
ADAPTIVE DATA AUGMENTATION FOR IMAGE CLASSIFICATION

Alhussein Fawzi?, Horst Samulowitz†, Deepak Turaga†, Pascal Frossard?

?EPFL, Switzerland & †IBM Watson Research Center, USA

ABSTRACT

Data augmentation is the process of generating samples by
transforming training data, with the target of improving the
accuracy and robustness of classifiers. In this paper, we pro-
pose a new automatic and adaptive algorithm for choosing
the transformations of the samples used in data augmenta-
tion. Specifically, for each sample, our main idea is to seek a
small transformation that yields maximal classification loss
on the transformed sample. We employ a trust-region op-
timization strategy, which consists of solving a sequence of
linear programs. Our data augmentation scheme is then inte-
grated into a Stochastic Gradient Descent algorithm for train-
ing deep neural networks. We perform experiments on two
datasets, and show that that the proposed scheme outperforms
random data augmentation algorithms in terms of accuracy
and robustness, while yielding comparable or superior results
with respect to existing selective sampling approaches.

Index Terms— Data augmentation, transformation in-
variance, image robustness, trust-region optimization.

1. INTRODUCTION

In many classification problems, the available data is insuffi-
cient to train accurate and robust classifiers. To alleviate the
relative scarcity of the data compared to the number of free
parameters of a classifier, one popular approach is data aug-
mentation (DA). Data augmentation consists in transforming
the available samples into new samples using label-preserving
transformations. For example, it is well known that suffi-
ciently small affine transformations of the data preserve the
label of an image. In [1], the importance of data augmentation
is particularly outlined in order to train very large deep net-
works and improve the generalization error. Unfortunately,
data augmentation is an art, as it involves many manual
choices. Inappropriate choices of data augmentation schemes
are likely to result in augmented samples that are not infor-
mative enough, which leads to no effect or detrimental effect
on the accuracy and robustness of classifiers. The choice of
the data augmentation strategy is therefore quite important to
reach good accuracy and robustness properties, with a limited
number of additional training samples.

In this paper, we focus on the problem of optimally choos-
ing sample transformations from a transformation group for

data augmentation. That is, we propose an automated and
principled way for finding transformation parameters that
lead to increased accuracy and robustness of classifiers. The
key idea is to transform samples by small transformations
that induce maximal loss to the current classifier. This worst-
case data augmentation scheme leads to informative samples;
i.e., when these are added to the training set, the classifier
is significantly improved in terms of classification accuracy
and robustness. We then propose a simple modification of
the Stochastic Gradient Descent (SGD) algorithm to incorpo-
rate the proposed DA scheme in the training of deep neural
networks classifiers. We show that, in cases where training
data is insufficient, the proposed training algorithm yields
significant improvements with respect to schemes using no
augmentation, or random data augmentation.

Data augmentation has played an active role in achieving
state-of-the-art results on many vision tasks. Very often, DA
is performed by randomly generating transformations from a
set of possible transformations (see e.g., [2, 3]). In [4], the au-
thors propose a greedy strategy that selects the best transfor-
mation from a set of candidate transformations. While lead-
ing to impressive results, this strategy involves a significant
number of classifier re-training steps, in addition to the ne-
cessity of hard-coding the parameters of candidate transfor-
mations, which can be computationally expensive when the
number of candidate transformations is large. Data augmen-
tation has also been shown to improve the classifiers’ robust-
ness to diverse sets of perturbations, such as additive adver-
sarial noise [5, 6] or geometric transformations [7]. In [8], the
authors propose a principled way for automatically comput-
ing elastic deformation fields for digits in a computationally
efficient manner. The transformations considered in the pa-
per are however specific to digits. The very recent work of
[9] introduces an elegant way for data augmentation by ran-
domly generating diffeomorphisms. The approach we follow
in this paper is different, as we focus on optimizing the data
generation process, while keeping the transformation group
relatively small (e.g., affine transformations). Despite work-
ing with a small transformation group, the proposed approach
gives results that are on par with the mentioned works, and
leads in addition to significant improvements in terms of ac-
curacy and robustness with respect to schemes that do not use
data augmentation, or use random DA.

