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Abstract: While a lot of progress has been made during the last years in the field of Automatic Speech recognition
(ASR), one of the main remaining problems is that of robustness. Typically, state-of-the-art ASR systems work very
efficiently in well-defined environments, e.g. for clean speech or known noise conditions. However, their performance
degrades drastically under different conditions. Many approaches have been developed to circumvent this problem,
ranging from noise cancellation to system adaptation techniques. This paper investigates the influence of using
additional information from relatively long timescales to noise robustness. The multiple timescale feature combination
approach is introduced. Experiments show that, while maintaining recognition performance for clean speech,
robustness could be improved in noisy conditions.
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1 INTRODUCTION
In state-of-the-art Automatic Speech Recognition systems, feature extraction techniques analyze the speech
waveform and produce an acoustic vector, a representation of the speech signal suitable for further processing
by Hidden Markov Models (HMM). Typically, this analysis is performed on rather short windows of the speech
signal. Some contextual information is provided by adding derivatives to the original feature vector. However,
there is no information covering a longer timespan, e.g., spanning the length of one syllable.

Recently it has been shown that this kind of long-term information could improve robustness of ASR sys-
tems. For examples, refer to [6] about TempoRAl Patterns (TRAPs), using additional information of up to one
second), and [12] where information regarding syllables is considered. The present paper investigates another
way of exploiting information on longer timespans: the multiple timescale feature combination approach. This
approach is based on the combination of features from different information streams, which is related to a par-
ticular multi-band approach described in [11]. It can also be seen as one kind of temporal filtering [9]. Features
calculated using windows covering different time spans of the original signal are combined to form a single
feature vector, which is then processed in Hidden Markov Models the usual way.

2 MULTIPLE TIMESCALE FEATURE COMBINATION
Usually, a feature vector contains only information obtained from an analysis window of 32ms length and first
and second order derivatives, and a frame’s context is modeled entirely by the structure and parameters of the
HMM. To introduce some additional contextual information, we added new features, obtained either by
analysis over a longer timespan or by averaging over a number of subsequent feature vectors, as a second, time-
synchronous, stream. For example, we took the average over 9 vectors, looking at four adjacent frames on either
side of a feature vector, thus covering a time span of 112ms in total for our second timescale (see Figure 1).
This corresponds roughly to the amount of contextual information frequently employed in hybrid HMM/ANN
systems [1], as well as to approximately half the length of a syllable. Later experiments used even longer
timespans of up to 2s for the additional information stream.

The feature combination method described above leads to comparatively big feature vectors with possibly
correlated components. Therefore, we used Linear Discriminant Analysis (LDA) with the aim to reduce the
vector dimension as well as the correlation and at the same time extract the most relevant information for clas-
sification [4]. LDA has been applied successfully in ASR before, e.g. in [5] and in the IMELDA system [7].

Figure 1 Combination of features from two timescales: Calculation of a feature vector from a speech file
using an averaging technique for the second timescale. (The zero padding at the beginning and end of a
speech file is introduced for practical reasons for the calculation of the longer timescale features.)
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3 EXPERIMENTS AND RESULTS
Experiments on the feature combination approach were run using the HTK recognizer [15] on the Numbers95
[2] as well as on the Aurora [13] databases. Feature extraction, however, was in both cases performed by a
software module developed at our institute. Mel frequency cepstral coefficients (MFCC) with their first and
second order derivatives were used throughout. Analysis windows had a length of 32ms, and features were
extracted every 10ms. Spectral subtraction and cepstral mean subtraction (or blind equalization, as in the case
of the Aurora baseline system) were applied. For the tests involving LDA, another program employing HTK
modules was developed.

3.1 Tests on the Numbers95 database
First tests were carried out on Numbers95, a small-vocabulary telephone speech database containing naturally
spoken numbers. Final HMMs were 80 triphone models, each comprising 3 states with a mixture of 10
Gaussians in every state. Diagonal covariance matrices were used. Hyper-parameters were optimized for the
baseline system and kept constant throughout the experiments. It has to be stated that keeping the same number
of Gaussian mixtures for different feature vector sizes results in considerable differences in the number of
parameters of the overall system, and is unlikely to be an optimal choice.

