations of Á from

zero are governed by an RG equation of the leading form

dÁ/ d t Æ ¡(a Å b ¸ )Á Å .. . . (3.3.13)

The �xed point dimension of " is then given by

¢ " Æ2¡ (a Å b ¸ § ) Å O(±). (3.3.14)

Demanding agreement with (3.3.11) allows us to �x the two constants a, b:

a Æ
3

2
, b Æ

3

4
. (3.3.15)

The RG equation (3.3.13) is also important when studying the WFO regime y È 0. The running

of Á must be taken into account when computing the latent heat (which is the derivative of

free energy w.r.t. Á). The computation of [ 30, 31] �nds an exponentially small latent heat of the

same form as (3.3.7). Precise agreement in the exponent is obtained for a Æ3/2 as in (3.3.15),

providing yet another consistency check of this picture.

3.3.5 Lessons and questions

We see that the 2d Potts model presents a remarkable opportunity for testing the idea of

walking. Not only some aspects of it are exactly solvable, it's also relatively easy to study via

Monte Carlo simulations. The key assumption is that the same RG equations (3.2.3), (3.3.13)

apply on both sides of Q ÆQc provided that we make the parameter y depend on Q ¡ Qc as

in (3.3.9). Coef�cients in these equations can be �xed demanding the consistency with the

exactly known critical exponents at Q Ç Qc. Solving the same equation for Q È Qc, one obtains

approximate results for the correlation length and latent heat in the phase where the transition

is weakly �rst-order, which can be checked against the exact solution on the lattice.

What is the range of Q for which walking behavior persists? Looking at Table 3.1, we see large

correlation lengths up to Q . 10. Eq. (3.3.8) works pretty well in this whole range, provided

that one allows the coef�cient »0 to vary by 30%, from 0.13 to 0.19 (while » itself varies by factor

250). Naively this is puzzling, as it may seem that the expansion in Q ¡ Qc has an unexpectedly

large range of validity. However, as mentioned in section 3.2.2, the true criterion for walking

should involve nonperturbative information about complex CFTs, rather than Q ¡ Qc. See

section 3.6.3 for a general discussion and 4 for details speci�c to the 2d Potts.
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3.4 Walking in high energy physics: 4d gauge theories

Slowly running or walking coupling was �rst introduced in particle physics in the context of

technicolor models of electroweak symmetry breaking [ 27–29]. These models later received

the name “walking technicolor" (WTC). Here we focus on the simplest setup where walking is

supposed to occur. Connection to the electroweak phenomenology will be commented upon

in section 3.4.1 below.

This simple setup is the 4d gauge theory with gauge group SU(Nc) and N f massless fermions

in the fundamental representation. We will denote x ÆN f / Nc and assume x Ç xAF Æ11/2 so

that the theory is asymptotically free. It is believed that in an interval of x below xAF,

xc Ç x Ç xAF , (3.4.1)

this theory �ows at long distances to a CFT called the Banks-Zaks (BZ) �xed point [ 141–143].

The interval (3.4.1) is called the conformal window.

The BZ �xed point is weakly coupled near xAF but is strongly interacting near xc. To consider

the weakly coupled x ! xAF limit we can formally consider N f to be a continuously varying

parameter. It's not clear if this makes full sense non-perturbatively. 17 If we wanted to be

conservative, we could restrict N f to be an integer, but then we would have to take large

Nc. For simplicity, we will not keep track of large Nc counting. In any case, it is believed

that the conformal window is non-empty also for �nite Nc. There is evidence for that from

various theoretical considerations and from lattice Monte Carlo simulations, see e.g. [ 144] for

a review.18

On the other hand, for x Ç xc there is no �xed point, the theory instead �owing to a con�ning

phase with spontaneously broken chiral symmetry. So the �xed point must disappear as x

approaches xc from above. One possibility is that the �xed point annihilates with another

�xed point; see Fig. 3.4(a). This is the scenario advocated in [ 117], where the new �xed point

is called QCD¤ (see also [149]). One necessary condition for this scenario is that QCD ¤ have

the same global symmetry SU(N f ) £ SU(N f ) £ U (1) as the BZ �xed point with which it is

annihilating.

Fixed point annihilation appears to us the simplest scenario which explains �xed point

17On the other hand, the Potts model with Q states discussed above can be de�ned non-perturbatively for
continuously varying Q, although it's unitary only for integer Q.

18Here we are focusing on 4d gauge theories, but a similar story is believed to hold in 3d gauge theories coupled
to N f massless fermions. The difference is that in this case conformal window exists both for the abelian and
nonabelian gauge theories, and that it extends all way to N f Æ 1 . The lower boundary of the conformal window is
not known in 3d just like in 4d. A natural possibility is that the 3d conformal window terminates via �xed point
annihilation, as discussed below for the 4d case. See [ 145, 146] for recent discussions and references to prior work.
The present-day lattice QCD community is neglecting the 3d case, with a few notable exceptions such as [ 147, 148].
We �nd this neglect regrettable and methodologically wrong. Not only is the 3d conformal window interesting
in its own right and has multiple connections to contemporary condensed-matter physics, see section 3.5, it is
certainly easier than the 4d case, and should be solved �rst as a warmup.
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(a) (b)

Figure 3.4 – Left: schematic view of the space of existing �xed points of 4d gauge theories as a
function of x ÆN f / Nc. The trivial �xed point (free) exists for any x. The line of BZ �xed points
branches off from the free theory line at x ÆxAF. At some smaller x Æxc it annihilates with the line
of QCD¤ �xed points. This latter line should exist for x close to xc but it's not a priori clear where it
starts. Right: schematic view of the space of �xed points for the 2d Potts model. No theory merges
with the free theory, at least in the range Q È 0 we are interested in.

disappearance and con�ning behavior below xc. In what follows we assume that this scenario

is realized. We will comment on other logical possibilities in section 3.4.3 below.

We call M the common endpoint of the BZ and QCD ¤ branches:

M ÆBZ(xc) ÆQCD¤ (xc) . (3.4.2)

Let us look more carefully at how the annihilation happens. For x slightly larger than xc

there is an RG �ow that connects BZ and QCD ¤ . Close to M this RG �ow is very short and

consequently can be described within conformal perturbation theory around QCD ¤ . Call O
the operator that induces this �ow, and ¸ the corresponding coupling constant. Since the �ow

degenerates when we approach M , O should become marginal at x Æxc:

¢ O Æd (x Æxc) . (3.4.3)

It is the �rst robust prediction of this scenario.

Next, let's discuss the beta-function. The request of two �xed points for x È xc and no �xed

points for x Ç xc naturally leads to the beta-function of the by now familiar form (3.2.3), where

y ¼C± for small ± Æx ¡ xc. This can be compared to Eq. (3.3.9) for the Potts model where

± ÆQ ¡ Qc. However, the precise value of C is not known for the 4d gauge theory case, only

its sign is �xed: C Ç 0, to have a conformal phase for x È xc (the opposite of that of the Potts

model).

At this point much of the discussion of section 3.2.2 carries over. For example for x slightly

above xc the dimension of O should have characteristic square root behavior (3.2.4). This

square root behavior was emphasized recently in [ 146]. On the other hand, for x slightly below
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xc, we will have walking behavior resulting in the hierarchy (3.2.7). 19 20

Let us point out some important differences between the scenario we are describing and the

descriptions of walking that have appeared previously in the particle physics context. First,

unlike in the �rst references on WTC, we see that it would be misleading to think of the slow

coupling ¸ as the gauge coupling constant g. The gauge coupling controls the �ow next to the

free theory. Near M , the �ow is strongly coupled, and ¸ is one particular linear combination

of in�nitely many couplings which happens to control the �xed point annihilation. Here

we agree with Ref. [117] which did not postulate relation between ¸ and the gauge coupling.

Further insight into the distinction between g and ¸ can be gained by considering theories

with large- N counting, see appendix B.3. As we explain there, in this case O has to be a

double-trace operator, so it cannot even mix with the operator controlling the gauge coupling,

trFF, at the leading order.

On the other hand, our discussion differs from Ref. [ 117] in that they specialized early on to the

large Nc limit, as well as used the holographic analogy. An important role in their discussion is

played by an operator of dimensionality d /2 present at the �xed point M in addition to the

marginal operator O. In the old WTC literature, it also often stated that the Ã̄Ã operator has

scaling dimension d /2 Æ2 at the onset of the walking regime (see e.g. [ 152]). Our discussion

on the other hand tried to separate the general phenomenon of walking from its large N limit

which may have special features. The operator of dimensionality d /2 is one of such features,

as we discuss in appendix B.3. We do not �nd any support for the existence of such an operator

in a generic case. In fact in the Potts model in two dimensions no operator of dimension one

is present in the spectrum at Q Æ4 when two �xed points annihilate, see 4.

We would also like to stress that walking is not a �netuned scenario. First, as we argued in

section 3.2.2.2, walking does not involve any �netuning price whatsoever as far as the initial

conditions of RG �ow are concerned. One may be worried about �netuning in theory space,

i.e. how close x should be taken to xc. By analogy with Q ¡ 4 for the 2d Potts model, we believe

that walking may occur for x deviating from xc by O(1). In particular, in our opinion there

seems to be no reason preventing walking to occur for some integer N f even if Nc is small.

Finally, we would like to contrast the hierarchy appearing due to walking in massless QCD

at x . xc with a different sort of hierarchy which would appear in the BZ regime (3.4.1) if we

perturbed the massless QCD with a fermion mass term. Suppose we add a very small equal

mass for all fermions. The resulting theory would �rst go close to a BZ �xed point, sit near

it while the fermion mass term keeps growing, and �nally �ow out to a gapped phase. This

hierarchy generation is classi�ed as the tuning scenario of section 3.2.1; it is technically natural

19This scaling in the context of gauge theories is also known as “Miransky scaling" [150].
20We thank Igor Klebanov for pointing out that beta-function of the walking form (3.2.3) was also obtained in

[151] for orbifolds of N Æ4 Super Yang-Mills (SYM) theory. In their case the parameter y Æ ¡D¸ , where ¸ is 't Hooft
coupling and D is a combination of dynamical characteristics of the theory. If D Ç 0, one can reach the walking
regime by dialing ¸ small. The existence of a dialable coupling ¸ makes this example somewhat similar to the BKT
transition discussed in appendix B.2. It should be contrasted with the theories discussed in this chapter where a
symmetry parameter is varied to reach the walking regime.
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tuning because the mass term breaks chiral symmetry. We included it here to emphasize that

this is not what walking is about.

3.4.1 Walking and the electroweak phenomenology beyond the Standard Model

We would like to make here a few comments concerning connections between walking and

electroweak phenomenology. As is well known, WTC was originally hypothesized in the hope

of making less severe the problem of �avor changing neutral currents present in technicolor

models of electroweak symmetry breaking. It is not our goal here to review this story in detail.

For a review in the context of RG �ows we refer to [ 119]. Relevantly for us, WTC models

contain a sector which exhibits the walking regime of RG �ow in a range of energies above the

electroweak scale. This allows, in this range of energies, to classify operators belonging to the

“walking" sector according to their (approximate) scaling dimensions. In particular, this sector

is assumed to contain an operator with the quantum numbers of the Higgs �eld (in explicit

models it is a fermion bilinear operator Ã̄Ã ). Various phenomenological constraints then

require that this operator has dimension close to one and at the same time does not behave as

a free �eld.

A proposal made in [ 119] was that we can treat the walking theory as a strongly interacting

unitary CFT perturbed by a weakly relevant operator resulting in a slow RG �ow, called

“conformal technicolor" scenario. Subsequently, Ref. [ 13] pointed out that unitary CFTs

with restrictions on operator dimensions required to make conformal technicolor scenario

phenomenologically viable can be constrained from �rst principles using the conformal

bootstrap techniques. The resulting constraints were fully worked out in [ 153], with rather

pessimistic conclusions: the generic scenario was found inconsistent. 21

There is however a loophole. Conformal technicolor scenario of [ 119] is a meaningful scenario,

but it should not be considered as an equivalent formulation of walking. Indeed, according to

our classi�cation in section 3.2.1 it belongs to “mild tuning". Walking is radically different in

that there are no unitary �xed points. For this reason, strictly speaking, conformal bootstrap

results derived in [ 13] and [ 153] under the assumption of unitarity cannot be used to rigorously

bound the approximate scaling dimensions in the walking regime.

One may be wondering how serious this loophole actually is. After all, even in the walking

scenario the �ow passes near a CFT, which while not being exactly unitary can be described as

“almost unitary" since imaginary parts of operator dimensions have to be small for the walking

behavior to take place, Eq. (3.2.8). Can bootstrap bounds get signi�cantly relaxed in presence

of such small violations of unitarity? There is no immediate answer to this question, and this

problem should be considered open. One related example where bounds seem to get relaxed

will be discussed in section 3.5.

21However, consistency could be saved by making special assumptions about the structure of the �avor sector
on top of admitting some tuning.
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In retrospect, it's fortunate that the loophole was not noticed at the time of writing [ 13], since

otherwise the conformal bootstrap methods may not have been developed, and those methods

since then found many other applications [17].

3.4.2 Light dilaton?

Finally, let us mention that since the early days the presence of a parametrically light “pseudo-

dilaton" is believed to be present in WTC models [ 28]. This is supposed to be a resonance

with quantum numbers 0 ÅÅ , and its parametric lightness means that it's much lighter than

the other massive technihadrons (e.g. the technirho), the mass ratio going to zero as one

approaches xc from below. This belief is a popular subject of the lattice studies, see e.g. [ 154].

We therefore �nd it necessary to comment on this issue.

In our opinion, walking behavior is not by itself a suf�cient condition for the presence of the

pseudo-dilaton, that is a pseudo-Goldstone boson of spontaneously broken scale invariance,

but it requires further assumptions. 22 The presence of a Goldstone boson requires spontaneous

breaking of a symmetry, while walking behavior corresponds to a small, in some sense, but

explicit breaking. 23 It is the possibility of spontaneous breaking of conformal symmetry which

represents an extra assumption. To have this possibility, we need a CFT with a moduli space of

vacua, which is a phenomenon logically completely independent of walking.

Consider for example the CFT M describing the annihilation point of the BZ and QCD ¤

branches. This is certainly a special theory, as evidenced by the fact that it contains a marginal

operator O. If it had a moduli space, there would be room for realizing a light pseudo-dilaton

scenario at x Ç xc. However, does M have a moduli space of vacua? We do not actually believe

that this is the case.

Let us recall what is known about CFTs with a moduli space. In known examples the moduli

space is parametrized by giving expectation values to scalar �elds. The simplest example is

the free massless scalarÁ in d È 2 dimensions, where we can give an arbitrary expectation

value to Á.24 Passing to the interacting case, all known interacting CFTs with a �nite number

of degrees of freedom having a moduli space are supersymmetric. One example is the N Æ1

supersymmetric QCD which will be discussed in section 3.4.3 below. The key to the existence

of the moduli space of supersymmetric theories is the nonrenormalization theorem for the

superpotential. For non-SUSY theories we generically expect that �at directions, even if

present in the UV Lagrangian, are lifted by quantum effect so that the IR �xed point has no

22See [155] for the only known to us �eld-theoretical construction of a naturally light pseudo-dilation, which
involves a host of dynamical assumptions very different from the situation at hand.

23This is especially apparent from our description of walking as a perturbation of a (complex) CFT by an operator,
which will be introduced in section 3.6.3. Addition of this operator to the action explicitly breaks the symmetry.

24Notice that this theory in 4d also contains a marginal operator Á4. But it would of course be a logical fallacy
to conclude that any 4d theory with a marginal operator, like M , should have a moduli space. There are many
examples of supersymmetric CFTs which have a conformal manifold (i.e. exactly marginal deformations), but do
not have a moduli space of vacua. A very simple example is discussed in [156].
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moduli space.

Constructions based on holography often lead to large- N `CFTs' which appear to possess a

moduli space of vacua, usually parametrized by a radial location of a brane. Notice however

that only in supersymmetric cases (like the N Æ4 super Yang Mills) do these constructions

correspond to UV complete theories. In non-SUSY cases these `CFTs' are at best effective

theories and it's usually not known if they can be UV completed. Non-supersymmetric small- N

CFTs are not expected to have weakly coupled gravitational duals.

A related example of how moduli space can be a large N artefact is as follows. A non-

holographic non-SUSY model having a moduli space of vacua in the strict N Æ 1 limit was

discussed in [ 157]. However, it was shown [ 158, 159] that this moduli space does not survive at

�nite N .

To summarize, we don't see any theoretical evidence for the presence of the light pseudo-

dilation in the walking regime of non-SUSY gauge theories. However, we do �nd the lattice

investigations of gauge theories near the end of the conformal window intriguing, notwith-

standing the issue of the light dilaton. It is a hard subject and should be done with care

[144].

For completeness let us discuss what happens for the 2d Q È 4 Potts model. In this case the

spectrum of massive excitations close to the end of `conformal window', i.e. for Q Æ4Å ² , is

known exactly from integrability [ 160]. It consists solely of kink-like excitations with masses of

order of the infrared strong coupling scale. Of course when ² ! 0Å these excitations become

massless, but this happens for all the IR excitations in the model simultaneously, so that

the mass-ratios stay �nite. We believe that this is what should happen near the end of the

conformal window in QCD as well (except for the goldstone bosons which should stay exactly

massless of course). We have not seen any evidence to the contrary. 25

It should be said that in 2d the general belief is that moduli space of vacua is impossible

even for supersymmetric CFTs, due to infrared effects not unlike those which prevent the

spontaneous breaking of global continuous symmetry in 2d via the Coleman-Mermin-Wagner

theorem. 26 This goes towards showing once more that walking and spontaneous breaking of

conformal invariance are logically independent phenomena.

25Recent Ref. [161] studied SU(3) gauge theory with N f Æ8 massless fermions in the fundamental via lattice
Monte Carlo. They assign it close to, but somewhat below, the end of the conformal window and look for signs
of light pseudodilaton. In the volumes they study, pseudoscalars ¼as well as the scalar 0ÅÅ have mass¼0.5 (in
the units in which m½Æ1). We take it as a sign that their simulations are still far from the in�nite-volume limit
in which m¼/ m½should go to zero. We conservatively predict that as one goes to larger volumes m0ÅÅ / m½will
plateau, and there will be no light pseudodilaton. We thank Anna Hasenfratz for discussions.

26In the literature on 2d SUSY CFTs one uses the term `moduli space' in a different meaning, to denote the
conformal manifold, i.e. the space of all exactly marginal deformations.
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3.4.3 Other possibilities for the end of conformal window

The above discussion was based on the simplest assumption [ 117] that the BZ line of �xed

points terminates by annihilating with another line called QCD ¤ and then moves to the

complex plane. Let us now discuss what are possible other ways for the transition from the BZ

regime at x near xAF to the chiral symmetry breaking ( ÂSB) regime for x Ç xc.

One could imagine a possibility that the BZ �xed point, which appears by splitting off the free

theory, disappears by the inverse of this process, i.e. by merging with another free theory. As

we will see below this is likely inconsistent with the ÂSB phase for x Ç xc, but it's instructive

to discuss this anyway. We can imagine the RG �ow happening in the space of all theories

having G ÆSU(N f ) £ SU(N f ) £ U (1) global symmetry. In this theory space there are special

points: free gauge theories. The beta-functions vanish at free theory points, and we may

imagine that they are rather generic vector �elds in the bulk of the theory space. Under

this genericity assumptions, the �xed points can naturally appear or disappear through two

processes: split off or merge with a free theory, 27 or pair create and annihilate in the bulk of

the theory space. (See below for a third process involving global symmetry enhancement.)

The genericity argument can be made mathematically precise in the context of bifurcation

theory for �nite-dimensional families of vector �elds [146].

Disappearance via merging is realized in N Æ1 supersymmetric QCD (see Fig. 3.5). The extent

of the conformal window in this theory is exactly known: 3/2 Ç x Ç 3.28 The BZ-like �xed point

disappears at x Æ3/2 via merging with another free gauge theory, with a different number

of colors N 0
c ÆN f ¡ Nc, a manifestation of Seiberg duality [ 25]. In the SUSY case for x just

below 3/2 there is no chiral symmetry breaking, the theory instead �owing to a free magnetic

phase. On the other hand in the non-SUSY case we expect chiral symmetry breaking below xc.

Therefore the non-SUSY BZ �xed point cannot disappear via merging with free theory, and

SUSY intuition is not a good guidance for this particular question. 29

On the other hand one could ask if the QCD ¤ line could merge with a free theory at some

x¤ È xc, which may or may not be equal to xAF. If so we could get QCD ¤ as an RG �xed point

�owing from that free theory, which would be weakly coupled for x near x¤ . This problem is

27Ref. [117] also considered a possibility which they call “running off to in�nite coupling". We prefer to use a
terminology which is invariant under reparametrizations of the coupling space. What matters is not whether the
coupling is �nite or in�nite, but whether the point where the topology of the RG �ow changes is a truly special
point of the coupling space, e.g. if it corresponds to a free theory in terms of some dual variables, as it happens for
the N Æ1 SQCD discussed below.

28In connection with the discussion in section 3.4.2, we note that the SUSY CFT describing the IR �xed point
allows spontaneous breaking of conformal invariance, as it has a moduli space of vacua of complex dimension
2N f Nc ¡ (N 2

c ¡ 1).
29Ref. [162] studied the conformal window of non-SUSY gauge theories in perturbation theory around xAF and

used the criterion ¢ Ã̄Ã Æ1 (unitarity bound) for the lower end of the conformal window. This was inspired by the
SUSY case, whereÃ̄Ã becomes free scalar at the lower end as a consequence of merger with free theory. Since
as we described in the non-SUSY case there is no merger with free theory, their criterion is inadequate in the
non-SUSY case. Moreover, whatever the criterion, we believe perturbation theory is inadequate to describe the
lower end of conformal window where anomalous dimensions become O(1). We thank Robert Shrock for an email
about his work.
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Figure 3.5 – Conformal window for the N Æ1 SUSY case. In this case the BZ-like �xed point
disappears by merging with another free theory. Compare with Fig. 3.4 in the non-SUSY case.

constrained by the requirements that QCD ¤ should have the same symmetry as BZ, that it

should have exactly one relevant singlet scalar operator, and also by 't Hooft anomaly matching.

Ref. [117] tried a few RG �ows but they either did not manifestly have the requisite symmetry,

or did not yield a �xed point. So this problem is open.

The �nal possibility that we would like to mention involves global symmetry enhancement.

Namely, imagine that the BZ �xed point, when moving around in the theory space as a function

of x collides for x Æx0with a �xed point BZ 0which is interacting but which has a strictly larger

global symmetry G0¾G. In such a situation we can have an exchange of stability, i.e. the

BZ �xed point is stable for x È x0, while BZ 0 is stable for x Ç x0. This can happen naturally

at a point of the BZ 0 line where some operator which breaks G0 to G crosses marginality. A

well-known example of this phenomenon is the collision between the cubic and the O(N )

�xed points of multi�eld scalar theories in 4 ¡ ² dimensions, which pass through each other

interchanging stability at some Nc Æ4Å O(² ) ([163] and [164], section 11.3).

Notice that the collision with free theories discussed above can also be viewed as an example

of symmetry enhancement, since free theories possess higher spin symmetries. In this case, in

perturbation theory the �xed point `goes through', but the �xed point coupling on the other

side has a bad sign. E.g. if we tried to formally continue BZ �xed point to x È xAF we would

�nd a theory at negative squared gauge coupling g2
¤ . In a related case of trying to continue the

Wilson-Fisher �xed point of ¸Á 4 to 4 Å ² dimensions we would �nd a theory with negative ¸ ¤ .

The common lore is that these �xed points are not well de�ned nonperturbatively. Indeed

from the path integral point of view it's hard to believe that they make sense. So in this case we

speak of �xed point merger as opposed to intersection.

On the contrary, if BZ collides with BZ 0, we may indeed expect an intersection, because an

interacting BZ 0 is not expected to be as fragile as free theories, and the line of BZ �xed points
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Figure 3.6 – The non-minimal scenario. We call collectively by ¸ k the couplings which preserved
G0symmetry, and by ¸ ? the couplings which break G0 to G. The line of �xed points BZ 0 lives at
¸ ? Æ0. The RG �ow lines lie in planes of constant x.

should make sense on its both sides. 30

Fig. 3.6 illustrates the considered non-minimal scenario. In it we see the line of BZ 0 �xed

points, of uncertain origin, which interchanges stability with BZ line at x Æx0. For xc Ç x Ç x0

the �ow from free theory leads to BZ 0 (and thus we have symmetry enhancement in IR to

G0). At xc the line of BZ 0 �xed points disappears by annihilation with a line of CFTs analogous

to QCD¤ (but with symmetry G0). The BZ line of CFTs with symmetry G continues to exist

at x Ç x0, but is unstable (contains a relevant G-singlet scalar). Being unstable, it does not

affect the IR properties of RG �ows originating in free theory at x Ç x0and in principle it may

continue to exist even for x Ç xc.