The paper is structured as follows. In Sec. 2, we delve



into the main idea of the paper, namely the worst-case data
augmentation process. We also derive intuitions that motivate
this approach. In Sec. 3, we formalize the worst-case DA
framework, and propose approximate algorithms for transfor-
mation computation, as well as an adapted training algorithm.
Experimental results are provided in Sec. 4 showing the ad-
vantage of our adaptive data augmentation scheme, and we
conclude in Sec. 5.

2. WHY WORST-CASE DATA AUGMENTATION?

To motivate the proposed procedure for data augmentation,
we start with a simple example. Consider a simple classi-
fication task, where the goal is to classify between images
representing a vertical line and a horizontal line. At train-
ing time, we only have access to two centered training sam-
ples represented in Fig. 1 (a,b). However, at test time, due
to uncontrolled acquisition of images, the lines might not be
perfectly centered. In particular, images can incur a hori-
zontal or vertical translation. We define the linear classifier
f(x) =

∑
i∈Ivert

xi −
∑
i∈Ihor

xi,, where Ivert and Ihor denote
the indices of the pixels that are active in the vertical and hor-
izontal training images (Fig. 1 (a,b)), respectively, and x is
the column-reshaped image. Note that f is a perfectly accu-
rate classifier on the training set, as f(x) > 0 for the vertical
image (Fig 1 (a)), and f(x) < 0 for the horizontal image
(Fig 1 (b)). It should be noted however that, without further
augmentation of the data, this classifier is not robust to small
translations of the data. Fig. 1 (c) shows the effect of ver-
tical and horizontal shifts of the vertical line image (Fig. 1
(a)) on the value of f . Note that the value of f is robust to a
large extent to vertical shifts, while being extremely unstable
to horizontal shifts. Therefore, by adding horizontal shifts of
Fig. 1 (a) to the training set, the classifier will get more robust
to these transformations. On the other hand, adding vertical
shifts to the training set will essentially have no impact on the
decision. Conversely, adding vertical shifts of the horizon-
tal line (Fig. 1 (b)) to the training set is certainly beneficial
for boosting the robustness, but adding horizontal shifts will
not change the decision function. This example highlights the
importance of designing adaptive data augmentation strate-
gies that are specific to the dataset and classifier. Moreover,
it suggests a simple adaptive strategy for adding examples in
the training set by adding transformations that maximize the
current classifier loss (e.g., horizontal translations of vertical
line images). In other words, this corresponds to searching
for sufficiently small worst-case transformations that lead to
images that are incorrectly captured by the (current) classi-
fier; adding these informative training samples to the training
set will lead to a change of the decision function and maxi-
mize the robustness. In the following sections, we formalize
this idea in detail, and propose an efficient algorithm for data
augmentation.

(a) (b)

(c)

Fig. 1. (a): Class 1 image, (b): class -1 image, (c): score
of the linear classifier when applying vertical and horizontal
translations to the vertical line image (in (a)).

3. DATA AUGMENTATION ALGORITHM

In this section, we introduce a formalism for the worst-case
data augmentation framework. Let T denote the set of pos-
sible transformations, which is assumed to have t degrees
of freedom. For example, when T corresponds to two-
dimensional translations, we have t = 2. For a given image
I , and transformation θ ∈ T , we let Iθ be the image I trans-
formed by θ. For an image I having label y, the worst-case
DA can be described by

(P) max
θ∈T

`(y,Φ(Iθ)) subject to |θ| ≤ L,

where ` is the classifier’s loss function, Φ is a feature ex-
traction mapping, and L is a user-specified limit that upper
bounds the entries of the vector |θ| ∈ Rt. Note that the
constraint in (P) has the role of keeping the transformation
sufficiently small, which is important to guarantee the label-
preserving property of the transformation. The problem (P)
is difficult to solve due to the nonconvexity of the objective
function for typical classifiers, and approximations become
necessary. For example, in convolutional neural network ar-
chitectures, Φ is a composition of several elementary opera-
tions (e.g., convolution, nonlinearity, pooling) and ` is often
set to the softmax loss. We therefore propose a generic it-
erative trust-region optimization [10] scheme, where a linear
approximation is done at each iteration.1 Specifically, by lin-
earizing the objective function of (P) around the current iter-
ate, we have for small enough ∆θ

`(y,Φ(Iθ+∆θ)) ≈ `(y,Φ(Iθ)) +∇θ`(y,Φ(Iθ))
T∆θ.