While training was done exclusively on clean data of the Numbers95 training set, testing was also executed
with different types of noise (factory, lynx and car noise) from the Noisex database [14] added to the signal at
different signal-to-noise ratios (SNR). The second time-scale was the average over 9 frames, as shown in Fig-
ure 1. In some experiments, LDA was used, and the 26, 21, 17, and 13 most distinctive components were
extracted. Table 1 shows a comparison of the multiple timescale feature combination approach with the base-
line system for the case of factory noise (word error rate (WER) on the development test set).

As shown in this table, the introduction of a second timescale (column “Two Timescales”) improved rec-
ognition results in the case of noise with low signal-to-noise ratios, otherwise the word error rate remained
about constant. The column “Two Timescales + LDA” shows results on two timescale features in combina-
tion with LDA, reducing the vector dimension to be the same as the baseline’s. Increasing the number of LDA
features did not improve results. In all these experiments, LDA did not show the expected effects, as the word
accuracy after this transformation decreased. This might partly be due to a non-optimal segmentation of the
database for the calculation of the transformation matrix.

System
(vector size)

Baseline
(13)

Two
Timescales

(26)

Two
Timescales

+ LDA
(13)

Clean 5.6 5.7 7.4

SNR=18dB 7.2 7.3 9.5

SNR=12dB 13.0 11.2 15.6

SNR=6dB 26.7 22.0 30.7

SNR=0dB 54.4  48.0 59.7

Table 1 WER: Numbers95 (full development test set of
about 1200 utterances) with additive Noisex FACTORY
noise. In the heading, the size of the feature vector
before adding first and second order derivatives is
given in brackets.
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Tests on the other noises lead to the same conclusions. Figure 2 shows results on the “Two timescales” sys-
tem compared to the baseline for factory, lynx, and car noise. In the case of good performance of the baseline
system (i.e., for high SNR, or for the case of car noise, which does not degrade recognition results very much
even for SNR=0), the differences in WER between the “Two timescales” and the baseline systems are not sig-
nificative, as indicated in the figure by the error bars (showing the 95% confidence interval). However, for
more difficult noises and low SNR, we obtain significant improvements.

In the experiments described above, the second time-scale data were calculated on a window centered
around the original one. Tests have been run using windows which started long before and finished at the cur-
rent window for the second timespan, thus only looking at the ‘history’. This was repeated with windows start-
ing at the current window, so only considering the ‘future’ for the second timespan. None of those systems
performed better than the one described above.

It should be noted that, with an optimized hyper-para-meter set (e.g. the number of Gaussians), which is
adapted to the actual features used in the different experiments (and not to those of the baseline system), it
may be possible to achieve even better recognition results.

Figure 2 Comparison of the “Two timescales” system with the baseline: WER on Numbers95 with
different additive noises from Noisex database. On the baseline results, error bars (corresponding to the
95% confidence interval) are shown.
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3.2 Tests on the Aurora database
On the Aurora database (which, in contrast to Numbers95, was designed for training in multiple conditions, i.e.
also on noisy data), the effects of introducing a second timescale (without LDA, corresponding to “Two
Timescales” in Table 1) were confirmed (see Table 2). Results are compared to our single-timescale Aurora
baseline system, yielding an average WER (for 0..20dB) of 13.4%. It should be noted that, apart from changing
the feature extraction part (and thereby also the feature vector and model dimension), the same parameters as
defined in the Aurora specification were used throughout the tests, which might not be optimal for some cases.

WER
Noise1:
Exhibi-

tion
Hall

Noise2:
Babble
Noise

Noise3:
Train

Noise4:
Car

moving

Aver-
age of
Noises

1..4

Clean 1.5 1.7 1.5 1.5 1.5

20 dB 2.1 3.0 2.0  1.7 2.2

15 dB 3.7 6.4 2.8 1.6 3.6

10 dB 8.0 15.4 5.0 2.3 7.7

 5 dB  17.4 34.1 11.6 4.7 17.0

 0 dB 36.0 58.6 27.5 10.5 33.2

-5 dB 66.8 78.6 53.4 29.0 57.0

Average
0..20dB 12.7

Table 2 Word error rate on the Aurora database: Two
timescales, the second timescale being the average over
9 subsequent frames of the first timescale and
consisting of 13 coefficients.