Admittedly this scenario is a bit contrived, which is why we prefer the minimal scenario

described in section 3.4. However, it can eventually be probed by Monte Carlo simulations.

Notice that in the non-minimal scenario approximate symmetry enhancement to G0should

appear even in the walking regime just below xc. We will see in section 3.5 an example of an

approximate symmetry enhancement without a �xed point, which may have a similar origin.

It's easy to imagine even more complicated scenarios but we will stop here.

30As a technical comment, we note that the actual fate of the BZ �xed point in this scenario at x Ç x0depends
on the G0quantum numbers of the operator O which breaks G0 to G and induces a �ow between BZ and BZ 0.
If these quantum numbers are such that they allow a nonzero three-point function fOOO » hOOO i then the
beta-function for the perturbing coupling ¸ ? will have the schematic form ¡ ²¸ ? Å fOOO ¸ 2

? where ² » x ¡ x0

and a real BZ �xed point will exist on both sides of x0. Suppose on the other hand that O is odd under some Z2
subgroup of G0, so that fOOO vanishes. The couplings ¸ ? and ¡ ¸ ? are now equivalent and the beta-function has
the form ¡ ²¸ ? ÅO(¸ 3

? ). Now �xed point at x Ç x0lives at negative ¸ 2
? which may e.g. lead to violations of unitarity.

93



Chapter 3. Walking, weak �rst order phase transitions and complex CFTs

3.4.4 The conformal window in holographic QCD

The question of the conformal window in large N QCD has been studied also in holographic

bottom-up models [ 165–167].31 These models consider QCD in the Veneziano limit, N f ! 1

with x �xed: they consist of a �ve dimensional bulk theory with a dilaton and a tachyon,

transforming respectively in the singlet and the bifundamental of the �avor group. The

boundary duals of these bulk �elds are tr F2 and the fermionic bilinear respectively.

As usual in holographic RG, boundary evolution from the UV to the IR corresponds to bulk

evolution from the near boundary region to the center, see for example [ 168]. The authors

of [165–167] make ansatz for the potentials of these �elds subject to some constraints: in

the UV, close to the boundary, these potentials must behave so that the beta functions for

the boundary couplings reproduce the perturbative QCD beta functions. There are further

conditions on the deep IR asymptotics of the potential related to having con�nement and a

linear glueball spectrum in the gapped phase. Once an ansatz for these potentials is selected,

one can numerically study the evolution from the UV to the IR.

The authors �nd that an IR conformal �xed point exists for xc 6 x Ç 11/2; the precise value

of xc depends on details of the chosen potential but is in general xc » 4. The value of xc is

determined to be the point where the dimension of the fermion bilinear becomes d /2 Æ2;

as mentioned earlier, this is a peculiarity of the large N limit, which does not need to hold at

small N .

For x . xc, it's seen that the theory �ows to some con�ning phase, but the dilaton exhibits a

walking regime (see for example �gure 7 of [ 165]). While we know that, close to the boundary,

the dilaton is dual to the gauge coupling, deeper in the bulk this represents some effective

coupling which is some linear combination of the singlet couplings of the theory. This does

not imply that the walking coupling is the gauge coupling, and we �nd no contradiciton with

our claim of appendix B.3 that at in�nite N , the walking coupling should be that of the fermion

quadrilinear.

Complex CFTs make their appereance in [ 165–167] as boundary duals of theories violating the

Breitenlohner-Freedman (BF) bound [ 169]. In AdSdÅ1, in the case of scalar �elds, we have a

relation between bulk mass and boundary scaling dimension

¢ (¢ ¡ d ) Æm 2 , (3.4.4)

where we set the radius of AdS to unity. For masses violating the BF bound, i.e. m 2 6 ¡ d 2/4,

the above equation admits two complex solutions for ¢ . Notice that for x Æxc, the fermion

bilinear has dimension d /2 and it saturates the BF bound. For x 6 xc, it makes sense to

consider the two complex solutions for ¢ as two complex CFTs. These are well de�ned saddle

points, which are however subleading to the spontaneously symmetry-broken con�ning phase

to which the theory �ows in the IR.

31The authors consider both �nite and zero temperature, but we will focus only on the latter.
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Another interesting feature of this model is that it gives us the opportunity to compute the

spectrum for x Ç xc [166, 167]. The authors �nd that, for x Ç xc, the spectrum is always

gapped, except for the pions which are the Goldstone bosons of the spontaneously broken

chiral symmetry, and as x ! x ¡
c all other masses go to zero, with their ratios being �nite.

This is in agreement with our claim in section 3.4.2, that walking theories in general do not

have a light dilaton in the spectrum. In general, in this setup it's possible to study explicitly

the behavior of the masses below the conformal windows, and it's seen that they scale like

log m » ¡ 1/
p

xc ¡ x in the x ! x ¡
c limit, as expected.

3.5 Decon�ned criticality: a further example of walking?

Here we will discuss an interesting 3d RG �ow which, while not fully understood, seems to

exhibit phenomena plausibly explainable by walking. This discussion is largely based on

sections V.E.2 and V.E.4 of [17] where further details and references can be found.

This RG �ow has been originally brought up in condensed matter literature in relation with

the Néel-Valence Bond Solid (VBS) transition and the phenomenon of “decon�ned criticality"

[32]. Without going into condensed matter details, in �eld-theoretical language one studies

the 3d Abelian Higgs model (also called bosonic QED 3), which is the theory of a 3d U (1) gauge

�eld coupled to N complex scalars Ái with an SU(N ) invariant potential m 2jÁj2 Å ¸ (jÁj2)2.

For this discussion we focus on N Æ2 which is the most interesting and best-studied case,

although N È 2 is also interesting.

The global symmetry of this theory is SO(3) £ U (1)T . The SO(3) ÆSU(2)/ Z2 part of the global

symmetry descends from the SU(2) symmetry of the scalar potential (one has to divide by

Z2 since the center part of SU(2) corresponds to a gauge transformation). The U (1)T part of

the global symmetry is topological, called U (1)T to distinguish it from the gauge group. The

operators charged under it are U (1) gauge �eld �ux defects, called monopoles.

In the above theory, by varying the UV mass m 2, one induces a phase transition between a

Coulomb and a Higgs phase of the gauge �eld. This transition is supposed to describe the

critical properties of the Néel-VBS transition in certain (2 Å 1)d quantum antiferromagnets.

One interesting question is whether this transition is continuous or �rst-order.

From Monte Carlo studies performed by various groups, the following picture transpires

[33, 34]. First, no signs of a conventional �rst-order transitions are seen: it is either continuous,

or perhaps a very weakly �rst-order (the correlation length being at least several hundred

lattice spacings). Second, quite unexpectedly, near the phase transition the system is seen to

possess a global symmetry enhancement from SO(3) £ U (1) to SO(5). For example, the Néel

order parameter operator transforming as a fundamental of SO(3) turns out to have the same

scaling dimension ¢ © Æ0.625(15) as the lowest charge monopole, which suggests that they

may be combined into a © in the fundamental of SO(5). For other impressive tests of SO(5)

enhancement see [33, 34].
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Assuming we have both a continuous phase transition and SO(5) symmetry enhancement, one

can ask about dimensions of lowest scalar operators S and T transforming as a singlet and a

symmetric traceless tensor of SO(5). The T is known to be relevant of dimension » 1.5 [34], its

various component being interpreted as the charge two monopole and the mass term m 2jÁj2

which drives the transition. On the other hand S has to be irrelevant, because otherwise the

transition would not be reached.

Now, it turns out that this expectation comes into a clash with rigorous bounds computed

from conformal bootstrap under the assumption of unitarity and SO(5) invariance [ 35, 170].

Namely, these bounds imply that the irrelevance of S requires ¢ © È 0.76 [171], in con�ict with

the above measurement ¢ © Æ0.625(15)

The clash would be resolved if we assume that the phase transition is weakly �rst-order due

to a walking behavior of the RG �ow. The CFT controlling this �ow being non-unitary and

moreover complex, rigorous bootstrap bounds do not apply. The observed scaling exponents

are then attributed to the approximately scale-invariant part of the RG trajectory. If this

interpretation is correct, we are led to conclude that walking RG �ow manages to relax the

bound on ¢ © quite signi�cantly, from 0.76 for unitary theories down to the observed 0.625(15).

It's not our goal here to discuss various pro and contra in favor of this scenario. The hypothesis

of a weakly �rst-order phase transition via walking mechanism was put forward in [ 33] even

before the above bootstrap evidence emerged, as one of the ways to explain some unusual

�nite-size scaling effects observed in their Monte Carlo simulations, and it was also discussed

further in [ 132]. In 4 we will discuss peculiar form of deviations from scale invariance (drifting

scaling dimensions) present in walking RG �ows, possibly related to the unusual Monte Carlo

effects seen in [33].

Finally, we mention two related condensed matter transitions which seem to exhibit similar

physics. First, there is the N f Æ2 fermionic QED3, for which the situation is as murky as

for the Néel-VBS: a continuous/weakly �rst-order dilemma, symmetry enhancement from

SU(2) £ U (1) to SO(4), and a clash with bootstrap bounds, see section V.E.4 of [ 17]. Second,

there exists an easy-plane version of the Néel-VBS transition studied via numerical simulations

in [ 172],[173]. In this case the situation is clearer: there is a weakly �rst-order phase transition

due to walking behavior, as well as symmetry enhancement from SO(3)£ Z2 to SO(4). It would

be interesting to understand better these examples.

Notice that in this work we discuss walking �ows with rotational invariance. This should be

relevant for statistical physics examples of decon�ned criticality. One may ask how our picture

would be modi�ed for quantum decon�ned criticality, where the phase transition is driven

by quantum �uctuations in anti-ferromagnets. The difference is that in this case we also

expect scale-dependent deviations from rotational invariance, parametrized by `running of

the speed of light'. 32 Running of the speed of light does not spoil our picture, but some of our

32We are grateful to Silviu Pufu for raising this interesting point.
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RG computations need to be modi�ed. When we perturb complex CFTs, as in section 3.6.3,

we will have to add a marginal coupling to the T00 component of the stress tensor into the RG

equations. Interplay between this additional coupling and the walking coupling ¸ will lead to

new effects, but we believe our basic picture should be preserved. It would be interesting to

work this out in detail.

3.6 Complex CFTs

We have provided the reader with several examples of physical systems which show walking

behavior. Both QCD with x ÆN f / Nc . xc and the Potts model with Q & Qc at the critical tem-

perature have a large separation between the UV and the IR scale and a region of approximate

scale invariance. As mentioned in section 3.2.2, RG behavior of walking systems is controlled

by complex �xed points with small imaginary parameters. There we introduced complex �xed

points to study the beta-function of the form (3.2.3):

¯ (¸ ) Æ ¡ y ¡ ¸ 2 , (3.6.1)

which for y È 0 has �xed points C,Cat complex values of the coupling constant ¸ Æ §i
p

y. At

these �xed points the operator controlling the RG �ow has anomalous dimension given in

(3.2.4), namely

¢ Æd ¡ 2i
p

y, ¸ Æi
p

y , (3.6.2)

¢ Æd Å 2i
p

y, ¸ Æ ¡i
p

y . (3.6.3)

In this section we will proceed to study such complex �xed points in more detail.

We emphasize that each of these operators belongs only to the indicated �xed point but not

to the other one. To have this feature it was crucial to consider an RG �ow in the space of

complex couplings. To appreciate this last point better it is instructive to consider a different

system of beta-functions for two real coupling constants:

¯ u Æ2
p

yv ,

¯ v Æ ¡2
p

yu . (3.6.4)

This system of beta-functions may seem exotic, and indeed �eld theories that produce this

kind of behavior are rather involved. In the classi�cation which we will promulgate below

they will count as real theories, albeit non-unitary. The motivation to call such theories real is

that the coupling constants stay real, and moreover if one works in the basis of operators that

correspond to couplings u and v, correlation function are also manifestly real. We will present

some examples below, but for now let us study these equations as an abstract toy model.

In case at hand there is a single �xed point for u Æv Æ0 and there are two close-to-marginal

operators at this �xed point with dimensions d § 2i
p

y. In spite of the appearance of complex
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anomalous dimensions, which clearly indicates non-unitarity, the crucial difference of the

�xed point of (3.6.4) from those of (3.6.1) is that both above complex-conjugate operators

belong to it, while as mentioned each �xed point of (3.6.1) has a single complex operator.

We will turn this distinction into a more formal statement in the next section, where we give

some more details, de�nitions and examples of complex and real theories.

3.6.1 Real vs complex QFTs

3.6.1.1 RG evolution

Let us start with the discussion of general QFTs and specify to CFTs later. 33 We would like to

formalize the distinction between real and complex QFTs. It's best to proceed from examples.

Consider e.g. a perturbative Lagrangian theory of multiple real scalar �elds. We can complexify

coupling constants, considering them living in CM where M is the total number of couplings.

In this setup we can consider the subspace R ÆRM of all couplings real. We would like to call

theories corresponding to this subspace real. Notice that this subspace is preserved by RG

evolution, so this looks like a natural de�nition.

For theories of real scalars in integer spacetime dimension d , the class of real theories coincides

with that of unitary theories. However in general a real QFT does not have to be unitary. To see

a simple example, let us couple scalars with vector �elds, with all couplings real. The theory is

still real, but as is well known it will be unitary only in a restricted class of theories respecting

gauge invariance.

A general comment about complexifying RG evolution is in order. We assume that a coupling

basis exists, such that beta-functions ¯ a Ædga / d t are locally analytic functions of complexi-

�ed couplings with real coef�cients: ¯ a({g¤
b }) Æ¯ ¤

a({gb}). This guarantees that the subspace of

real couplings R is RG-preserved. Notice that it would be incorrect to think of the map ga ! g¤
a

assimply an example of a Z2 symmetry under which the imaginary parts of all couplings are

odd; it's much more than that. Of course we can split each coupling into real and imaginary

part ga Æ¾a Å i ¿a and view RG evolution as happening in R2M . If we impose that ¿a are odd

under a Z2, this would also explain why R is preserved, but the above assumption of analyticity

with real coef�cients is much more constraining. Compare for example the beta-function

¯ (g) Æg2 which in terms of real and imaginary parts reads

¯ ¾ Æ¾2 ¡ ¿2 , ¯ ¿ Æ2¾¿. (3.6.5)

On the contrary imposing only Z2 would allow quadratic beta-functions of the same functional

form but with arbitrary relative coef�cients.

33The reader interested primarily in complex CFTs can jump directly to section 3.6.2.
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3.6.1.2 Correlation functions

De�nition of real vs complex theories in terms of RG evolution is intuitively clear, but we

would like to have a de�nition that may be applicable to theories which contain �elds that

are intrinsically complex, as well as theories which do not necessarily admit a Lagrangian

description. Such a de�nition can be given in terms of correlation functions: we will call

a theory real if it contains a set of operators Oi whose correlation functions are real at all

distances.

A slightly more nuanced but practically almost equivalent de�nition is as follows. For simplicity

let us focus on theories which have parity invariance and let's talk only about bosonic operators.

The theory is called real if there is an involutive map ¤ which acts on local operator labels and

puts in correspondence to each local 34 operator Ai an operator A¤
i such that the correlation

functions of A's and A¤ 's, while in general complex, are complex conjugate of each other:

hA1(x1)A2(x2) . . . An (xn )i ¤ Æ hA¤
1 (x1)A¤

2 (x2) . . . A¤
n (xn )i . (3.6.6)

Hopefully it will not be confusing that we use the same symbol ¤ as a complex conjugation

acting on numbers, as well as a map acting on names of operators. Real operators are those

whose correlation functions are real, and so according to the above de�nition we have A¤ ÆA

for such operators. 35

On the contrary, if the map ¤ with the above properties does not exist, then the theory is

classi�ed as complex.

Notice that the above de�nition makes sense separately of any quantization interpretation. So

the operation ¤ does not have to be thought of as a conjugation of operators acting in some

Hilbert space. If we know all correlation functions of the theory, we can inspect them and

decide if the map ¤ : A 7! A¤ exists.

However if we do have a parity-invariant unitary theory realized in a Hilbert space, then it's easy

to see that it would be classi�ed as real according to the above de�nition with O¤ Æ(¡ 1)pO O†

where pO is the parity of O. Let us split x Æ(¿,x) and use quantization by planes in the ¿

direction, so that O(¿,x)† ÆO†(¡ ¿,x) and so

hO1(x1) . . .On (xn )i ¤ Æ hO†
1(¡ ¿1,x1) . . .O†

n (¡ ¿n ,xn )i . (3.6.7)

Using parity transformation we can now �ip all ¿'s and go back to the equation of the form

(3.6.6) where the operators in the r.h.s. and l.h.s. are at the same positions.

So, all unitary theories are real but of course unitary theories in Euclidean space satisfy a

crucial additional assumption, the re�ection positivity, which is the positivity constraint on

34Here as in the rest of the chapter we focus for simplicity on local operators, however the conjugation relation
in a real theory should exist also for non-local operators. We thank Silviu Pufu for inquiring.

35For any A the operators AÅ A¤ and i (A ¡ A¤ ) will be real.
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(2n)-point functions:

hO†
1(¡ ¿1,x1)O†

2(¡ ¿2,x2) . . .O2(¿2,x2)O1(¿1,x1)i > 0. (3.6.8)

We refer the reader to e.g. [ 174] for precise de�nition of re�ection positivity. Re�ection positive

theories can be analytically continued to Minkowski space in a consistent way.

One the space of complex QFT's it is natural to de�ne the complex conjugation map such

that for any operator Ai present in the original theory the complex conjugate theory contains

operator A¤
i and correlation functions of the operators in two theories are related by Eq. (3.6.6).

Then real theories are the �xed points of the conjugation map.

3.6.1.3 Examples

Let us now give some examples of real yet non-unitary Euclidean theories. One example was

already mentioned: theories of multiple scalars and vectors without gauge invariance, coupled

with real couplings.

A more subtle example is a real scalar Á with potential V (Á) Æih Á Å i ¸Á 3. This potential satis-

�es V (¡ Á) ÆV (Á)¤ . This theory will be real according to the correlation function de�nition,

with O Æi Á being a real operator. 36 We will encounter the IR �xed point of this theory in

section 3.6.2.1 as a real but non-unitary CFT – the Lee-Yang minimal model M 2,5.

As the next example, consider O(N ) models analytically continued to non-integer N . Corre-

lation functions stay real, at least in perturbation theory, but these theories are non-unitary

[175].

Finally, consider theories of real scalars with real couplings, analytically continued to non-

integer Euclidean dimensions d , à la Wilson-Fisher. Such theories have been shown to be

non-unitary in [ 79, 176]. It would be nice to clarify to which extent they are nonperturbatively

well-de�ned.

3.6.2 Real vs complex CFTs

We now proceed to discuss real and complex CFTs. Since the structure of CFTs is more

constrained we will be able to make our de�nitions more concrete. Real (complex) CFTs can

arise as �xed points of real (complex) RG �ows. We will discuss the consequences of reality on

the spectrum of a CFT, and provide the reader with some examples.

A CFT is de�ned by its conformal data: the set of all operator dimensions and all OPE

coef�cients. Following the discussion of the previous section, if a CFT is real, and an operator O

36Such theories are sometimes called PT-invariant. Literature on PT-invariant theories is sometimes hard to read
because valid results on Euclidean PT-invariant theories are often interspersed with highly suspect claims that
such theories may somehow be relevant also for real-time, Lorentzian physics, in spite of being non-unitary.
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with complex scaling dimension ¢ is part of the theory, then also O¤ , with scaling dimension

¢ ¤ , must be part of the theory. Some operators will have real scaling dimensions, while

operators with complex scaling dimensions can exist only in complex conjugate pairs in order

for O¤ to exist.37

OPE coef�cients must satisfy relations that follow from (3.6.6)applied to three-point functions,

in particular OPE coef�cients of three real operators must be real. 38

If instead we consider a complex CFT, operators with complex scaling dimension can appear

without their complex conjugated partner being present in the theory. Similarly OPE coef-

�cients can be complex numbers not subject to any obvious constraints. Central charge of

complex CFTs can be a complex number, as we will see in 4. Despite the fact that confor-

mal data is complex, complex CFTs still ful�ll other usual properties: conformal symmetry,

operator product expansion, and crossing.

3.6.2.1 Examples

We will now review some examples. As we saw above, all unitary CFTs are real. Let us consider

examples of real but non-unitary CFTs, in order to highlight the difference between reality and

unitarity.

Consider �rst 2d examples. The simplest example is the Lee-Yang minimal model M 2,5 which

appears as an IR �xed point of a theory of 2d scalar with purely imaginary cubic coupling

[177, 178], see section 3.6.1.3. This CFT has real spectrum, with a single Virasoro primary Á of

dimension h Æh̄ Æ ¡1/5 and real central charge c Æ ¡22/5. That h and c are negative is a clear

sign of non-unitarity. In the usual normalization the OPE coef�cient CÁÁÁ is purely imaginary.

The real �eld is Á̃ Æi Á, with a real OPE coef�cient CÁ̃Á̃Á̃. This CFT is thus real non-unitary.

The previous example generalizes to all non-unitary minimal models M p,q . Recall that

M m,mÅ1 are unitary while for jp ¡ qj È 1 the minimal models M p,q are non-unitary. We

consider integer p,q so that there is a �nite Kac table and a �nite number of primaries. In

spite of being non-unitary, all primary �elds in these theories have real scaling dimensions

h r ,s and the central charge is real. The OPE coef�cients in minimal models were investigated

by Dotsenko and Fateev [ 179, 180]. It follows from their work that pairwise products of OPE

coef�cients Ci j k Cklm , for which they give explicit formulas, are real. This means that either all

OPE coef�cients are real or purely imaginary, in which case they are made real multiplying all

�elds by i . So these non-unitary minimal models are real CFTs.

Continuing the list of 2d examples, critical Potts model with Q non-integer and Q Ç Qc will

37Notice that when dealing with a real QFT, we could always pass from any operator to its real and imaginary part
(footnote 35) which are real operators. For real CFTsthis is not a natural thing to do, because if O is an operator of
complex scaling dimension, its real and imaginary part will not have a well-de�ned scaling dimension.

38Note that in unitary CFTs OPE coef�cients are known to satisfy reality constraints, see [ 17]. Here we are
describing a context when it is natural to impose reality of OPE coef�cients even if the CFT is not unitary.
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be real but non-unitary. That they are non-unitary can be seen very easily from their central

charge and the spectrum, which are exactly known as we will discuss in 4. Also the random

cluster measure which is the microscopic origin of these critical point is known not to have

re�ection positivity [ 124]. On the other hand the random cluster description is manifestly real,

and so it guarantees that the critical point if it exists should be a real CFT.

The same holds for the O(n) model with non-integer n in 2d, which can be given a nonpertur-

bative microscopic de�nitions as theories of loops, and is known to have a critical point for

n 2 [¡ 2,2]. Much is known about these CFTs, see e.g. [ 137]. These are also examples of real

non-unitary CFTs.

These examples have purely real conformal data and can be hardly confused with complex

theories. In this regard it is useful to bring up a CFT which is still real, but has pairs of

complex conjugate operator dimensions. It turns out that Wilson-Fisher �xed point in d Æ4¡ ²

dimensions is a theory of this sort [ 176].39 The Wilson-Fisher �xed point in d Æ4 ¡ ² is

a textbook example of a weakly coupled �xed point. It is described by a massless boson

perturbed by a quartic interaction term with a real coupling. In d Æ4 the theory is unitary: all

states have positive norm; however, when we move to d Æ4¡ ² the situation changes. There are

some evanescent operatorswhich have zero norm in integer dimension, but can have negative

norm in fractional dimension: it follows that the theory at the Wilson-Fisher �xed point is

non-unitary. This is also re�ected in the spectrum of the theory: because of the negative

norm states it is possible for some operators to acquire a complex anomalous dimension. This

happens for some of these evanescent operators, and complex scaling dimensions always

appear in complex conjugate pairs, as expected in a real CFT. The existence of these complex

operators was a bit hard to notice, since at �rst-order in ² they appear at very high dimension

(¢ Æ23) [176].