The gradient ∇θ`(y,Φ(Iθ)) can be explicitly computed us-
ing the chain rule ∇θ`(y,Φ(Iθ)) = Jθ(Iθ)

T∇`(y,Φ(·))|Iθ ,
1The derivations and algorithms developed in this paper are not specific

to deep networks.



Algorithm 1 Worst-case data augmentation
Inputs: image I , classification functions ` and Φ, transfor-
mation space T , parameters ∆L, L.
Outputs: transformed image Iθ̂.
Initialize θ̂0 ← 0T , K ← bL/∆Lc.
for all i ∈ {1, . . . ,K} do

Solve the linear program

max
∆θ
∇`(y,Φ(·))|TIθ̂i−1

Jθ(Iθ̂i−1
)∆θ

subject to |∆θ| ≤ ∆L.
(2)

θ̂i ← θ̂i−1 + ∆θ.
end for
Set the final estimate θ̂ ← θ̂K .

where Jθ ∈ Rd×t is the Jacobian matrix of the function θ 7→
Iθ (with d the number of pixels in I). Hence, the following
linear program is considered to estimate the transformation
parameter increment ∆θ:

max
∆θ
∇`(y,Φ(·))|TIθJθ(Iθ)∆θ

subject to |∆θ| ≤ ∆L.
(1)

The parameter ∆L defines the size of the trust region, where
the linear approximation holds. The approximate problem in
Eq. (1) is now a linear program (LP) of size t, and can be
solved in polynomial time using off-the-shelf linear solvers.
Given that t is taken to be small in practice (e.g., t = 6 for
affine transformations), the LP in Eq. (1) can be solved very
efficiently.2 Our full iterative trust-region optimization proce-
dure is given in Algorithm 1. Note that bL/∆Lc iterations of
Eq. (1) are solved, in order to guarantee that the final estimate
θ̂ satisfies the constraint of problem (P), that is |θ̂| ≤ L.

Given the trust-region data augmentation scheme in Algo-
rithm 1, we propose a modification of the Stochastic Gradient
Descent training procedure that incorporates data augmenta-
tion. The proposed Stochastic Gradient Descent with Data
Augmentation (SGD-DA) is given in Algorithm 2. The al-
gorithm follows the SGD procedure, but with an additional
feature that permits to transform training points using Algo-
rithm 1. At each iteration of the training algorithm, the cur-
rent image is transformed with probability p ∈ (0, 1) follow-
ing Algorithm 1; that is, the training point is transformed by
the worst-case transformation with respect to the current dat-
apoint I , and current classifier parameters W , which is then
added to the training set. This learning strategy has the benefit
of automatically adapting to the current classifier, in order to
generate points that are informative for the current estimated
classifier. Note moreover that SGD-DA can be extended in a
straightforward way to work with mini-batches at each itera-
tion, instead of individual samples.

2In the experiments, we use the simplex algorithm in the MOSEK opti-
mization toolbox [11].

Algorithm 2 Stochastic Gradient Descent with Data Aug-
mentation (SGD-DA)

Inputs: Training samples I , labels Y , probability p,
learning rate η, parameters ∆L, L, T , loss `.
Outputs: Classifier parameters W .
Initialize the classifier parameters W randomly.
while termination criterion not met do

Select a training point at random I ∈ I , and let y ∈ Y
be its associated label.
With probability p:

1. Let θ be the transformation obtained from Alg. 1.
2. Update: W ←W − η∇W `(y,ΦW (Iθ)).

Otherwise (i.e., with probability 1−p), use the traditional
update step: W ←W − η∇W `(y,ΦW (I)).

end while

4. EXPERIMENTAL RESULTS

4.1. Experimental setup

We consider the transformation set T in our DA scheme to be
the set of two-dimensional affine transformations (t = 6). We
set the boundary condition parameter L = 0.25, the trust re-
gion parameter ∆L to 0.05 and the data transformation prob-
ability p = 0.3. In the following experiments, we evaluate
our DA scheme in Algorithm 2 to train deep convolutional
neural networks. Specifically, in a first training step, we train
a neural network on the original dataset, using SGD. Then,
using Algorithm 2, we fine-tune the network for a fixed num-
ber of extra epochs. The proposed scheme is compared to
several DA algorithms. In particular, we compare it to a ran-
dom DA scheme, which follows the same procedure as Al-
gorithm 2 but applies a random transformation satisfying the
constraint of (P): |θ| ≤ L. This comparison is particularly im-
portant, as random DA is commonly applied in practice. We
perform quantitative comparison between the different meth-
ods in terms of test error, and robustness to transformations.