WER
Noise1:
Exhibi-

tion
Hall

Noise2:
Babble
Noise

Noise3:
Train

Noise4:
Car

moving

Aver-
age of
Noises

1..4

Clean 1.5 1.7 1.5 1.1 1.5

20 dB 2.2 2.6 1.5 1.0 1.8

15 dB 3.7 5.5 2.5 1.3 3.3

10 dB 7.5 13.8 4.7 2.3 7.0

 5 dB 14.5 31.7 11.5  4.3 15.5

 0 dB 36.7 60.0 28.0 10.5 33.8

-5 dB 70.9 80.1 59.7 29.4 60.0

Average
0..20dB 12.3

Table 3 Word error rate on the Aurora database: Two
timescales, the second timescale being the average over
about 2s of the energy coefficients of the first timescale.
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Given the large amount of test data, the 95% confidence interval is quite small [13.2..13.6], so that we can
consider the word error rate of 12.7% achieved by our multiple timescale system a significant improvement.
More tests have been carried out, e.g., calculating conventional MFCCs for the second timescale features, but
on a window of 128ms (yielding an average WER of 12.5%); taking the average over 17 frames (WER=
13.1%); and taking the average over 201 frames which corresponds to roughly 2 seconds (WER=37.7%). The
last experiment was repeated, but for the second timescale only one coefficient (the energy) was calculated and
appended to the original feature vector. This way, a WER of 12.3% was obtained (see Table 3), which is the
best result obtained on all our multiple timescale systems. The same setting, but only regarding a window of
one second, yielded a WER of 13.7%.

Figure 3 shows the performance of the multiple time-scale systems from Tables 2 and 3 in comparison to
the baseline. The relative WER ratio

is given, positive values meaning a decrease in WER (and thus better performance) for the multiple timescale
system. It can be seen that in most cases both multiple timescale systems perform better than the baseline, and
that the system with just one additional component for the second timescale, calculated over 2s (light bars in
the figure), performs better.

Figure 3 Aurora database: Percentage of relative WER ratio of the multiple timescale systems from
Tables 2 and 3 as compared to the baseline. Positive values mean a decrease in WER, i.e., a better
recognition performance.
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In summary, the best tested multiple timescale system uses 14 coefficients plus their first and second order
derivatives. 13 MFCCs (including energy) were calculated on 32ms of speech and one long-term energy coef-
ficient was appended. This coefficient was obtained by averaging the energy coefficients over a timespan of
approximately 2 seconds, centered around the window from which the first timescale coefficients were calcu-
lated. First and second order derivatives were appended. This way, a significant improvement was gained com-
pared to our single timescale baseline system.

4 CONCLUSIONS AND OUTLOOK
In this article, the multiple timescale feature combination approach was investigated. It was shown to
significantly increase robustness of ASR systems in the case of additive noise, while yielding a performance
comparable to state-of-the-art systems for clean speech.

However, some more parameter tuning might lead to an even better recognition performance. This includes
a higher number of timescales, changing lower and upper cut-off frequencies of the frequency bands used for
the different timescales as well as varying the length of the analysis (or averaging) window. For some settings,
LDA might proof to be advantageous. For instance, it might replace the averaging technique for the calcula-
tion of the second timescale, which was applied for the experiments described in this paper. Different feature
extraction or preprocessing techniques might be used for the various timescales. Likelihood combination [11]
may be used instead of (or in addition to) feature combination, pointing towards a more general multi-stream
framework, as recently described in [3].

The multiple timescale feature combination approach in combination with posterior combination
(employed in the same spirit as the likelihood combination in [11]) is currently investigated at our institute in
the framework of hybrid (HMM/ANN) systems. Furthermore, research is conducted towards the incorporation
of these techniques into the “Full Combination” approach to multiband speech recognition [10].
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