Another curious physical example of a real theory with pairs of complex operator dimensions

is a long-range disorder �xed point studied in [182].

Continuing with higher-dimensional examples, it is worth mentioning that the Lee-Yang CFT

described above can be studied for any 2 6 d Ç 6, as a �xed point of the cubic scalar theory

with imaginary coupling, and we expect it to be real for all d in this range. Close to the upper

critical dimension, in d Æ6¡ ² , the theory can be studied perturbatively. It would be interesting

to see if the spectrum of the theory is completely real in d Æ6¡ ² as it is in d Æ2, or if operator

pair with complex conjugate dimensions occur.

Finally let us discuss examples of complex CFTs. These examples are less frequent in the

literature than real non-unitary theories, and there seems to be no general consensus if they

are physical and/or well de�ned. Our �rst example is N Æ4 SYM: since the beta-function

vanishes for all values of g2, it appears that if we give g2 an imaginary part, we should obtain

a complex CFT.40 Notice that this procedure is fundamentally different from considering

39See also [79] for prior work and [181] for a related fermionic example.
40In the planar limit of N Æ4 SYM, scaling dimensions of operators appear to be analytic functions of the 't
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the theory as a function of the complexi�ed couplings ¿,¿̄Æ µ
2¼§ 4¼i

g2 , with µ the theta-angle.

Taking g2 complex means that we are considering the situation when ¿̄6Æ¿¤ .41 More generally,

we can consider a supersymmetric CFTs possessing a set of exactly marginal couplings ¸ i , and

consider it as a function of complexifed couplings ¸ i 2 CM , which gives rise to complex CFTs.

Partition functions for such complex deformations were discussed in [ 185]. On the other hand

Ref. [186] considered SCFTs perturbed by complex mass deformations, which in our language

corresponds to complex QFTs. 42

In studies of RG �ows of multi-scalar theories using the ² -expansion and 1/ N -expansion, it's

not unusual to encounter RG �xed points at complex couplings, which should be interpretable

as complex CFTs living in non-integer dimension d . Many such examples have appeared

recently in the work of Simone Giombi, Igor Klebanov and collaborators [ 187–190], with

complex �xed points arising from real �xed points which annihilate and go into the complex

plane when varying the number of �elds N or the dimension d . While these works view

complex operator dimensions as a sign of instability, and refer to complex �xed points as

“unstable CFTs", more optimistically these theories could actually be nonperturbatively well-

de�ned Euclidean CFTs.

A further example are the �shnet theories [ 191], obtained as deformations of N Æ4 SYM at

large N and in some special double limit of the coupling and of the twists. These deformations

break supersymmetry, and the �shnet theories are non-supersymmetric �xed points with

complex anomalous dimensions and no pair of complex conjugate operators [ 192] — they

appear to be complex theories according to our de�nition.

Our �nal example is the complex �xed point for the Potts model with Q È Qc, to be studied in

detail in 4. It allows for many explicit computations which signi�cantly clarify the concept of

complex CFT.

3.6.3 Complex CFTs and walking

We have seen in section 3.2.2 that the walking beta-function has two zeros at complex coupling,

and walking behavior of a theory can be understood as the �ow passing in between these

complex �xed points, when they are close to the real axis. Now we would like to reverse the

logic and show how, by starting from a pair of CFTs in the complex plane of the coupling, we

can describe the real walking theory. From the practical point of view, this section is perhaps

the most important one in this chapter: while the rest of our work was devoted mostly to

clarifying misunderstandings (some of the them our own) and laying conceptual foundations,

here we will propose a concrete calculational scheme.

Hooft coupling ¸ , ¸ 2 Æg2Nc/(16 ¼2), in the disk j¸ j Ç 1/4 (see e.g. [183], Eq. (67)). We thank Carlo Meneghelli and
Pedro Vieira for discussions.

41Note in this respect the limit ¿̄ ! ¡ i 1 with ¿ �xed considered in [ 184], although there it was interpreted as
taking g ! 0 and theta-angle imaginary and large. We thank Nikita Nekrasov for discussions.

42We thanks Silviu Pufu for discussions.
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Chapter 3. Walking, weak �rst order phase transitions and complex CFTs

Let us start with two complex theories, Cand C, which are related by complex conjugation,

meaning that the spectrum of C is the complex conjugate of the spectrum of C. A similar

condition holds for OPE coef�cients. We will formalize the condition that these two theories

are close to being real, by requiring that scaling dimension and OPE coef�cients have an

imaginary part of order O(² ), where ² ¿ 1.We will assume that this condition should hold at

least for low-lying operators. 43 Furthermore, we assume that the spectrum of Ccontains one

almost marginal operator O of dimension ¢ O Æd ¡ i ² Å O(² 2), which is a singlet under the

global symmetry group. We emphasize once again that the operator of the complex conjugate

dimension then belongs to C, and is not a part of C.

We will develop a form of conformal perturbation theory (CPT) where we perturb Cby O.

Usually, CPT is used to describe RG trajectories which either �ow out from a CFT or �ow into it.

The difference here is that we will use CPT to describe an RG trajectory which approaches CFT

but does not necessarily touch it, as in Fig. 3.2. Apart from this difference of interpretation,

formally we proceed as usual in CPT, perturbing the action of Cby adding operator O with

some (in general complex) coupling g:

SCÅ g
Z

d d x O(x) . (3.6.9)

For nonzero g, the scale invariance of the theory is in general broken and the coupling g will

run. The one loop beta-function is given by the standard result (see e.g. [21])

¯ g Æ ¡i ² g Å
1

2
SdCOOO g2 Å .. . , (3.6.10)

with Sd the volume of the d -dimensional unit sphere and COOO the OPE coef�cient extracted

from the three-point (3pt) function hOOO i . In general COOO is complex, but at the order we

will be working here, we can neglect its O(² ) imaginary part and treat it as real.

We see that the above beta-function has two �xed points: the trivial g Æ0, and the nontrivial

at g ÆgFP Æi 2²
Sd COOO

, which we denote CFP. Since there is only one almost marginal singlet

operator, and Cand Care close to each other, it appears reasonable to identify CFP with C.

One simple check of this identi�cation is to compute the scaling dimension of the operator O
at this �xed point:

[O]gÆgFP Æd Å ¯ 0
g (gFP) Æd Å i ² Å O(² 2) . (3.6.11)

We see that the imaginary part �ipped sign as expected.

What about the other operators? Along the �ow, a generic operator Á acquires an anomalous

dimension (see e.g. [21])

° Á(g) ÆSdCÁÁO g Å O(g2) . (3.6.12)

43As we said before, a general real theory could have operators with complex scaling dimension, provided that
they appear in complex conjugate pairs. We are assuming here that Cand Care close to a more restricted real
theory, where all operator dimensions are real, at least in the low-dimension part of the spectrum.
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3.6. Complex CFTs

Its scaling dimension at the �xed point is ¢ C
Á Å ° Á(gFP). To identify it with the dimension of

the same operator at C, the imaginary part must �ip sign (we call it the Im-�ip condition). For

operator O this happened automatically because of the way the coef�cient COOO controlled

the calculation, but for a generic operator this requires a non-trivial relation between OPE

coef�cients and scaling dimensions. At one loop we should have (all quantities refer to CFT C):

Im ¢ Á

CÁÁO
Æ

Im ¢ O

COOO
, (3.6.13)

up to corrections higher order in ² .

Here's an intuitive argument in favor of (3.6.13). Assume for a second that it does not hold

for some operator Á. Then the dimension of Á at the �xed point will be different from ¢ ¤
Á,

and hence CFP cannot coincide with C. So assuming such a scenario, we have four nearby

complex CFTs: C, C, CFP, CFP, as opposed to only Cand C. This proliferation of CFTs seems

rather unlikely. It is more economical to assume that in fact CFP ÆC, which requires (3.6.13).

Hopefully in the future (3.6.13) will be derived from general CFT principles (like OPE and

crossing) applied to the pair of complex CFTs, although at the moment we don't have such a

proof. In 4, we will give an explicit example where this relation is satis�ed by several operators.

Now we would like to recover the real walking theory. Intuitively, it corresponds to the RG

trajectory which passes in the middle between the two complex CFTs. We should land on this

trajectory by adding half of the coupling that takes us from Cto C. Adding the operator O with

a coupling g ÆgFP

2 ¡ ¸ , the above beta-function re-expressed in terms of ¸ takes the form:

¯ ¸ Æ ¡
² 2

2SdCOOO
¡

SdCOOO

2
¸ 2 Å .. . (3.6.14)

We see that to the considered order all imaginary terms cancel: the coupling ¸ , if it starts

real, will remain real during the RG evolution. Rescaling ¸ , we bring the beta-function to the

walking beta-function (3.2.3) with y Æ² 2/4. Since y does not depend on COOO , the generated

hierarchy (3.2.7) in this one-loop order is independent of the OPE coef�cient.

To further check that the theory described by the �ow (3.6.14) is indeed real, we should

compute correlation functions of local operators and show that they are real. For 2pt function

this will be done in chapter 4, where we will also compute deviations from scale invariance

interpreted as “drifting scaling dimensions".

Finally, the following comment on the validity of CPT is in order. To land on the real trajectory,

we need to perturb with the coupling gFP/2, which is proportional to the imaginary part of

the dimension of O. Consequently, the latter needs to be small in order for the perturbation

theory to be under control. Higher order calculations performed in 4 will demonstrate that

it is actually the square of the imaginary part that serves as an expansion parameter for real

physical quantities, which somewhat improves the convergence properties of CPT.
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Chapter 3. Walking, weak �rst order phase transitions and complex CFTs

To summarize, in this section we sketched a technique whereby, once the conformal data of

the complex CFTs is known, CPT can be used to make predictions for correlation functions in

the walking regime. We limited ourselves to the leading-order CPT for simplicity, but one can

go to higher orders provided that the conformal data of the complex CFT is known to O(² 2) or

even exactly. To put the perturbative computation under control (in the walking regime), it was

convenient to assume that there is a family of CFTs depending on the continuous parameter ² .

If instead the complex CFTs are isolated, meaning that there is no such continuous parameter,

one can still do an expansion provided that ( ¢ O ¡ d )2 is numerically small. 44

3.7 Conclusions

To conclude, let us brie�y summarize the main results of this chapter. We introduced a new

type of conformal �eld theories that we call complex since they correspond to �xed points of

RG �ows that exist at complex values of coupling constants. We argued that these theories

can be well de�ned, and that one can work with them in the same way as one does with usual

real CFTs. Importantly, these complex �xed points actually control RG �ows of some real and

unitary gapped physical theories. This happens if the parameters of a complex CFT have small

imaginary parts and the real RG �ow, which we actually are interested in, is forced to pass

close to it. As usual, in the proximity of a �xed point the RG �ow becomes slow which leads to

various interesting phenomenological properties, like a large hierarchy of scales and a large

correlation length. The corresponding RG behavior is referred to as walking.

Examples of applications of complex CFTs include certain gauge theories near the end of the

conformal window, as well as various condensed matter systems that exhibit weakly �rst-order

phase transitions. Previous approaches to describing these systems, however, centered their

discussion around real �xed points that exist only if certain parameters of the theory are

altered. We claim that a better-controlled approximation and more physical understanding

arises with our method. In this chapter we focused mostly on drawing the general physical

picture, and showed how to back it up with elementary computations. Further evidence will

be provided in chapter 4 in which we study a very clean and amenable to detailed calculations

example of walking RG — the two-dimensional Potts model with number of states Q larger

than four. There we construct explicitly the corresponding complex CFT and check that its

perturbation indeed describes the model of interest.

We reckon that thinking in terms of complex CFTs will improve our understanding of various

models studied in high energy particle physics, as well as of condensed matter systems.

44For subtleties related to such an expansion see the recent discussion in section 3.4 in [90].
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4 The Q È 4 Potts model

4.1 Introduction

In the previous chapter we reviewed walking as a mechanism of generating hierarchies, and

pointed out several examples of physical systems which realize it. One example are 4d and 3d

gauge theories, where the walking mechanism is realized, conjecturally, below the lower end

of the conformal window. Another example is the Q-state Potts model which has a conformal

phase at Q 6 Qc(d ), and the walking mechanism governs the physics of a weakly �rst-order

transition just above Qc. Abundant evidence, especially in d Æ2 where Qc Æ4, allows to �rmly

establish walking in the Potts model.

Another goal of chapter 3 was to highlight the concept of `complex CFTs', an unusual class of

conformal �eld theories which describe �xed points of RG �ow occurring at complex coupling.

These complex CFTs control walking RG �ow passing near them, in a way similar to how a

UV �xed-point CFT controls the beginning of the RG trajectory arising from it via a relevant

perturbation.

This chapter will develop further the connection between walking and complex CFTs, by

studying in depth the 2d Potts model at Q È 4. While CFTs describing the conformal phase of

the 2d Potts model at Q 6 4 have been studied intensely [ 122, 137, 193], as far as we know, our

work is the �rst one discussing the complex CFTs at Q È 4.

We start in section 4.2 reviewing 2d Potts model results relevant for our purposes. We discuss

the spin and cluster formulations of the model, transition to the height representation, and the

Coulomb gas construction for the conformal phase at Q 6 4. We present the partition function

of the model on the torus, and obtain from it the spectrum of low-lying operators. We explain

the way to obtain some of the OPE coef�cients of the theory by imposing crossing and using

Virasoro symmetry. We also speculate about possible implementations of the permutation

symmetry with non-integer number of elements.

In section 4.3 we analytically continue the conformal Potts theory in Q to real Q È 4, which
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leads to complex conformal theories. In section 4.4 we reconstruct the real Q È 4 theory

at the �rst-order phase transition by means of conformal perturbation theory around the

complex CFT. We present several one- and two-loop consistency checks, and in particular

compute drifting scaling dimensions – a characteristic feature of two-point functions in

theories exhibiting walking RG behavior.

Several technical points are relegated to the appendices. Appendix C.4 reviews some repre-

sentation theory of the permutation group and discusses a few operators transforming in its

higher representations. Appendix C.5 reviews some basic results in the orbifold construction

of the Q Æ4 theory.

4.2 2d Potts model for Q 6 4

In this paper we deal with the 2d Potts model with Q states. An elementary introduction to

this model was already given in chapter 3. Here we will repeat de�nitions for completeness

and provide a few further details. Almost everything we say in this section will be well known

to the experts on the 2d Potts model and the related loop models. Still, by our own experience

it's not always easy to parse the results scattered throughout the literature, so we will provide a

self-contained exposition of the needed facts. One place where our point of view differs from

the existing literature is concerning Kondev's argument, see footnote 16.

Consider �rst the lattice formulation, working on a square lattice for de�niteness. For integer

Q we have a model of spins si living on the lattice sites, which can be in Q states labeled

1, . . . ,Q, and which have ferromagnetic nearest-neighbor interaction ¡ ¯± si ,sj , preserving SQ

global symmetry.

This model can be rewritten in terms of probability distribution of random graphs X living

on the same lattice (called the Fortuin-Kasteleyn, or cluster representation). The graphs

X include all lattice sites and some of the bonds, and the weight of a given graph is given

by vb(X)Qc(X) where b(X) is the number of bonds and c(X) is the number of connected

components (clusters). The two de�nitions give an identical partition function for integer Q if

v Æe¯ ¡ 1. Notably, the second de�nition also makes sense for non-integer Q and allows to

analytically continue the model in Q. Here we will consider real Q È 0.

The model has an order-disorder phase transition located at v Æ
p

Q, which is continuous for

Q 6 Qc Æ4. The CFT describing this transition is called the critical Potts model.

One can also de�ne the dilute Potts model where certain sites of the lattice are kept vacant.

Varying both the fugacity of the vacancies and the temperature, the dilute model has a tricritical

point for Q 6 4. (It also has a critical point which is the same as for the original Potts model.)

The CFTs describing the tricritical and critical Potts model are different for Q Ç 4 and coincide

for Q Æ4.

For integer Q Æ2,3,4 the CFTs describing the tricritical and critical Potts model are unitary
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4.2. 2d Potts model for Q 6 4

and exactly solvable (for Q Æ2,3 these are unitary minimal models, while for Q Æ4 it's an

orbifold of compacti�ed free boson, see appendix C.5). For non-integer 0 Ç Q Ç 4 as well as

Q Æ1 these CFTs are real (in the sense that all the observables are real, see section section 3.6)

but non-unitary. As we will see below, the spectrum of local operators of the tricritical and

critical Potts models is exactly known for all 0 Ç Q 6 4. However, not all the OPE coef�cients

among these operators are exactly known for Q different from 2,3,4. So these CFTs have not

been exactly solved.1

4.2.1 Lattice transfer matrix and local operators

The cluster de�nition of the Potts model for non-integer Q being nonlocal, it may seem

puzzling how a local CFT may describe its phase transition. This section will clarify the

physical meaning of CFT operators in the cluster de�nition. This discussion is a bit technical,

and the reader interested merely in the applications of the Potts model to the subject of

complex CFTs, rather than in the physics of the Potts model itself, can skip to Eq. (4.2.18)

where we begin to present the results for the torus partition function.

Recall that in the familiar integer Q case, when we can describe the Potts model in terms of

spins, local lattice operators are obtained by �xing the values of a certain number of spin

variables at nearby points. A general lattice operator will have the form

±(s(x1) Æa1)¢¢¢±(s(xn ) Æan ) (4.2.1)

where s(x1), . . . ,s(xn ) are spin variables at nearby lattice points and a1, . . . ,an are �xed val-

ues. These operators can be further grouped into irreducible representations (irreps) of SQ

symmetry (see e.g. [196]).

In this case, the correspondence between lattice operators and local CFT operators is as

follows. At the critical point we have local CFT operators with well-de�ned scaling dimension

and spin, transforming in an irrep of SQ . Each lattice operator can be expanded into CFT

operators. Going in the opposite direction, for each local CFT operator we can �nd a local

lattice operator so that their correlation functions agree at distances large compared to the

lattice spacing.

Another way to make contact between the lattice and the CFT is to consider the model on the

cylinder S1 £ R, i.e. with one dimension compacti�ed on a circle of length L, and the other

thought of as (Euclidean) time. States propagating along the cylinder have energies (2 ¼/ L)¢ i ,

where ¢ i are scaling dimensions of the CFT operators (up to a constant shift ¡ c/12 due to

the conformal anomaly). These energies can be measured on the lattice by constructing the

transfer matrix and measuring its eigenvalues (see below).

Going next to the cluster description applicable also for non-integer Q, the simplest nontrivial

1See [194] and [ 195] for recent progress on the Q Æ1 case (percolation) using a numerical conformal bootstrap
approach.
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observable is the probability that two distant points x and y are in the same cluster. This

probability is the cluster analogue of the spin-spin correlation function. One can also consider

more complicated events, e.g. probability that two groups of n nearby points x1, . . . ,xn and

y1, . . . ,yn belong pairwise to n different clusters. Such probabilities are cluster analogues of

two-point (2pt) functions of operators made of several spins for integer Q (see e.g. [197]). So,

roughly, a local operator creates a localized disturbance in the cluster distribution. One type of

disturbance is to emit a certain number of clusters. For integer Q, these operators correspond

in the spin description to operators transforming nontrivially under SQ . On the other hand,

disturbances which don't emit clusters correspond to operators which are singlets under SQ .

In local spin models, in particular in the Potts model for integer Q, it is standard to extract

scaling dimensions of local operators by analyzing eigenvalues of the transfer matrix Tspin on

a cylinder (i.e. on a lattice with periodic boundary conditions in one direction). Analogously,

dimensions of scaling operators for non-integer Q can be extracted from a transfer matrix

Tcluster in the cluster representation. 2 This Tcluster differs from Tspin in a few aspects, in

particular they act on rather different spaces of states. The familiar Tspin acts in the space of

spin states in a given time slice ¿. On the other hand, Tcluster acts in a vector space spanned by

connectivity states, which refer to two time slices, the initial 0 and the �nal ¿, and are de�ned

as follows. Suppose we already built the partition function on the cylinder from time 0 up to ¿

and we want to add another layer to the lattice ¿ ! ¿Å 1. To do this we only need to know how

the 2L lattice sites {1,2, . . . ,L} at time 0 and {10,20, . . . ,L0} at time ¿ are connected among each

other by clusters. A connectivity state is a partition P of these 2L sites into groups connected

by clusters. For example the situation in Fig. 4.1 corresponds to P Æ{{2}, {1,10,3}, {20,30}}.

The transfer matrix Tcluster maps state P¿ to a linear combination of states P¿Å1, and can be

constructed using two basic operations: join and detach. The join operation Jxy joins two

clusters to which x, y belong, while the detach operation D x detaches point x from its cluster

(this process has weight Q if x was already by itself ).

Figure 4.1 – This graph corresponds to the connectivity state described by a partition P Æ
{{2}, {1,10,3}, {20,30}}.

An important characteristic of a state P is the number of bridges b, de�ned as clusters which

connect time 0 and time ¿ (b Æ1 in Fig. 4.1). Clearly, the number of bridges can either remain

constant or decrease under the action of Tcluster , giving this transfer matrix an upper-block-

2This formalism goes back to [ 198]. Our discussion is based on [ 199–201]. We are grateful to Jesper Jacobsen for
explanations.
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triangular structure [ 200]. We are interested in the eigenvalues of Tcluster , which correspond, in

the large L limit, to the dimensions of local operators. To each eigenvalue ¸ we can associate

the maximal number of bridges present in the eigenvector, b¸ . To compute the eigenvalues,

we can �rst diagonalize the blocks Tb of the transfer matrix which leave the number of bridges

constant and equal to b. The full transfer matrix will then have the same eigenvalues, the part

of the eigenvectors with b0Ç b uniquely reconstructable from the part with b bridges using

the block-triangular structure. 3

In this language, the eigenvalues with b¸ Æ0 correspond to the `singlet' sector of the theory.

For integer Q, these eigenvalues correspond to states which are singlets under SQ . From the

leading eigenvalue we extract the ground state energy (the central charge), from the subleading

ones the dimensions of operators " and " 0which will appear below, etc. On the other hand,

the eigenvalues with b¸ È 0 correspond to operators `transforming nontrivially under the

symmetry' (borrowing classi�cation from integer Q). For example, the spin operator will

correspond to the �rst eigenvalue in the sector with b¸ Æ1.

Let us discuss brie�y how the transfer matrix is used to compute the Potts partition function

on a torus, i.e. with periodic boundary conditions in both directions. At integer Q, the partition

function is given by

Z ÆTr(Tspin )N , (4.2.2)

where N is the time-direction extent of the torus. In terms of transfer matrix eigenvalues ¸

this can be written as

Z Æ
X

¸
M ¸ ¸ N , (4.2.3)

where M ¸ are integer eigenvalue multiplicities. At integer Q we have SQ symmetry, and M ¸ 's

are dimensions of (possibly reducible) representations of SQ .

The analogue of (4.2.2) for non-integer Q looks more complicated:

Z ÆTr[G(Tcluster )
N ] , (4.2.4)

where G is a gluing operator which makes the torus out of the cylinder and takes into account

that clusters can be reconnected nontrivially during this operation. Thus we can still write

(4.2.3), but now M ¸ 's are products of eigenvalue multiplicities times matrix elements of the

gluing operator. In particular, M ¸ will not in general be an integer nor even positive. The

coef�cients M ¸ can be evaluated combinatorially [ 203] and are polynomials in Q. We will have

more to say about them below when we will discuss the partition function in the continuum

limit using the Coulomb gas method.

Notice that by construction Eq. (4.2.4) should agree with Eq. (4.2.2) for integer Q, although

3Here we are assuming that eigenvalues are non-degenerate among different blocks Tb . Otherwise the full
transfer matrix may not be diagonalizable, rather reducible to a Jordan normal form. This more complicated
situation corresponds in the continuum limit to logarithmic CFTs. It is realized in the limit Q ! 1 describing
percolation [202].
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this is not manifest because the cluster transfer matrix is not obviously related to the spin

transfer matrix. In fact for large integer Q, Eq. (4.2.4) provides a more ef�cient way to evaluate

the partition function of the Potts model than Eq. (4.2.2), because the Hilbert space dimension

is much smaller.

Finally, we note that while the above discussion focused on the Potts model, it can be adapted

to the diluted Potts model by allowing for vacancies. In particular, it is possible to study

operator dimensions of the tricritical Potts model by means of a cluster transfer matrix [136].