4.2. Experimental results

We first provide an evaluation of the proposed algorithm on
the MNIST handwritten digits dataset [12]. The dataset is
composed of 60, 000 training images, and 10, 000 test im-
ages. To make the problem more challenging, we consider
that the number of available training data is limited; we sam-
ple randomly 500 digits from each class, which results in a
dataset composed of 5, 000 images in total. The test set is
however kept unchanged. We consider a Convolutional Neu-
ral Network (CNN) architecture containing three successive
layers of convolution, pooling and rectified linear units oper-
ations. Table 1 shows the test errors of the proposed method
(Algorithm 2), as well as competing methods. The classi-
fier fine-tuned with the proposed method outperforms the ap-
proach with no DA, as well as the random DA. This lends



Test error (%)

Without DA 1.84
Random (affine) 1.58
InfiMNIST [8] 1.04

AlignMNIST [9] 0.84
POP [13] 1.52

Proposed (affine) 1.03

Table 1. Test error on the MNIST-500 dataset
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Fig. 2. Evolution of the test error with the epochs for i) ran-
dom, ii) proposed and iii) no DA. For random and proposed,
transformed samples are added starting from epoch 40.

credence to the intuitive idea that optimizing over the set of
transformations leads to better results, compared to a scheme
that chooses the parameters in a random fashion. To further
study the difference between the two approaches, Fig. 2 illus-
trates the evolution of the test error with respect to the number
of epochs used to train the neural network. While the random
scheme stabilizes quite quickly around an error rate of 1.5%,
the adaptive approach constantly improves its classification
error as it seeks for the optimal transformation with respect
to the current classifier. We further analyze the influence of
parameter p on the test error in Fig. 3. For this experiment, all
networks are fine tuned for 20 epochs. It can be seen that, for
our method, larger p implies a lower classification error. In
other words, adding more samples to the training set largely
improves the error rate. Compared to the random scheme, the
proposed method requires much less transformed samples in
order to achieve low classification error.

The proposed algorithm is also compared to state-of-the-
art algorithms in [8, 9, 13] in Table 1. As can be seen, our
results are on par with existing methods that either consider
digit-specific transformations or much larger transformation
groups (e.g., diffeomorphisms in [9]). Conversely, the pro-
posed method exploits a relatively simple and generic trans-
formation group (affine), and maximizes the impact of trans-
formed samples to improve classification results.

We now conduct similar experiments on the more chal-
lenging Small-NORB dataset [14], which contains 3D objects
representing 5 categories. Similarly to the previous experi-
ment, we train a CNN classifier, and perform fine-tuning us-
ing random and the proposed DA scheme. The results are
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Fig. 3. Error rates for different choices of p.

Test error (%)

Without DA 6.80
Random (affine) 6.49

[2] 4.71
Proposed (affine) 4.02

Table 2. Test error on the Small-NORB dataset

MNIST-500 Small-NORB

Without DA 1.62 0.26
Random (affine) 1.68 0.29
Proposed (affine) 1.98 0.36

Table 3. Manitest invariance scores for the two datasets

shown in Table 2. Our adaptive DA scheme results in a sig-
nificant performance boost compared to the classifier that is
trained without DA, as well as random DA, and recent re-
ported results on this dataset in [2].

We finally assess the robustness to transformations of our
learned classifier in Table 3 by reporting the Manitest invari-
ance scores [7] for similarity transformations. It can be seen
that, for both datasets, the scores significantly increase after
data augmentation using the proposed approach. Hence, our
DA scheme not only results in higher accuracy, but also leads
to larger robustness to transformations, which can be crucial
in real-world applications where images are perturbed by un-
known transformations.

5. CONCLUSION

We proposed a novel DA approach where small transfor-
mations are sought to maximize the classifier’s loss. The
problem is formalized as a constrained optimization problem,
and solved using a trust-region approach with an iterative lin-
earization scheme. Experimental results on two datasets have
shown that this simple scheme yields results that are on-par
(or superior) to state-of-the-art methods. In future work, we
plan to build on this framework to provide DA strategies that
can handle very large datasets (potentially containing millions
of images) by providing transformations that are common to
a large number of samples in the training set.
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