4.2.2 Symmetry

What is the symmetry of the Potts model? For integer Q, it's SQ , while for non-integer Q it

should be some sort of analytic continuation of SQ . Here as in chapter 3 we will take an

intuitive approach to symmetry for non-integer Q – as something which exists and which will

be clari�ed in future work. For example, we will try to expand partition function multiplicities

into dimensions of representations of SQ analytically continued to non-integer Q, although

clearly there is no such thing as a vector space of non-integer dimension. Another consequence

of the symmetry is that Q doesn't renormalize, even if non-integer. So Q is viewed as a �xed

parameter characterizing the theory, not as a coupling constant. This will be important when

we study RG �ows in perturbed Potts models. Readers bewildered by non-integer Q may adopt

the point of view that only integer Q is `physical', while the intermediate Q is just a trick to do

the analytic continuation. We don't endorse such a restricted point of view, but it can be a

helpful crutch.

4.2.3 Height representation

The cluster representation was applicable to the Potts model in any number of dimensions.

Here we will describe the loop and the height representations, which are speci�c for 2d. These

representations are the key to the torus partition function calculation explained in the next

section.

The loop representation is obtained by drawing loops surrounding clusters on the `medial

lattice' whose sites are midpoints of the bonds on the original lattice. Each loop is given weight
p

Q, and at the critical temperature the partition functions of the Potts model and of the loop

model coincide (see e.g. [ 137], Eq. (4.5)), if one works on a �nite lattice with free boundary

conditions as in Fig. 4.2.

One then further passes from the loop model to a height model (also called solid-on-solid

model). This is accomplished by splitting the loop weight into two terms corresponding to

two possible loop orientations. Each loop orientation gets a complex weight e§ 4iu obtained

by multiplying factors e§ iu for each left/right term (the total number of turns counted with
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Figure 4.2 – Passing from a cluster con�guration to an oriented loop con�guration (�gure from
[137]).

sign being 4), and u is chosen so that

p
Q Æ2cos(4u), (4.2.5)

summing over the two orientations. One then de�nes the height function Á starting from zero

boundary condition and changing it by § Á0, where Á0 Æ¼/2 by convention, when crossing

any loop, so that larger height is always on the left of the arrow. The resulting height model,

for Q 6 4, is known to renormalize at long distances to the gaussian �xed point

g

4¼

Z
d 2x (r Á)2 , (4.2.6)

where the coupling g is related to Q by

Q Æ2Å 2cos
¼g

2
, (4.2.7)

the branch 2 Ç g 6 4 chosen for the considered critical Potts model. This nontrivial result

(see [193] for a review, as well as [ 137], Eq. (2.19)) is the foundation on which the rest of the

construction is built.

For the tricritical Potts model the height representation is harder to build and we will not

discuss it [ 204]. Once the dust settles, it turns out that the tricritical Potts model also renor-

malizes to the gaussian �xed point, the only difference being that one has to choose another

solution branch of (4.2.7), namely 4 6 g Ç 6.

In summary, we have

g(Q) Æ4Å
2

¼
cos¡ 1

µ
Q ¡ 2

2

¶
. (4.2.8)

with cos¡ 1 in the interval [ ¡ ¼,0] on the critical and [0 ,¼] on the tricritical branches at Q 6 4,

see Fig. 4.3.

It might be surprising that the oriented loop model with complex weights led to the gaussian

model (4.2.6) with real weights. One explanation is that we can map the oriented loop model
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Figure 4.3 – Coupling constant as a function of Q 6 4 for the critical (lower branch, orange) and
tricritical (upper branch, blue) Potts model.

Figure 4.4 – Vertices of the 6-vertex model.

on the F-model, which is a 6-vertex model with positive weights. The mapping consists in

putting vertices on the medial lattice, with two arrows pointing inwards and two pointing

outwards. The F-model vertices are shown in Fig. 4.4, with weights

w1 Æw2 Æw3 Æw4 Æ1, w5 Æw6 Æe2iu Å e¡ 2iu . (4.2.9)

These assignments are in accord with the fact that vertices 1 to 4 can be uniquely decomposed

into two loop strands (and 1 Æei u e¡ iu ), while for vertices 5 and 6 there are two possible

decompositions, see Fig. 4.5. The height function for the F-model is the same as for the

oriented loop model, and in the continuum limit the F-model renormalizes onto the free

scalar boson (4.2.6).

Figure 4.5 – Passing from the oriented loop model to the F-model.

In the above discussion we were a bit cavalier about the boundaries. Suppose we are working

on a simply connected domain like a rectangle. Along the boundary, we have to use boundary

vertices shown in Fig. 4.6, and decide which weight to assign to them. In the F-model, it is

natural to give weight 1 to the boundary vertices, which is called free boundary conditions

for the 6-vertex model, and corresponds to using the Dirichlet boundary conditions for the

corresponding height �eld. With this assignment, the F-model renormalizes onto the free

scalar boson (4.2.6) with the Dirichlet boundary conditions.

On the other hand, to reproduce correctly the weight of the oriented loops, boundary vertices
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4.2. 2d Potts model for Q 6 4

in the Potts model should be given weights e§ iu .4 The product of these weights equals

ei u (CÅ ¡ C¡ ) (4.2.10)

where C§ are parts of the perimeter occupied by left/right going loops. To illustrate the

importance of this factor, consider the partition function. The F-model partition function

will reduce in the continuum limit to the partition function of the free scalar boson (4.2.6)

with Dirichlet boundary conditions. The Potts model partition function will be much more

nontrivial, since we have to include factor (4.2.10) into the path integral.

Figure 4.6 – Boundary vertices, assigned weight 1 in the F-model, and weights e§ iu in the Potts
model.

4.2.4 Long cylinder partition function and the Coulomb gas

In the next section we will consider the torus partition function, where we won't have to deal

with the above complications due to the boundary terms, but there will be other complications

due to loops going around the torus. Here we would like to discuss partition function on the

cylinder of circumference L and length T . Were we to keep the rule that each oriented loop

gets a weight obtained by multiplying e§ iu for every left/right turn, we would get weight 1

instead of e§ 4iu to loops circling around the cylinder, so that the unoriented loops get weight 2

instead of
p

Q. This discrepancy should be corrected as follows. Let us impose for de�niteness

the zero boundary condition on Á at the time 0 boundary of the cylinder. Then, on the lattice,

at time T , Á will take a constant value given by n(¼/2) where n is the number of oriented

loops circling around the cylinder (counted with opposite sign for two opposite orientations).

Changing the weight of such loops from 1 to e§ 4iu can thus be accomplished multiplying the

partition function with an extra factor

ei e0Á(T ) , (4.2.11)

where e0 Æ4u/( ¼/2), which gives

e0 Æ2¡ g/2. (4.2.12)

This is usually described as `placing charges § e0 at two opposite ends of the cylinder'. The

whole construction is known as `Coulomb gas'. 5

To evaluate the Potts model partition function on the cylinder, we thus have to combine three

ingredients: the F-model in the bulk which renormalizes to the free scalar boson, and the

4We thank Hubert Saleur for explaining this point to us.
5The resulting formalism is similar to the Dotsenko-Fateev Coulomb gas construction [ 179], although the logic

is different: here the extra charges are forced on us by the physics, while in [ 179] one adds extra charges at in�nity
by hand and studies the structure of the resulting theory.

115



Chapter 4. The Q È 4 Potts model

factors (4.2.10) and (4.2.11). For a �nite aspect ratio T / L this is a nontrivial task which was

accomplished in [ 205, 206].6 However the computation can be performed rather easily in

the long cylinder limit T À L, which is enough to extract the central charge and operator

dimensions. In this limit the two boundaries of the cylinder don't talk to each other and so the

factor (4.2.10) just gives some overall rescaling of the partition function. In addition we expect

that the typical value of Á(T ) will be large, and so we can treat the boundary condition Á(T ) as

a continuous variable rather than quantized. So we are led to evaluating the path integral

Z
[DÁ] e¡ SÅie0Á(T ) (4.2.13)

with boundary conditions Á(0) Æ0, Á(T ) Æh Æconst. and S as in (4.2.6). We split Á into the

classical component Ácl and the �uctuation ±Á satisfying the Dirichlet boundary conditions.

We �rst integrate over ±Á, and then over h, the latter integral being

Z
dh e¡ Scl (h)Åie0h , Scl(h) Æ

g

4¼
(h/ T )2LT . (4.2.14)

This gives an extra factor e¡ (¼e2
0/ g)(T / L) in the partition function, which is interpreted as the

reduction of the central charge c from the free scalar boson value c Æ1 to

cPotts Æ1¡
6e2

0

g
(4.2.15a)

Æ1¡ 6
(2 ¡ g/2) 2

g
Æ13¡ 6

µ
g

4
Å

4

g

¶
. (4.2.15b)

Recall that the partition function should scale as Z » e(¼c/6)( T / L) for T À L.

Let us proceed to discuss the operator spectrum. One interesting class of operators are the

electric vertex operators Ve Æei eÁ. The set of allowed electric charges can be determined by

the following argument. In the oriented loop model description, if we change orientation of a

loop, the height inside will change by 2 Á0 Æ¼. On the other hand in terms of clusters the loop

orientation has no observable meaning. This means that any vertex operator playing a role in

the Potts model should be invariant under such a change, i.e. e 2 2Z .7

Scaling dimensions of these vertex operators can be predicted by a path integral argument

based on (4.2.13). Namely, we insert an extra factor ei eÁ(T ) and compute the partition function

on a long cylinder. The change in the free energy compared to e Æ0 gives the scaling

6On the contrary the partition function of the F-model on the cylinder is trivial to evaluate: one computes the
gaussian path integral as a function of the height difference Á(T ), and sums over Á(T ) Æn(¼/2) [ 205]. Notice that
it is legitimate to use the gaussian action (4.2.6) to compare relative weights of sectors not only for Á(T ) À 1 but
also for Á(T ) ÆO(1).

7Another argument which gives the same prediction is as follows. In the large volume limit, the distribution of
Á at any point x will become periodic with period 2 Á0 because of succession of many loops surrounding x which
can take any orientation. Correlation functions of vertex operators which are not invariant under Á ! Á Å 2Á0 will
thus vanish in the in�nite volume limit.
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Parameter Meaning Relation

u parameter of the oriented loop model
p

Q Æ2cos(4u)

g coupling of the gaussian height model Q Æ2Å 2cos ¼g
2

(critical 2 Ç g 6 4, tricritical 4 6 g Ç 6)

e0 Coulomb gas charge e0 Æ2¡ g/2

cPotts CFT central charge Eq. (4.2.15)

t parameter in Eq. (4.2.31) for t Æmax(g/4,4/ g) > 1
Kac-degenerate dimensions

m index of the minimal model M m t Æ(m Å 1)/ m
with the same central charge

Table 4.1 – Main relations between parameters characterizing the Q-state Potts model. See section
4.2.3 for u ,g, section 4.2.4 for e0,cPotts, and section 4.2.5 for t ,m .

dimension:

¢ (Ve) Æ
1

2g
((e0 Å e)2 ¡ e2

0) . (4.2.16)

While Eqs. (4.2.15a) and (4.2.16) are standard for free scalar boson CFTs with background

charge (see e.g. [207], section 9), we chose for completeness to include their direct derivation

starting from (4.2.13) in the above review. It's also very important to emphasize that only some

aspects of the Potts model can be understood from the Coulomb gas descriptions.

Main relations between parameters characterizing the Q-state Potts model are summarized in

Table 4.1.

4.2.5 Torus partition function

The full partition function ZQ of the Q-state Potts model on the torus was found in the classic

paper [137]. Let us describe the result and how it was obtained. The basic building block is the

partition function of the free boson (4.2.6) with frustrated boundary conditions around the

two cycles of the torus:

Zm,m 0(g) Æ
Z

±1ÁÆ2¼m,±2ÁÆ2¼m 0
[DÁ]e¡ S . (4.2.17)

Summing these over frustration multiples of f , one de�nes the partition function of the

compacti�ed boson with compacti�cation radius f :

Zc[g, f ] Æf
X

m,m 02 f Z
Zm,m 0(g) . (4.2.18)
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This quantity has expansion in terms of the usual torus modulus q Æe2¼i ¿ and q̄:

Zc[g, f ] Æ
1

´ (q)´ (q̄)

X

e2Z/ f
m2Z f

qxem q̄ x̄em , (4.2.19)

where ´ (q) Æq
1
24 P (q) is the Dedekind eta function, P (q) Æ

Q1
N Æ1(1 ¡ qN ). The weights xem,

x̄em are labeled by electric and magnetic charges e and m:

xem, x̄em Æ
1

4
(e/

p
g § m

p
g)2, (4.2.20)

so that the scaling dimension and spin of the corresponding operators are given by:

xem Å x̄em Æ
e2

2g
Å

g

2
m 2, xem ¡ x̄em Æem. (4.2.21)

We also need a modi�cation of the compacti�ed partition function (4.2.18) given by the

following equation:

Ẑ [g,e0] Æ
X

M 0,M 2Z
ZM 0/2, M /2 (g)cos(¼e0M 0^ M ), (4.2.22)

where a^ b Ægcd(a,b) is the greatest common divisor, with a^ 0 Æa by convention, introduced

for the following reason. As for the cylinder case above, the F-model (which renormalizes to

the free scalar boson) does not correctly reproduce the weights of noncontractible loop. The

factor cos(¼e0M 0^ M ) corrects for this mismatch, analogously to inserting the charges § e0 at

the ends of the cylinder in section 4.2.4.

The so de�ned Ẑ [g,e0] can be expanded in series in q and q̄ [137]:

Ẑ [g,e0] Æ
1

´ (q)´ (q̄)

2

6
4

X

P2Z
(qq̄)xe0Å2P,0 Å

1X

M ,N Æ1
N divides M

¤ (M ,N )
X

P2Z
P^ N Æ1

qx2P/ N ,M /2 q̄ x̄2P/ N ,M /2

3

7
5 . (4.2.23)

Coef�cients ¤ (M ,N ) are given by Eq. (3.24) of [137]. In general they depend on the factoriza-

tion of M and N into prime integers. Below we will only need the following two partial cases

for M Æ1 or M È 1 prime:

¤ (M ,1) Æ2
µ

cos(¼e0M ) ¡ cos(¼e0)

M
Å cos¼e0

¶
, (4.2.24)

¤ (M ,M ) Æ2
µ

cos(¼e0M ) ¡ cos(¼e0)

M

¶
(M 6Æ1) . (4.2.25)

¤ (M ,N ) are polynomials in Q with rational coef�cients, which implies that multiplicities Mh,h̄

will also be polynomial in Q.
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In terms of the de�ned objects, the torus partition function of the Potts model takes the form: 8

ZQ ÆẐ [g,e0] Å
1

2
(Q ¡ 1)

¡
Zc[g,1] ¡ Zc[g,1/2]

¢
. (4.2.26)

Basically, Ẑ [g,e0] provides most of the answer, while the second term corrects a mismatch

between the Potts model and the loop model for clusters having the cross topology, see [ 137]

for details. We recall that g is related to Q by (4.2.7), choosing 2 Ç g 6 4 (4 6 g Ç 6) for the

critical (tricritical) case, and e0 is given by (4.2.12).

As mentioned, the Q Æ2,3 critical and tricritical Potts theories are unitary minimal models,

while Q Æ4 can be described as an orbifold theory, as we review brie�y in appendix C.5. In

all these cases partition function can be computed independently and the result agrees with

(4.2.26) [137].

4.2.6 Spectrum of primaries for Q 6 4

We will now use the torus partition function to discuss the spectrum of primaries of the critical

and tricritical Potts model. Recall that the torus partition function of any CFT can be written

as

Z Æ(qq̄)¡ c
24 Tr qL0 q̄ L̄0 , (4.2.27)

with Hamiltonian H ÆL0 Å L̄0 ¡ c/12 and momentum P ÆL0 ¡ L̄0. Expanding Z in q, q̄ one

can read off the spectrum of all states present in the theory and their multiplicities:

Z Æ(qq̄)¡ c
24

X

h,h̄2all

Mhh̄ qh q̄ h̄ . (4.2.28)

Furthermore, the partition function is also expandable into Virasoro characters Âh of pri-

maries:

Z (q, q̄) Æ(qq̄)¡ c
24

X

h,h̄2primaries

Nhh̄ Âh (q)Âh̄ (q̄) , (4.2.29)

the sum being over the weights h, h̄ of the primaries, with Nh,h̄ their multiplicities. On the

other hand the sum in (4.2.28) is over both primaries and descendants, so that sum contains

many more terms, and with different multiplicities.

Below we will encounter two types of Virasoro characters. First, for generic h (non-degenerate

primary), the character is given by 9

Âh (q) Æqh / P (q) . (4.2.30)

Second, there will be cases when h is a Kac degenerate representation h Æh r ,s. For the central

8Notice that one should not confuse electric and magnetic charges e,m of the states in this expression with the
Coulomb gas charge of operator Ve in (4.2.16). In particular the constraint e 2 2Z , does not apply to e.

9We don't include the factor q ¡ c/24 into the character.
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charge as in (4.2.15) these are given by (see [207], Eq. (7.31))

h r ,s Æ
t

4
(r 2 ¡ 1)Å

1

4t
(s2 ¡ 1)Å

1¡ r s

2
, t Æmax(g/4,4/ g) , (4.2.31)

with r ,s positive integers. 10,11 The representation is then degenerate at level r s, the null

descendant having weight h r ,¡ s. Below we will mostly focus on the generic Q case, when this

descendant itself is not degenerate. 12 In this case the character of the h r ,s primary is given by:

Âh r ,s(q) Æ(qh r ,s ¡ qh r ,¡ s)/ P (q) . (4.2.33)

A particular case of (4.2.33) occurs for the unit operator: h Æ0 Æh1,1, when

Â0(q) Æ(1¡ q)/ P (q) . (4.2.34)

From (4.2.26), (4.2.19), (4.2.23) we get expansion (4.2.28) of the Potts model partition function.

Notice, however, that `multiplicities' Mh,h̄ are given by polynomials in Q, so they are in general

not integer, unless Q is integer. 13 This may sound puzzling since normally multiplicities are

integer. To understand the origin of this subtlety, let us go back to the lattice partition function

from section 4.2.1. In the continuum limit, the factors qh q̄ h̄ in (4.2.28) originate from the

eigenvalue factors ¸ N on the lattice in (4.2.3), while the multiplicities Mh,h̄ are the weights M ¸

in (4.2.3). As discussed in section 4.2.1 these weights for non-integer Q do not just count the

eigenvalues, but involve a matrix element of a gluing operator, which explains why they don't

have to be integers nor even positive. 14

Up to the prefactor 1/[ ´ (q)´ (q̄)], the obtained expansion of ZQ consists of terms of the form

qxem q̄ x̄em , times multiplicities. We will introduce notation Oe,m for the state corresponding to

such a term. Its conformal weight is given by

h Æxem Å
c ¡ 1

24
, h̄ Æx̄em Å

c ¡ 1

24
. (4.2.35)

First, we have states with e Æe0 Å 2P (P 2 Z) and m Æ0, coming from the �rst term in Ẑ [g,e0].

10The two branches t Æg/4 and t Æ4/ g are related by interchanging r and s. By choosing always t È 1 we ensure
that for t Æ(m Å 1)/ m the weight numbering will agree with the form

hr ,s Æ
[(m Å 1)r ¡ ms]2 ¡ 1

4m(m Å 1)
, (4.2.32)

conventional in the unitary minimal models. This will be convenient in section 4.4.
11Notice that not all operators appearing in partition function are Kac-degenerate. In some literature on the

Potts model weights of non-degenerate operators are also represented as hr ,s with r ,s non-integer. This will not be
done in our work, where notation hr ,s will be used only with r ,s integer.

12On the other hand, in minimal models M p,p0 we have hr ,¡ s Æhp0År,p¡ s and so it may be degenerate. The
character then takes a more complicated form than (4.2.33).

13These multiplicities have also been studied in [208].
14Note that negativity of some weights is not a direct consequence of the model being non-unitary. For example,

while the Lee-Yang model is non-unitary, its torus partition function decomposes into characters with positive
integer weights.
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4.2. 2d Potts model for Q 6 4

Notice that Oe0Å2P,0 ÆV2P , the vertex operator of the same dimension introduced in the

Coulomb gas description. This identi�cation is not accidental, the Coulomb gas scaling

dimension (4.2.16) and the term / (qq̄)xe0Å2P,0 in ZQ having essentially the same path-integral

origin.

Second, we have states with e and m both rational numbers, coming from Zc[g, f ] and from

the second term in Ẑ [g,e0]. We should identify Oe,m ´ O¡ e,¡ m since they have the same

conformal weights. These states do not have an obvious Coulomb gas interpretation.

In this notation, ZQ takes the form of the sum of nondegenerate characters (4.2.30) of states

Oe,m . Does this mean they are all primaries? Not so fast. We have to watch out that some

Oe,m are Kac-degenerate. More work is then needed to reorganize the decomposition in

terms of Virasoro characters, during which process some states may drop out from the list of

primaries. We also need to check for more banal spectrum coincidences, which may lead to

total cancellation of multiplicities. To study these degeneracies we write h, h̄ asr 1g¡ 1År 2gÅr 3

with r i rational:

V2P ´ Oe0Å2P,0 : h Æh̄ ÆP(P Å 2)g¡ 1 ¡ P/2,

Oe,m : h ,h̄ Æ
µ

e2

4
¡ 1

¶
g¡ 1 Å

µ
m 2

4
¡

1

16

¶
g Å

1

2
§ em/2.

(4.2.36)

Apart from Oe,m ´ O¡ e,¡ m mentioned above, there is only one spectrum coincidence which

holds for any Q: it is between V¡ 2 and the operators O0,§ 1/2 . The total multiplicity comes out

¡ (Q ¡ 1)Å 2cos¼e0 Å 1 Æ0, so these states do not actually exist. 15

The �rst Kac degeneracy occurs for the operator V0. It has dimension 0 and is identi�ed

with the unit operator; clearly it is Kac-degenerate. The full unit operator character is (see

Eq. (4.2.34))

Â0(q)Â0(q̄) Æ(1¡ q)(1 ¡ q̄)/[ P (q)P (q̄)] . (4.2.37)

We have to see how this character emerges from combining various nondegenerate characters.

Expanding the numerator, the �rst term 1/[ P (q)P (q̄)] is precisely the contribution of V0.

One missing term, qq̄/[ P (q)P (q̄)], comes from V¡ 4, of scaling dimension 2, which as a

consequence does not exist as a primary operator. 16

The other missing term in the unit operator character is the cross term ( ¡ q ¡ q̄)/[ P (q)P (q̄)].

This comes from the operators Oe,m with e Æ §2, m Æ §1/2 which have spin 1 and dimension

15We exclude as contrived the possibility that a state exists but does not contribute to the partition function for
any Q.

16In fact, even more is true. Were we to expand the partition function in powers of q, q̄ (including the Dedekind
factors), we would see that the theory does not contain any scalar of dimension 2, primary or descendant. This
is in contradiction with the discussion of Kondev [ 209], who argued that operator V¡ 4 Æe¡ i 4h must be `exactly
marginal', and used this to determine the relation between Q and g, instead of borrowing the F-model result
(4.2.7). While the calculation behind Kondev's argument is correct, physical interpretation should be changed
because as we showed the operator he calls `exactly marginal' does not even exist. A different interpretation is
explained in appendix A of [4].
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1 for any g. These operators appear in the second term in (4.2.23) ( M ÆN ÆP Æ1) as well as in

Zc[g,1/2]. Their total coef�cient is 2 cos(¼e0) ¡ (Q ¡ 1) Æ ¡1 as needed. The conclusion is that

we reproduce correctly the character of the unit operator, while operators V¡ 4 and O§ 2,§ 1/2

drop out from the spectrum of primaries.

We will now carry out similar analysis for a few more prominent low-lying primary operators.

We will see more examples of Kac-degenerate states, and degenerate characters arising as

sums of non-degenerate ones. We will not, however, attempt to rewrite the full partition

function in terms of Virasoro characters.

Singlets

The operators V2P occur in the �rst term of Ẑ [g,e0] with multiplicity 1 for any Q, and therefore

we will refer to them as `singlets'. As discussed above the case P Æ0 corresponds to the unit

operator, and P Æ ¡1,¡ 2 do not exist. The lightest non-unit operators are for P Æ1,2, which we

call the energy operator " and the subleading energy operator " 0. On the tricritical branch both

" and " 0are relevant, while on the critical branch only " is relevant. When the two branches

meet we have ¢ " 0 Æ2.

Comparing (4.2.36) with (4.2.31), we see that all V2P , P > 0, are Kac-degenerate. In fact

h Æh1,PÅ1 on the tricritical or h ÆhPÅ1,1 on the critical branch. One can show that just like

for the unit operator the terms in ZQ recombine nicely to give the degenerate characters

Âh r ,s(q)Âh r ,s(q̄). The scalar term / qh r ,¡ s q̄h r ,¡ s comes from V2P0 with P0 Æ ¡P ¡ 2, whose

multiplicity is also 1. The spin-1 terms ¡ qh r ,s q̄h r ,¡ s ¡ qh r ,¡ s q̄h r ,s come from Oe,m with e Æ

§ 2(P Å 1) and § m Æ1/2, with precisely the right coef�cient. The ability to rewrite the partition

function in this form means that the operators V2P0 and O§ 2(PÅ1),§ 1/2 do not appear in the

spectrum of primaries. 17

As mentioned the operators V2P ´ Oe0Å2P,0 should be identi�ed with electric vertex operators

ei eÁ with e Æ2P whose dimension was computed using Coulomb gas method in (4.2.16). The

above discussion establishes that for P > 0 these vertex operators are primaries.

As far asV2P0 with negative charge P06 ¡ 1, the above discussion is summarized as follows. For

P0Æ ¡1 this operator simply does not exist since multiplicity is exactly zero. For P06 ¡ 3 a scalar

operator of such dimension exists, but is interpreted as not a primary but as a descendant

of the positive charge primary V2P , P Æ ¡P0¡ 2, at level (P Å 1,P Å 1). The latter reasoning

formally applies also for P0Æ ¡2, but since the unit operator has no descendants at the level

(1,1), this means that V¡ 4 does not exist. This may be a surprise from the point of view of the

Coulomb gas construction, but that's what the torus partition function tells us. 18

17One might contemplate the possibility that primaries of such dimension actually secretly exist, but their
contribution to the torus partition function, as well as to the annulus partition function [ 206], is exactly zero for all
Q. Perhaps these may be null descendants of Kac-degenerate primaries, not necessarily identically vanishing in
non-unitary theories. We discard such a possibility as unduly contrived.

18Additional evidence for the absence of these operators can be obtained from the cylinder partition function
[206], Eq. (2). Organizing it in characters, one sees that negative electric charge operators are absent from the list
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Vectors

We will call `vectors' operators of multiplicity Q ¡ 1, the dimension of the lowest nontrivial

representation of SQ . The lowest such operators are Oe,0 with e Æ §1,§ 3, which come from

Zc[g,1]. These are the spin and the subleading spin operators ¾and ¾0. For generic Q these

operators are non-degenerate primaries.

Higher representations

An interesting light operator is O0,1, from the P Æ0, M Æ2, N Æ1 term in the second sum of

Ẑ [g,e0]. Using (4.2.25), its multiplicity is

cos¼e0 Å cos2¼e0 Æ
Q(Q ¡ 3)

2
. (4.2.38)

This matches the dimension of an SQ representation given by the Young tableau with two

rows with Q ¡ 2 and 2 boxes in them, which for integer Q exists only for Q > 4. Notice that this

multiplicity becomes negative for Q Ç 3. Again, for generic Q this operator is a non-degenerate

primary.

See appendix C.4 for operators corresponding to even larger Young tableaux. For any Young

tableau Y , the corresponding representation exists for all suf�ciently large Q and has dimen-

sion DY (Q) which is a polynomial in Q. One can take this polynomial and analytically continue

it to Q 6 4. In all cases that we checked, multiplicities of operators predicted by (4.2.26)

are decomposable into sums of DY (Q) with coef�cients which are positive Q-independent

integers (appendix C.4). 19 It is not fully obvious why this should be the case. Of course for

integer Q we have true SQ symmetry and so the decomposition of multiplicities in dimensions

of irreps of SQ should be possible for each individual Q. The nontrivial part is that such a

decomposition extends to non-integer Q with Q-independent coef�cients.

In the above discussion we focused on generic Q. For Q Æ2,3,4 the discussion needs to

be modi�ed. First of all the theory has a local spin description, so all multiplicities must

be positive integers. In addition, for Q Æ2,3, the theories are minimal models and contain

a �nite number of primary �elds. (On the contrary, for generic Q we have in�nitely many

primaries.) Various terms in the partition function must then recombine, to either cancel or

form characters of degenerate primaries in the minimal models, which are more complicated

than (4.2.33). Similar complicated cancellations have to happen for an in�nite set of Q's which

give a rational central charge c Æcm Æ1¡ 6/[( m Å 1)m] corresponding to the unitary minimal

models, even though the spectrum of the Potts model will have only partial overlap with the

corresponding minimal model unless Q Æ2,3 (see section 4.4).

A very simple example of such a cancellations happens for the operator with multiplicity

of primaries.
19Ref. [137] contains a tangential remark to the contrary for the analogous case of the O(n) model, which appears

to be an error. In any case, this minor discrepancy does not affect any of their other conclusions. We thank Hubert
Saleur for a discussion.
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Chapter 4. The Q È 4 Potts model

(4.2.38). For Q Æ3 this operator simply disappears. For Q Æ2, its multiplicity is negative.

However, for Q Æ2 this operator is degenerate with the vector operator O§ 3,0 along the critical

branch and with O§ 5,0 for the tricritical branch. The total multiplicity is zero: this operator

does not exist for Q Æ2.

The spectrum of several light scalar operators and their multiplicities are summarized on

Fig. 4.7.

Figure 4.7 – Dimensions of light scalar operators as functions of Q. The Q 6 4 region corresponds
to the critical (solid) and tricritical (dashed) Potts models. Singlet operators are in green, other
multiplicities are marked. ¢ Æ2 is the marginality line. The ( r ,s) positions in the Kac table are
shown for " , " 0, as well as for ¾ which is degenerate for Q Æ2,3. Notice that " and " 0 remain
Kac-degenerate with the same integer ( r ,s) also for non-integer Q, while this is not true for the
other shown operators. For Q È 4 we show the real parts of the analytically continued dimensions,
see section 4.3.

4.3 Analytic continuation to Q È 4

The 2d Potts model at criticality is normally discussed only for Q 6 4. For Q È 4, the phase

transition is �rst-order, and one does not expect to �nd any �xed points. As far as real �xed

points are concerned this expectation is correct. 20 However, instead there exists a pair of

complex �xed points. In the previous section we saw that critical and tricritical Potts models

become identical at Q Æ4. Following the discussion in section 3.6 it is convenient to visualize

these �xed points as CFTs moving in the theory space as the parameter Q is varied, see Fig. 4.8.

20In [ 210], some SQ invariant CFTs with 4 Ç Q . 5.56 were predicted to exist using the massless scattering
theory method. Their theories are real and presumably can be realized as continuous phase transitions in the
antiferromagnetic Potts model. There is no relation to the theories considered here. We thank Gesualdo Del�no
for discussions.
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4.3. Analytic continuation to Q È 4

The �xed points have the same symmetries and annihilate at Q Æ4. Chapter 3 reviewed the

abundant evidence from prior work [ 30, 31, 127, 131] that in the vicinity of this point, the

beta-function controlling the RG �ow is of the form (3.2.3) with y » Q ¡ 4, suggesting the

existence of two �xed points at couplings ¸ » § i
p

Q ¡ 4.

Figure 4.8 – Annihilation of critical and tricritical �xed points.

In section 3.6 we discussed some examples of perturbative complex theories de�ned by

Lagrangians with complex coupling constants. The Potts model is a strongly coupled theory

and consequently we don't expect to �nd any perturbative description. The Q È 4 complex

Potts CFTs can in principle be constructed with the help of lattice models reviewed in section

4.2.1, either the spin or the cluster one, if one complexi�es coupling constants in these models

and tunes them to the critical values. To �nd these �xed points on the lattice, one will need

to tune two complex couplings, which can be taken e.g. the temperature and the vacancy

fugacity in the diluted Potts model (see footnote 25 below).

Here we will pursue an alternative method to explore the Q È 4 CFTs — by means of analytic

continuation from Q 6 4. In the previous section we discussed operator dimensions and their

multiplicities in the torus partition function, which for Q 6 4 are explicit analytic functions of

Q. It is reasonable to assume that observables in the complex CFTs at Q È 4 will agree with

the analytic continuation of the corresponding observable form Q 6 4. In this paper we will

only consider analytic continuation in the neighborhood of the real Q axis. We will perform a

set of consistency checks that complex CFTs at real Q È 4 de�ned by means of such analytic

continuation indeed describe the complex �xed points of the Potts model. In the future it

would be interesting to explore analytically continued CFTs far away from the real Q axis, and

to understand their physical meaning if any.

Analytic continuation is easiest for the central charge and the scaling dimensions, since

these can be expressed as rational functions of g, Eqs. (4.2.15), (4.2.36). We will keep these

expressions, but we will analytically continue g(Q), given by Eq. (4.2.8), from Q 6 4 to Q È 4.

For Q ! 4¡ we have g(Q) ¼4§ (2/ ¼)
p

4¡ Q. For Q È 4, g(Q) develops a branch cut singularity,
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Chapter 4. The Q È 4 Potts model

g(Q) ¼4§ i (2/ ¼)
p

Q ¡ 4. The exact expression is

g(Q) Æ4§ i
2

¼
log

Q ¡ 2Å
p

Q(Q ¡ 4)

2
(Q È 4). (4.3.1)

Notice that the real part of g remains constant. We will call Cthe complex CFT corresponding

to the Å branch, while the other branch is C.

Equivalently, we perform analytic continuation from the tricritical branch going around

the branch point Q Æ4 from below in the complex Q plane, so that
p

4¡ Q for Q Ç 4 goes

to i
p

Q ¡ 4 for Q È 4, where both square roots are positive. The choice between analytic

continuation from the tricritical and critical branch is arbitrary 21 — continuing from the

critical branch with the same contour, or from the tricritical branch in the opposite direction,

would get C instead of C. That is, the real parts of all scaling dimensions would be the same,

and the imaginary parts would change signs. This is why there are two CFTs for Q È 4, one

being the complex conjugate of the other. Finally, if one goes around the Q Æ4 point in the

complex plane and comes back to real Q Ç 4 the tricritical theory becomes the critical one and

vice versa.

The real parts of analytically continued dimensions of a few low-dimension operators can

be read off from the right side of Fig. 4.7. Analogously to the dimensions, the central charge

(4.2.15)of the Potts CFT develops an imaginary part for Q È 4, the central charges of Cand C
being complex conjugate.

We see that the Q È 4 Potts CFTs contain operators with complex scaling dimensions, and

the corresponding conjugate operators are not present in the same theory. In terminology

of section 3.6, this means that these CFTs are complex, as opposed to real. Moreover there

are two complex theories with opposite imaginary parts of all observables, and the size of

these imaginary parts is controlled by the parameter
p

Q ¡ 4. In such a situation, the real RG

�ow squeezed between the two complex CFTs exhibits the walking behavior, as explained in

chapter 3.

Turning next to the multiplicities of primary operators Mh,h̄ (see section 4.2.6), they are

polynomials in Q and their analytic continuation is straightforward. In particular, they stay real

for any real Q. As mentioned, it appears that Mh,h̄ can be represented as a sum of dimensions

of irreducible representations of SQ analytically continued in Q, with Q-independent positive

integer coef�cients. In particular, when we specialize to integer Q > 5, we expect complex

Potts CFTs to have a true SQ symmetry. For example, there should exist a pair of S5-symmetric

complex CFTs of central charge

c Æ13¡ 6
µ

g(5)

4
Å

4

g(5)

¶
¼1.138§ 0.021i . (4.3.2)

21It is somewhat more convenient to continue from the tricritical branch, as it contains the relevant operator
" 0ÆÁ1,3, crucial for our computations below, which drives the RG �ow from the tricritical to the critical branch.
On the critical branch we have " 0ÆÁ3,1 which is irrelevant.
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4.4. Walking RG �ow in Q È 4 Potts models

To summarize, we started with the analytic expression for the torus partition function of

the critical Potts model with real Q Ç 4 and analytically continued operator dimensions and

multiplicities to Q È 4. This is equivalent to the analytic continuation of the partition function

itself. In particular all the partition function properties for Q Ç 4, like modular invariance,

continue to hold for Q È 4. The information extracted from the partition function is consistent

with our conjecture about the existence of complex �xed points at Q È 4. Further checks

involving OPE coef�cients will be given below.

4.4 Walking RG �ow in Q È 4 Potts models

We will now use the knowledge of the complex CFTs Cand Cto study the walking RG �ow in

the Potts model for Q & 4. Basic framework of how to do this was presented in section 3.6. The

real �ow trajectory passes halfway between the two complex CFTs. The part of the trajectory

close to the CFTs exhibits approximately scale-invariant behavior, and can be accessed using

a form of conformal perturbation theory (CPT). Here we will demonstrate this framework by

concrete computations.

CPT computations require operator dimensions in our complex CFTs, known from the parti-

tion function. We will also need OPE coef�cients as well as some integrals of the 4pt functions

(see [21] for a review of �rst-order and [ 88, 90, 211] for second-order CPT). In practice we will

only need to know those up to some �xed order in Q ¡ 4 since, as we will see momentarily,

the imaginary part of the coupling constant in the walking region will itself be proportional

to Q ¡ 4. We would like to stress, however, that conceptually our procedure is quite different

from expanding around the Q Æ4 �xed point. One may imagine that conformal data at the

complex �xed point is known exactly, and we are expanding only in the coupling constant of

perturbation around this �xed point. In this sense our expansion is a usual CPT, albeit as we

will see with a complex coupling. Instead expansion in Q ¡ 4 around the Q Æ4 Potts model is

on a less obvious footing since Q ¡ 4 itself isn't a coupling constant, but merely a parameter. In

particular, models with different Q have different symmetries and expansion around Q Æ4

requires deforming the symmetry, a feature that we would like to avoid.

Although the Potts models at general Q are not exactly solved apart from their spectrum,

some additional conformal data needed for CPT can be determined for arbitrary Q for the

following reason. Comparing (4.2.31)and (4.2.36), some of the light �elds present in the Potts

model belong to degenerate conformal families for any Q, and consequently their correlation

functions satisfy certain differential equations [ 12]. In principle, this �xes the correlators up to

a few constants that can be determined by requiring proper crossing symmetry properties,

although in practice this procedure is still rather complicated.

There is, however, another helpful trick. For a discrete in�nite set of Q's between 2 and 4

(called the Beraha numbers) the Potts model central charge agrees with that of the diagonal
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Chapter 4. The Q È 4 Potts model

minimal models M m ´ M (m Å 1,m), cm Æ1¡ 6/[ m(m Å 1)].22 We have (see Fig. 4.9)

Tricritical: Q Æ2Å 2cos
2¼

m
, m Æ

2¼

arccos
³

Q
2 ¡ 1

´ , (4.4.1)

Critical: Q Æ2Å 2cos
2¼

m Å 1
, m Æ

2¼

arccos
³

Q
2 ¡ 1

´ ¡ 1. (4.4.2)

What is the signi�cance of this agreement? As is well known, the tricritical and critical Q Æ2

Potts (i.e. Ising) are actually identical to m Æ4 and m Æ3, but for other Q's for which m is an

integer, there is no exact coincidence. E.g. the Q Æ3 Potts models are nondiagonal minimal

models – they contain only a subset of Kac-table operators, and with nontrivial multiplicities,

as well as primaries with spin.

Figure 4.9 – Central charge of the critical (yellow) and tricritical (blue) Potts model as a function
of Q. The central charge of several unitary minimal models is indicated by horizontal lines.

Still, there are some operators, singlets under SQ , which occur in all minimal models and

in all Potts models. It is easy to argue, in some cases, that their correlators should agree in

both models. The reason is that both these correlators satisfy the same differential equations.

The recipe is the following: one should �rst obtain the holomorphic and antiholomorphic

differential equations, which correlators in both the minimal model and in the Potts model

satisfy. From these equations, it's possible to see which Virasoro primary operators, with or

without spin, can be exchanged. Then, one needs to check which of these operators are part

of the critical Potts model, i.e. they appear in the torus partition function. Finally, one obtains

the OPE coef�cients of these allowed exchanged operators by imposing crossing symmetry

of the four point function. 23 It follows that, if there is no room for the exchange of spinning

primaries, then the unique crossing symmetric solution is the diagonal minimal model results

computed in [179, 212] (see also [89] and [213] for some more compact expressions).

As an example, it's possible to study the four point functions h" 0" 0" 0" 0i and h""" 0" 0i , and check

that, for general values of Q, no spinning operators can be exchanged in both the s and the

22Recall that the diagonal (or A-series) minimal models only contain scalar primaries h Æh̄ Æhr ,s with
multiplicity 1.

23In principle, crossing can give us families of solutions, rather than a unique one. If that is the case, one should
look at other correlators involving the same �eld. For the cases we checked, a single correlator was enough.
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4.4. Walking RG �ow in Q È 4 Potts models

t-channel. Therefore the C" 0" 0" 0 and C" 0"" OPE coef�cients for a given value of Q have to be the

same as those of the diagonal minimal model for the corresponding value of m.

Additional source of information is Q Æ4, since the 4-state Potts model is known to be

described by the free boson compacti�ed on S1/ Z2 [214], and direct computations are possible.

To guard against possible subtleties and to obtain information about operators not present

in the minimal models, we crosscheck some of the results at Q Æ4 (appendix C.5). In fact for

some of our considerations knowing the values of OPE coef�cients at Q Æ4 will be just enough,

while for others higher orders in Q ¡ 4 are needed, requiring the analytic continuation from

the minimal models.

4.4.1 One-loop beta-function

Based on the agreement of dimensions noticed in section 4.2.6, we have identi�cation [179]:

Critical: " ÆOe0Å2,0 ÆÁ2,1 , (4.4.3)

" 0ÆOe0Å4,0 ÆÁ3,1 , (4.4.4)

Tricritical: " ÆOe0Å2,0 ÆÁ1,2 , (4.4.5)

" 0ÆOe0Å4,0 ÆÁ1,3 , (4.4.6)

as also indicated in Fig. 4.7. We are most interested in " 0, the subleading energy operator. This

singlet operator is irrelevant at the critical point and relevant at the tricritical point for Q Ç 4.

Operator Á1,3 is known to produce the RG �ow between consecutive minimal models [ 20].

We therefore make an extremely plausible assumption that operator " 0drives the �ow from

the tricritical Potts to the critical Potts for any Q Ç 4.24 For Q Æ4 the two CFTs collide, and " 0

becomes marginal.

Now consider analytic continuation to Q È 4. The dimension of " 0

¢ C
" 0 Æ16/ g(Q) ¡ 2, (4.4.7)

acquires an imaginary part, negative in the complex theory C(it would be positive in C), as

well as a negative corrections to the real part (see Fig. 4.10). Near Q Æ4 we have

¢ C
" 0 Æ2¡ 2i

²

¼
¡

² 2

¼2 Å .. . (² Æ
p

Q ¡ 4). (4.4.8)

We consider a family of RG �ows perturbing Cby

g0

Z
d 2x " 0(x) , (4.4.9)

24This is not fully obvious since as mentioned the spectrum of the Potts models only partly overlaps with that of
the diagonal minimal models.
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Chapter 4. The Q È 4 Potts model

Figure 4.10 – Real and imaginary part of ¢ " 0 as a function of Q.

for various initial values of g0.

Note: From now on g0 and g will refer to the bare and renormalized CPT coupling in expansion

around C, to agree with the notation in chapter 3. These couplings have nothing to do with

the Coulomb gas coupling from section 4.2, which was denoted there g or g(Q). The latter

coupling will not appear in the rest of the chapter. Hopefully this will not create confusion.

The theory Calso contains a strongly relevant singlet operator, analytic continuation of " ,

whose coef�cient is tuned to zero. We expect these �ows to have topology shown in Fig. 4.11.

Notice that because of the negative O(² 2) correction to ¢ C
" 0 and ¢ C

" 0, the trajectories starting at

Cor Cslowly unwind. This effect was not considered in chapter 3, where the correction to the

real part was neglected, leading to oversimpli�ed �ow topology shown in Fig. 3.2. 25

Figure 4.11 – RG �ow topology expected in the complexi�ed Potts model at Q È 4.

The part of the RG trajectories close to C and C can be studied in CPT. This concerns in

particular the trajectory which does not even begin at Cor Cbut follows the horizontal line

halfway between them. According to the discussion of chapter 3, this trajectory describes the

25Hence, to realize the complex �xed points C, Con the lattice, one has to �netune the couplings of both " and " 0.
In total one needs to tune two complex, or four real couplings, making lattice studies of the complex �xed points
in the Potts model somewhat nontrivial.
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4.4. Walking RG �ow in Q È 4 Potts models

walking RG �ow. 26

Let us recall how one can move between Cand C, as well as study the walking RG trajectory,

using leading order CPT (section 3.6). The one-loop beta-function reads [21]

¯ (g) Æ· g Å ¼C" 0" 0" 0g2, (4.4.10)

where · Æ¢ C
" 0 ¡ 2,27 and g is the renormalized coupling constant which appears in the

expressions for beta-functions and anomalous dimensions, as opposed to the bare coupling

g0 used in (4.4.9). At one loop we only need · at O(² ) and C" 0" 0" 0 at O(1). For later uses we cite

C" 0" 0" 0 including the �rst subleading term: 28

C" 0" 0" 0 Æ
4

p
3

¡
2i

p
3

¼
² Å O(² 2) . (4.4.11)

The beta-function vanishes at g Æ0 and at

g ÆgFP Æ ¡· /( ¼C" 0" 0" 0) Æi

p
3²

2¼2 Å .. . . (4.4.12)

Notice that gFP is purely imaginary at the considered leading order. This second �xed point

should correspond to C. The �rst check of this identi�cation is the `Im-�ip': the imaginary part

of dimension of " 0changes sign when going from C to C. As shown in 3.6 this is completely

general at this order, and we don't repeat the argument. However, we will see below several

other checks of this identi�cation, possible in the situation at hand.

Furthermore, the walking trajectory corresponds to g of the form

g ÆgFP/2 ¡ ¸ , (4.4.13)

with ¸ real. Reality of ¸ is preserved since in terms of ¸ the beta-function is real:

¯ ¸ Æ ¡¯ (gFP/2 ¡ ¸ ) Æ ¡

p
3² 2

4¼3 ¡
4¼
p

3
¸ 2 . (4.4.14)

For small ² , this is the walking beta-function of the form (3.2.3) (up to rescaling ¸ ). In particular,

we can obtain the correlation length in the Q È Qc Potts models:

»Potts Æexp
µZ ¸ UV

¸ IR

d¸

¯ ¸

¶
¼const.exp

µ
¼2

²

¶
, (4.4.15)

where we integrated from ¸ UV Æ ¡O(1) to ¸ IR Æ ÅO(1). This agrees with the leading behavior

26In general the real RG �ow doesn't have to follow an exact straight line, in fact this property is scheme dependent
as we discuss in sections 4.4.4. Topology of the RG �ow, however, doesn't depend upon the choice of scheme.

27In chapter 3 we used · Æ ¡i ² , but here ² stands for
p

Q ¡ 4.
28The expression we used is given in the Appendix A of [ 89]. There this particular OPE coef�cient is expressed as

a �nite product and hence as an analytic function of m. (½of [89] is related to m as½Æm/( m Å 1).).
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of the exact result for »Potts, found in [ 131] via the Bethe ansatz. As discussed in section 3.6,

at this order this prediction does not actually depend on knowing the OPE coef�cient C" 0" 0" 0,

which cancels out of the answer, but only on · .29 However, the ratios of C" 0" 0" 0 to other OPE

coef�cients is signi�cant as we will now see. Curiously, with an appropriate choice of an

expansion parameter, the one-loop answer for »Potts turns out to be exact to all orders in

perturbation theory, see the discussion around Eq. (4.4.45).

4.4.2 Im-�ip for other operators

We will now perform the Im-�ip check for other operators. At one loop, the anomalous

dimension of a generic operator Á is given by

° Á(g) Æ2¼CÁÁ" 0g, (4.4.16)

and the Im-�ip condition (3.6.13) reads:

Im ¢ C
Á

CÁÁ" 0
Æ

Im ¢ C
" 0

C" 0" 0" 0
Æ ¡

p
3

2¼
, (4.4.17)

We will consider the following operators

– The energy operator " :

¢ C
" Æ

1

2
¡

3i ²

4¼
¡

3² 2

8¼2 Å .. . , (4.4.18)

C""" 0 Æ

p
3

2
¡

i
p

3²

4¼
Å .. . (4.4.19)

– The spin operator ¾:

¢ C
¾ Æ

1

8
¡

i ²

16¼
Å .. . , (4.4.20)

C¾¾"0 Æ
1

8
p

3
Å .. . (4.4.21)

Apart from orbifold at Q Æ4, this OPE coef�cient can be computed exactly for any Q

identifying ¾ÆO§ 1,0 ÆÁ m
2 , m

2
on the tricritical branch and continuing from the minimal

models with m even. Analytic continuation is straightforward because the Dotsenko-

Fateev expression for C(Á m
2 , m

2
,Á m

2 , m
2

,Á1,3) contains a �nite m-independent number of

terms. This gives an OPE coef�cient whose m ! 1 limit agrees with the orbifold result.

We won't need the subleading in ² terms so we don't quote them.

– The operator Z ´ O0,1, contained in the Potts model with multiplicity Q(Q¡ 3)
2 , see section

29This can be seen already from the fact that C" 0" 0" 0 can be scaled out of the beta-function (4.4.10) by rescaling g.
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4.2.6:

¢ C
Z Æ2Å

i ²

¼
Å .. . , (4.4.22)

CZ Z " 0 Æ ¡
2

p
3

Å .. . , (4.4.23)

which does not appear in any of the minimal models, 30 but we can determine the Q Æ4

OPE coef�cient via the orbifold. Notice that the imaginary parts of ¢ C
Z and of CZ Z " 0 have

the opposite sign compared to the all the other cases computed so far. This is related to

the fact that Z is irrelevant in the UV (on the tricritical branch for Q Ç 4), and relevant in

the IR (i.e. on the critical branch), see Fig. 4.7.

As a sanity check, the Im-�ip condition (4.4.17) is satis�ed for all these operators by inspection.

The success of this check can be traced to the fact that for Q Ç 4 we have the �ow from tricritical

to critical Potts models triggered by the same operator, Á1,3. Im-�ip condition for Q È 4 is the

analytically continued counterpart of the condition that ensures an appropriate change in the

scaling dimensions of operators along this �ow.

4.4.3 Drifting scaling dimensions

In this section we will use CPT to compute observables in the real physical theory in the range

of distances corresponding to the walking regime, that is for g ÆgFP

2 ¡ ¸ with ¸ small. We will

discuss below the range of ¸ for which our calculation is under control.

Consider the 2pt functions of some primary operator Á. In the walking regime, we expect that

the correlation functions exhibit approximate power-law scaling. To quantify this idea, we will

de�ne the drifting dimension of an operator Á as

±Á(r ) Æ ¡
1

2

1

GÁ(r )

@GÁ(r )

@log r
, (4.4.24)

where GÁ is the 2pt function hÁ(r )Á(0)i . For a conformal theory, ±Á(r ) would be just a constant

equal to the scaling dimension, but in the walking regime it will be scale-dependent. In

principle, it should be possible to measure the drifting dimensions, or at least closely related

quantities, on the lattice as we mention below.

We compute ±Á(r ) via the Callan-Symanzik (CS) equation. Restoring the dependence of the

2pt function on the renormalization scale ¹ and the renormalized coupling g, the CS equation

for GÁ(r ,g,¹ ) reads:
£
¹@¹ Å ¯ (g)@g Å 2° Á(g)

¤
GÁ(r ,g,¹ ) Æ0. (4.4.25)

To proceed we introduce the dimensionless variable ¿ Æ¹ r and factor out the �xed-point

30For Q such that m is integer, this operator is actually Kac-degenerate with r Æm ¡ 2 and s Æm Å 1, however
this is outside of the range of s allowed for M m .
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scaling of GÁ:

GÁ(r ,g,¹ ) Æ
c(¿,g)

r 2¢ C
Á

. (4.4.26)

Solution of the CS equation for c takes the well-known form:

c(¿,g) Æĉ
¡
ḡ(¿,g)

¢
exp

·
¡ 2

Z ¿

1
d log ¿0° Á(ḡ(¿0,g))

¸
(4.4.27)

where ḡ(¿,g) is the running coupling with the initial conditions ḡ Æg at ¿ Æ1. We focus

on the real RG trajectory ḡ ÆgFP/2 ¡ ¯̧ with initial condition ¯̧ Æ0 for de�niteness. The

running coupling satis�es ¿@¿ḡ Æ ¡¯ (ḡ), or equivalently ¿@¿ ¯̧ Æ ¡¯ ¸ ( ¯̧ ) with ¯ ¸ given in

(4.4.14). Integrating this equation we �nd:

¯̧ Æ

p
3²

4¼2 tan
µ

² log ¿

¼

¶
. (4.4.28)

The one-loop contribution to ĉ, comes from the integrated 3pt function
R

d 2xhÁÁ² 0(x)i . After

subtracting the 1/ ² pole, the O(1) part of this integral vanishes, 31 so that

ĉ Æ1Å O(i ² ) ¯̧ Å . . . . (4.4.29)

At the one-loop order we can ignore the correction and set ĉ Æ1. We will comment on this

purely imaginary O( ¯̧ ) correction in section 4.4.4.

Using (4.4.16) we have

° Á

³ gFP

2
¡ ¸

´
Æ¼CÁÁ" 0gFP ¡ 2¼CÁÁ" 0¸ . (4.4.30)

It is easy to see that due to (4.4.17), the constant part of the anomalous dimension cancels

exactly the imaginary part of ¢ C
Á in 1/ r 2¢ C

Á . Consequently, modulo an overall r -independent

constant, GÁ will be real at this order, see below. Substituting (4.4.28) into (4.4.30) and doing

the simple integral in (4.4.27) we �nally get (denoting ¹ Æ1/ r 0 where convenient)

GÁ(r ) ÆC(¹ )

³
cos ² log r / r 0

¼

´

r 2Re¢ C
Á

¡
p

3CÁÁ" 0

. (4.4.31)

where C(¹ ) Æ¹ 2i Im ¢ C
Á . While this factor is in general complex, we can absorb it de�ning the

rescaled real operator ÁR by

ÁR Æ¹ ¡ i Im ¢ C
Á Á . (4.4.32)

The two point function of ÁR is then real in the real theory. We conjecture that the same

rescaling renders all higher n-point functions real as well, but at the moment this remains

31The relevant integral takes the form
R

d 2x/( jxj2Å· jx ¡ yj2Å· ) Æw (· )2/ w (2· )jyj2Å2· where w (· ) is the factor
which arises when going to the Fourier transform 1/ jxj2Å· ! w (· )jp j· . In the small · limit w (· ) » 1/ · Å O(1) but
it's easy to see that the O(1) term will always disappear from the speci�c combination w (· )2/ w (2· ).
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4.4. Walking RG �ow in Q È 4 Potts models

one of the future checks of our proposal. Real operators that have real correlation functions

are thus related to operators naturally used in CPT by complex normalization factors which

depend on the renormalization scale. We should not be surprised that this rede�nition is

needed to identify real operators, as it corresponds to an ambiguity in the choice of basis of

the operators present in the complex theory C.

Using (4.4.31), we compute the drifting dimension:

±Á(r ) ÆRe¢ C
Á ¡

p
3²

2¼
CÁÁ" 0tan

µ
² ln r / r 0

¼

¶
, (4.4.33)

expressed in terms of the leading in ² values of the OPE coef�cient and the operator dimension.

For several operators Á of interest this complex CFT data was given in section 4.4.2.

Let us now discuss the range of validity of Eq. (4.4.33). First of all, there will be correction

to (4.4.33)coming from ignoring the higher-order term in the beta-function and anomalous

dimension. Since the leading-order result for the deviation ±Á(r ) ¡ ¢ C
Á is of order of the

running coupling ¯̧ (r ), we see that we can trust it as long as this deviation remains ¿ 1 (for

example there is no constraint that the deviation should remain O(² ) as one might have naively

expected). This condition allows the argument of tangent in (4.4.33) to become O(1) as long

as it does not get within O(² ) to ¼/2. Another set of corrections to (4.4.33)will arise from the

expansion of the CFT data in ² , which are non-zero even at ¸ Æ0.

To show a concrete example, we plotted in Fig. 4.12 the drifting dimension of the energy

operator ±" , as a function of the normalized logarithmic scale x Æ² log(r / r 0) for a few values

of Q. We also indicate a (very rough) estimate of the theoretical error on this quantity. To

estimate the ¸ -independent correction [ ±" ]² we used the order ² 2 contribution to ¢ C
" given in

(4.4.18). On the other hand, the higher-loop correction was estimated as a relative correction

to the non-trivial part of the drifting dimension proportional to the ratio of two-loop and

one-loop terms in the beta-function (4.4.39)below, that is [ ±" ]¸ Æ(±" (r ) ¡ Re¢ C
" ) ¯ (2)

¯ (1) . We then

add the corrections as mean squares [ ±" ]total Æ
q

[±" ]2² Å [±" ]2¸ . Of course this is not meant to

be a rigorous procedure, but just an estimate of the magnitude and qualitative behavior of the

error.

Analogously to the drifting scaling dimension ±" (r ) one can de�ne a drifting exponent º (r ) as

º (r ) Æ
1

d ¡ ±" (r )
. (4.4.34)

Recently a quantity similar to º (r ) was measured by means of lattice Monte Carlo simulations

[133]. Some features of their Fig. 3 suggest qualitative agreement with (4.4.33), however, there

is also some discrepancy. There is no immediate problem because the quantity they measured

was not exactly (4.4.34), and different reasonable de�nitions of drifting exponents may not

agree with each other. Notice in this regard that detailed behavior of drifting exponents is

distinct even for two different de�nitions used in [ 133]. In the future it would be interesting to
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Chapter 4. The Q È 4 Potts model

Figure 4.12 – Drifting scaling dimension ±" given by the equation (4.4.33) as a function of x Æ
² log(r / r 0) and an estimate of the theoretical uncertainty for Q Æ5 (blue) and 7 (red).

measure a quantity more directly related to (4.4.33)on the lattice. We believe that it should

also be possible to perform an analytic calculation of �nite-volume observables, such as

those measured in [ 133], with the help of CPT around complex Potts model, but we leave this

computation for the future.

The dependence of drifting dimensions on log r shown in Fig. 4.12, with an in�exion point

at r Ær 0, is pretty peculiar. It should be possible to use this dependence to differentiate the

walking scenario from a more conventional scenario of nearly-scale invariant RG �ow, namely

the �ow which slowly approaches an IR �xed point along a weakly irrelevant direction, with

the schematic beta-function

¯ » ²¸ Å ¸ 2 . (4.4.35)

For this �ow, deviations of drifting dimensions from IR CFT limits will go like » 1/ log(r ) in the

region ² . ¸ ¿ 1, smothly transitioning to a const./ r ² behavior at distances where ¸ . ² . This

functional dependence is clearly distinct from (4.4.33), in particular there is no in�ection, and

with enough precision it should be possible to distinguish the two scenarios.

Finally let us mention that drifting exponents do not seem related by simple analytic continu-

ation to any Q Ç 4 quantity. To compute them it was important to �rst analytically continue

the conformal data and then develop the CPT around the complex �xed point. We also stress

that even if the exact values of CFT dimensions or OPE coef�cients are not known, as for

example is the case in all higher-dimensional examples of walking discussed in chapter 3, the

characteristic form of the drifting dimensions given by Eq. (4.4.33)stays the same and as such

can be considered the smoking gun of the walking behavior.
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4.4.4 Two-loop beta-function

Now we would like to go one order higher in ² and do perturbation theory up to two loops. We

therefore need to address the question of scheme dependence. Up to two loops, we have a

beta-function of the form

¯ 2-loop Æ¯ 1g Å ¯ 2g2 Å ¯ 3g3 . (4.4.36)

Different schemes correspond to changes g ! g Å ®g2 Å .. .. As is well known, if ¯ 1 Æ0, the

two-loop beta-function is scheme independent. However, in our case ¯ 1 6Æ0, so we need to

specify the scheme.

We will use the `OPE scheme' [88], also used in [ 89].32 The two-loop beta-function in this

scheme takes the following form:

¯ 2-loop Æ· (² )g Å ¼C" 0" 0" 0(² )g2 ¡
¼

3
I " 0g3, (4.4.37)

where as indicated we include the ² -dependence of · and of the OPE coef�cient C" 0" 0" 0.33

Taking into account that gFP ÆO(² ), at the two-loop order we should keep terms of total

degree up to three in ² and g, which means that we will need · at O(² 2) and C" 0" 0" 0 at O(² ), see

(4.4.8),(4.4.11).

The two-loop coef�cient I " 0, needed at O(1), originates from the “triple” OPE of the �eld " 0,

i.e. divergences arising when three insertions of the �eld " 0are close together. At this order it

can be extracted from the integrated 4pt function
R

d 2zh" 0(0)" 0(z)" 0(1)" 0(1 )i of the Q Æ4 Potts

model. However, one has to be careful and subtract extra divergences, which are related to the

ordinary OPE of the �eld " 0with itself or with other relevant operators. Taking into account all

the subtractions, we have I " 0 Æ ¡8¼.34

Computing the zero of the two-loop beta-function corresponding to C, it turns out that it's

still given by (4.4.12), with no corrections at O(² 2). This is a nice feature of the OPE scheme:

were we to change g ! g Å ®g2 then RegFP 6Æ0, losing the intuitive picture of Cand C̄sitting

symmetrically around the real RG �ow as in Fig. 4.11. That gFP remains purely imaginary is

one of the reasons we chose the `OPE scheme', the other being that the real RG stays a straight

line passing halfway between the two complex �xed points, Eq. (4.4.13), see below. These

desirable features would be lost at two loops in most schemes, e.g. in the scheme of [90].

Next we compute the dimension of " 0at the C�xed point, which comes out complex conjugate

32Eq. (4.4.39) equals (¡ 2) times Eq. (2.19) of [89] due to different normalization of beta-function used in that
work..

33This is different e.g. from the scheme followed by [ 90], where the OPE coef�cient in (4.4.37) is evaluated at
² Æ0. The two schemes are related by a coupling rede�nition g ! g Å ®g2, which, at this order, only shifts the ² g2

term of the beta function. At this order, it does not change the value of I " 0.
34This result was �rst obtained in [ 215] and then in [ 89], and we checked it numerically applying methods of

[2, 90] to the 4pt function h" 0" 0" 0" 0i given in appendix C of [ 89]. Minor modi�cations are required compared to [ 2],
as it was tailored to a �ow driven by an operator with a vanishing 3pt function.
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of " 0 in C, as it should:

2Å ¯ 0(g)jgÆgFP Æ2Å
2i ²

¼
¡

² 2

¼2 , (4.4.38)

We now study the real walking RG trajectory. We claim that in our scheme it still given by

g ÆgFP

2 ¡ ¸ . To check this, we express the beta-function in terms of ¸ and see that it comes out

real:

¯ 2-loop
¸ (¸ ) Æ ¡

p
3² 2

4¼3 ¡
4¼
p

3
¸ 2 Å

² 2

2¼2 ¸ Å
8¼2

3
¸ 3 . (4.4.39)

It can also be checked that the anomalous dimension of " 0 has a constant imaginary part,

which cancels exactly the imaginary part of its scaling dimension at C:

¢ " 0(¸ ) Æ2Å ¯ 0(g)jgÆ
gFP

2 ¡ ¸ Æ2Å
² 2

2¼2 ¡
8¼¸
p

3
Å 8¼2¸ 2. (4.4.40)

So in the OPE scheme, the real walking theory still corresponds to the line Im g Æ0 in the

space of complex couplings g 2 C. While the Im-�ip of " 0at Cand cancellation of its imaginary

part of the dimension on the real walking theory were automatic at one-loop, at two loops the

check of these conditions explicitly involved the values of the OPE coef�cients and integrated

4pt function I " 0.

We can also consider other operators. For a generic operator Á, the two-loop anomalous

dimension is

° Á(g) Æ2¼CÁÁ" 0g ¡ ¼IÁg2 . (4.4.41)

As a check, for Á Æ" 0this agrees with ¢ " 0(g) Æ2Å¯ 0(g). At the considered order we need to keep

terms with total degree up to two in g and ² . The IÁ is extracted from
R

d 2zhÁ(0)" 0(1)" 0(z)Á(1 )i

in the same way as previously explained for I " 0.

Unfortunately the only other operator for which we currently have access to the 4pt function

hÁ" 0" 0Ái is Á Æ" [89]. C""" 0 is given in (4.4.19), and we have I " Æ ¡¼. Again it is easy to check

the Im-�ip at Cup to O(² 2), as well as reality of the dimension of " on the real axis:

¢ " (gFP) Æ¢ C
" Å ° " (gFP) Æ

1

2
Å

3i ²

4¼
¡

3² 2

8¼2 Å .. . Æ¢ C̄
" , (4.4.42)

¢ "

³ gFP

2
¡ ¸

´
Æ¢ C

" Å ° "

³ gFP

2
¡ ¸

´
Æ

1

2
¡

3² 2

16¼2 ¡
p

3¼¸ Å ¼2¸ 2 Å .. . (4.4.43)

Although we won't do this, we could use the given two-loop beta-function and the functions

¢ Á
¡ gFP

2 ¡ ¸
¢

to extend the drifting dimension analysis of section 4.4.3 to the two-loop order.

The provided information is suf�cient to evaluate the integral
R¿

1 in (4.4.27), giving correction

to drifting dimensions of relative order O(1) ¯̧ . Since we veri�ed that the functions entering the

integral are real, the correction will be real, as expected in a real walking theory. The correction

from O(i ² ) ¯̧ term in ĉ in (4.4.29) is subleading. Since it is imaginary, we expect it to cancel

with the imaginary part of the two-loop term in ĉ, although we have not checked.
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4.4.5 General arguments about the real �ow

We saw in section 4.4.1 that to the one-loop order in CPT reality of the theory at g ÆgFP/2 ¡ ¸

is almost automatic. Let us now present some arguments why we expect to �nd a real theory

to all orders in perturbation theory. In chapter 3 we de�ned the complex conjugation map

that acts on the space of QFTs, or equivalently on the space of RG �ows. A real theory is then

a �xed point of this map. At one loop we had the line of purely imaginary g that connected

Cand Cand that was mapped into itself by the conjugation. Obviously any continuous map

of an interval into itself has a �xed point. In general we expect that higher order corrections

will deform the conjugation map in some continuous fashion, but under such deformations

the �xed point is expected to remain. In general a continuous involution 35 possesses �xed

points as long as the topology of the space on which it acts is relatively simple, see e.g. [ 216]

and references therein for the precise theorem formulations. Since the topology of the space

of theories in the vicinity of Cand C is trivial to leading order in CPT, it is likely to stay such

under small deformations. Consequently the real theory should continue to exist in higher

orders of perturbation theory.

In spite of this general argument, the above calculations showed that at the technical level

emergence of the real observables is quite non-trivial. In section 4.4.4 we saw that quantities

that do not directly correspond to physical observables, like anomalous dimensions and

beta-functions, may actually be complex, and that this property depends on the choice of

scheme. Calculation of section 4.4.3 demonstrated that, even at the one-loop order, one is

required to use certain complex normalization constants in the de�nition of real operators.

Nevertheless, both calculations do support the statement that the real theory exists and can

be accessed by the deformation of the complex CFT.

4.4.6 The range of Q for which the walking behavior persists

Having studied some higher-order results we can now try to gain some more intuition on the

values of the parameter Q for which we expect to see the walking behavior and consequently

large correlation length in the Potts model. A rigorous discussion is possible in the limit Q ! 4,

when the imaginary parts of operator dimensions go to zero, but this is not the only physically

interesting regime, and moreover large values of the correlation length suggest that the walking

regime extends all the way to Q » 10, see Table 3.1. As it often happens, the Q ¡ 4 expansion

can be extended to large values of Q after various factors of ¼are taken into account. First of

all, we see factors ¼and ¼2 in the one- and two-loop terms of the beta-function (4.4.37) or

(4.4.39). These factors have purely geometric origin — they arise from angular integration,

and the n-loop term will similarly carry factor ¼n . This shows that a natural coupling constant

35Involution is a map which square is the identity, a condition that complex conjugation clearly satis�es.
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along the real RG �ow is ˜̧ Æ¼¸ .36 In terms of this variable the beta-function reads

¯ ˜̧ Æ ¡

p
3² 2

4¼2 ¡
4

p
3

˜̧ 2 Å
² 2

2¼2
˜̧ Å

8

3
˜̧ 3. (4.4.44)

We see that ˜̧ 2 and ˜̧ 3 coef�cients became O(1) numbers and we expect this to persist to higher

orders in this normalization. We can also observe that the coef�cients of different powers of ˜̧

admit an expansion in ² 2/ ¼2. It is the same expansion that we have seen above for complex

CFT data, except that along the real �ow only even powers of i ² / ¼enter. The fact that physical

observables are expandable in even powers of ² follows from the fact that they are always real

quantities, while the factors of 1/ ¼can be traced back to (4.3.1) and should not be confused

with the geometric ¼rescaling performed above.

Consequently we expect the beta-function to maintain approximately the same form while

the expansion parameter remains small: ² 2/ ¼2 ¿ 1. This identi�cation of the expansion

parameter makes it not so surprising that the picture obtained in small ² expansion remains

reliable even for ² »
p

6 corresponding to Q » 10. More generally, for perturbation around any

complex CFT, the expansion will be controlled by the square of the imaginary part of the CFT

dimension of the perturbing operator. In case at hand (Im ¢ " 0)2 » 4² 2/ ¼2, and it appears that

an extra factor of 4 does not affect the range of the validity of perturbation theory.

If we study the dependence of the complex CFT data on ² to higher orders than above, we

realize that an even more natural expansion parameter is 4/ jm j2, which agrees with ² 2/ ¼2

to the �rst nontrivial order, see Fig. 4.13. Here m Æm(Q) is the `minimal model' numbering

parameter whose relation to Q is given by (4.4.1), so that g(Q) Æ4Å 4/ m(Q), m(Q) is real for

Q 6 4 and becomes purely imaginary for Q È 4.

Figure 4.13 – Expansion parameters ² 2

¼2 (red) and 4
jm j2

(blue).

At this point it would be nice to compute some physical observable along the walking �ow,

like a drifting dimension, to higher order in ² / ¼or 1/ m and to con�rm the suggested behavior.

Unfortunately, such a computation appears to be rather tedious since the �rst nontrivial

correction is expected at relative order 1/ m 2, requiring to compute at NNLO (three loops).

36This is similar to counting 1/(16 ¼2) factors appearing in Feynman-diagrammatic perturbation theory in 4d.
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Alternatively, we could study the behavior of perturbation theory by expanding in the coupling

constant some exact non-perturbative result. One such quantity is the correlation length on

the square lattice computed exactly for any Q in [ 131]. Computation of this quantity in pertur-

bation theory using Eq. (4.4.15)would include two types of corrections, those coming from the

beta-function and those coming from the dependence of ¸ UV and ¸ IR on Q. Inspection of the

exact answer, however, leads to a big surprise: if 1/ m is used as an expansion parameter the

answer turns out to be one-loop exact! Namely, expanded at small 1/ jm j the exact correlation

length reads37

»Potts Æ

p
2

16
e¼jmj/2 Å O

¡
e¡ ¼jm j/2 ¢

. (4.4.45)

We see that all corrections to the one-loop answer are non-perturbative in 1/ m. As far as

we know this observation has not been made before. This fact is absolutely non-manifest in

our perturbation theory, and it suggests that there might be an even superior computational

scheme. We leave exploration of this possibility for the future.

4.5 Conclusions

In this chapter we carried on with our proposal that walking behavior can be understood as

an RG �ow passing between two complex CFTs. Here we were able to provide an example

where we have access to the complex CFTs, meaning that we know the operator spectrum and

many of the OPE coef�cients. The model we studied is the 2d Potts model, which undergoes a

weakly �rst-order phase transition and walking behavior when the number of states Q is in the

range 4 . Q . 10. For Q Ç 4, on the other hand, the model has a critical and a tricritical point,

and the corresponding partition functions on the torus, and hence the operator spectrum,

are known [ 137]. We access the full complex CFT spectrum by analytically continuing these

partition functions to Q È 4. We are also able to analytically continue some OPE coef�cients

involving Kac-degenerate operators, and determine a few others near Q Æ4 via the orbifold

construction of the Q Æ4 Potts model.

We can then describe the real walking theory as the complex CFT perturbed by a nearly

marginal operator, making predictions for observable quantities. Since the walking regime is

only approximately scale invariant, 2pt functions exhibit small deviations from power laws,

which we compute using perturbation theory. It would be interesting to check our results

for drifting scaling dimensions with lattice measurements. These techniques also allow to

compute the correlation length of the model for Q & 4, in agreement with the result obtained

using integrability.

The construction passes several purely theoretical consistency checks as well. It was antici-

pated in chapter 3 that the existence of two complex conjugate CFTs next to each other, as

well as of the real theory in between them, requires certain conspiracies in the conformal data.

Here we con�rmed, up to the two-loop order, that these conspiracies indeed take place in the

37See Eq. (4.46) of [131]; there is an obvious typo in (4.47).
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complex Potts CFTs.

We would like to emphasize that our complex CFTs are not just some approximations which

may break down upon closer look. On the contrary, they are perfectly nonperturbatively well

de�ned theories which satisfy usual CFT axioms (OPE, crossing, modular-invariant partition

function). Being non-unitary, they are naturally de�ned in Euclidean signature, and may not

necessarily allow analytic continuation to Lorentzian signature. 38 We outlined how to look for

them by studying the Potts model in the space of complexi�ed couplings.

There is at least one more example of walking in two dimensions for which some exact

information can be extracted about the complex CFTs, thus providing further tests and

applications of our idea: the O(n) model. Very similarly to the Potts model, for ¡ 2 6 n 6 2 there

are two branches of �xed points, the critical and the low-temperature �xed point (which is in

general non-trivial). At n Ænc Æ2 the two �xed points merge and go into the complex plane.

At n È 2 there is no phase transition, nevertheless, for n & 2 we expect to �nd a massive theory

without any tunable parameter with large correlation length due to walking RG behavior.

Many of our techniques can be applied to the O(n) model in an analogous way. This theory,

especially for n integer, has been extensively studied in the past, however, to the best of our

knowledge, the walking behavior has not been emphasized (see however [ 217]). Notice that

the walking behavior for n & 2 would be a distinct phenomenon from the slow logarithmic

running of the nonlinear sigma-model coupling at short distances. It remains to be seen how

far above nc Æ2 the walking regime extends, and whether any vestiges of walking remain

visible at n Æ3.

Walking can also be realized in higher dimensions, and in chapter 3 we presented several

examples: 3d and 4d gauge theories below conformal window, the three-state Potts model

in 3d, and possibly decon�ned criticality transitions. Certainly there are others. In these

theories it is harder to make quantitative predictions, since the analytic computations of the

properties of corresponding complex CFTs are less feasible. Still, the mechanism governing

the RG behavior is the same. Our ability to derive the properties of the walking �ow from given

conformal data is independent of the number of dimensions. Hence several our results, like the

form of the walking 2pt function, can be immediately transcribed for the higher-dimensional

cases.

38The Osterwalder-Shrader theorem allowing analytic continuation from Euclidean to Lorentzian only works for
re�ection-positive, i.e. unitary, theories.
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Conclusions and outlook

In this thesis we have presented studies of strongly coupled QFTs. In the �rst part, we

considered non-local CFTs, speci�cally the critical long range Ising (LRI) model. This theory is

characterized by different regimes depending on the parameter s, which determines how fast

the long range interactions in the spin model decay. For s low enough the model is trivial, but

for s È d /2 it is interacting. We have developed a way to show that the intermediate regime

is conformally invariant to all orders of perturbation theory in an expansion in ² » s¡ d /2,

despite the absence of a stress tensor in the theory. We have achieved this by considering

a defect CFT living in an auxiliary higher-dimensional space. This theory is local and has a

stress tensor, so it is straightforward to obtain the Ward identities for the special conformal

transformations. Then we can simply restrict ourselves to the defect and show that the Ward

identities imply that the original theory is conformally invariant.

Then we focused on the crossover between the intermediate, long-range, regime and the

“short range” regime which happens for some value of sÆs¤ . Before our work, many aspects

of this crossover were not clear, because the standard picture predicted that for s > s¤ the

CFT would just be described by the local short range Ising (SRI) CFT. We found a more natural

picture, where the short range regime is described by the local SRI CFT plus a decoupled

GFF. What follows is that we can study the intermediate regime by starting from this short

range regime and adding a perturbation which couples the two subsectors . The fact that the

intermediate regime can be obtained as the end point of another �ow, i.e. a Gaussian theory

perturbed by a quartic coupling, means that we have an IR duality. The two �ows ending in

the LRI �xed point are under perturbative control in different situations, and give us the great

computational power of �nding the critical exponents of the strongly coupled CFT close to

the crossover.

While we focused only on the long range Ising model, it's clear that our mechanism can easily

describe other long range models. For example, we could couple the O(N ) CFT to some GFF

sector and, provided that some term of the beta function has the correct sign, we would end

up with a unitary, non-local, O(N ) invariant CFT. In this sense we have shown that, while

there's not that many local CFTs, it's easy to construct continuous families of non-local CFTs.

The second part of this thesis concerned walking behavior, a phenomenon which plays a role

in both high energy physics and statistical mechanics. We mentioned several known examples
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and some likely candidate of walking theories and tried to correct some misconceptions that

are present in the literature. We discussed the concept of complex CFTs, which can be thought

of as non-unitary theories living at imaginary values of the coupling, and understood the

walking behavior as an RG �ow passing close to these complex CFTs.

Knowledge of the conformal data of these complex CFTs allows us to describe observables of

the walking theory in perturbation theory. We've shown this exactly in the two dimensional

Potts model with Q & 4. For 0 Ç Q 6 4, the spectrum of this model is known exactly, and

OPE coef�cients can be obtained in general by requiring crossing symmetry of the theory.

By analytically continuing to Q È 4, we can obtain the conformal data of the complex CFTs.

For example, we were able to obtain the leading behavior in Q ¡ 4 of the correlation length

at the critical temperature, as well as corrections to two point functions by using conformal

perturbation theory.

Another interesting question concerns other systems which show walking behavior. For

example, there is evidence that the Néel/VBS phase transition is a weakly �rst order phase

transition. A more approachable system, however, is the two dimensional O(n) model for

n & 2. The O(n) model has a richer spectrum than the Potts model: for example, it has a

conserved current due to the continuous symmetry group. It is therefore very important to

understand what it means to have this symmetry at non-integer n in order to approach this

problem.

A future research direction would also be to systematically investigate what are the constraints

from crossing symmetry in the case of a complex CFT living close to the real axis of the

coupling. The bootstrap program taught us that, in the case of unitary CFTs, big portions of

theory space are incompatible with crossing symmetry. It would be interesting to see what

happens to these bounds and constraints as we start breaking unitarity weakly.
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A Further facts about the Long Range
Ising model

A.1 Relative normalization of the Á and Á3 OPE coef�cients

In this section we investigate the consequence of the nonlocal equation of motion (1.3.21) for

OPE coef�cients and operator normalizations. We will be working in the IR theory. With a

small rede�nition of the constants involved we can write (1.3.21) as
Z

d d y
1

jx ¡ yj2(d ¡ ¢ Á)
Á(y) ÆCÁ3(x) , C Æ ¡

g0

3!
(2¼)2d wd¡ swdÅs È 0. (A.1.1)

Let us �rst investigate the consequences of the equation of motion for three point functions.

Using (A.1.1), and Symanzik's star integral formula [218], we can easily deduce that if

hÁ(x)O1(y)O2(z)i Æ
¸ 12Á

jx ¡ yj¢ ÁÅ¢ 1¡ ¢ 2 jx ¡ zj¢ Á¡ ¢ 1Å¢ 2 j y ¡ zj¡ ¢ ÁÅ¢ 1Å¢ 2
, (A.1.2)

then

hÁ3(x)O1(y)O2(z)i Æ
¸ 12Á3

jx ¡ yj¢ Á3Å¢ 1¡ ¢ 2 jx ¡ zj¢ Á3 ¡ ¢ 1Å¢ 2 j y ¡ zj¡ ¢ Á3Å¢ 1Å¢ 2
, (A.1.3)

with ¢ Á3 ´ d ¡ ¢ Á and with a relative three point function coef�cient given by

¸ 12Á3

¸ 12Á
Æ

M3

C
, M3 Æ¼d /2 ¡ ( 1

2(d ¡ ¢ Á Å ¢ 12))¡ ( 1
2(d ¡ ¢ Á ¡ ¢ 12))¡ (¢ Á ¡ d /2)

¡ (d ¡ ¢ Á)¡ ( 1
2(¢ Á Å ¢ 12))¡ ( 1

2(¢ Á ¡ ¢ 12))
. (A.1.4)

Here we introduced ¢ 12 ´ ¢ 1 ¡ ¢ 2. Notice that this computation provides an alternative

derivation of the scaling dimension ¢ Á3 in the IR theory, which was derived from the two

point function in the main text. Notice also that the gaussian limit ² ! 0 is smooth because in

this limit ¸ is only nonzero if ¢ Á Æ §¢ 12 ¡ 2k , and the zero in M3 precisely cancels the overall

1/ g0 » 1/ ² .

The above three point functions are rather meaningless without knowledge of the two point
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functions of the operators involved. The two point function of Á takes the form

hÁ(x)Á(0)i Æ
1Å ½(² )

jxj2¢ Á
. (A.1.5)

The function ½is a nontrivial function of ² which behaves as ² 2 for small ² . The two point

function of Á3 is then given by the analogue of (1.3.37), which in the current conventions takes

the form

hÁ3(x)Á3(0)i Æ
Z

d d y
Z

d d z
½(² )/ C2

jx ¡ yj2(d ¡ ¢ Á)jzj2(d ¡ ¢ Á)j y ¡ zj2¢ Á
. (A.1.6)

Notice that we subtracted the tree-level part from the two point function of Á, cf. the discussion

below equation (1.3.37). The resulting two point function is therefore proportional to ½. The

integral as written is actually singular, but we can view it as a formal expression that has a

well-de�ned and �nite meaning in momentum space. It then evaluates to

hÁ3(x)Á3(0)i Æ
½(² )M2/ C2

jxj2¢ Á3
(A.1.7)

with

M2 Æ
¼d ¡ (d /2 ¡ ¢ Á)¡ (¢ Á ¡ d /2)

¡ (d ¡ ¢ Á)¡ (¢ Á)
. (A.1.8)

We emphasize that the gaussian limit is again smooth.

Substituting ¢ Á Æ(d ¡ ² )/4 in (A.1.8) we �nd that M2 Ç 0 in a �nite interval around ² Æ0, for all

physical values of d . The coef�cient ½is then also expected to be negative, so that altogether

the coef�cient of (A.1.7) comes out positive. Indeed we expect the LRI to be described by a

unitary, or re�ection positive in the Euclidean, conformal �eld theory. 1 We see from (1.3.26)

that ½is negative to the �rst nontrivial order in perturbation theory, which is in agreement

with expectations.

Meaningful three point functions involve the unit normalized operators

Á̃(x) ´
1

p
1Å ½(² )

Á(x) , Á̃3(x) ´
1

p
½(² )M2/ C2

Á3(x) , (A.1.9)

in terms of which we �nd that
¸ 12Á̃3

¸ 12Á̃
Æ

M3
p

1Å ½(² )
p

½(² )M2
. (A.1.10)

We see thatC drops out, but the relative three point functions still involve ½which we can only

compute perturbatively.

Notice however that we can take further ratios to get rid of the unknown ½. Namely, if we

1The gaussian theory is unitary as long as ¢ Á is above the scalar unitarity bound d /2 ¡ 1, i.e. if s Ç 2. This
condition is satis�ed throughout region 2, see Fig. 1.1. We expect that perturbing a unitary theory by a hermitian
operator Á4 with a real coupling will give rise to a unitary theory.
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consider two OPEs O1 £ O2 and O0
1 £ O0

2, then

¸ 12Á̃3 / ¸ 12Á̃

¸ 1020Á̃3 / ¸ 1020Á̃
Æ

M3

M 0
3

. (A.1.11)

This equation may be used in a variety of ways in conformal bootstrap analyses involving

multiple correlators.

It is interesting to consider the limit s ! s¤ where the LRI should transition to the SRI. The SRI

does not have an operator corresponding to our Á̃3. However from (A.1.10)we see that there is

no decoupling of the Á̃3 operator unless ½Æ ¡1, which would imply that Á becomes null and

also decouples. Barring this decoupling, a transition from LRI to SRI should be discontinuous.

However, the transition is from LRI to SRI+GFF and is indeed continuous.

A.2 Selected prior work on the long-range Ising model

A.2.1 Physics

The study of the long-range Ising model has started in earnest in [ 22], where also the effective

description based on the Á4-�ow has been proposed. That reference has erroneously put the

crossover to short range at s Æ2. This was corrected by [ 23, 24], leading to what we called

the “standard picture", which has since been supported by theoretical studies [ 36, 37] and by

lattice Monte Carlo simulations [38].

More recently some debate restarted about the nature of the long-range to short-range

crossover. Lattice Monte Carlo simulations in [ 219] observed deviations from the standard

picture near the crossover (see also [ 220]) However, Ref. [ 219] may have underestimated

systematic errors due to possible logarithmic corrections to scaling near the crossover [ 221].

From our perspective these logarithmic corrections are associated with the operator ¾Â,

marginally irrelevant at the crossover (see section 2.2.3).

Ref. [51] analyzed the problem using the functional renormalization group and also found

support for the standard picture.

As a side remark, some of this recent literature likes to phrase the conclusions in terms of the

so called “effective dimension" Deff(s) such that the LRFP in d dimensions is supposed to have

the same critical exponents as the SRFP in Deff dimensions. We would like to use this occasion

to stress that this “effective dimension" is clearly not a fundamental notion, bound to work

only for a few exponents and only in low orders of perturbation theory.

Many of the above-mentioned papers also considered the O(N ) generalization of the long-

range Ising model. Recently, Ref. [ 103] analyzed the crossover in the large N approximation.

They argued that the IR normalization of the 2pt function of Á vanishes ass ! s¤ . While we

do not fully understand the details of their argument, the conclusion agrees with our picture,
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as discussed in section 2.4.2. See also [222] for a recent discussion of the large N limit in this

model.

A.2.2 Rigorous results

The Á4-�ow has been studied via rigorous renormalization group analysis in d Æ1,2,3 in

[59–61, 223]. These works show that an infrared �xed point exists nonperturbatively at least

for suf�ciently small ² È 0. For some critical exponents, dependence on ² in this region of

small ² has also been rigorously investigated. Ref. [ 61] announced a proof that Á does not

acquire anomalous dimension. Ref. [ 223] showed that the susceptibility and the speci�c heat

critical exponents take, at leading order in ² , values expected from the ² -expansion predictions

for ° Á and ° Á2 (this reference considers the general O(n) case, including n Æ0 corresponding

to self-avoiding walks).

Long-range Ising model can also be studied directly from the lattice Hamiltonian, without rely-

ing on the renormalization group. It is known that the model has a phase transition separating

a low- ¯ phase with vanishing magnetization from a high- ¯ phase where the magnetization is

nonzero. Moreover the transition is continuous, in the sense that magnetization vanishes as

¯ c is approached from above. The above statements have been proved rigorously for d Æ1,

0 Ç sÇ 1 and for d Æ2,3, 0Ç sÇ 2, which includes the range 0 Ç sÇ 2¡ ´ SRwe are interested in

([110], section 1.4). Incidentally, the same paper also proved for the �rst time continuity of the

phase transition in the short-range Ising model for d Æ3.

Another rigorous result worth mentioning is that the spin-spin correlator of the long-range

Ising model decays at ¯ Ç ¯ c with the exponent d Å s. See [63], Eq. (2.8). Many other rigorous

results about the long-range Ising model on the lattice are reviewed in that paper.
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B.1 Tuning and weakly �rst-order phase transitions

First-order phase transitions have several characteristics, but the one which will be most useful

to us is that the correlation length » for �uctuations of the order parameter remains �nite at

such a transition. Some �rst-order transitions are classi�ed as weak. Once again there are

various characterizations of what this means. A useful for us de�nition is that the correlation

length at a weak �rst-order (WFO) phase transition becomes very large with respect to the

microscopic length scale (e.g. the lattice spacing): » À a.

Continuous phase transitions, which have » Æ 1 , are understood by RG theory as nontrivial

�xed points of RG �ow, 1 usually described by CFTs. WFO transitions are in a sense “almost

continuous", and one expects the RG theory to say something about them. An RG �ow

trajectory which corresponds to a WFO transition is long (so that a hierarchy » À a results),

but it does not lead to a CFT �xed point, because otherwise the transition would be continuous.

How such an RG trajectory can arise? Walking is one possibility. However, weakness of some

�rst-order phase transitions is explained via the tuning scenario, as we will now review.

In this scenario a CFT �xed point exists, but an RG �ow near-misses it because of an extra

relevant coupling turned on, see Fig. B.1. Here we see a �ow in the space of three couplings,

gP , gR (both relevant) and irrelevant gI , which play different physical roles. We assume that

gP is the control parameter which is tuned in the UV to reach the transition. As such it's a

relevant perturbation of the CFT. The gR represents another relevant perturbation of the CFT,

while gI stands collectively for all irrelevant perturbations.

If gR Æ0 in the UV, then by tuning gP we can get onto a trajectory which ends in a CFT — this

would be a continuous transition. Suppose instead that our system has a nonzero value of

gR in the UV. Then we end on up on the red trajectory which misses the CFT. That trajectory

may end up at another CFT (in which case the transition is still continuous but in a different

1We call by trivial the �xed points describing the ordered and disordered phases with �nite correlation lengths.
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Figure B.1 – The tuning mechanism for a weakly �rst-order phase transition.

universality class). But it might as well happen that the red trajectory ends in a gapped theory

— then the transition is �rst-order. 2

Now imagine that we tune gR to be very small in the UV. Then the RG trajectory will spend

a lot of RG time near the CFT, until eventually ending in a gapped phase. In this case the

�rst-order transition will be weak. The RG �ow duration depends on how strongly relevant the

gR perturbation is near the CFT. If the scaling dimension of that perturbation is ¢ R Ç d, then

by the standard RG reasoning we expect the hierarchy

»/ a » g¡ 1/( d ¡ ¢ R)
R , (B.1.1)

where we express gR in dimensionless units at the lattice scale. This way of generating a WFO

phase transition is precisely the tuning mechanism from section 3.2.1, see Eq. (3.2.2).

As in section 3.2.1, there are two ways to get a very large number in the r.h.s. of (B.1.1):

1. If d ¡ ¢ R ÆO(1), we have to take gR very small.

2. If, on the other hand, our CFT has a property that d ¡ ¢ R ¿ 1, then it's enough to take

gR somewhat smaller than one. E.g. if d ¡ ¢ R Æ0.25 and gR Æ0.25 we get »/ a » 256

which starts being a large number. This latter possibility is what we called `mild tuning'

in section 3.2.1.

To illustrate possibility 1, consider the Ising model, for de�niteness in 3d, in a small nonzero

magnetic �eld. We pick gP magnetic �eld, gR deviation from the critical temperature Tc. If

gR Æ0, then for gP Æ0 we have a second order transition, governed by the critical 3d Ising CFT.

The leading operator which couples to gR is the energy operator " , of dimension ¢ R ¼1.41.

For gR Ç 0 the transition becomes �rst-order. Since d ¡ ¢ R ÆO(1), the transition is weak only

if gR is very small.

To illustrate possibility 2, consider the CFT C0 consisting of N decoupled critical 3d Ising

CFTs. The global symmetry of this �xed point is the cubic group , generated by independent Z2

2We assume that the trajectories for gP Ç 0 and gP È 0 �ow to two different phases, otherwise there is no phase
transition to talk about.
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transformations of each copy and by permutations of the copies. We are interested in RG �ows

which preserve this symmetry at the microscopic level. There are only two relevant singlet

operators:

OP Æ" 1 Å .. .Å " N , OR Æ
X

i Ç j
" i " j , (B.1.2)

where " i are the energy perturbations of each Ising CFT. 3 The dimension of " being ¼1.41,

we have ¢ R ¼2.82. We get a transition varying gP . Consider the nature of the transition as

a function of gR. If gR Æ0 the transition is continuous. Consider what happens if gR 6Æ0,

depending on the sign. If gR È 0, the RG trajectory misses the CFT C0. It is known that in that

case it leads to another CFT, which is the critical O(2) model for N Æ2, and the so-called “cubic

�xed point" for N > 3. If gR Ç 0, the trajectory also misses C0 and leads to a gapped phase —

this will be a �rst-order transition. Since d ¡ ¢ R ¿ 1, a moderate tuning in gR will suf�ce for

systems with this symmetry to exhibit a weakly �rst-order phase transition.

The just given example is important for understanding why some antiferromagnets with

multicomponent order parameters exhibit �rst-order phase transitions [ 164, 225]. This �rst-

order phase transition is referred to in the literature as “�uctuation driven", for the following

reason. In the Landau-Ginzburg description, we would describe the above RG �ow in terms of

a multicomponent scalar theory with the mass term

m 2(' 2
1 Å .. .Å ' 2

N ) Æm 2~' 2 (B.1.3)

and two quartic interactions allowed by the cubic symmetry

u(~' 2)2 Å v(' 4
1 Å .. .Å ' 4

N ) . (B.1.4)

The decoupled �xed point has u Æ0, v Æv0 È 0 and some critical value of m 2. Perturbing by

gR corresponds to turning on a small u . If ju j ¿ v0, of whatever sign, the quartic potential is

stable, and the Landau theory predicts a second-order phase transition. However, RG analysis,

which is under perturbative control in d Æ4¡ ² dimensions, shows that u Ç 0, however small,

grows more negative so that eventually the �ow leads to un unstable potential, with the

conclusion that the transition is actually �rst-order. This is the origin of the “�uctuation

driven" terminology, included here for historical reasons. If one thinks nonperturbatively, this

terminology does not play much of a role.

B.2 Walking vs BKT transition

Let us brie�y review the BKT transition and explain why, while super�cially it shares some

similarity with the basic scenario of walking as presented in section 3.2, there are also some

important differences of principle.

BKT-like transition arises when three conditions are satis�ed:

3We constructed this example inspired by [224].
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– there is a one-parameter family of CFTs T (K ) related by an exactly marginal deformation

(coupling) K , singlet of the global symmetry group. Let's call the corresponding singlet

scalar operator O0, of dimension ¢ 0 Æd for any K ;

– along this family, there is another singlet scalar operator, call it O1, whose scaling

dimension ¢ 1(K ) varies monotonically with K and crosses from relevant to irrelevant at

K ÆKc.

– the leading nontrivial operator which occurs in the OPE O1 £ O1 is O0, so that the OPE

coef�cient C110 » hO1O1O0i is nonzero.

In the original BKT transition, as reviewed e.g. in [ 21], we have d Æ2 and the family T (K ) is

the massless scalar boson µ compacti�ed on [0 ,2¼] and with the action 1
2K

R
d 2x (r µ)2. SoO0

is just the operator multiplying K in the action. It is the singlet of the global U (1) symmetry

of the CFT.4 On the other hand O1 is the vortex operator which inserts a defect, its scaling

dimension being ¢ 1(K ) Æ¼K , and Kc Æ2/ ¼.5 The OPE coef�cient C110 is indeed nonzero in

this case.

Let us go back to the general setup and consider the consequences. By shifting and rescaling K

we can assume that Kc Æ0 and ¢ 1 Æd Å K Å O(K 2) near K Æ0. We perturb T (0) by KO0 Å yO1

and study the RG �ow, which to the lowest order in K , y has the form:

¯ K Æ
1

2
SdC110y2, ¯ y ÆK y . (B.2.1)

Notice that since K is exactly marginal, its beta-function vanishes in absence of y perturbation.

Further rescaling the couplings to absorb the OPE coef�cient, the new beta-functions take the

simple form:

¯ K Æy2, ¯ y ÆK y . (B.2.2)

The RG �ow diagram is in Fig. B.2. Consider the �ows starting at K0 È 0 and at y0 È 0. If y0 Ç K0

then we end at a CFT, while for y0 È K0 we �ow `to the unknown' (presumably some gapped

phase). When the microscopic theory is varied along the `micro' line, transition between the

two regimes will happen at some non-universal value K ÆK¤ . This is the BKT transition.

To study the �ow to the unknown, we introduce two combinations of the couplings u Æy2 ¡ K 2

and v Æy Å K , in terms of which the RG equations take the form

¯ u Æ0, ¯ v Æ1
2v2 Å 1

2u . (B.2.3)

The �rst equation means that u stays constant in this one-loop approximation, while in the

second equation we recognize our walking beta-function equation (3.2.3) with v and u some

trivial rescalings of ¸ and y. Let us �x then u È 0 and consider a �ow of v which starts at some

positive v Æv0 ¿ 1 and heads towards v Æ0. Differently from the walking scenario [ 117], the

4More precisely, the global symmetry is U (1)L £ U (1)R.
5More precisely, O1 is the sum of the charge-1 vortex and antivortex operators.
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Figure B.2 – Left: the RG �ow diagram for the BKT transition. Right: the beta-function for the
coupling combination v.

�ow terminates at v » u, at which point y ¡ K Æu/ v ÆO(1) and we go out of the regime of

validity of the original beta-functions (B.2.2). We get only one half of the walking RG trajectory,

and the arising exponential hierarchy is given by the equation of the form (3.2.7) with an extra
1
2 in the exponent.

The main differences between walking and the BKT transition are as follows. One key dif-

ference is that the true couplings which control the weakness of the perturbation around

T (0) are K and y, not their combinations u, v which make the RG equations assume a simple

form. That's why RG in the BKT transition breaks down for v close to 0, while it's perfectly

�ne and weakly coupled in the walking RG running for ¸ » 0. The second difference is that

the combination u of the couplings, which enters as a �xed parameter into ¯ v , only remains

constant in the one-loop approximation. This was not so for the walking beta-function (3.2.3),

where the analogous parameter y was not renormalized to any order. A deeper structural

reason for the latter difference is that in the BKT transitions, the CFTs T (K ) all have the same

symmetry and are related by an exactly marginal deformation (and hence parameter K can

�ow). All of these CFTs, be that for K Ç Kc or K È Kc, are unitary and nothing goes into the

complex plane. On the contrary, in the considered examples of the walking scenario the

family of CFTs all have a different global symmetry and are not related by an exactly marginal

deformation.

Notice as well that the leading exponent in the BKT scaling is not universal since there is no

universal relation between the parameters of the microscopic theory and the coupling u, while

on the other hand, the leading exponent in (3.2.7) is universal, it depends only on the CFT

data. For the above reasons, we propose to avoid calling hierarchy (3.2.7) `BKT scaling' when

discussing the walking scenario. We propose to refer to it as the `walking scaling'.

B.3 Walking in large- N theories

In this section we discuss an example of walking behavior in �eld theories with large- N

counting. As in the examples discussed in the main text we assume existence of two families

of �xed points that depend on a parameter, x, and that merge for some critical value of this

parameter, xc. We also assume that at least when the parameter is close to its critical value
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there exists an RG �ow connecting the �xed points. At large N , the corresponding �ow was

studied in [ 226] by means of the Hubbard-Stratonovich transformation, where it was shown

that it exists as long as one of the CFTs contains a double-trace operator which is weakly

relevant. Here we give a simple description using conformal perturbation theory (CPT) that

is valid in the vicinity of the merger point. Let us call the operator which triggers the �ow

[OO], and denote its dimension d Å ° UV at the UV �xed point and d Å ° IR at the IR one. Then

° UV Ç 0 Ç ° IR and they go to zero when x Æxc. First of all, let us show that the operator

responsible for the �ow has to be a double-trace operator. 6 To do this, recall the leading-order

formula for the change in anomalous dimensions:

° IR ¡ ° UV Æ2Sd gFPC[OO ]
[OO ][OO ] , (B.3.1)

where gFP is the value of the coupling constant at which the IR CFT is reached. If instead of

[OO] we tried to use some single-trace operator, say operator O from which we are “building"

[OO], its OPE coef�cients of the form CO
©© , where © is any operator, including O itself, would

be suppressed by 1/ N . Correspondingly, gFP would have to be at least of order N and the �ow

wouldn't be perturbative. Here we are assuming that at least some anomalous dimensions

in two CFTs are different at the O(1) order in 1/ N . Instead, the double-trace operator OPE

coef�cients C[OO ]
[OO ][OO ] and C[OO ]

OO are O(1) and as long as ° 's are small we expect to be able to

control the �ow within CPT around the UV �xed point.

There is one simple cross-check that we can make at the leading order. Dimension of O is

given by

dim( O) Æ
d

2
Å

1

2
° UV(IR) Å O(1/ N ) (B.3.2)

and for consistency we need C[OO ]
[OO ][OO ] Æ2C[OO ]

OO Å O(1/ N ), so that O gets the right dimension

for the same value of g. Since to leading order the OPE coef�cients can be calculated by Wick

contractions it is easy to check that this relation indeed holds for canonically normalized

operators.

Arguments above simply relied on some sort of 1/ N expansion. In particular, they apply to

gauge theory in the large Nc,N f limit holding x ÆN f / Nc �xed. This is the large N limit of the

Banks-Zaks-like theories discussed in section 3.4. In this context we arrive at the following

conclusion. For x ÆxAF when the BZ �xed point is free all operators with low dimensions can

be easily classi�ed. If we are looking for an operator that for x Æxc becomes marginal and

controls the walking behavior for x Ç xc then at large N this operator must be a double-trace

singlet. As it was advocated in [ 117], good candidates are four-fermion operators which for

x ÆxAF have dimension 6.

If this picture is right, the schematic behavior of operator dimensions at the BZ �xed point

in d Æ4 in the range xc Ç x Ç xAF has, in the strict Nc Æ 1 limit, schematic form shown in

Fig. B.3. Since (Ã̄Ã )2 starts at dimension 6 and is expected to become marginal at x Æxc, there

6In theories with large Nc and N f we will use single-traceness condition with respect to both Nc and N f .
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Figure B.3 – Schematic behavior of the operator dimensions at the BZ �xed point as a function
of x ÆN f / Nc, at Nc Æ 1 . The dimension of ( Ã̄Ã )2 is twice that of Ã̄Ã . All dimensions have a
square-root singularity at x Æxc.

should be a level crossing between this operator and trF2. An alternative picture in which

it's trF2 becomes marginal is, as we said, disfavored because the three-point function of this

single-trace operator vanishes at Nc Æ 1 , and so it's unsuitable for generating a �ow from

QCD¤ to BZ with expected properties.

Of course at �nite but large Nc we expect that level crossing in Fig. B.3 will be resolved by a

small amount. In this case, the operator which becomes marginal at x Æxc is continuously

connected to trF2, but it still makes sense to label it as double trace ( Ã̄Ã )2 because its

properties are similar to those of the latter in Nc Æ 1 limit.
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C Further facts about the Potts model

In this section we collect a few further facts about the Potts model which, while not central to

our main line of reasoning, may turn out useful for non-experts.

C.1 `Breakdown' of Landau-Ginzburg paradigm

Historically, the �rst successful approach to phase transitions was the Landau-Ginzburg (LG)

paradigm [ 227]. Although from modern perspective, limitations of this paradigm are well

known, it remains a highly in�uential stepping stone in our thinking about the physics of

phase transitions. The basic assumption of LG paradigm is that one can describe continuous

phase transitions by considering the �uctuations of the order parameter. One considers an

effective Lagrangian built out of the order parameter, which respects the same symmetries

of the model and is supposed to describe the coarse-grained physics of it. In the original

formulation, one applies the mean �eld approximation by neglecting �uctuations, and studies

the order of the transition. For example, for the Ising model the order parameter is a scalar '

odd under the Z2 symmetry. We end up with a Lagrangian given by even powers of ' , and this

correctly predicts a second-order phase transition. For the Potts model with Q > 3, limiting

ourselves to integer Q for this discussion, the situation is different. The order parameter is the

magnetization ' a , a vector under SQ , with a Æ1,. . . ,Q, and subject to the constraint
P

a ' a Æ0.

The symmetry SQ acts by shuf�ing the indices a around, and it is possible to construct a cubic

term which is singlet under SQ . Since all the terms not forbidden by the symmetry have to be

included in our effective description, this term has to be considered. Within the original LG

rules, the presence of the cubic term would imply that the phase transition is �rst-order for

all Q > 3. That this prediction is not correct in the case of Q Æ3,4 and d Æ2 is a breakdown

of the Landau-Ginzburg theory. In the case at hand the breakdown is usually explained by

saying that the �uctuations of the order parameter are signi�cant, and so what was �rst-order

transition in mean �eld description becomes second-order in reality.

The words `LG description' are sometimes used in the theory of critical phenomena in a way

different from the above [ 228]. Namely, one considers a UV-complete QFT built out of scalar
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�elds with relevant interactions which, for some value of the couplings, �ows in the IR to a CFT

of interest (the same CFT may describe the continuous phase transition of a lattice model).

Such an LG description exists for all unitary minimal models [ 228], for the Yang-Lee CFT M 2,5

[178], as well as for some other non-unitary minimal models [ 229]. For 2d Q Æ3,4 Potts model,

natural candidates for such LG descriptions are the SQ-symmetric Lagrangians considered in

[230, 231] which contain both cubic and quartic interaction terms.

C.2 First-order phase transition at large Q

Consider the Potts model in d dimensions with Q À 1. We will argue that the phase transition

is �rst-order. Consider �rst the zero-temperature ( v Æ 1 ) fully ordered state which in the

cluster de�nition corresponds to the lattice-�lling X, and the in�nite-temperature ( v Æ0) fully

disordered state corresponding to the empty X. The free energies per site of these two states

are:

fOrd Æd log v, fDis ÆlogQ . (C.2.1)

Assuming that these states adequately describe physics all the way to the transition (which

will be argued to be the case for Q À 1), we determine the approximate transition temperature

by equating these two free energies: vc ¼Q1/ d .1 To show that this guess is self-consistent,

we do the low-temperature expansion around the ordered state and the high-temperature

expansion around the disordered state. Normally these expansions would converge only for

very large and very small v respectively. But for Q À 1 they actually converge all the way to the

transition. At low expansion orders the smallness of corrections is easy to check. E.g. the �rst

correction to the disordered state comes from X having one bond, and is suppressed by v/ Q,

which remains ¿ 1 for v . vc. On the other hand the �rst few correction terms to the ordered

state correspond to removing k 6 2d ¡ 1 bonds and are suppressed by 1/ vk , which is ¿ 1

throughout the region v & vc. At k Æ2d we can �nally create one more cluster—an isolated

point. This gives a contribution » Q/ v2d , still suppressed. This can be made systematic by

writing down the full 1/ Q expansion series around the ordered and disordered state. 2 This

argument can be made mathematically rigorous using the Pirogov-Sinai theory, see [ 238] and

[125], section 7.5.

To summarize, the fully ordered and fully disordered state survive, up to small correction, all

the way to the transition temperature where they coexist. Both of these states clearly have

O(1) correlation length. Finiteness of the correlation length and phase coexistence mean that

the transition is �rst-order at large Q.

1In d Æ2 this guess turns out to be exact for any Q, as follows from the self-duality of the model.
2The 1/ Q expansion in the Potts model was originally discussed in [ 232–236]. See especially Eqs. (7), (8) in [237].
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C.3 Generalization to d È 2

We have seen that, in d Æ2, the order of the transition depends on the value of Q. It is believed

that, in a general number of dimension d , the transition is second-order for 0 Ç Q 6 Qc(d )

and �rst-order for Q È Qc(d ). As we have seen,Qc(2) Æ4.3 In three dimensions, it is known

the transition is continuous for Q Æ2 and (weakly) �rst-order for Q Æ3.4 The value of Qc

was found to be Qc(3) ¼2.45 in some Monte Carlo studies [ 241]. For d > 4, it is known that

Qc(d ) Æ2.

When it comes to the critical and tricritical �xed point annihilating, there is evidence from

RG that it happens in d 6Æ2 similarly to 2d [ 242, 243]. It seems thus reasonable to assume that

in 3d the two �xed points annihilate at Q ÆQc(3) ¼2.45. One difference of d È 2 from 2d is

that there exist a value Qm (d ) such that at Q ÆQm (d ) the line of tricritical �xed points meets

the gaussian (free) line [ 242]. In 3d, we expect Qm (3) Æ2, in accord with the upper critical

dimension for the Ising tricritical point being d Æ3. See Fig. C.1 for the conjectured summary

of the situation in d Æ3.

For the Q Æ3 3d Potts model the transition is weakly �rst-order, with the correlation length

still largish, » » 10 [244]. The complex CFT picture developed in our work may be relevant in

this case.

One could wonder if it's possible to start from a gaussian �xed point and vary the value of Q in

order to get a weakly coupled interacting theory, for example for the tricritical Potts model

for Q Æ2Å ±, d Æ3 or the critical Potts model for Q Æ2¡ ±, d Æ4, with ± small. In the latter

context, this question was examined in [ 243], and the answer is negative. It was found that,

in d Æ4, the theory in the limit Q ! 2¡ reduces to two decoupled sector, one being a free

theory describing the Ising model, and a strongly coupled second sector describing the Potts

�elds. While it is true that at Q Æ2¡ ± the two sectors interact weakly, the full theory is not

perturbative. Using this framework, Ref. [ 243] developed a theory describing the critical and

tricritical �xed points merger in d Æ4¡ ² dimensions.

C.4 Representations of SQ and the operator spectrum

Irreps of SQ are in one-to-one correspondence with Young tableaux Y with Q boxes, and their

dimension DY (Q) is given by the hook rule [245]:

DY (Q) Æ
Q!

Q

boxes
hook length

. (C.4.1)

3This has been proven rigorously [239, 240].
4See [121] for the older evidence of a �rst-order transition in d Æ3, Q Æ3.
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Figure C.1 – Critical and tricritical Potts model for d Æ3 as a function of Q È 0. The two �xed
points annihilate at Q ¼2.45. At Q Æ2 the tricritical line intersects with the line of gaussian �xed
points (see the text).

The hook length for one given box is the number of boxes below it, plus the number of boxes

to its right, plus one. For example, the irrep

| {z }
Q boxes

(C.4.2)

has dimension Q!
Q! Æ1, and is the singlet representation of SQ . The irrep

| {z }
Q¡ 1 boxes

(C.4.3)

has dimension Q!
Q(Q¡ 2)! ÆQ ¡ 1 and is the vector representation. 5

By the hook rule, DY (Q) is a polynomial in Q with integer single zeros. Now we list the

dimension of a few irreps of SQ . Denote by [ a1,a2, . . . ,an ] the Young tableau with a1 boxes

in the �rst row, a2 boxes in the second row, etc., so that
P

i ai ÆQ. Then we have ((a)n is the

Pochhammer symbol)

D [Q] Æ1, (C.4.4)

D [Q¡ n ,n ] Æ
(Q ¡ n Å 2)n¡ 1

n!
(Q ¡ 2n Å 1) with n 6

¹
Q

2

º
, (C.4.5)

D [Q¡ n ,1,...,1] Æ
(Q ¡ n)n

n!
with n Ç Q , (C.4.6)

D [Q¡ 4,2,1,1] Æ
Q(Q ¡ 2)(Q ¡ 3)(Q ¡ 5)

8
. (C.4.7)

5SQ acts naturaly on the Q-dimensional vector space with the basis Áa (a Æ1,. . . ,Q), by permuting the indices.
This representation is reducible and decomposes into singlet

P
a Áa , and (Q ¡ 1)-dimensional vector Á̃a ÆÁa ¡

1
Q

P
b Áb ,

P
a Á̃a Æ0.
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We now test the observation from section 4.2.6: Multiplicities Mh,h̄ can be decomposed as sums

of dimensions of irreps of SQ , analytically continued in Q, with Q-independent positive integer

coef�cients. This is nontrivial: Mh,h̄ is a polynomial in Q, but not every polynomial has the

stated property. The simplest counterexample would be Mh,h̄ ÆQ ¡ 2. Notice that it would still

be consistent with having true SQ symmetry for integer Q > 2, were we to relax the request for

Q-independence of the expansion coef�cients and let the number of singlets scale with Q as

Q ¡ 2. The latter realization of the symmetry, however, appears less elegant.

A few operators whose multiplicities coincide with a dimension of a single irrep ( 1, " , " 0, ¾, ¾0,

O0,1) were discussed in section 4.2.6. One more example is the spin-1 operator O1,1, whose

multiplicity is

¤ (2,2)Å Q ¡ 1 Æ
1

2
(Q ¡ 1)(Q ¡ 2) ÆD [Q¡ 2,1,1] ÆD [Q¡ 2,2] Å 1. (C.4.8)

The latter identity means that O1,1 multiplet may also decompose into two irreps.

In more complicated case more than one irrep is required. E.g. consider the scalar O0,3/2 ,

which comes from the term with M Æ3,N Æ1,P Æ0 in the second term of (4.2.23), as well as

from Zc[g,1/2]. This operator has multiplicity ¤ (3,1) ¡ (Q ¡ 1) Æ(Q2¡ 5QÅ3)(Q¡ 1)
3 . This quantity

is clearly not the dimension of an irrep of SQ , since it has zeros at non-integer values of

Q. However it can be decomposed as a sum of dimension of irreps of SQ . We have two

possibilities:

(Q2 ¡ 5Q Å 3)(Q ¡ 1)

3
ÆD [Q¡ 3,1,1,1]Å D [Q¡ 3,3] ÆD [Q¡ 1,1] Å 2D [Q¡ 3,3] . (C.4.9)

Another interesting operator is O0,2, which arises from the M Æ4,P Æ0,N Æ1 term of (4.2.23).

Its multiplicity is ¤ (4,1) Æ 1
4Q(Q ¡ 2)(Q ¡ 3)2 which has a double zero and hence is not a

dimension of an irrep of SQ . Here's one of several possible decompositions as a sum of irreps:

Q(Q ¡ 2)(Q ¡ 3)2

4
Æ3D [Q¡ 3,1,1,1]Å D [Q¡ 4,2,1,1]Å 3D [Q¡ 4,1,1,1] . (C.4.10)

Whenever there are multiple possible decompositions, we cannot currently decide which

one is physically preferred. Hopefully this can be done in the future by de�ning some sort

of twisted partition function, which would give different weights to different irreps, or by

studying the structure of the 3pt functions.

Let's �nally mention what happens for Q Æ2,3,4. As mentioned in section 4.2.6, all multiplic-

ities for these Q should be positive. The case of operator O0,1, which might appear to have

negative multiplicity for Q Æ2, was already discussed in section 4.2.6. Similarly, operator O0,3/2

appears to have negative multiplicity for Q Æ2,3,4, but this is resolved by degeneracies with

other operators of the theory. 6 These are examples of a general phenomenon: for Q Æ2,3,4

6On the critical branch it is degenerate with Oe0Å4,0, O§ 5,0 and Oe0§ 6,0, for Q Æ2,3,4 correspondingly. The
same happens on the tricritrical branch, but with different operators ( Oe0Å8,0,O§ 7,0 and Oe0§ 6,0).

163



Appendix C. Further facts about the Potts model

partition function (4.2.26) can be transformed to a simpler form [ 137], showing manifestly

that the theory contains primaries with positive multiplicities only.

C.5 Q Æ4 Potts model as an orbifold free boson

The Q Æ4 Potts model can be described as free scalar boson compacti�ed on S1/ Z2 with

radius R Æ1/
p

2, see e.g. [214] whose notation we will follow. Local operators in this theory

are built from holomorphic and anti-holomorphic components of the scalar �eld Á and Á̄.7

First, let us identify the operator " 0 in this description. In total there are three marginal

operators [214]:

L Æ@Á̄@̄Á, V1 ÆV Å
0,4 Æ

p
2cos

³p
2(Á ¡ Á̄)

´
, V2 ÆV Å

1,0 Æ
p

2cos
³p

2(Á Å Á̄)
´
. (C.5.1)

Consequently " 0must be a linear combination of these. To determine which one, let us use the

" £ " OPE. Since the remaining marginal operators transform non-trivially under S4 and " is a

singlet, the only dimension 2 operator that can appear in this OPE is " 0. The energy operator

itself can be easily identi�ed in the orbifold theory: " ÆV Å
0,2, since this is the only operator of

dimension 1/2.

OPEs of vertex operators and L are well known (see e.g. [246]). In particular:

L £ V Å
n,m »

µ
n2

R2 ¡
m 2R2

4

¶
V Å

n,m , V Å
n,m £ V Å

n0,m 0 »
1

p
2

V Å
nÅn0,mÅm 0. (C.5.2)

We get

V Å
0,2 £ V Å

0,2 »
1

p
2

V Å
0,4 ¡

1

2
L ÆC""" 0" 0, (C.5.3)

where

" 0Æ

p
2

p
3

V Å
0,4 ¡

1
p

3
L (C.5.4)

is unit-normalized, and C""" 0 Æ
p

3
2 agrees with (4.4.19). Using (C.5.4), we also con�rm the

O(² 0) term in (4.4.11).

Combinations of L, V1 and V2 orthogonal to " 0are the remaining marginal operators:

Z1 ÆV2, Z2 Æ
2

p
3

L Å
1

p
3

V1. (C.5.5)

This leads to " 0£ Zi » ¡ 2p
3

Zi , and hence to (4.4.23).

7Notice that this is not the same scalar �eld as the height �eld denoted by the same letter in section 4.2.3. It is
tempting to say that the two �elds are related by some sort of T-duality, but the precise relation is unclear to us due
to the necessity to orbifold. In a simpler case of the O(2) model, the height �eld used in [ 137] is indeed the T-dual
of the usual compacti�ed boson.
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Turning to the spin operator, one of its components is identi�ed with V Å
0,1 (the other two

residing in the twisted sector). Using (C.5.2) we get

V Å
0,1 £ V Å

0,1 » ¡
1

8
L, (C.5.6)

which after taking the inner product with " 0 leads to (4.4.21).
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D Technicalities

D.1 Integrals for ° " and ° T

In the computation of ° " in d Æ2 we encountered a vanishing integral

Z

C
d 2z f (z, z̄) Æ

Z

C
d 2z

1

j1¡ zj4

µ
j1Å zj2

4jzj
¡ 1

¶
Æ0, (D.1.1)

Let us give an analytic proof of this fact. It is important to remember that this integral is not

absolutely convergent, and needs to be computed with circular cutoffs around 0, 1 and in�nity.

We divide the complex plane into three regions (see Fig. D.1):

R1 Æ{z : ² Ç jzj Ç 1¡ ±} ,

A Æ{z : 1¡ ± Ç jzj Ç 1Å ±,jz ¡ 1j È ² } ,

R2 Æ
©
z : 1Å ± Ç jzj Ç ² ¡ 1ª

.

(D.1.2)

Figure D.1 – The three integration regions (D.1.2).

We need to compute the integral for small but �nite values of ² and then take ² ! 0 limit. The

quantity ± is introduced for convenience. In principle the sum of three integrals does not

depend on it, but we will see that all three integrals will simplify for ± ¿ 1, so we will take a
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limit ± ! 0 (after ² ! 0). It will turn out that the contribution of the region A approaches a

nonzero constant for ± ! 0. It's easy to forget about this contribution and get a wrong answer.

Figure D.2 – Deformation of the region A, which yields the same result in the ± ! 0 limit.

The integrals over R1 and R2 can be computed by writing

Z
d 2z f (z, z̄) Æ

Z
rdrd µ f (rei µ, rei µ) Æ

Z
r dr

I
d½

i ½
f (r ½,r / ½) (D.1.3)

and doing the ½integrals by residues. This way one obtains:

lim
² ! 0

Z

R1

d 2z f (z, z̄) Æ
¼

8
Å O(±),

lim
² ! 0

Z

R2

d 2z f (z, z̄) Æ
¼

8
Å O(±).

(D.1.4)

We are left with computing the integral over the region A. When the limit ± ! 0 is taken, and

the annulus shrinks, the integral will give a non zero contribution because of the singularity

at z Æ1. We can restrict the integration region A to a rectangle around z Æ1, as the regions

where the integrand is not singular yield a zero contribution in the ± ! 0 limit. We consider

therefore the region in Fig. D.2.

We expand the integrand around z Æ1 and keep only the divergent terms, since only they

contribute in the ± ! 0 limit. Doing the shift z ! 1Å z and de�ning the region shown in

Fig. D.2, AR Æ
n
z : ¡ L1

2 Ç Rez Ç L1
2 , ¡ L2

2 Ç Im z Ç L2
2 , jzj È ²

o
, we have

lim
±! 0

lim
² ! 0

Z

A
d 2z f (z, z̄) Ælim

±! 0
lim
² ! 0

Z

AR

d 2z
µ

1

8z2 Å
1

8z̄2

¶
. (D.1.5)

It's straightforward to carry out the integration of the r.h.s., and one obtains

Z

AR

d 2z
µ

1

8z2 Å
1

8z̄2

¶
Æ

1

4

µ
¼¡ 4tan¡ 1 L2

L1

¶
. (D.1.6)

The result does not depend on the cutoff ² once we carry out the angular integration. In order

to take the ± ! 0 limit we need to understand how L1 and L2 scale with ±. We see that L1 » ±

and L2 »
p

±, therefore tan ¡ 1 L2/ L1 ! ¼/2 when ± ! 0. Therefore, using (D.1.5),

lim
±! 0

lim
² ! 0

Z

A
d 2z f (z, z̄) Æ ¡

¼

4
. (D.1.7)
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